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1 Introduction

The aim of smart contract systems is to secure rela-
tionships, over computer networks, without the needs
of legal third parties. This idea has been brought to
reality by achievements in the fields of distributed sys-
tems and cryptography. Existing smart contract sys-
tems use a decentralized consensus protocol, which re-
quires all the information and computations involved
in the contract to be public. This specificity provides
a strong accountability, since everything is logged and
verified by the system. However, the public nature of
smart contracts can also be a drawback, as many ap-
plications involve private information. In this work,
we want to look at constructions that make it possible
to use smart contracts of which some parameters need
to stay secret, while preserving the correctness of the
contracts.

2 Background

2.1 Notations

We present notations used in this paper.

1. We write the security parameter as λ.

2. We say a function ε is negligible (in λ), iff
∀c ∈ N∗, |ε(λ)| = O( 1

λc ).

3. We say an algorithm is ppt, when it is a ran-
domized algorithm with polynomial asymptotic
complexity in λ.

4. We write x←$X, when we sample x uniformly
in the set X. We write y ← A(x) when A is a
randomized algorithm and y := A(x) when A is
deterministic.

5. We write a := 〈b|c〉 to define a as the concatena-
tion of b and c, and 〈b|c〉 := a when we decompose
a into b and c.
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6. We write the states of a smart contract as si. We
write si[x] when we want to access variable x in
the state si.

7. We say a computation is executed onchain when
it is executed by all the nodes of the blockchain.
We say that it is executed off-chain when it is
executed locally by some node.

2.2 Blockchain

A blockchain is a decentralized system, where the de-
cision power is shared by all the parties involved (also
called nodes or peers). A blockchain is used by peers to
settle on a shared, sequential state history. For a fixed
period of time, the nodes broadcast a set of changes,
called transactions, that they want to see in the next
state. At the end of the period, using a consensus al-
gorithm, the nodes decide on a set of state changes,
called a block, and add it to their state history (which
forms a chain of blocks, hence the name). Blockchains
use cryptography and distributed systems to provide
strong guarantees that the blockchain state cannot be
corrupted, and it is impossible to change the state his-
tory retroactively. Among other things, a blockchain
can be used to power a digital currency [1]. Peers send-
ing transactions are identified using their public keys,
and digital signatures are used to make sure that only
authorized transactions are accepted by the blockchain.
Another important property of blockchain is that a new
block is computed at almost regular time intervals, thus
the block counter can be used as a clock by applica-
tions.

2.3 Smart contract

As discussed in Introduction, a smart contract is to
be used as a contract in an online and decentralized set-
ting. It needs to secure relationships without the use of
trusted authorities or legal systems. In practice, smart
contract systems are implemented in a programming
language on top of a blockchain protocol. The smart
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contract is defined as a contract state and a piece of
computer code that is included (we say that it is de-
ployed) in the blockchain state. When a transaction
is sent to the contract, the code is executed and pro-
duces a new contract state, which is included in the
blockchain. More interestingly, smart contracts can be
programmed to hold and transfer digital assets.

2.4 Commitment scheme

A commitment scheme is a cryptographic primitive,
which can be used in a protocol to force a party to
commit to a secret value before continuing the protocol.

Definition 1 (Commitment scheme). A commitment
scheme consists of three efficient algorithms:

• Setup: randomized algorithm, takes in the secu-
rity parameter and outputs system parameters σ.

• Commit: randomized algorithm, given a value v ∈
V , it returns a commitment c and a key k.

• Open: given a commitment c and key k outputs a
value in V or ⊥ (meaning an incorrect opening).

They must satisfy the following properties.

• Correctness: Let σ ← Setup(1λ), ∀v ∈ V ,
if (c, k)← Commitσ(v), then Openσ(c, k) = v.

• Hiding: Any ppt adversary, choosing v0, v1 ∈ V
and given a commitment c of value vb with
b←$ {0, 1}, cannot output a bit b′ = b with prob-
ability significantly larger than 1

2 .

• Biding: Any ppt adversary can output (c, k, k′)
such that ⊥6= Openσ(c, k) 6= Openσ(c, k′) 6=⊥
only with negligible probability.

2.5 Proof system

A proof scheme is used in a protocol with 2 parties,
the prover and the verifier, where the prover wants to
convice the verifier that a statement is true.

Definition 2 (Non-interactive proof-of-knowledge). Let
R(a,w) be an efficiently computable boolean function,
and L = {a|∃w,R(a,w) = 1} its associated language.
If R(a,w) = 1, we say that w is a witness of the state-
ment a ∈ L. For such L, a non-interactive proof-of-
knowledge system consists of 3 efficient algorithms:

• Setup: randomized algorithm, takes in the secu-
rity parameter and outputs system parameters η;

• Prove: randomized algorithm, given a statement
a and witness w, it returns a proof π; and

• Verify: given a statement a and a proof π, it re-
turns a bit.

They must satisfy the following properties.

• Completeness: ∀a ∈ L, if η ← Setup(1λ),
R(a,w) = 1 and π ← Proveη(a,w),
then Verifyη(a, π) = 1.

• Soundness: ∀a /∈ L, any ppt adversary produces
a proof π′ such that Verifyη(a, π′) = 1 only with
negligible probability.

Zero-knowledge proof In our construction, we will
require as an additional property that the proof be
zero-knowledge. Informally, the zero-knowledge prop-
erty means that any efficient adversary, given a correct
proof π, only learns that a ∈ L is true, and specifically,
doesn’t learn anything about the witness w.

2.6 Related work

In 2016, the Hawk team proposed a construction for
privacy-preserving smart contracts [2]. Their aim was
to achieve transaction privacy, where the transaction
data (source, destination, value, etc.) is not disclosed.
They use a special party, called the manager, to run the
computation, as well as a zero-knowledge proof system
to enforce correctness.

Another line of work has been using zero-knowledge
proofs to introduce privacy in blockchain transactions;
for example, the zerocash protocol [3] extends the bit-
coin protocol, with hidden transactions, where the amount,
sender and receiver are not shared with anyone else.

In the Zexe paper [4], an extension of the zerocash
protocol is proposed, which allows programmable coins.
Zexe successfully realizes a primitive they named de-
centralized private computation, that can be useful in
applications such as private digital currency exchanges.

2.7 Our contribution

We propose a construction that allows smart con-
tracts be used for applications with private parame-
ters. Our solution works directly with existing smart
contract systems. We implement our construction with
ethereum smart contracts in a software library. The
rest of this paper is organized as follows. In Section 3,
we formally define the problem we want to solve and
give a small illustrative example. In Section 4, we pro-
pose a construction for a smart contract with private
parameters that satisfies the requirements of Section 3.
In Section 5, we describe an implementation of our con-
struction using ethereum smart contracts. In Section
6, we analyze the performance of our implementation.
Finally in Section 7, we discuss the drawbacks of our
construction and evoke some possible directions to ad-
dress them.

3 Problem definition

¡¡¡¡¡¡¡ HEAD In this paper, we study applications de-
fined by an initial state s0, and a transition function
IdealTransition. A special party, the owner, chooses
a secret value secret, which is used as a parameter
by the transition function. When other parties, the
users, input the application with some data data, the
next state of the application is computed as si+1 =
IdealTransitionsecret(si, data). As we said in the in-
troduction, these applications can’t be implemented us-
ing smart contracts alone, as their public nature would
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leak the value secret. In this paper, we looked at a relax
problem, where we allow an implementation to enter an
intermediate state s′i, and eventually reach the correct
state si+1. We can break down IdealTransition into
subroutines f, g, h, k, as in algorithm 2.

Algorithm 1 IdealTransitionsecret(si, data)

s′i := k(si, data)
z := h(s′i)
y := f(secret, z)
returng(s′i, y)

Subroutines f, g, h, k have distinct roles:

• k includes all the computations independent of
secret, and produces an intermediate contract
state s′i

• h extract the input in a format expected by f

• f is a deterministic function of the value secret
and the value z produced by h

• g links everything and computes the next state

Now we can formally define the security we want to
achieve:

Definition 3. We say that a protocol P securely real-
izes IdealTransitionsecret, if it satisfies the following
requirements:

1. No efficient adversary should gain any knowledge
on secret, other than the values f(secret, h(s′i)),
with s′i := k(si, data), of each previous state tran-
sition

2. For any user action with input data at state si,
P eventually gets to a new state
si+1 = IdealTransitionsecret(si, data)

Example 2 shows a simple application involving a
secret parameter.

Example 1 (”Higher or Lower?” game). Here we have
two parties, the owner and the player. The game is
parameterized by a set S ⊂ N, and a number of query t.
The owner chooses s←$S and let the player make some
guesses, and on each guess g ∈ S, returns whether s is
a number higher, lower or equal to g. After t guesses,
the player makes a final guess, and wins if it is a correct
guess. We’ve described this game in Figure 1.

If we can build a smart contract with private pa-
rameters that satisfies the requirements, then we can
realize the game in the following way. Set the secret
parameter secret, to the value to guess s. We let the
state of the contract hold a counter of queries cnt = 1.
We define f, g, h, k as in Figure 2.

This smart contract can act as a ”Higher/Lower”
oracle, and designate the winner, with a potential re-
ward. ======= In this paper, we study applica-
tions defined with two phases. In an initial phase, a

special party, called the owner, chooses a parameter
secret and an initial state s0. In the second phase,
other parties, the users, can participate by choosing an
input data, and update the application state: si+1 =
IdealTransitionsecret(si, data). Smart contracts can’t
implement these applications trivially, as their public
nature would leak the value of secret. To overcome
this, we look at a relaxed problem, where a smart
contract realizing such applications is allowed to en-
ter an intermediate state s′i, and we only require that
it eventually (after some fixed amount of time) en-
ters the correct state si+1. Before formally defining
our requirements, we break down the specification of
IdealTransition into subroutines f, g, h, k as shown in
Algorithm 2.

Algorithm 2 IdealTransitionsecret(si, data)

s′i := k(si, data)
z := h(s′i)
y := f(secret, z)
return g(s′i, y)

Each subroutine has a different role.

• k includes all the computations independent of
secret and produces an intermediate state s′i.

• h extracts (part of) the intermediate state in a
format expected by f .

• f is a deterministic function of the value secret
and the value z produced by h.

• g links everything and computes the next state.

Now we formally define what we want to achieve.

Definition 4. We say that a protocol P securely im-
plements IdealTransition if it satisfies the following
requirements.

1. No efficient adversary should be able to extract
any knowledge on secret from the transcript of
P , other than what can be deduced from the values
f(secret, h(k(si, data))), for all previous transi-
tions with input data and state si.

2. For any transition with input data at state si, the
application eventually enters the state
si+1 = IdealTransitionsecret(si, data).

To illustrate, we provide a small game in Example
2, which can be implemented using a system satisfying
Definition 4.

Example 2 (Higher or Lower? game). Here we have
two parties, the owner and the player. The game is
parameterized by a set S ⊂ N, and a maximum number
of guesses t. The owner chooses s←$S and lets the
player make some guesses. On each guess g ∈ S, the
owner returns whether s is a number higher, lower, or
equal to g. After t guesses, the player makes a final
guess and wins if it is correct, as shown in Figure 1.
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H/LGame(S, t)

Owner Player

s←$S S

. . . . . . . . . . . . . . Repeat at most (t− 1) times . . . . . . . . . . . . . .

qi pick qi ∈ S

compare(s, qi) Higher/Lower

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

if qt = s qt

Player wins

Figure 1: ”Higher or Lower?” game

In Example 2, we can set secret to be the value to
guess s. We set the initial state to hold a counter of
queries cnt := 1 and write the transition function with
subroutines f, g, h, k as in Figure 2. If the implementa-

k(si, x)

s′
i := si

if si ∈ {swin, slose}orx /∈ S

s′
i[revert] = 1

else

s′
i[guess] = x

endif

return s′
i

g(s′i, y)

if y = 2

return swin

elseif s′
i[cnt] = t

return slose

endif

s′
i[cnt]+ = 1

return s′
i

f(s, r)

comp := 2

if s > r then comp := 0

if s < r then comp := 1

return comp

h(s′i)

return s′
i[guess]

Figure 2: Subroutines for the Higher/Lower game

tion satisfies Definition 4, then we are assured that only
the value f(s, qi) is leaked for each guess qi, i.e., we only
leak whether the user’s guess was higher or lower than
the secret value. ¿¿¿¿¿¿¿ 7bdf9183b9bc96f1b4246ace02cee780fb297a28

4 Construction

In this section, we propose a construction that meets
the requirements of Definition 4. We will do so in an in-
cremental fashion: first we give constructions that sat-
isfy the requirements using some assumptions, which
will be refined by adopting more realistic assumptions
at each step.

4.1 Naive approaches

4.1.1 Regular smart contract

In regular smart contract systems, all parameters
(including secret) are directly included in the binary
of the smart contract. In that case, when a transac-
tion gives input data to the contract, the blockchain
nodes have all the information necessary to compute
the next state si+1 := g(s′i, f(secret, h(s′i))) with s′i =
k(si, data), so we say that f is computed on-chain. The
incorruptible nature of regular smart contracts auto-
matically satisfies Requirement 2. However, Require-
ment 1 is satisfied if we make the assumption that no
other parties will look at the value of secret, which is
accessible publicly in the binary of the contract. This
assumption is really strong and unrealistic, especially if
knowing secret can provide some financial gains (e.g.,
win a reward in Example 2).

4.1.2 Off-chain computation

If we want to protect against malicious users, then
the parameter secret can’t be included directly in the
contract. A natural approach is to have the owner
keep the value secret locally and publish the smart
contract without secret. When a user sends a trans-
action with data data, the contract gets to the new
state s′i := k(si, data). The owner monitors the state
changes of the contract. When the smart contract gets
to a state s′i, the owner computes z := h(s′i) and
y := f(secret, z) locally (off-chain) and sends y to the
smart contract. The new state is then computed as
si+1 := g(s′i, y). Here Requirement 1 is satisfied by
design. However, Requirement 2 is satisfied if we as-
sume that the owner is honest. This assumption is ar-
guably less strong (than no other parties will peek), as
in many cases the owner will be a company with a repu-
tation and regulations and hence will be less tempted to
cheat the protocol. However, this assumptions reduces
the application to a client-server application, with the
smart contract only acting as a middleman that relays
messages and transfers assets.

4.2 Our proposal: off-chain and verified

If we want to protect against both malicious users
and owners, then the smart contract (and the nodes of
the underlying blockchain) should be able to verify that
the value y returned by the owner really corresponds
to f(secret, h(s′i)). To achieve that, we use a commit-
ment scheme and a zero-knowledge proof system for
the language:

Lf = {a =: 〈z|c|y〉| ∃w=:〈sk|k〉,
Openσ(c,k)=sk∩f(sk,z)=y

}.

Our construction is parameterized by two functions
lfake and ltimeout, used to penalize a malicious owner,
and a timeout value T . We assume that the Setup
algorithm of both the commitment scheme and proof
system was run honestly, and the system parameters σ
and η are known by all parties.
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Initialisation: On deployment, the owner chooses its
secret parameter secret, computes a commitment
(c, k)← Commitσ(secret), includes c in the code of the
smart contract, and keeps k locally.

Start transition: When a user sends a transaction
with data data, the contract gets to the new state s′i :=
k(si, data).

Off-chain computation: The owner monitors the
state changes of the contract. When the smart con-
tract get to a state s′i, the owner computes z := h(s′i),
y := f(secret, z), and π ← Proveη(〈z|c|y〉, 〈secret|k〉)
to prove that 〈z|c|y〉 ∈ Lf .

Finish transition: The owner then sends y and π
to the smart contract. The smart contract computes
z′ := h(s′i), reconstructs a′ := 〈z′|c|y〉 from the value
c it stored and the y it received, and computes b :=
Verifyσ(a′, π). If b = 1, then the smart contract ac-
cepts y as the value f(secret, z′), and the next state
is computed as si+1 = g(s′i, y). Otherwise, the smart
contract goes to the next state si+1 := lfake(s

′
i).

Timeout: If the contract is still in state s′i after T
blocks have been generated, the user sends a Timeout
transaction. When the contract receives it, it goes to a
state si+1 := ltimeout(s

′
i).

Figure ?? describes the structure of the smart con-
tract, and Figure ?? describes the protocol as a whole.

Security

Proposition 1. For any rational, ppt adversary, we
can select lfake and ltimeout such that our protocol sat-
isfies Definition 4.

Proof. Definition 4 has two requirements.
Requirement 1:
In this construction, the only values that are published
by the owner are c, y, and π. The hiding property of
the commitment scheme guarantees that no informa-
tion on secret is leaked by c against any ppt adversary.
The zero-knowledge property of the proof scheme guar-
antees that no information on w := 〈secret|k〉 is leaked
against any ppt adversary. The only released informa-
tion on secret is the value y := f(secret, h(k(si, data));
therefore it satisfies Requirement 1.
Requirement 2
If the owner follows protocol, then the completeness
property of the proof system guarantees that the Verify
procedure will return 1. Since b = 1, then si+1 :=
g(s′i, y), it follows that Requirement 2 is satisfied. If
the owner doesn’t follow protocol, then we have to look
at several cases.

1. If the owner simply doesn’t respond, then the
user sends a Timeout transaction after T blocks
have been generated, and the the contract goes
to state si+1 := ltimeout(s

′
i).

2. If the owner sends y′ 6= f(secret, z) and π′, then
there are two cases:

(a) π′ is not a valid proof. Then the sound-
ness property of the proof system guarantees
that Verifyη(〈z|c|y〉, π) = 0, and si+1 :=
lfake(s

′
i).

(b) π′ is a valid proof. Then the completeness
property guarantees that
Verifyη(〈z|c|y〉, π) = 1, and si+1 := g(s′i, y

′)

In all these three cases, the final state si+1 is differ-
ent from the value returned by IdealTransition, hence
Requirement 2 is not satisfied. To mitigate case 1 and
2a, we can set lfake and ltimeout to include appropriate
financial penalties for the owner in the new state, in
order to deter a malicious but rational owner. In the
case 2b, if π′ is valid, then the owner knows a wit-
ness w := 〈secret′|k′〉 for the statement 〈z|c|y′〉 ∈ Lf .
The definition of Lf implies Openσ(c, k′) = secret′ ∩
f(secret′, z) = y′. Since y′ 6= f(secret, z), we have
secret′ 6= secret (f is deterministic). We also have
Openσ(c, k) = secret from the correctness of the ini-
tial commitment. It implies the owner knows (c, k, k′)
with secret = Openσ(c, k) 6= Openσ(c, k′) = secret′,
so the binding property of the commitment guarantees
that this happens with negligible probability for a ppt
adversary.

As a result, our construction satisfies Definition 4
under the assumption that the Setup algorithms of
the commitment scheme and proof system are executed
correctly, for all rational ppt adversaries.

5 Implementation

In Section 4.2, we described a construction to build
a smart contract that satisfies Definition 4. We made
assumptions on the type of adversary, and we assumed
a trusted setup for the commitment and proof system.
Since our goal is to have a construction that can be
implemented on existing smart contract systems, we
have limited the assumptions we made about the ca-
pabilities of the contracts. To simplify, we will restrict
our scope to applications where the secret parameter
secret is a single 128-bit unsigned integer, and f is a
function taking two 128-bit unsigned integers and re-
turning another 128-bit unsigned integer.

5.1 Tools

Before we explain our implementation, we will intro-
duce some of the tools we use.

5.1.1 Ethereum smart contracts

We implement the on-chain part of our construction
using ethereum smart contracts. Ethereum [5] is a com-
monly used public and programmable blockchain. It
provides a set of computer instructions that can be used
to write smart contracts, as well as a a decentralized
computing unit, the ethereum virtual machine (EVM),
on top of which contracts are executed. Ethereum has
a base currency, the ether (ETH), and uses a concept
of accounts to associate a public key to an amount of

5



ether controlled by the key. In ethereum, smart con-
tracts have their own accounts: users can transfer ether
to contracts, and a contract can transfer ether from its
account to users (or to other contracts). To avoid at-
tackers using all of the resources of the EVM, ethereum
uses a concept of gas. The gas is a fee that is included
with every transaction. All resources (memory, compu-
tation, etc.) used for a transaction have a cost, which
is taken away from the gas and given to the ethereum
nodes. If a transaction runs out of gas, the computa-
tions are reversed, but the gas used is not returned.

Solidity The ethereum community also produced high-
level programming languages that can be compiled to
EVM programs. We use the Solidity language to define
our contracts. Solidity has a syntax close to object-
oriented programing languages: contracts have a inter-
nal variables (the state) and methods (computations),
which can be executed by specific transactions (we say
that someone calls the method). Solidity contracts can
emit events, which notifies the users that something
happened. Deployed contracts are identified by an ad-
dress (a unique 256-bit string) and can call each other’s
methods using these addresses. Solidity contracts are
defined in source files with extension .sol.

5.1.2 zk-SNARKS

As a proof system, we use zk-SNARKS [6], which are
non-interactive zero-knowledge proofs-of-knowledge. Zk-
SNARKS are secure in the common reference string
(CRS) model, which means that they require a trusted
setup. They have short proofs and fast verifications,
which induces smaller transactions and reduced ethereum
gas costs. More importantly, we can create zk-SNARKS
to prove that a computation was correctly executed ac-
cording to a fixed circuit, while not revealing part of
the inputs (called the witness). We can even produce
proofs for tinyRAM (a random access machine with a
limited instruction set) programs [7]. This allows us to
produce zero-knowledge proofs for high-level computa-
tions, (e.g., Open and f in our construction).

5.1.3 Zokrates

In Section 4.2, we assumed that the contract is able
to compute b := Verifyσ(a′, π). Since Verify is not a
native instruction of the EVM, we need to include its
code as a part of the smart contract. We will use the
Zokrates [8] toolbox for this purpose. Zokrates pro-
vides:

• A programming language to define computations
with inputs that are specified as either public

or private. Programs are written in files with
extension .zok. Integers are limited to the type
field, which represents values in Zp for some
prime p specific to the zk-SNARKs. We use field
to represent 128-bit unsigned integers, as p >
2128.

• A compiler that reduces a Zokrates program to a
zk-SNARK.

• A setup algorithm that produces proving and ver-
ification keys.

• A prover algorithm that takes in the proving key
and the inputs and produces an output, along
with a zero-knowledge proof. The statement to
prove includes the public inputs and the output,
and the witness includes the private inputs.

• An export algorithm that takes in the verification
key and produces an ethereum smart contract,
written in Solidity, that can verify the proofs.

5.1.4 Hash-Based Commitment

Our construction also needs a commitment scheme,
with the specificity that the Open algorithm is part
of the computation verified by the proof system, so
we need to write the check Open(c, k) = secret as a
Zokrates program. Zokrates has a limited library, but
it includes the SHA256 hash function, which can be
used to build a hash-based commitment scheme. We
then define our commitment scheme as in Figure ??.
The commitment c is a 256-bit string, and the key k is
a 384-bit string. In Zokrates, we represent c with type
field[2], and k with type field[3], by taking blocks
of 128-bits for each field.

5.2 Library description

We have implemented our construction as a library
[9], where all generic parts of the construction are im-
plemented by the library, so the developer only has to
implement the parts that are specific to the target ap-
plication. The library includes smart contracts, written
in Solidity, and Javascript programs to help the owner
and users of the contract.

5.2.1 Contract Architecture

We want our solution to abstract the way f is com-
puted, so that the developer has little more to do than
defining f, g, h, k and lfake, ltimeout, T . We first break
the code of the contract into three contracts. A first
contract, called the requester contract, is responsible
for the computations of g, h, k, lfake and ltimeout. A sec-
ond contract, called the holder contract, is responsible
for the interaction with the owner to compute f . The
third contract, called the verifier contract, verifies
the proofs sent by the owner. The three contracts are
deployed together and know of each other’s address.

Requester contract The requester has four meth-
ods: start, callback, wrong proof, and timeout.

• start(data) is called by the user, which exe-
cutes the pre-f computation (i.e., k and h) and
obtains a 128-bit unsigned integer z. It calls
holder.requestComputation(z), obtains a value
id, and emits an event Start(id).

• callback(id,y) is called by the holder with the
value y := f(secret, z), executes the post-f com-
putation g, and emits an event End(id, result)

for some result generated by g.
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• wrong proof(id) is called by the holder, real-
izes lfake, and emits an event WrongProof(id).

• timeout(id) is called by the user, realizes ltimeout,
and emits an event Timeout(id).

Verifier contract The verifier has one method,
verifyTx, that executes the Verify algorithm and re-
turns a bit.

Holder contract The holder contract has an inter-
nal variable c, initialized with the commitment of the
secret parameter chosen by the owner. The holder has
two methods: requestComputation and answerRequest.

• requestComputation(z) is called by the requester,
which generates a unique value id, stores (id,

z) in a table, emits an event NewRequest(id,

z), and returns id to the requester.

• answerRequest(id,y,pi) is called by the owner,
which retrieves the tuple (id,z) from its table
and calls verifier.verifyTx(〈z|c|y〉, pi) to check
that y is correct (i.e., 〈z|c|y〉 ∈ Lf ). If it is, then
the contract calls requester.callback(id, y);
otherwise it calls requester.wrong proof(id).

The holder is the same for all f , so we can make its
source code holder.sol an internal part of our library.

5.2.2 Local computations

Our library also includes programs to generate, de-
ploy, and interact with the smart contracts.

Setup program We’ve written a small setup pro-
gram that is executed by the trusted third party and
produces the proving and verification key, for any given
Zokrates program.

Owner program We require the owner to define f
as a Zokrates program F.zok and define g, h, k and
lfake, ltimeout as part of the requester contract. We
wrote a program for the owner with three components,
as shown in Algorithm 3. Here AddCommitCheck
modifies a Zokrates program F.zok, which computes
f(private secret, public z), to a new F&C.zok pro-
gram that has additional inputs (public c, private k)

and checks that Open(c, k) = secret before computing
f . Link modifies the three deployed contracts, such
that that they know each other’s addresses.

User program We defined a user program, as shown
in Algorithm 4, used by the user to make calls to the
requester and receive the corresponding result value.

5.3 Details

Here we have implemented a requester contract
that can only access f in an asynchronous manner
through a call back. This breaks the atomic nature of
smart contract changes. The developer must take care
in writing the contract to make sure that the Timeout

and WrongProof methods revert what needs to be re-
verted in case of failure. The developer also needs to

Algorithm 3 Owner program

procedure Generate(F)
F&C← AddCommitCheck(F)
p.key, v.key← Trusted.Setup(F)
v.sol← Zokrates.export(v.key)
return F&C, p.key, v.key, v.sol

end procedure
procedure Deploy(r.sol, v.sol, secret)

r addr← Deploy(r.sol)
v addr← Deploy(v.sol)
(c,k)← Commit(secret)
d addr← Deploy(d.sol, c)
Link(r addr, v addr, d addr)
return (c, k, r addr, v addr, d addr)

end procedure
procedure Listen(c, k, s, h addr, F&C, p.key)

listener ← h addr.listen(NewRequest)
while true do

id, z← listener.waitEvent()
y, pi← Zokrates.Prove(F&C, p.key, s, z, c, k)
h addr.answerRequest(id,y,pi)

end while
end procedure

Algorithm 4 User program

procedure MakeCall(r addr, input, nb block)
id← r addr.start(data)

listener ← h addr.listen(End(id, ))
timeout, result← listener.wait(nb block)
if timeout = true then

r addr.timeout(id)

return TimeoutError
else

return result

end if
end procedure

make sure start cannot be called a second time before
the callback of the first call was executed to avoid in-
terleaving of the calls. Another potential vulnerability
is that the owner pays the gas used for the execution of
Verify and callback, so malicious users could use that
to drain the owner’s account. A solution is to write the
requester contract in a way that any call to start

needs to include a small reward in ether, which will
be transfered to the owner when callback is called to
cover the gas fee. The user also needs to check that the
owner correctly deployed the contracts, and that the
verifier contract was correclty generated from the
verification key generated by the trusted third party.

6 Performance

To analyze the total cost of our solution, we have
compared three constructions. In the first one, called
onchain in the plots, all computations are done on-
chain, which corresponds to the construction of Section
4.1.1. In the second one, called unverified in the plots,
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the computation of f is done off-chain, but we don’t
use any verifications on the output, which corresponds
to the construction of Section 4.1.2. The last one is
our proposed construction, called zokrates in the plots,
described in Section 4.2 and implemented as described
in Section 5. We wrote a dummy requester contract
and a dummy f : (secret, x) → secret + x. We set
up a private test network with a block period of two
seconds, and a gas price of 1014 wei (1 wei = 10−18

ETH). We performed the following experiment: first
we used the owner program to generate and deploy the
contracts and started the listener. Then we executed
the user program to make a call to start and to wait
for the result. For each action, we measured the time
spent (in seconds), as well as the gas cost (in wei) for
each party (owner and user), and plot the results in
Figure 3.

(a) Deployment gas (b) Deployment time

(c) Request gas (d) Request time

(e) Answer gas (f) Answer time

Figure 3: Performance comparison

Costs in Figures 3a, 3b, 3e, and 3f are costs paid by
the owner, while costs in Figures 3c and 3d are costs
paid by the user. We can see that our construction
incurs a significant cost for the owner, among which
the costs in Figure 3e can be subsidized by the user
through a reward system, as discussed in Section 5.3.

7 Future improvements

The main drawback of our construction is that it as-
sumes a trusted setup producing the proving and veri-
fication keys. Furthermore, this trusted setup needs to
be performed for each new function f defined by the de-
veloper, as the zk-SNARKs we use are circuit-specific.
A recent paper [10] has proposed constructions for uni-
versal zk-SNARKS, where one pair of keys can be used
to verify the computation of any f (with a bounded
circuit size). This means that the trusted setup would

have to be called only once, and the produced keys
could be reused. Another solution would be to use zk-
STARKS [11], which do not require any trusted setup.
We would also like to explore other approaches, such as
using secure multi-party computation protocols, obfus-
cation mechanisms, or secure hardware systems, e.g.,
trusted execution environments.

8 Conclusion

In this paper, we have proposed a construction that
reconciles the public and incorruptible nature of a smart
contract with the sensitivity of some private application
data. We described a model of an ideal contract where
some part of the contract’s code is parameterized by a
secret value that will not be leaked out during the exe-
cution of the contract. We then provided a construction
that emulates this ideal contract, using a proof system
and a commitment scheme. Our construction assumes
that we can access a trusted setup for the proof sys-
tem and is secure against rational ppt adversaries. We
provided an implementation of our contsruction, using
ethereum smart contracts and zk-SNARKS, which can
be used as a library, providing a foundation for a broad
set of applications.
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