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Abstract
Nowadays, efficient and remote health monitoring is becoming increasingly important, given

both the ageing of population and the combined action of an increase in obesity level and

cardiovascular diseases. The healthcare industry is becoming more reliant on new methods to

monitor and treat patients. This, along with an increased interest in fitness and wellness, is

calling for more affordable, precise and wearable health monitoring devices. In this context,

photoplethysmography (PPG) appears to be a key technology allowing non-invasive moni-

toring of vital biological indicators such as the heart rate, the blood oxygen saturation, the

respiration rate and the arterial blood pressure. A standard PPG system comprises pulsed

LEDs synchronized with a photosensor and a processing chain. The LEDs diffuse light in

the human skin. Processing the signal held by the diffused light allows the extraction of the

vital parameters. Despite the great potentials behind the PPG technology, the fairly large

power burnt by the LEDs still represent a serious challenge towards truly continuous PPG

operations, limiting its practical exploitation. State-of-the-art PPG sensors, both in academia

and in commercial products, still follow a quite standard design paradigm. Indeed, they rely

on off-chip photodiodes and relatively standard circuitry. The commercially available smart-

watches and wearables fall short of meeting customer requirements in terms of reliability,

precision and battery lifetime. In this regard, we should not expect any dramatic improvement

unless there are fundamental changes in the PPG sensor technology. This is particularly true

on the photosensor side, since its parasitic capacitance represents one of the limiting factor

in terms of power/noise. Pinned-photodiode (PPD) are today the key ingredients of CMOS

image sensors, thanks to the low dark current, low noise and large sensitivity operations.

Several markets including security, scientific and medical imaging are relying today on this

technology. The excellent performance of a PPD makes it particularly interesting for the PPG

application. Indeed, the LED power can be reduced provided the noise floor is decreased

proportionally. In this work a truly micropower PPG sensor combining an array of double

transfer gates (TG) PPDs together with an ultra-low noise read-out chain is presented. Com-

pared to conventional solution, this work achieves the same signal-to-noise ratio (SNR) at

a significantly lower LED power. The use of an array additionally enables spatial averaging

leading to further noise reduction and easing the engineering trade-off between the possible

achievable dynamic range and the overall noise performance. Consequently, the LED power

can be reduced dramatically. The micropower PPG sensor is implemented in a 0.18 µm CMOS

image sensor process (CIS), achieving 4.6 µW total power consumption, including 1.97 µW

LED power, at 1.38 bpm HR average error. Compared to the most recent state-of-the-art work
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this means more than an order of magnitude in power reduction. A PPG signal usually suffer

from a relatively low AC/DC ratio, being the AC component the one carrying the majority of

the biomedical information. Therefore, any PPG sensor has to integrate a proper AC/DC ratio

enhancement technique. An additional advantage coming from the PPD array structure, and

its double TG, is its excellent control of the integrated charge. This can also be exploited for

enhancing the perfusion index of the PPG signal. Unlike state-of-the-art works, this can be

performed without any power or silicon area overhead, by properly tuning the TG control

voltage and the charge transfer time. The increasing demand for embedding more and more

light sensors in portable and wearable devices is calling for higher integration and reuse of

the sensor interface electronics. In this perspective, this work has tried to assess whether the

extremely sensitivity and low noise operation of the proposed PPG sensor could have been

enough to open to new applications, far from the PPG one. ToF distance ranging is key in

several applications from consumer electronics such as drones, cameras and smartphones

to industrial metrology. Without any lens, the micropower PPG sensor can be operated for

indirect ToF operations, requiring less than 2 mA average laser current, during exposure,

and only 10 µW for the sensor chip enabling a 2 mm resolution for 130 cm range. Moreover,

the presented architecture is implemented in a standard CIS process which presents a con-

siderable advantage for large volume consumer applications and for miniaturization. The

CMOS implementation also allows the integration of digital processing or machine learning

for specific applications on the same die opening the way for edge computing. Eventually,

the sensor architecture presented in this work not only offers the advantage of covering ALS,

PPG and ToF using the same device, but it also brings significant performance improvement

in each application field. This architecture represents a promising step towards all-in-one

miniaturized photonic sensors, thanks to low-cost high-volume production and integration in

portable and wearable devices.

Key words: PPG, ToF, Array, Photodetector, PPD, CMOS, CIS, LED, low-power, low-noise,

wearable.
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Résumé
De nos jours, la mesure des paramètres vitaux, d’une manière continue et en dehors des

centres hospitaliers, devient particulièrement importante. Le vieillissement de la population,

l’augmentation de l’obésité et des maladies cardiovasculaires en sont les causes. L’industrie

de la santé se montre de plus en plus ouverte à de nouvelles méthodes de soin pour les

patients. De plus, l’intérêt de la population pour sa condition physique et son bien-être est

croissant. C’est pour toutes ces raisons que la demande en systèmes innovants de mesure est

grande. Dans ce contexte, la technologie nommée photopletismographie (PPG) représente

un pilier important du changement de méthode. Un capteur PPG permet de mesurer divers

paramètres vitaux comme la fréquence cardiaque, l’oxygénation sanguine, la respiration ainsi

que la pression artérielle. Un système PPG est caractérisé par une source lumineuse (LED)

rythmée, synchronisée avec un photodétecteur et une chaine électronique de lecture. La

LED diffuse des photons, donc de la lumière, à travers la peau humaine. Le photodétecteur

capture la lumière réfléchie à partir de laquelle l’extraction des paramètres vitaux peut avoir

lieu. Malgré l’énorme potentiel de la technologie PPG, la consommation de la LED représente

toujours un défi important dans le développement des systèmes PPG capables de mesurer

d’une façon continue. Ceci en limite l’utilisation effective. L’état de l’art des capteurs PPG,

soit au niveau académique, soit au niveau commercial, suit un paradigme de développement

éprouvé, mais répétitif ; des photodétecteurs externes et des circuits de lecture relativement

ordinaires sont utilisés. Les dispositifs portables aujourd’hui sur le marché, comme les montres

connectées, ont tendance à décevoir les attentes des clients quant à la durée de la batterie

et la précision des données fournies. Pour pouvoir améliorer ces deux caractéristiques, il

faudra attendre des changements importants de la technologie PPG. Ce changement sera

crucial surtout pour la technologie du photodétecteur dont la capacité parasite représente

une limite importante pour le bruit et la puissance. Le photodétecteur "pinned" (PPD) est

de nos jours à la base de la technologie des capteur d’image CMOS grâce à son courant

"dark" réduit et sa formidable sensibilité. Plusieurs applications commerciales comme la

sécurité, les images scientifiques et médicales sont aujourd’hui basées sur cette technologie.

Les excellentes prestations des dispositifs PPD les rendent particulièrement intéressants pour

l’application PPG. En fait, la puissance de la LED peut être réduite si le niveau de bruit est

réduit proportionnellement. Dans ce travail de thèse, un capteur PPG à micropuissance,

combinant une matrice de PPDs à double grille de transfert avec un circuit de lecture à très

basse consommation et à faible bruit, a été présenté. Comparé à l’état de l’art, ce travail

réduit considérablement la puissance de la LED sans compromettre le rapport signal/bruit
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(SNR). L’utilisation de la matrice introduit la possibilité de réaliser une moyenne spatiale

permettant une réduction supplémentaire du bruit. De plus, la matrice facilite le compromis

technique entre la dynamique d’entrée et la performance du bruit ; ceci réduit drastiquement

la puissance de la LED. Le capteur PPG à micropuissance a été fabriqué dans une technologie

à capteur d’image CMOS à 180 nm, obtenant un niveau de consommation de puissance

totale de 4.6 µW, y compris 1.97 µW utilisée par la LED. Ceci a été obtenu avec une erreur

moyenne sur la détection de la fréquence cardiaque de 1.38 bpm par rapport à une bande

thoracique. Par rapport à l’état de l’art le plus récent, ces performances représentent une

réduction entre un et deux ordres de grandeur de la puissance consommée. Un signal PPG

normalement présente un rapport AC/DC particulièrement réduit. Il est très important de

considérer ce rapport car on trouve au sein de la composante AC la majorité des informations

médicales ; c’est la raison pour laquelle chaque capteurs PPG doit intégrer une stratégie

interne d’augmentation de ce rapport. La structure matricielle et la double grille de transfert

permettent une excellente capacité de contrôler la quantité de charge intégrée par le PPD.

Contrairement à l’état de l’art, le rapport AC/DC peut être augmenté sans aucune pénalité

de puissance ou surface de silicium, ceci en optimisant la tension de contrôle de la grille de

transfert et du temps de transfert de la capacité intégrée. La demande toujours croissante

d’intégration des capteurs de lumière dans les dispositifs portables nécessite la réutilisation

des interfaces et des capteurs pensés pour des applications différentes. Dans cette optique,

ce travail de thèse a essayé d’étudier la possibilité d’utiliser les excellentes performances

du capteur PPG décrit ci-dessus dans des applications différentes que celles du PPG. Les

capteurs à temps de vol (ToF) sont de plus en plus importants dans diverses applications

comme les drones, les automobiles à conduite autonome ou les applications industrielles.

Sans l’utilisation de lentilles, le capteur PPG à micropuissance décrit ci-dessus peut être utilisé

pour des mesures indirectes du temps de vol, avec moins de 2 mA de courant moyen utilisé

par les lasers et consommant seulement 10 µW dans la chaine de lecture. Le capteur a été

caractérisé pour cette performance jusqu’à 130 cm, où il a montré une résolution de 2 mm.

Indépendamment de l’application, l’architecture proposée est fabriquée dans un processus à

capteur d’images qui est particulièrement avantageux par rapport aux coûts, en particulier

pour des productions de consommation. La technologie CMOS permet aussi l’intégration, sur

le même silicium, de circuits digitaux avec ou sans intelligence artificielle, vers des systèmes

totalement automatisés. Finalement, il est important de souligner que l’architecture proposée

dans ce travail de thèse ne permet non seulement son utilisation dans diverses applications,

comme le PPG ou le ToF, mais également de dépasser l’état de l’art dans toutes ses applications.

Cette dernière caractéristique combinée à l’intégration de la technologie CMOS à large échelle,

fait de l’architecture décrite ci-dessus un tournant technologique vers des capteurs intégrés

dans diverses applications.

Mots clefs : PPG, ToF, Matrice, Photodétecteur, PPD, CMOS, CIS, LED, faible-consommation,

faible-bruit, portable.
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Sommario
Oggigiorno la misurazione di parametri vitali, in maniera continua e al di fuori dei centri

ospedalieri, sta acquisendo particulare importanza. I fattori trainanti sono l’invecchiamento

della popolazione e l’azione combinata dell’aumento dei livelli di obesità e delle malattie

cardiovascolari. L’industria sanitaria sta mostrando importanti segni di apertura verso nuovi

metodi di cura dei pazienti. Questo, combinato con un interesse sempre crescente verso la

forma fisica ed il benessere, chiama a gran voce dei sistemi innovativi di misura. In questo

contesto, la tecnologia chiamata fotopletismografia (PPG) rappresenta un pilastro import-

ante di rinnovamento. Un sensor PPG permette di misurare diversi parametri vitali come il

battito cardiaco, l’ossigenazione sanguigna, la respirazione e perfino la pressione arteriosa.

Un sistema PPG è caratterizzato da una sorgente luminosa (LED) ritmata, sincronizzata con

un fotorilevatore ed una catena elettronica di lettura. Il LED diffonde i fotoni, quindi la luce,

attraverso la pelle umana. Il fotorilevatore rileva la luce riflessa dalla quale l’estrazione dei

segnali vitali ha luogo. Nonostante l’enorme potenziale dietro la tecnologia PPG, la conside-

revole potenza dissipata dal LED rappresenta una sfida importante nello sviluppo di sistemi

PPG che operino in maniera continua, limitandone l’effettivo utilizzo. Lo stato-dell’arte dei

sensori PPG, sia a livello accademico, quanto a livello commerciale, segue un paradigma di

sviluppo collaudato, ma alquanto ripetitivo; si sfruttano fotorilevatori esterni e circuiti di

lettura alquanto ordinari. I dispositivi indossabili oggi sul mercato, come orologi connessi,

hanno la tendenza a deludere le aspettative dei clienti in termini di precisione dei dati forniti

e tempo di vita della batteria. In quest’ottica non dovremmo aspettarci nessun miglioramento

sostanziale fintantoché un importante cambiamento della tecnologia PPG abbia luogo. Que-

sto è particolarmente rilevante per quanto concerne la tecnologia del fotorilevatore, la cui

capacità parassita rappresenta uno dei limiti in termini di rumore e quindi di potenza. I foto-

rilevatori pinned (PPD) sono oggi alla base della tecnologia dei sensori di immagine CMOS,

grazie alla loro ridotta corrente dark, rumore generato e stupefacente sensitività. Diverse

applicazioni commerciali come la sicurezza, immagini scientifiche o medicali si basano oggi

su questa tecnologia. Le eccellenti prestazioni dei dispositivi PPD li rendono particolarmente

interessanti per l’applicazione PPG. Infatti, la potenza dissipata dal LED puo’ essere ridotta

se il livello di rumore è ridotto proporzionalmente. In questo lavoro di tesi un sensore PPG

a micropotenza, combinante una matrice di PPDs a doppio gate di trasferimento con un

circuito di lettura a bassa potenza e basso consumo, è presentato. Rispetto allo stato-dell’arte,

questo lavoro riduce considerabilmente la potenta del LED senza compromettere il rapporto

segnale rumore (SNR). L’utilizzo di una matrice introduce la possibilità di realizzare una media
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spaziale che permetta un’addizionale riduzione del rumore. In aggiunta, la struttura matriciale

facilita il compromesso ingegneristico tra la dinamica d’ingresso e le prestazioni di rumore;

questo porta ad una riduzione importante della potenza dissipata dal LED. Il sensore PPG

a micropotenza è stato implementato in una tecnologia a sensore d’immagine CMOS a 180

nm, raggiungendo un livello di consumo di potenza totale di 4.6 µW, includendo i 1.97 µW

dissipati dal LED. Il tutto è stato raggiunto con un errore medio sulla stima del battito cardiaco

di 1.38 bpm, rispetto ad una fascia toracica. Con riferimento allo stato-dell’arte piu’ recente,

queste prestazioni rappresentano una riduzione da 1 a 2 ordini di grandezza del consumo

di potenza totale. Un segnale PPG di norma presenta un rapporto AC/DC particolarmente

ridotto. Tenerne conto è particolarmente importante dal momento che la componente AC

porta con se la maggior parte dele informazioni biomediche. Percio’, ogni sensore PPG deve

obbligatoriamente integrare una strategia interna di aumento del suddetto rapporto. In questo

senso la struttura matriciale, e soprattutto il doppio gate di trasferimento, porta con se un ulte-

riore vantaggio, cioè l’eccellente capacità di controllare la quantità di carica integrata nel PPD.

Contrariamente allo stato-del’arte, il rapporto AC/DC puo’ essere aumentato senza nessuna

penalità in termini di potenza o area di silicio, andando ad ottimizzare la tensione di controllo

del gate di trasferimento ed il tempo di trasferimento della carica integrata. La domanda

sempre crescente d’integrazione di sensori di luce in dispositivi portatili ed indossabili urge il

riutilizzo delle interfacce, anche di sensori concepiti per applicazioni diverse. In quest’ottica,

questo lavoro di tesi ha cercato di studiare la possibilità di utilizzare le eccellenti prestazioni

del suddetto sensore PPG in applicazione ben lontane da quella PPG. I sensori a tempo di

volo (ToF) sono sempre piu’ importanti in diverse applicazioni come quelle di consumo, basti

pensare ai droni o alle automobili a guida autonoma, o industriali. Senza l’utilizzo di alcuna

lente, il sensore PPG a micropotenza descritto sopra puo’ essere operato per misure indirette

di tempo di volo, con meno di 2 mA di corrente media dissipata dal laser e consumando

solamente 10 µW in lettura. Il sensore è stato caratterizzato, per le suddette prestazioni, fino a

130 cm, in cui ha mostrato una risoluzione di 2 mm. Indipendentemente dall’applicazione,

l’architettura proposta è implementata in un processo a sensore d’immagine CMOS, quindi

particolarmente vantagioso, in termini di costo, per volumi di produzioni di consumo. La

tecnologia CMOS permette anche l’integrazione, sullo stesso silicio, di circuiti digitali con

o senza intelligenza artificiale, verso sistemi totalmente automatizzati. In fine è importante

sottolineare che l’architettura proposta in questo lavoro di tesi non solamente permette il suo

sfruttamento in ambiti applicativi diversi, come il PPG o il ToF, ma in tutti gli ambiti ha rag-

giunto prestazioni superiori rispetto allo stato-dell’arte. Quest’ultima caratteristica, insieme

all’integrazione della tecnologia CMOS su larga scala, rende la sopra citata architettura una

svolta tecnologia verso sensori integranti in diverse applicazioni.

Parole chiave: PPG, Tempo-di-Volo, Matrice, Fotorilevatore, PPD, CMOS, CIS, LED, bassa-

potenza, basso-rumore, indossabile
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1 Introduction

Nowadays, the Digital Health is becoming the next big Thing. Modern lifestyle often comes

at the cost of increased stress levels, uncontrolled diets and little time devoted to medical

prevention. Moreover, in a short term future, there will be more connected devices than

human beings [1]. Indeed, as shown in Fig. 1.1, the number of Internet-of-Things (IoT) devices

is expected to reach more than 70 billion by 2025. Out of this, 22% is the expected market

share of connected health devices, the Internet-of-Medical-Things (IoMT). By 2020, 40% of IoT

technology will be health related, more than any other category [2]. In parallel, [3] indicates

that the global population could grow to around 8.5 billion in 2030, 9.7 billion in 2050, and

10.9 billion in 2100. These numbers lead to incredible business and societal transformation,

but also possible threats. In this framework, the healthcare industry is becoming more reliant

on new methods to monitor and treat patients. This, along with an increased interest in

fitness and wellness, is calling for more affordable, precise and wearable health monitoring

devices. This chapter aims at introducing the great opportunities and challenges behind the

digital health and also the driving factors sustaining the urgent need of change in the modern

healthcare system. The motivations behind this work are pointed out and the organisation of

this manuscript is presented.

1.1 The Digital Health: the next big Thing

Digital Health is a collective term bringing together the electronic health (eHealth) and the

mobile health (mHealth). The eHealth covers the systematized collection of patients’ medical

records into a digital format. The mHealth, instead, complements the eHealth by deploying

health services and information via mobile platforms such as smartphones, tablets and per-

sonal computers [4]. Generally speaking, the Digital Health has been uniquely considered

"the next big Thing", in other words the largest technology breakthrough of our modern

times. It is also one of the biggest drivers for healthcare delivery innovations: wearable or

implantable sensors, big data and artificial intelligence, augmented reality and medical robots

are breakthrough technologies dramatically changing the way people think and act about

healthcare. The digital health’s dawn is mainly driven by the fast innovative developments

1



Chapter 1. Introduction

of the three technological pillars of mHealth: telecommunications, computing and medical

sensing. Billion of smartphones and internet devices connected to tens of thousands of mobile

health applications are used worldwide by patients, clinicians and healthcare providers. This

constellation of devices comes with huge business potential: in 2017, the IoT healthcare

market was valued at 41 billion dollars and is projected to more than 150 billion by 2022, at

a compound-annual-growth-rate (CAGR) of more than 30% [5]. Such number of connected

devices is continuously generating enormous datasets, which are already changing the way

patients, scientists or physiologists today perceive the eHealth. The eHealth is becoming the

"big data Health". The big data will, on one hand, come with severe challenges such as privacy

issues [6]. In addition, data collection is still complicated: so far only about 10% of unstruc-

tured generated data is worth being saved and one-third of IoT solutions are abandoned due

to the lack of data management and analytic skills [2]. On the other hand, this will also disclose

new healthcare insights opportunities and may give rise to new industrial and service sectors

with massive impact on the worldwide employment. We should also take into account that

the patients of tomorrow, the millenials, are getting used to streaming (personal) data over

the clouds. Moreover, they want to book appointments using their smartphones and securely

message their health providers between visits. They also want to receive their medical records

Figure 1.1 – Internet of things connected devices installed base worldwide from 2015 to 2025
(billion), [1].
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over the cloud and above all skip the travel time and see their doctors through e-visits wherever

possible. In other words, the healthcare industry, that has largely resisted consumer-centric

change, can no longer ignore the rapidly growing population of mobile-powered patients, who

likely researched their condition on the Internet before their visit.

1.2 Driving factors

The previous section has clearly shown that the modern society is irreversibly changing and

with it the way people perceive the healthcare. The objective of this section is to deepen the

driving factors ultimately triggering the digital health revolution.

1.2.1 Increase of cardiovascular diseases

Cardiovascular diseases (CVDs) are the number 1 cause of death globally: more people die

annually from CVDs than from any other cause [7]. An estimated 17.9 million people died

from CVDs in 2016, representing 31% of all global deaths. Out of these deaths, 85% are due to

heart attack and stroke.

Most CVDs can be prevented by addressing behavioural risk factors such as smoking, obesity

and physical inactivity. People with CVDs or who are at high cardiovascular risk (due to the

presence of one or more risk factors such as hypertension or diabetes) need early detection

and management using counselling and medicines, as appropriate.

The estimated direct and indirect cost of heart disease in the US from 2014 to 2015 (average

annual) was 218.7 billion dollars, where heart attack alone accounts for more than 12 billion

dollars [8].

Increasing obesity and population ageing are boosting those numbers. Unhealthy diets and

obesity are among the most important driving factors behind CVDs. People aged 65 and older

are much more likely than younger people to suffer a heart attack, to have a stroke, or to

develop coronary heart disease and heart failure. In the next paragraphs, these two triggering

factors are independently examined.

Increase in obesity level

Overweight and obesity are defined as uncontrolled or abnormal fat accumulation which may

result dangerous to the person’s health. Generally speaking, any overweight state (including

obesity) is classified by the body mass index (BMI). The BMI, shown in Fig. 1.2 is a simple

index of weight-for-heigh which is universally used today, by doctors, to classify obesity.

Historically, the basis of the BMI was introduced by Adolphe Quetelet (1796-1874), a Belgian

mathematician and sociologist [9]. Quetelet’s aimed at defining the features of "normal man"

and fitting the distribution around the Gaussian one. Doing so, he developed what he called

3
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"social physics": he demonstrated for the first time how important is the comparative statistics

in understanding human physical characteristics and social aptitudes. In his principal work

"A Treatise of Man and the development of his faculties" published in 1835, he proposed that

the normal body weight in kilograms was proportional to the square of the height in meters,

generally known in the small circle of experts as the Quetelet Index.

Despite Quetelet’s pioneering work, only after World War II the relationship between weight

and mortality, particularly diabetes and cardiac diseases, became a serious medical concern

and so the subject of deep medical studies. In one of these studies, Ancel Keys (1904-2004)

confirmed the validity of the Quetelet index and named it BMI [11]. From Keys’s work to our

modern time, worldwide obesity has nearly tripled [12]. In 2016, the World Health Organization

has revealed that, in 2016, more than 1.9 billion adults, 18 years plus, were overweight. Of

these, more than 650 million were obese. In terms of percentage with respect to the global

population, this means 39% and 13% of adults were overweight and obese, respectively. This

trend is dramatically biased by the G8 countries, US at first, on which the obesity rate is in

average more than 20% [13] with respect to the population, Fig. 1.3.

Excessive body weight is fundamentally caused by an energy imbalance between calories

consumed and calories expended. Specifically, the increasingly sedentary nature of many

works is causing an increase in physical inactivity. Raised BMI is a major risk factor for

various diseases, particulary CVDs, diabetes type II, sleep apnoea, musculoskeletal disorders,

especially osteoarthritis, and some cancers, such as breast, liver, kidney and colon. As a

result, obesity reduces significantly life expectancy: it is the sixth most important risk factor

contributing to the overall burden of disease worldwide [14].

Luckily, overweight and obesity, as well as their related noncommunicable diseases, are largely

preventable. Indeed, raising awareness in social environments is key in shaping people’s

choices, by making the choice of healthier foods and regular physical activity the easiest choice

Figure 1.2 – ,
Obesity and Body Mass Index [10].
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1.2. Driving factors

Figure 1.3 – ,
Rising overweight (including obesity) rates in adults aged 15-74 years [13].

(the choice that is the most accessible, available and affordable), and therefore preventing

overweight and obesity. In addition, the modern social tissue should seriously take advantage

of this billion of connected device, as presented in section 1.1, to get a faster (preventive)

health screening or interactive support during regular physical activity.

Population ageing

Global population is getting older and older. At the actual rate, the implications of this trend

cannot be dismissed. According to [15], the population aged 60 or over is the fastest growing

one. In the most developed countries, the 60+ population will grow at 2.4% annually until

2050 and is expected to increase by more than half over the next forty years: from 274 million

in 2011 to 418 million in 2050, Fig. 1.4. Population ageing is the result of the combined action

of two leading factors: the increased longevity and declining fertility. The former raises the

average age of population, whilst the latter reduces the number of babies and consequently

the younger pie of the population. The median age of population is higher in countries that

have been experiencing low fertility for a long time, such as Japan or Italy. According to [15]

and as shown in Fig. 1.5, from 2020 onwards, there will be more seniors, i.e. 65+, than juniors,

i.e. 5-.

The societal implications of an ageing population are important, in several sectors. Among

those, the social security system is particularly concerned. Indeed, pension systems have

begun to experience serious problems as the extension of the pension period has not been

accompanied by an increase in pension contributions. Moreover, the declined fertility and

consequently the fewer babies will generate lower tax income leading to public budgets issues.
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Figure 1.4 – ,
Populations are getting older: comparative study between 2020 and 2050 [15].

1.2.2 Healthcare costs

The economic implications of increasing CVDs, obesity and population ageing are huge. The

adage, "what goes up, must come down", is not likely to apply to the global healthcare, which

is the resulting largest area of expenditure. The societal implications of such trend may result

being dramatic and without a significant change of the modern lifestyle the healthcare costs are

expected to explode the countries’ budgets. According to [16], the global healthcare spending

is supposed to increase at an annual rate of 5.4% between 2018 and 2022. A considerable

increase compared to the 2.9% in 2013-2017. In this scenario, the global healthcare spending

is expected to surpass 10 trillion dollars by 2022, Fig. 1.6. This forces the healthcare providers

to envisage cost reduction and increase their efficiency.

The digital health is sustaining health systems’ efforts to transition to new models of patient-

centered care and “smart health” approaches. Its innovation is expected to increase health-

care’s access and affordability, improve its quality, and lower its costs. Digital solutions also

have the potential to enable better use of health data in research and innovation. Conse-

quently, the healthcare can be fully personalized leading to better health interventions and

services. Indeed, ageing populations and increasing obesity level and their consequent rise

of non-communicable diseases are pushing an industry shift away from curing disease in

the short term toward preventing and managing disease and promoting overall well-being

in the long term. In order to enable such transition we have to move the healthcare outside

hospital walls: scientists, engineering R&D centers and hospitals have to start working together

providing new sensors, systems, medical platforms intercepting customers’ and societal needs

and winning prejudices. Likely, health systems around the world are already investing in the

digital health, with varying degrees of success and conviction [16]. Among these countries,

China issued the 13th Five Year National Science and Technology Innovation Plan, which aims

at developing new technologies for precise e-medicine and creating a national platform to
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Figure 1.5 – ,
Young children and older people as a percentage of the global population: 1950-2050 [15].

share biomedical big data. The existence of already unified national platforms is reassuring:

the next (ambitious) step will be an international standardized platform.

1.3 The increasing need of reliable and continuous health monitor-

ing

In the previous sections the reasons why, nowadays, efficient and remote health monitoring is

becoming increasingly important have been disclosed. The healthcare industry is becoming

more reliant on new methods to monitor and treat patients. This, along with an increased

interest in fitness and wellness, is calling for more affordable, precise and wearable health

Figure 1.6 – ,
Healthcare spending (USD billion), and CAGR 2017-2022 [16].

7



Chapter 1. Introduction

Figure 1.7 – ,
Summary of current technologies for monitoring health/performance [17].

monitoring devices. Generally speaking, the number of available consumer technologies for

evaluating physical and physiological health has increased dramatically in the last ten years,

as shown in Fig. 1.7: some of them focus on monitoring heart rate or its variability, other on

sleep, stress or specific metabolic functions.

Despite the number of available devices is huge, few of them have been independently tested

to determine their validity or reliability. In addition, some of their key functionalities are

often released after their commercialization [17]. In this perspective, commercially available

smartwatches and wearables fall short of meeting customer requirements when it comes to

reliability, precision and battery lifetime. This is particularly true when it comes to heart rate

monitoring. A big chunk of these heart rate sensors uses optical transduction. The science and

sensing scheme behind the optical heart rate monitors is the so called Photoplethysmography

(PPG). A PPG sensor measures the artery volume change thanks to the light reflected from the

tissue. PPG appears to be a key technology allowing non-invasive monitoring of vital biological

indicators such as the heart rate, the blood oxygen saturation, the respiration rate and the

arterial pressure. The popularity of optical heart rate monitors in smartwatches, smartphones

or smartrings is largely due to the convenience and low cost of these devices. On the other

hand, accurately estimating a person’s heart rate using these devices still remains challenging

and we should not expect dramatic improvements in reliability unless there are fundamental

changes in the sensor technology. As above mentioned, optical sensors tend to elicit consumer

expectations. An example is the 2018 class action in California against Fitbit whose sensors

were accused to be "grossly inaccurate and frequently fail to record any heart rate at all".
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The optical pulse sensors market is expected to witness a CAGR of 9.3%, over the forecast period

2019-2024 [18]. The capability of the sensors to improve accuracy, and increase functionality

and efficiency of several applications, along with the growth in the use of wearable, will

produce a significant demand for optical pulse sensors. In this scenario, any fundamental

change in the today PPG sensor technology leading to better performance and longer lifetime

measurements would be simply welcomed as a serious game changer. Indeed, thanks to the

"readiness" of such sensors into wearable platforms, any game changer in this business will

dramatically change the modern healthcare by generating big quantity of health data that will

be key in exploring new medical frontiers.

1.4 Thesis organization

Chapter 2 aims at introducing the history and physics behind the PPG sensor. Questions such

as "how does a PPG sensor work?" or "what is the physics behind a PPG signal?" are answered.

Particular attention is devoted to the light absorbance and the optical considerations of the

origins of the PPG waveform, so the light-tissue interactions, and the sensing probe.

Chapter 3 focuses on the PPG clinical applications. Specifically, this chapter illustrates what

are the vitals that can be directly or indirectly extracted out of a PPG waveform in applications

ranging from fitness/wellness to medical.

Chapter 4 illustrates the PPG instrumentation in terms of readout circuits. Particular attention

is devoted to the challenges and bottlenecks while designing a PPG sensor. The chapter ends

with a state-of-the-art analysis of PPG sensors.

Chapter 5 complements chapter 4 by deepening the noise and artefacts types affecting a

PPG reading. The chapter focuses on the electronic noises, such as the thermal or the flicker,

but also on the noise which is naturally brought by the light itself, i.e. the shot noise. The

chapter also presents some of the artefacts, e.g. motion, ultimately limiting the PPG signal

quality. Eventually, taking advantage of the state-of-the-art analysis in chapter 4, this chapter

compares two possible readout chains in terms of signal-to-noise performance.

Chapter 6 is the center chapter presenting the heart of this work: a micropower PPG sensor.

The basic recipe behind this innovative sensor is disclosed and its fundamental ingredients

presented. The chapter ends with some performance metrics and comparison versus the

state-of-the-art.

Chapter 7 presents an alternative application complementing the PPG one in the today

portable business: the time-of-flight (ToF). In particular, the possibility of having an "all-

in-one" sensor is further illustrated. The ToF performance of the chip presented in chapter 6

are illustrated and benchmarked versus commercially available devices.

Chapter 8 concludes this manuscript.
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Conclusions

The modern society is changing and with that the way people perceive the healthcare. Specific

factors such as the increase of CVDs, as a consequence of increased obesity and population

ageing, are changing the modern healthcare needs and already impacting on the countries’

budgets. In this perspective, efficient and remote health monitoring is becoming increasingly

important.

The popularity of PPG sensors in smartwatches, smartphones or smartrings is largely due

to the convenience and low cost of these devices. On the other hand, accurately estimating

people’s vitals by the means of these devices still remains challenging and we should not

expect dramatic improvements in reliability unless there are fundamental changes in the

sensor technology.

Thanks to the "readiness" of such sensors into wearable platforms, any fundamental change

in the today PPG sensor technology leading to better sensing would be simply welcomed as a

serious game changer. This has been the constant motivating factor behind this work whose

organization, chapter-wise, has been also presented.
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2 The photoplethysmography (PPG)

Nowadays, the duo between wearable devices and optical heart rate sensor is becoming a must.

Indeed, roughly no fitness trackers or smartwatches are today sold without an optical heart

rate sensor, Fig. 2.1. The technology behind these sensors is called Photoplethysmography

(PPG), which is an optical measurement technique used to detect blood volume changes in

living tissues. A PPG sensor requires few optoelectronics components, such as a light source,

e.g. light-emitting-diode (LED) to shine the living tissue, a photodetector (PD) to track any

light intensity variation due to the blood volume change and an analog front-end (AFE) for

signal conditioning and processing. Today, the importance of PPG for medical monitoring

is proven by the number of primary vital signs directly or indirectly recordable out of it [19].

The vital signs are a group of four most important signs that indicate the status of the patient’s

vital functions. These are the body temperature, the blood pressure, the heart rate and the

respiration rate. With the exclusion of the body temperature, a PPG sensor can be used to

record all the others.

It is objective of this chapter to deepen the basic principle of PPG, the light-tissue interaction

and the physics behind it. The chapter starts with a brief overview of the history of PPG.

2.1 History of PPG

The PPG was first explored in the 1930’s. In 1936 two research groups at Merck Institute of

Therapeutic Research, New Jersey, and at Stanford University School of Medicine disclosed the

experiments of monitoring the blood volume changes in rabbits’ ears by the means of similar

instrumentations to the PPG’s ones [20]. A pioneer of the PPG was Alrick Hertzman (1898-

1991) from the Department of Physiology at St.Louis University. In 1937, Hertzman published

a paper describing the use of reflective PPG to measure induced blood volume changes. In

particular, only one year later [21], Hertzman already identified the most important challenges

related to the PPG sensing, e.g. the movement of the measurement probe against the tissue,

the content of which is further described in the next chapters of the manuscript. Hertzmann’s

observations have significantly contributed to shaping the modern PPG technology.
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Chapter 2. The photoplethysmography (PPG)

In the last three decades, the growing wave of small, low-cost, reliable and easy-to-use car-

diovascular monitoring systems have also concerned the design of modern PPG sensors.

Specifically, PPG sensors have gained popularity thanks to the great advancement in opto-

electronics. The development of new semiconductor technology, e.g. LED, has contributed to

shrink the size and to increase the sensitivity and reliability of those sensors. In the 1970’s, a

major push to the use of PPG sensors also came from the development of the pulse oximetry

[22] and its universal adoption in medical institutions as a non-invasive method of monitoring

patients’ oxygen level.

2.2 What is the PPG?

A PPG signal is obtained by shining light from an LED at a given wavelength, in the visible or

near-infrared range, into an human tissue, e.g. finger, forehead, ear lobs. As shown in Fig. 2.2,

a PD detects the light transmitted through (transmissive PPG) or reflected (reflective PPG)

from the tissue and transforms it into a photogenerated current.

The transmissive PPG sensors are usually placed near finger tips to reduce the needed light

intensity to penetrate through the tissue. On the contrary, reflective PPG sensors can be placed

wherever the tissue is properly perfused, e.g. presence of blood vessels close to the skin surface.

The detected signal, i.e. PPG, consists of two different components: a large DC (quasi-static)

component corresponding to the light diffusion through tissues and non-pulsatile blood

layers, and a small AC (pulsatile) part due to the diffusion through the arterial blood. The AC

component is only a very small fraction (typically 0.2% to 2%) of the DC one, meaning an AC

being 500 to 50 times smaller than the DC, respectively. This mostly depends on the body

location and the LED wavelength and weakly on the skin tone [23, 24, 25, 26, 27]. Such small

AC/DC ratio is often called perfusion-index (PI).

The AC component shows changes in the blood volume that occurs between the systolic and

Figure 2.1 – Apple watch with the PPG sensor on.
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the diastolic phases of the cardiac cycles. In other words, the fundamental frequency of the

AC component depends on the heart rate, e.g. 1 Hz equal to 60 beats per minute. The DC

component instead slowly changes with the respiration, Mayer waves, vasomotor activity and

also thermoregulations [28, 29, 30, 31].

2.3 What is the physics behind? The Beer-Lambert law

The science behind the PPG technology was mostly understood by 1854 when the German

physicist August Beer (1825-1863) proved that the amount of light transmitted through a

solution varies based on the concentration of the solute. His findings, together with those

of Johann Heinrich Lambert (1728-1777) and Pierre Bouguer (1698-1758), gave rise to the

Beer-Lambert law.

The Beer-Lambert law describes the attenuation of monochromatic light travelling through

an uniform medium containing an absorbing substance. If an incident light at a given wave-

length and intensity I0 enters the medium, a part of this light is transmitted through the

medium, whilst another part is absorbed. The intensity I of the transmitted light decreased

exponentially with the distance, as shown in Fig. 2.3.

The light transmission (T ) through the medium is defined as the ratio of the impinging light

(I0) and the transmitted one (I )

T = I

I0
= e−ε(λ)cd , (2.1)

where ε(λ) is the extinction coefficient, usually in L mmol−1 cm−1, of the absorbing substance

at a given emitting wavelength, c , usually in mmol L−1, the concentration of the substance in

the medium and d , usually in cm, the optical path through the medium. In other words, the

time

DC arterial blood
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DC venous blood

DC tissue

PP
G 
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ve

systole

diastoledicrotic notch

Figure 2.2 – PPG sensor set-up (transmissive and reflective) and the DC and AC components
of a PPG signal.
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Figure 2.3 – Illustration of the Beer-Lambert law.

Beer-Lamber law is based on the assumption that the sum of the transmitted and absorbed

light equals the impinging one. Indeed, it doesn’t account for any physical process which

may include scattering of light in the medium or reflection at the surface. The (unscattered)

absorbance (A) is defined as the negative natural logarithm of the light transmission

A =−ln T = ε(λ)cd . (2.2)

The Beer-Lambert law is valid even in the presence of matter with multiple absorbants. In this

case, supposing the presence of n absorbing substances, the resulting total absorbance At is

the sum of the n independent absorbances. In other words, (2.1) results to

T = I

I0
= e−At = e−

∑n
i=1 εi (λ)ci di , (2.3)

where εi , ci , di is the extinction coefficient, the concentration of the substance and the optical

path, respectively, of the individual absorbing substance i .

A living tissue consists of several absorbing substances. These substances are called chro-

mophores. The most common chromophores encountered in the skin are: the haemoglobin,

the melanin and the water, being the first two the main light absorber in human blood at the

wavelengths used in PPG [32], e.g. visible or near-infrared, as shown in Fig. 2.5.

Fig. 2.4 shows how the PPG signal is, with good approximation, generated from the Beer-

Lambert law. Indeed, the effective optical path seen by the impinging light, i.e. d , results
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Figure 2.4 – Illustration of how the PPG signal is generated from the Beer-Lambert law.

being time dependent and modulated by the cardiac activity. At systole, the arteries contain

more fresh blood and therefore their diameter increases due to the increased pressure. In

other words, the systolic transmission is lower due to the larger optical path. On the contrary,

during the cardiac diastole the transmission is at its maximum, equal to the non-pulsatile

(DC) one, thanks to the shorter optical path. The notch between the systolic minima and

the diastolic maxima is called dicrotic notch or incisura. This notch is associated with the

isovolumetric relaxation happening at the end of the cardiac systole. Indeed, the end of the

systole is accompanied by the valve closure. This is associated with a small blackflow of blood

into the ventricles giving rise to the characteristic notch [33].

In Chapter 3 we will see that the reasons behind the characteristic features of the PPG signal are

slightly more complex and also take into account other mechanisms beyond the Beer-Lambert

law.

2.4 Light-tissue interaction: some optical considerations

We have seen that the most common chromophores encountered in the skin, at the PPG

wavelengths, are the haemoglobin and the melanin. Fig. 2.6 shows how complex the human
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Figure 2.5 – Absorption spectrum of melanin, haemogobin and water versus the emitting
wavelength [37]. Highlighted in red the PPG optical spectrum.

skin is. Indeed, it consists of several layers: from the surface, the epidermis, the dermis and

the subcutis. The epidermis is the outermost layer of the skin and contains no blood vessels.

It is the shallowest skin layer: in average 100 µm. In the PPG optical spectrum, melanin is the

major absorber in the epidermis, especially at shorter wavelengths [34, 35]. The dermis is the

layer beneath the epidermis and consists of hair follicles, different glands and blood vessels

(and its haemoglobin). The dermis largely defines the overall light absorbance and its optical

penetration depth since it extends for roughly 2 mm. Indeed, the penetration of any optical

radiation in the tissue is wavelength dependent. For instance, only the epidermis would result

exposed to blue or shorter (UV) wavelengths. As the emitting wavelength gets larger and larger,

the deeper this penetrates into the tissue, so reaching the dermis and beneath. The work in

[34] shows, for the same subject, a factor 6 of difference in penetration depth between a 500

nm and a 800 nm impinging light. For this reason, infrared light (IR) has been a reference in

PPG devices. However, PPG sensors based on green-wavelengths are becoming increasingly

popular due to the larger effective PI, at a given LED emission [24, 36, 27]. Indeed, the shorter

green penetration means that the reflected signal includes less information from various

non-pulsatile media than IR PPG.

The light interaction with biological tissues is more complex than what is described by the Beer-

Lamber law. Indeed, such interaction includes the optical processes of scattering, reflection,

transmission and fluorescence [34]. In addition, the LEDs don’t emit monochromatic light. In

other words, the absorbance of light is not only proportional to the concentration of melanin

and haemoglobin or the optical path length. This becomes even more complex as the skin

penetration depth increases [36], explaining why modern PPG sensors are more and more

employing green LEDs.
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Figure 2.6 – Skin composition: epidermis, dermis and subcutis [38].

Light scattering causes the deviation of the light beam from the target direction. Scattering

is due to material inhomogeneities or more precise to physical inhomogeneities resulting

into refractive index discontinuities in the medium. The spatial distribution and intensity of

scattered light depends on the size and shape of these inhomogeneites, ultimately determining

a change in the direction of propagation. Scattering may be either elastic, which means that

the frequency of the scattered wave is equal to the frequency of the incident wave (no energy

change) or inelastic, which brings a frequency shift so an energy variation. Among the elastic

one we need to account for the Rayleigh and Mie scattering, Fig. 2.7. Raman scattering (Stokes

and Anti-Stokes) is an example of inelastic one. For molecules or small particles whose

dimensions is smaller than roughly one-tenth of the light wavelength, scattering is generally

weak, nearly isotropic and varies with the inverse of the 4th power of the incident wavelength.

This is the Rayleigh scattering. For particles with larger dimensions on the same order as the

impinging wavelength, scattering is much stronger, more forward-directed and depending

on the inverse of the wavelength. This is the Mie scattering. When the particle size greatly

exceeds the incident wavelength scattering becomes weaker and strongly forward-directed.

A tissue consists of a mixture of Rayleigh and Mie scattering, but Mie scattering seems to
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Figure 2.7 – Representation of the possible scattering events: Rayleigh, Mie and Mie for larger
particles [39].

dominate in the dermis due to the presence of collagen (proteins) [39]. In addition, in bi-

ological tissues, several scattering (or multiple scattering) sites exist. First of all, the whole

blood. The blood consists of about 45% of red blood cells, about 54.3% of plasma and 0.7% of

white cells. In whole blood, haemoglobin is not dissolved in the plasma, but is mostly present

in the red blood cells. The red blood cell shape, disc, is dependent on the flow-velocity [40].

Indeed, their major diameter is aligned parallel to the direction of the flow during diastole and

perpendicular during systole. In other words, during systole there will be more absorption

and this goes on top of the increase in the optical path due to the arteries’ diameter [41]. The

second scattering site is the tissue itself. Although, the light loss due to the tissue scattering

is supposed to be constant, it does interfere with the PPG measurements since changing the

path on which the photons travel through the tissue. More specifically, [25] describes the

detected light as an ensemble of independent photon paths. Some of the detected photons

have travelled shorter paths in the tissue and others scattered further without being absorbed.

The longer travelled photon path provides more interaction with the whole blood or tissue. As

the photons penetrate more in the medium, their survival rate (probability not to be absorbed)

reduces. One possible model to describe such behaviour is the random walk model, which is

a combination of (multi)scattering and absorption. In other words, the final detected signal

at the level of the PD comprises a mixture of all surviving photon paths and convolves infor-

mations coming from all the paths. To account for these effects, [25] has proposed to modify

the Beer-Lamber law expressed in (2.1), by replacing the optical path d with the effective

photon mean path length < d >. Several other theories have tried to model the scattering

effect in the tissue. Twersky’s multiple scattering theory [42, 43, 44] seems to be the one getting

more consensus: the total absorbance of whole blood can be expressed as the sum of the

absorbance as described by the Beer-Lambert law, (2.2), and a second term representing the

effect of scattering (superimposition). In other words, the scattering increases the photons’

absorption and consequently the light interaction with the matter.

The expected photons’ propagation path into a tissue can be simulated by the means of

Monte Carlo simulations [45, 46]. In a typical Monte Carlo model, virtual photon packets are

simulated as they propagate through a given medium volume. The medium is both highly

scattering and absorbing.
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Figure 2.8 – Reflective PPG: photon travelling path in tissues for three different emitting
wavelengths, IR, red and green, assuming almost equal LED-PD distance. The characteristic
banana shape is larger as the photons’ penetration depth increases. Reprinted from [47] and
adapted.

Fig. 2.8 shows the typical photons’ travelling path in a tissue. From the figure, the typical

photons’ banana shape distribution can be seen. Longer wavelengths lead to wider banana

shapes [48, 49], meaning a larger probability of photons undergoing a random walk, i.e.

multiscattering or absorption events (lower survival rate). However, the tissue volume with

the highest travelling probability still consists of the direct path between the LED and the PD,

which is independent of the emitting wavelength.

2.5 Tricks to enhance the PPG (AC) magnitude

As described in section 2.2, the pulsatile AC component is only a small fraction of the whole

PPG signal. On the other hand, almost all the relevant medical features rely on the AC com-

ponent. So, a good PPG sensor has to be built with the aim of maximizing the PI, i.e. the

AC versus the DC, without any significant power, area and system’s complexity overhead. In

Chapter 3 we will see that a good PPG morphology is key to enable wide vital signs monitoring.

A PPG sensor, as above-explained, consists of one or more LEDs, a broad-band PD and an AFE.

These three ingredients define together a PPG module. A PPG module comes with several

degrees of freedom. As far as the PI is concerned, this can be enhanced either at the optical

side or at the electronic side (or at both!). The objective of this section is to focus on the optical

side, so describing how to design the optical part of the PPG module in order to maximize the
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PI.

The PI strongly depends on the emitting wavelength, on the LED-PD distance, on the LED-PD

relative height and as well on the tissue perfusion. Apart from the last one, all the others are

design variables fully tunable to enhance the PPG signal quality.

As already presented in section 2.4, the IR comes with a larger irradiation volume than the

green light [24, 36]. Being the pulsatile blood a very small percentage of the whole absorbing

matter, this means intrinsically a larger DC component or a smaller PI. Indeed, the reflection

and scattering from deeper tissue produce a much more complex signal. In other words, the

green light PPG is affected by noise to a much lesser extent.

The LED-PD distance is one of the most important design variables. If we place the LED too

close to the PD, the latter will immediately saturates due to the large DC component resulting

from the direct cross-talk or the multiscatterings taking place at the epidermis. For a constant

LED emitting power, the light intensity detected by the PD decreases roughly exponentially as

the LED-PD distance increases. This applies for both the AC and DC components, but at a

different rates. Indeed, as the LED-PD distance increases, the DC component decreases faster

than the AC one, resulting into a larger PI. On the other hand, LED-PD distances larger than

10 mm tends to enhance the PI, at the cost of larger LED power [26]. Indeed, the probability of

photons (survival rate) is decreased with the increasing distance. Depending on the choice of

the emitting wavelength, the LED-PD distance should change accordingly. The reason still

relies on the optical consideration described in section 2.4: the green photons, carrying less

energy than the IR ones, propagate less in the tissue, meaning that the LED-PD distance has to

be reduced accordingly. The work in [49] has tried, by the means of Monte Carlo simulations,

to identify the optimum LED-PD separation distance as a function of the emitting wavelength.

Maximum PI has been found at the LED-PD distance of 1.85 and 2.75 mm for the 530 nm and

940 nm, respectively.

As discussed above, the direct crosstalk between the LED and the PD has to be minimized.

Direct reflection from the skin adds to this crosstalk. In order to enhance the PPG signal

quality, it is good practice to incorporate external light barriers and elevating the PD with

respect to the LED, as shown in Fig. 2.9. At the same LED shining power, the external light

barriers can increase the PI by a factor of almost 4 [50].

The skin perfusion also changes with the environment. Whenever the skin is either cooled or

heated, the skin perfusion varies the AC and DC components. Especially in the case of a large

blood volume, the blood absorption increases and the signal decreases. For the reflective PPG,

the influence is weaker with the green light compared to IR light because the change in light

irradiation volume is smaller [36].
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Figure 2.9 – External light barriers in PPG modules helping the reduction of the direct optical
crosstalk and consequently reducing the DC component [50].

2.5.1 Measurement sites

The body location of the PPG sensor is an important issue affecting the signal quality or the

sensor’s resilience to artefacts, e.g. motions. In the last years, different measurement sites,

beyond the classic finger one, have been explored, including the wrist, earlobe, ear canal. Even

the esophageal region has been explored in clinical tests [51]. The work in [52] has compared

52 anatomical sites in healthy subjects in terms of perfusion values. It has shown that the

finger, the palm, the face and the ears offer much better perfusion than other sites.

Conclusions

PPG sensors are nowadays integral parts of wearable devices. The importance of PPG for

medical monitoring is proven by the number of primary vital signs directly or indirectly

recordable out of it, such as the heart rate, the respiration rate and the blood pressure.

A PPG signal consists of a tiny AC component, fully synchronous with respect to the cardiac

period, which is superimposed on a large quasi-static baseline. The majority of the medical

information are brought by the AC component. For this reason, it is key to build PPG sensors

maximizing the AC part of the PPG signal.

The physics behind a PPG signal is the Beer-Lambert law which describes the attenuation

of monochromatic light travelling through an uniform medium containing an absorbing

substance. On the other hand, despite the Beer-Lambert law gives a good understanding of

how a PPG signal is generated, the interaction of light with biological tissues is more complex

than what is actually described by the Beer-Lamber law. Indeed, such interaction includes the

optical processes of scattering, reflection, transmission and fluorescence.

Building a performing PPG sensor requires some attention. For instance, the choice of the

light wavelength has implications on the light-tissue interaction and generated artefacts.
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Moreover, the distance from the PD and the LED (and relative height) is key in enhancing the

AC component of the PPG signal.
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3 PPG applications in physiological
measurements

PPG has been extensively used to monitor several physiological measurements such as the

heart rate and the blood oxygen saturation. Several studies have also developed theories

or methods to use the PPG for monitoring the respiration rate and the blood pressure. In

addition, PPG has also been applied for vascular states’ assessment, including arterial stiffness

and ageing, and for autonomic function monitoring, such as the heart rate variability and the

stress level.

The objective of this chapter is to review each of these vitals with the ultimate aim of demon-

strating the widespread possible use of the PPG technology in vital signs monitoring.

3.1 Heart rate

The heart rate (HR) is a very important vital for a variety of possible applications, including

fitness and wellness and ambulatory patient monitoring. It reports the cardiac period or in

other words the number of cardiac contraction per minute, i.e. beats-per-minute (bpm).

The HR can vary according to different factors, including air temperatures, body position,

increased respiration, stress, physical exercises or drugs’ ingestion [53]. Normal resting HRs

range from 60 to 100 bpm. Heart rate abnormalities, also called heart arrhythmias, are often

linked to cardiovascular diseases (CVDs), such as heart failures [53, 54]. Possible arrhythmia

types are a slower rhythm, also called bradycardia, or a faster one, named tachycardia.

The HR is generated by the sinoatrial node (SA), which is the heart’s natural pacemaker [54].

The HR is also influenced by the autonomic nervous system, through the sympathetic and

parasympathetic nerves, as shown in Fig. 3.1. The nervous system over the HR is controlled

by the cardiovascular centres of the medulla oblongata, which is a part of the cerebellum

responsible for autonomic (involuntary) functions. Specifically, the brain, through the nervous

system, can alter the HR thanks to the vagus and the sympathetic cardiac nerves. The former

participates in inhibiting the heart activity (parasympathetic stimulation), while the latter

stimulates it (sympathetic stimulation). Intrinsic HR is measured in the conditions of no
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Figure 3.1 – Parasympathetic and sympathetic cardiac nerves: cardioaccelerator and cardioin-
hibitory at the basis of the heart rate modulation [58].

autonomic nervous system influence. In this case, a healthy heart is supposed to pump

at about 100 bpm [55], which tends to get lower as the age increases. Since resting HR is

lower than this value, it is evident that the parasympathetic stimulation inhibits the cardiac

period. On the other hand, whatever HR beyond the intrinsic one would require sympathetic

stimulation.

As presented in section 2.3 of the previous chapter, the PPG wave consists of a small AC

component superimposed on a large (quasi) DC one, being the former fully synchronous

with the cardiac period. As shown in Fig. 3.2, the periodicity of the AC part of a PPG wave

corresponds to the periodicity of the R-peaks of the QRS complex in the synchronous ECG

trace. This demonstrates the validity of the PPG technique for HR monitoring. Indeed, even for

wrist PPG monitoring, a percentage as high as 99.44 % of PPG corrected beats versus the ECG

has been reported [56]. Of course, any artefact, e.g. motion, on the PPG sensing probe would

seriously impact the reliability of these data. It should also be mentioned that, unlike ECG,

PPG is an electrode-free and fully wearable technique which leads to better patient comfort

and easier measurements. Indeed, an ECG recording requires placement of typically 3 to 12

electrodes [57].
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Figure 3.2 – ECG and PPG signals: the RR intervals of the ECG trace correspond to the PP
interval of the PPG one.

3.2 Inter-beats-interval and heart rate variability

The HR variability (HRV) represents the variation of the HR between consecutive beats. The

HRV analysis has been the subject of numerous clinical studies concerning cardiological

diseases and the function of the autonomous nervous system. Indeed, HRV is a marker of

cardiac autonomic nervous system function, and has been reported to reflect cardiac health,

cardiac mortality and morbidity and overall mortality risk [59]. For instance, reduced HRV is

correlated with the risk of myocardial infarctions, congestive heart failure or sudden cardiac

death [60]. An elevated HRV can also reflect physical fitness and social integration [61].

The gold standard technique for HRV monitoring relies on analysing the RR intervals from

an ECG signal, Fig. 3.2. On the other hand, as above-mentioned, these intervals can also be

extracted out of the PPG wave, being the AC component synchronous with respect to the ECG

time intervals. Extracting the HRV from the PPG wave is often called pulse rate variability

(PRV) [60, 62]. The extracted intervals are called inter-beats-intervals (IBI) [63]. Several studies

have investigated the accuracy of PRV as an estimate of HRV in healthy subjects. In particular,

PRV has been shown to be sufficiently accurate to estimate the HRV in healthy subjects at rest

or during night sleep [60, 62, 64, 56]. On the other hand, it should also be highlighted that

the agreement between ECG and PPG in terms of IBI deteriorates during upright position or

25



Chapter 3. PPG applications in physiological measurements

3400 3500 3600 3700 3800 3900 4000

0

500

1000

ECG
Max

3400 3500 3600 3700 3800 3900 4000
samples

-2000

-1000

0

1000

A
U PPG

Peak
Foot
Max PPG'

Figure 3.3 – ECG and PPG signals. The three characteristic points of the PPG used for IBI
detection are shown: the peak, the foot and the maximum first derivative.

exercises [60, 65].

The methodology associated with the PPG processing for PRV and IBI detection is important.

First of all, the IBI can be extracted at different PPG locations, where the exact location

depends on the used processing algorithm. Indeed, three alternatives are possible, as shown

in Fig. 3.3: the peak to peak time distance, the foot to foot distance or the distance between two

consecutive inflection points (maximum first derivative). In the existing literature the three

methods have been independently used and a comparative study can be found in [66]. Some

works have shown results working on peaks or foot [62, 67, 63], other based on the maximum

first derivative [64]. The latter seems to be more robust since the maximum first derivative

point is far away in time from any possible second peak coming from elevated dicrotic notches.

Indeed, we will see in the next sections that increased arterial stiffness, elevated blood pressure

and respiration can change the PPG morphology bringing the dicrotic notch very close to the

PPG peak.

The PRV and IBI extracted from the PPG are evaluated in terms of time and frequency domains

according to the standard definitions of HRV [68]. In the time domain, the mean RR and IBI

intervals (mean NN interval), the standard deviation of all the RR and IBI intervals (SDNN)

and the root mean square of the difference of successive RR or IBI intervals (RMSSD) are often
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proposed. The percentage of corrected, extra and missed beats, versus the ECG RR, is also

often considered [63, 56]. In the frequency domain, the ratio of the low-to-high frequency

spectra (LF/HF) is often used. Indeed, the HRV embeds three frequency bands of interest: very

low (< 0.04 Hz, VLF), low (0.04-0.15 Hz, LF) and high (0.15 - 0.4 Hz, HF). The LF reflects the

sympathetic action, whilst the HF the parasympathetic one [68].

It should also be mentioned that both the ECG and PPG are sampled signals. The value of the

sampling rate has an influence into the PRV and IBI detection. It has been shown that PRV and

HRV deteriorates with decreasing sampling rate from 1000 Hz to 10 Hz, although the effect is

not noticeable until well below 100 Hz [69]. The work presented in [70] suggests a minimum

of 39.5 Hz sampling frequency for heart rate variability monitoring.

In the next two sub-sections, two important applications related to the HRV are further

explained and discussed.

3.2.1 Atrial fibrillation

Atrial fibrillation (AFib) is an abnormal cardiac rhythm which is characterized by rapid and

irregular beating of the heart’s atria. It is the most common cardiac arrhythmia, affecting

between 2.7 million and 6.1 million adults in the US only [71]. Even worse, about 60% of these

people don’t even know when they have an AF episode. Worldwide, AFib has an estimated

prevalence of 3% in the adult population that is projected to more than 4% by 2050 [72, 73].

AFib is a serious risk factor for blood clots and strokes. Today, the AFib is diagnosed with an

ECG. Characteristic findings are the absence of P-waves and irregular RR intervals, i.e. HRV

[54]. Unfortunately, AFib is often asymptomatic, meaning that it can dramatically benefit from

any wearable and continuous monitoring solution.

In this section, we have shown that a PPG signal can effectively track the HRV. An AFib event is

often accompanied by irregular conduction of impulses to the heart’s ventricles giving rise to

irregular RR intervals [53], as shown in Fig. 3.4. These intervals are detectable thanks to the

PRV or IBI analysis of PPG waves.

The work presented in [75] has used a smartphone camera to detect AFib on patients pre- and

post- electric stimulation, i.e. cardioversion. The PPG signal is recorded by placing a finger

over the camera and illuminating the tissue by the means of the flash light. The AFib detection

is based on the RMSSD, Shannon Entropy and Sample Entropy of the extracted IBIs. The

achieved sensitivity, specificity and accuracy is very promising above all for a fully portable

device.

The more recent works presented in [63, 56, 67] has also come with promising results, sug-

gesting that the PPG can provide, during low motions or sleep conditions, a comfortable

alternative to ECG for continuous screening of AFib episodes.

The dawn of the artificial intelligence (AI) and deep learning is also a trigger in developing PPG-
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Figure 3.4 – Heart’s sections with the four elementary chambers, atria and ventricles. Two ECG
traces are shown: without and with an atrial fibrillation event. The atrial fibrillation comes
with an irregular ECG behaviour [74].

based systems for continuous and accurate AFib detection. AI can also enhance the robustness

of AFib detection in conditions where the regular methods tend to suffer, e.g. during exercise

or motions. In this direction, the work presented in [76] has proposed a 50-layer convolutional

neural network achieving 95% of correct classification (AFib versus no-AFib) on the test data.

3.2.2 Stress monitoring

Human stress has been shown to be strongly correlated with increased risk of cardiac problems,

such as the myocardial infarction [77]. The modern society moves relatively fast and short

time recovery from workload and other daily stressing elements is a serious trigger to CVDs.

Nowadays, measuring stress still requires special laboratory equipments and body samples,

e.g. saliva [59]. On the other hand, the increasing number of people experiencing stressed

conditions and their extensive effects deserves the research and development of portable and

wearable devices capable of real-time stress monitoring.

An effective and convenient method of deriving stress information from a person is to extract

from a PPG signal information related to the stress itself. As above presented, HRV is a marker

of the autonomous nervous system whose operations ultimately determines the rising of

the stress. Indeed, low HR and large HRV are related to relaxed situations dominated by

the parasympathetic system. On the contrary, elevated HR and low HRV report sympathetic

conditions, i.e. stress. The work presented in [59] has proposed to use a PPG sensor by
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comparing an individual’s normal baseline resting level of HR and HRV with respect to the HR

and HRV responses in real life conditions. The results have suggested that, particularly, the

SDNN and the LF of the IBI capture best the effect of stress to a subject.

The work presented in [78] has aimed at identifying specific features of the PPG signal whose

dynamic can identify the mental stress. In particular, specific haemodynamic changes occur

at the PPG as a consequence of the stress. Three PPG features have been chosen, since the

most resilient to the measuring site: the time from the pulse onset to the peak, named the

crest time (CT), the diastolic duration, meaning the time from the dicrotic notch to the pulse

end, and the instantaneous HR.

3.3 Oxygen saturation

In Chapter 2 we have seen that the melanin and the haemoglobin are the largest light ab-

sorbants in tissues. The haemoglobin plays a key role in transporting the oxygen via the blood

to the cell. Haemoglobin is a respiratory pigment contained within the red blood cells. One

red blood cell contains roughly 256 million molecules of haemoglobin. Haemoglobin consists

of heme units, which are molecules containing iron, and globin units, polypeptide chains [26].

One haemoglobin molecule contains four heme and four globin units, where each heme and

globin unit can carry one molecule of oxygen. In other words, one haemoglobin molecule can

carry four molecules of oxygen. Haemoglobin changes color when oxygenated: the oxygenated

haemoglobin (HbO2), bound to the oxygen, is bright red, while the deoxygenated one (Hb)

is dark red, as shown in Fig. 3.5. The difference in color is used in the application of pulse

oximetry to measure the oxygen saturation in the blood. Haemoglobins that are able to bind

reversibly with oxygen molecules are called functional haemoglobin.

Nowadays, the oxygen saturation is widely measured by the means of the so called pulse

oximetry, Fig. 3.6. Indeed, already in the early 1990’s, pulse oximetry became an universally

accepted standard for monitoring oxygen levels during anaesthesia. Today, pulse oximetries

can measure the oxygen saturation using both transmissive and reflective PPG sensors.

The functional oxygen saturation (functional SO2) is defined as the percentage of HbO2 with

respect to the overall haemoglobin, Hb and HbO2. Another way to define it is to use the

concentration of HbO2 with respect to the sum of the overall Hb

Functi onal SO2 % = HbO2

Hb +HbO2
·100% = cHbO2

cHb + cHbO2

·100%. (3.1)

The oxygen saturation of the arterial blood is called SaO2 and its normal physiological value

has to be larger than 90 %.

The functional oxygen saturation, as shown in (3.1), considers only the haemoglobin bounded

to the oxygen. Actually, the haemoglobin can also bound to other molecules, some of them

even dangerous. Indeed, it is usually defined as a dysfunctional haemoglobin whatever
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Figure 3.5 – Haemoglobin molecules are contained within red blood cells. The oxygenated
haemoglobin is dark red and usually associated to the fresh blood pumped through the arteries.
On the contrary, the deoxygenated haemoglobin is dark red and related to the exhausted
venous blood.

Figure 3.6 – A commercially available pulse oximetry exploiting the transmissive PPG tech-
nique.

haemoglobin that doesn’t support the oxygen transport in the blood. The four most common

dysfunctional haemoglobins are the methemoglobin (MetHb), carboxyhaemoglobin (COHb),
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Figure 3.7 – Extinction coefficients of the functional haemoglobins versus the wavelength: Hb
and HbO2. The classic three PPG wavelengths are highlighted: green, red and near-infrared.

sulfhemoglobin (SulfHb) and carboxysulfhemoglobin (COSulfHb). Apart from the last ones,

whose concentrations in human blood are usually negligible [26], the other two, i.e. MetHb and

COHb, can be present in the blood in few percentages. For instance, in non-smokers the level

of COHb is usually below 2%, but this value can increase depending on the local environment,

e.g. pollution. The fractional haemoglobin saturation is defined as the percentage of the HbO2

with respect to all the haemoglobin families

F r acti onal SO2 % = HbO2

Hb +HbO2 +Met Hb +COHb
·100%. (3.2)

Neglecting the dysfunctional haemoglobins, the Hb and HbO2 have different absorptivities at

green, red and IR light, as shown in Fig. 3.7. In other words, they absorb the light differently

depending on the wavelength. A pulse oximetry works by exploiting this mechanism. Two PPG

signals, at two different wavelengths, are recorded in time division multiplexing (the LEDs

never shine together). Measuring at two wavelengths allows to distinguish the concentrations

of Hb and HbO2. Commercially available pulse oximeters usually embed red and near-IR lights

[26]. The recent works in [79, 80] have presented pulse oximeters embedding visible light LEDs

only. Indeed, by looking at Fig. 3.7, it is clear that the difference in the extinction coefficients

between Hb and HbO2 at green is comparable to the one at near-IR. In addition, as explained

in Chapter 2, the visible light, and particularly the green, comes with important advantages

versus the IR, mostly determined by the shorter penetration depth. This is particularly true in

the case of pulse oximetry since the oxygen saturation is very often measured at the finger.

According to the Beer-Lamber law, presented in Chapter 2, the total absorbance At of a
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solution containing only Hb and HbO2 is equal to

At = εHbO2 (λ)cHbO2 d +εHb(λ)cHbd , (3.3)

assuming the optical path to be the same, i.e. dHbO2 = dHb = d . Rewriting (2.1) in terms of the

total absorbance At and normalizing the diastolic transmitted light with respect to the systolic

one gives rise to

Tn = e−(εHbO2 cHbO2+εHb cHb )∆d , (3.4)

where ∆d = dmax −dmi n , so quantifying the maximum arterial diameter oscillation during a

cardiac period, i.e. systolic and diastolic phases. The normalization is necessary since the LEDs

may emit light with different intensities or the sensitivity of the photodetector may slightly

change. Moreover, the absorbing characteristics of the DC component might differ for the two

separate wavelengths. In other words, normalizing the transmitted light during diastole with

respect to the one during systole corresponds to deriving the total absorbance due to the AC

component only. In order to do so the natural logarithm of the normalized transmitted light

level is considered. Eventually, it is possible to define a ratio R of the normalized logarithmic

of the transmitted light levels at the two chosen wavelengths depending only on the light

absorbers present in the arterial blood

R = ln(T n(λ1))

ln(T n(λ2))
, (3.5)

where in the case of visible LEDs, λ1 and λ2 correspond to the red and green, respectively.

Finally, by deriving the concentrations as a function of the oxygen saturation, (3.3), (3.5) can

be rearranged in a form where the functional oxygen saturation SO2 is a function of R

SO2 % = εHb(λ1)−εHb(λ2)R

εHb(λ1)−εHbO2 (λ1)+ [
εHbO2 (λ2)−εHb(λ2)

]
R
·100%. (3.6)

By replacing the extinction coefficient values of (3.6) with the tabular values, the arterial

oxygen saturation (SaO2) can be derived.

The reading of the pulse oximeter, usually named SpO2 is an empiric estimation of the arterial

oxygen saturation SaO2. Most of the commercial pulse oximeters use a calibration curve based

on empirical data. Indeed, modelling the light-tissue interaction as described in Chapter 2

is very complicated. These oximeters are usually calibrated from in vitro data. A large set

of data obtained in clinical studies is collected. In particular, the oxygen saturation SpO2,

as calculated by the pulse oximeter, is compared with the arterial oxygen saturation SaO2

measured by a gold standard, i.e. CO-oximeter [26]. To relate the measured value of R to the

SpO2, (3.6) can be modified to

SpO2 = k1 −k2R

k3 −k4R
, (3.7)
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where ki are calibration constants determined by clinical studies. Polynomials of different

orders are also often employed as empirical calibration curves. For instance, a 1st order simple

relationship of the form

SpO2 = 110−25R, (3.8)

has been suggested in the literature [26].

3.4 Breathing rate

The pioneering work in [81] and many others following have shown the potential of PPG

in assessing respiratory events. Indeed, the breathing rate (BR) has shown to modulate the

PPG signal in both amplitude (AM) and frequency (FM). In addition, the BR tends to drift

periodically the baseline (DC component) of the PPG signal.

The respiratory rate of adults at rest ranges from 5 to 24 breaths-per-minutes (BRPM), meaning

from 0.08 to 0.4 Hz. Neonates, instead, breath between 10 and 80 BPRM, corresponding to

0.17 and 1.33 Hz, respectively [81]. Another slow modulation of the PPG wave comes from the

Traube-Hering-Mayer (THM) waves, which are caused by the sympathetic control of the tones

of the vascular tree. THM have a rate of about 0.1 Hz, corresponding to an equivalent 6 BRPM

[82].

Fig. 3.8 shows a PPG signal both in time and frequency domain. By looking at the time

domain, the effect of respiration is visible. Indeed, the PPG, positive and negative, envelopes

are modulated by the BR. The corresponding frequency component is reported by the same

PPG signal in the frequency domain. The Fast-Fourier-Transform (FFT) shows two main

components: the BR at about 0.25 Hz (15 BRPM) and the HR at roughly 2 Hz (120 BPM).

Different studies have tried to extract the BR out of the PPG signal. The work presented in

[83] has proposed a fully automatized algorithm for BR extraction out of the PPG signal. The

PPG signal is decomposed three times via Morlet wavelet transform to produce three different

breathing signals. The best signal is chosen as the one that, for a 5 seconds window, shows the

smallest mean absolute error (MAE) with respect to the gold standard. Despite the achieved

MAE is quite low (<0.35 BRPM), it is highly dependent on the reference signals, which are

not always available above all in domestic environments. Another relevant work is the one

presented in [84], not only for the achieved results, but also for the motivating factors. Indeed,

the motivation of this work is the more than 2 million children under five years killed by

pneumonia. An easy to use diagnostic device pre-identifying pneumonia on children would

increase their survival rate, above all in poor countries. [84] has proposed a method, called

Smart Fusion, for estimating the BR from the PPG signal. The method extracts the three

respiratory-induced variations from PPG, i.e. FM, AM and DC modulation, and the frequency

content of each parameter is analysed in the frequency domain. Despite the interesting

proposed method, it suffers from poor specificity at low BR due to the effect of THM waves and
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Figure 3.8 – PPG in both time and frequency domain. The effect of breathing rate can be
assessed by looking at the PPG time domain envelope modulation. This corresponds to a 0.25
Hz frequency components or 15 BRPM.

artefacts. The more recent work in [85] has utilized the Empirical Mode Decomposition (EMD)

for estimating BR from the PPG signal. The EMD is an adaptive time-frequency data analysis

which extracts the Intrinsic Mode Functions (IMF). The IMF is a function that represents an

oscillating mode embedded in the signal. Using a certain sliding window, a PPG signal can be

divided into its IMF. For each IMF, the frequency peak with the highest power is evaluated. In

this way, the HR and the BR can be easily evaluated.

3.5 Blood pressure

Hypertension is a medical pathology associated with elevated blood pressure (BP). Hyperten-

sion is diagnosed if, when it is measured on two different days, the systolic blood pressure

(SBP) readings on both days is larger than 140 mmHg and/or the diastolic blood pressure

(DBP) readings on both days is larger than 90 mmHg. Elevated BP is a serious medical con-

dition which significantly increases the risk of heart, brain and kidney-related diseases. An

estimated 1.13 billion people worldwide have hypertension, most (two-thirds) living in low-

and middle-income countries [86].

Hypertension is called a "silent killer". Most people with hypertension are unaware of the
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problem because it may have no warning signs or symptoms. Even worse, hypertension is

the major cause of premature death worldwide: it causes each year more than 7.5 million

deaths, about 13% of the total death [86]. For this reason, it is essential that the blood pressure

is measured regularly.

Continuous BP recordings are still not easy to implement in daily life. Indeed, discontinuous

BP measurements by the means of arm cuff based devices (either auscultatory or oscillometric-

based) is still the method routinely applied [87]. Although these techniques have seriously

contributed in increasing the people awareness about the risks associated with uncontrolled

BP, they present two major limitations. First of all, any continuous BP monitoring is simply

impossible. In other words, it is not possible to follow the dynamic evolution of BP over the

time. Second, the readings are often disturbed by white coat effects or simply the discomfort

due to the inflatable cuff, which may ultimately affect the quality of the measures. This is

particularly important for BP monitoring during sleep which has shown to be particularly

relevant for clinical information. Indeed, during normal sleep the mean BP (MBP) is supposed

to decrease from 10% to 20%. Lack or diminished night BP trends are strong and independent

predictors of cardiovascular diseases [88]. In this framework, any system capable of truly

continuous BP monitoring would represent a game-changer.

Alternative methods of measuring the BP trying to overcome those challenges have gained

traction in recent years, particularly thanks to the advent of more performing and wearable

sensors. BP management is one of the most prominent applications for PPG sensors. Indeed,

a PPG signal hides several haemodynamic features that can be traced back to BP.

In the following, two research tracks on the extraction of BP out of the PPG signal are presented.

First, the pulse wave velocity-based method and, second, the pulse decomposition one.

3.5.1 Pulse wave velocity and pulse transient time

In recent years, the arterial wave propagation theory has attracted the interest of many

researchers. It is based on the simultaneous collection of the ECG, the ICG (impedance-

cardiography) (or BCG, i.e. ballistocardiogram) and the PPG signal, Fig. 3.9. Some works have

preferred using the ECG, ICG and PPG [89], others the ECG, BCG and the PPG [90, 91]. The ICG

is a very important technique measuring the total electrical conductivity of the thorax. Any

blood flow through the body would change its impedance. Objective of the ICG is to estimate

the amount of fresh blood being effectively released at each cardiac cycle. Indeed, the ICG

is nowadays used to measure important cardiac vitals such as the cardiac output (CO) and

the stroke volume (SV). The BCG measures the acceleration of the heart as the result of the

cardiac phases. The arterial wave propagation theory refers to the propagation of the pressure

wave through the vessels as the result of the heart pumping. Indeed, at the closing of the

aortic valve, the sudden rise of aortic pressure is absorbed by the aorta’s walls and a pulse

wave naturally propagates towards the peripheral sites as the result of the energy exchange

between the aorta’s wall and the blood flow.
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Figure 3.9 – Simultaneous recording of the ECG, the ICG or BCG and the PPG. The PAT and
the PPT are identified as the time from the R-peak of the ECG and the PPG minimum and the
time from the R-peak of the ECG and the zero crossing of the ICG (B-point) or the J-peak of
the BCG, respectively.
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The pulse wave velocity (PWV) is usually assessed using the pulse arrival time (PAT) of the

pressure wave at a given distance (L) with respect to the heart. As shown in Fig. 3.9, the PAT

refers to the timing between the R-peak of the ECG and the foot of the PPG wave, the latter

measured at a distal position, i.e. the finger or the wrist. The PAT is the sum of two time

intervals

PAT = PEP +PT T, (3.9)

the pre-ejection-period (PEP) and the pulse transient time (PTT). The PEP refers to the timing

of an isometric contraction of the heart, meaning the time needed to convert the electric signal

coming from the SA node into a mechanical pumping ultimately contracting the ventricles

and opening the aortic valve [87]. The PTT is the effective time the pressure wave has taken

to propagate to the sensing location, after the opening of the aortic valve, and shows high

correlation to the BP [92]. In other words, the PWV is defined as

PW V = L/PT T, (3.10)

with L being the distance between the peripheral sensing location and the heart. The PEP

depends on the electrical activity of the heart and can move in opposite direction with respect

to PTT. For this reason, the PEP has shown a negative impact when using the PAT to estimate

the BP [93]. Moreover, the PEP changes with various factors such as the stress and the age

[94]. Studies have also shown that the PEP changes with the heart rate and can account for

the 7% of the PTT [95]. The impact of the PEP decreases with the increasing distance from the

heart, since the PTT is expected to grow accordingly. The negative impact of the PEP forces its

subtraction from the PAT in order to compute the PWV.

Using the PWV in order to estimate the BP requires some attention and has been the objective

of several studies over many years. Indeed, understanding how the pressure wave propagates

through the vessels requires at first to model the relationship between BP and the arterial

elasticity and, second, the relationship between the arterial elasticity and the PTT [92].

Relationship between BP and arterial elasticity

The pressure wave propagates along the arterial tree thanks to the continuous energy exchange

between the wall and the fluid. Therefore, determining the dynamic properties of the arteries’

wall is key. The arterial wall consists mostly of four components, each one having different

properties: endothelium, collagen, elastin and smooth muscle (SM), [96]. In other words,

depending on the applied stress, i.e. the pressure so the BP, the arteries’ elastic properties,

i.e. the Young’s modulus (Y), can change considerably, leading to non-linearity. Endothelium

contributes little to the arterial wall mechanics, while the collagen is roughly 400 times stiffer

than the elastin. This means that the resulting arteries’ Young’s modulus is highly non-linear:

at low BP, elastin ultimately determines the arterial elasticity and so the Young’s modulus, while

collagen takes over at larger BP. SM, both on elongation and relaxation, can also modulate
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arterial elasticity, by making the arterial wall viscous in addition to elastic. In other words,

stress-strain hysteresis is low in relaxed condition, but pronounced visco-elasticity is observed

if the SM are contracted [97].

The relative contributions of these components differ throughout the arterial tree. Indeed,

central arteries, e.g. aorta, largely consists of elastin, which makes their response to the applied

pressure quite linear and more resilient to SM. On the contrary, SM is mostly dominated in

the peripheral sites, making their dynamic tougher to model. This is the reason why central

arteries and peripheral ones are usually named elastic and muscular arteries, respectively. In

addition, the arteries’ Young’s modulus is found to be heart rate, so frequency, dependant.

In other words, it is possible to identify a frequency, i.e. corner frequency, above which the

Young’s modulus cannot increase. The value of this corner frequency has been long debated.

Some studies have indicate a corner frequency around 1 Hz [97], other even above [96].

The arteries dynamically evolve, suffering from ageing. This contributes to arteriosclerosis,

which is the process of wall thickening and stiffening with the ageing. Arteriosclerosis mostly

interests elastic arteries and is characterized by an increase of collagen against the elastin.

A stiffer artery gives rise to a larger BP due to the larger wall stiffness. Fig. 3.10 shows how

the pressure wave and the relative flow velocity change with respect to the body location.

Central arteries come with reduced flow velocity due to the larger elasticity. On the contrary,

the increased stiffness of peripheral arteries accelerates the blood flow due to the lower energy

exchange.

The (central) arteries’ Young’s modulus has been shown to be related to the BP as follows

Y (BP ) = Y0eαBP , (3.11)

where α is a subject specific parameter and Y0 the Young’s modulus at no pressure.

Relationship between arterial elasticity and PTT/PWV

The relationship between arterial elasticity and PWV (so PTT) is defined by the Moens-

Korteweg equation

PW V = L

PT T
=

√
Y h

2r%
=

√
Y0eαBP h

2r%
, (3.12)

where h is the wall thickness, r the artery’s radius and % the density of the fluid. Rewriting

(3.12) in terms of BP leads to

BP = K1 +K2 −βln(PT T ), (3.13)

where K1 = 1
α l n( 2r%

hY0
), K2 = 2l nL

α and β= 2
α are calibration constants.
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3.5. Blood pressure

Figure 3.10 – Simplified arterial tree showing how the pulse pressure and the flow velocity
change along the body [46].

As presented above, the arterial system is quite complex, which reduces the applicability of

(3.12) to healthy people and central arteries only. Indeed, (3.12) relies on the fact that its

variables are time independent. Actually some of these variables, such as the blood density

can be considered constant with good approximation. On the contrary, this is not true for the

arteries’ radius and thickness. Unfortunately, for muscular vessels, such as the brachial artery

in the arm, it is not easy to extract a good relationship between PWV/PTT and BP. Indeed, as

above-mentioned, these vessels are not elastic and the effect of vasomotion is quite limiting

[89]. Vasomotion considers the effect of change of resistance and thickness due to the applied

pressure. Not surprisingly, this is more and more evident as we move further from the central

arteries.

Increasing wall stiffness also leads to a gain in pulse amplitude towards the periphery. As shown

in Fig. 3.11, the blood circulation accounts for several transitions from big arteries to arterioles

and eventually capillaries (microcirculation). Mechanically speaking, any arterial branching

can be associated to an impedance mismatch which ultimately causes wave reflection. Indeed,

wave reflection takes place at all these sites introducing any consistent change into the arterial

morphology or geometry [92].

The work presented in [98], and supported by others [99], demonstrated the existence of two

major reflection sites to travelling pressure waves. As shown in Fig. 3.11, the first reflection site
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Figure 3.11 – Microcirculation: the heart pumps the blood through the aorta, then the large
arteries, the small arteries, the arteriole, the capillaries and then back through the venous
systems, consisting of, in sequence, the venules, the veins and the vena cava [33].

corresponds to the renal arteries’ branching, while the second comes from the iliac bifurcation.

With respect to Fig. 3.11, any downward primary pressure wave, T1, generated from the closing

of the left ventricle gives rise to upward reflected pressure waves, R1 and R2. Any pressure

wave measured at the radial sites, i.e. the arm, would consists of the superimposition of those

reflected waves on the primary wave that has directly reached the site. The reflected waves

reach the peripheral site with some delay due to the larger travelled distance.

In conclusion, wave reflection deeply impacts on the shape of pressure waves. This is partic-

ularly true with the increasing distance from the heart due to stiffer arteries and increased

reflections. Fig. 3.10 also shows the impact of the propagation on the wave’s morphology.

Indeed, with respect to the central arteries, as we move to the peripheral site, the waveforms

become progressively amplified with the increasing distance. Hence, proximal and distal

waveforms are not different from the time delay only, but also from the different morphologies.

This phenomenon tends to affect SDB much more than DBP [92]. Indeed, isolated systolic

hypertension often occurs in the elderly which results into an elevated SBP at a fairly constant

DBP [87].

Finally, any PTT/PWV-BP model can be effectively used under continuous recalibration and

specific assumptions, ultimately limiting its applicability to real conditions. Moreover, there

are challenges to have independent determination of SBP and DBP. Indeed, any PTT-BP model

can refer to one BP value only, either the SBP or the DBP. Prior works have shown a better

correlation with respect to DBP, since more stable for peripheral measurements [92, 100, 87].
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3.5.2 PPG decomposition analysis and features extraction

In Chapter 2 the origin of the PPG wave have been discussed in details starting from the

Beer-Lambert law. In particular, a characteristic point of the PPG wave has been identified and

named as dicrotic notch. This phenomenon is often attributed to the closure of the aortic valve

[101]. On the other hand, the impedance mismatches introduced by the microcirculation,

presented in the previous paragraph, suggest a causation by reflection of the pressure peak

from small arteries in the trunk and lower limbs [102]. The goodness of the two theories

suggests having both of them actually valid.

A PPG signal consists of two major phases: the systolic or anacrotic and the diastolic or

catacrotic one [103]. The systolic ejection phase of the cardiac cycle is actually a two-stage

phenomenon. At first, it comprises a rapid increase in intraventricular pressure due to the

high electric myocardial excitability. Second, it is characterized by a slow decrease in intraven-

tricular pressure due to reduction in excitation. Hence, the complete phase is marked by the

presence of two systolic peaks in the PPG signal, as shown in Fig. 3.11. The diastolic phase

takes place after the dicrotic notch and is characterized by one major wave, named diastolic

peak, which is charactered by a slowly decreasing pressure thanks to the cushioning reservoir

effect introduced by the big elastic arteries of the trunk [46].

The progressive time-domain PPG waveform has been empirically modelled as the summation

of two or more Gaussian functions, accounting for the overall systolic and diastolic peaks

[104, 105, 106], as shown in Fig. 3.12.

We have seen both in this chapter and in the previous one that a PPG signal is the result of

several factors, including the light-tissue interaction and the local perfusion, the respiration,

the autonomous nervous system and many others [107]. More specifically to the BP, the

dynamic evolution of the superimposition of the forward and reflected waves, as above

mentioned, is ultimately related to some factors affecting the BP, such as the atherosclerosis

and the ageing [103, 78]. In this perspective, it is important to identify the critical points of

the PPG signal. Features of the first and second derivative of the PPG signal, VPPG and APPG,

respectively, have also been used to accurately recognized those critical points [108, 109].

Third derivative has also been proposed [78]. Fig. 3.12 shows the PPG, VPPG and APPG signals,

together with some of those critical points.

The objective of the next paragraphs is to deepen those critical points emphasizing how

they can be used to monitor the BP. A more comprehensive set of features can be found in

[103, 78]. Eventually, some works exploiting AI for extracting indexes from PPG signals are also

presented.

PPG features

The amplitude of the first systolic peak is an indicator of the pulsatile changes in blood volume.

It has been related to SV and to the local vascular extensibility. An elevated peak has shown to
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Figure 3.12 – PPG decomposition into the fundamental waves, i.e. I systolic, II systolic and
diastolic wave. Extracting the PPG features from the PPG, VPPG (PPG’) and APPG (PPG”).

be correlated to increased BP.

The systolic component of the waveform arises mainly from a forward-going pressure wave

transmitted from the left ventricle to the finger. The diastolic component mostly arises from

pressure waves transmitted along the aorta to small arteries in the lower body, from where

they are then reflected back along the aorta as a reflected wave which then travels to the finger.

As shown in Fig. 3.12, the time delay, ∆t , between the first systolic peak and the diastolic

peak (or, in the absence of this, the dicrotic notch) is related to the transit time of pressure

waves from the root of the subclavian artery to the apparent site of reflection and back to the

subclavian artery. The time delay between the systolic and diastolic peaks decreases with the

age as a consequence of the increased arterial stiffness and the increased pulse wave velocity

of pressure waves in the aorta and large arteries [107]. The work in [110] has demonstrated

that 98% of patients with overt arteriosclerosis undergo a diminution or disappearance of the

dicrotic notch and diastolic peaks. Thanks to this result, [111] has proposed the classification

of pressure waves (including PPG) into four classes. With increasing age and/or the presence

of CVDs, the waveform moves from class 1 to class 4, as shown in Fig. 3.13.

VPPG features

VPPG is commonly used in literature. Fig. 3.12 shows the VPPG with respect to the PPG. The

time from the rising of the PPG wave from the first systolic peak is called crest time (CT). CT

has shown to be key for CVDs classification [103]. The CT can be easily detected by the means

of VPPG. Indeed, CT is the time from the onset of the PPG pulse to the first zero crossing of

VPPG.

VPPG can also be useful in determining the diastolic point and the ∆t .
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Figure 3.13 – PPG morphology and classification according to [111]. The morphological change
of the PPG wave can be interpreted in terms of earlier arrival of the reflected waves. Increasing
stiffness accelerates the reflected waves which arrive earlier to the distal point and so closer to
the forward wave [112].

APPG features

APPG is even more used than VPPG. As shown in Fig. 3.12, the APPG includes four systolic

waves and two diastolic waves. These are: the a-wave (early systolic positive wave), b-wave

(early systolic negative wave), c-wave (late systolic re-increasing wave), d-wave (late systolic

re-decreasing wave), e-wave (early diastolic positive wave) and f-wave (diastolic negative

wave). The e-wave represents the dicrotic notch, while the f-wave the position of the diastolic

peak. The combination of these waves can also enhance the correlation with respect to CVDs.

For instance, the ratio b/a has shown to reflect increased arterial stiffness: it increases with

the age. On the contrary, the ratios c/a and d/a decrease with the arterial stiffness, so the

age [108, 109]. The work in [113] has classified the APPG morphology as an indicator of the

good/bad circulation.

Features extraction and artificial intelligence

Nowadays artificial intelligence through machine learning has been used in research for BP

prediction and cuffless BP measurement. The general approach is to initially extract specific

features from physiological signals that show high correlation to BP. These features are given

to a neural network (NN) for training and testing. The features extracted from PPG, VPPG and

APPG and presented above are often used.

The work in [114] has used 21 features extracted from the PPG signal. A feed-forward NN

with two hidden layers, 35 neurons on the first layer and 20 on the second has been used.

The obtained results are promising and fulfil the maximal accepted error of 5±8 mmHg, as

43



Chapter 3. PPG applications in physiological measurements

defined by the American National Standards of the Association for the Advancement of Medical

Instrumentation. The number of used features has increased in the last years. The work in

[115] has used 42 features out of the PPG, VPPG and APPG, achieving an average error of

roughly 2 mmHg, for both SBP and DBP. Time domain features can also be complemented

by frequency domain ones. In [116], 233 features were extracted, both in time and frequency

domain.

Despite these promising results, none of these solution has been scaled up to a large popula-

tion of users, limiting its applicability on the daily life.

Conclusions

PPG is a key player of the digital health revolution. The advent of more performing and

wearable sensors is increasing the number of medical data which can be extracted out of a

PPG sensor.

PPG has been extensively used to monitor several physiological measurements such as the

heart rate and the blood oxygen saturation. On the other hand, a PPG signal carries additional

information related to stress, respiration rate and blood pressure. In this perspective, several

works have proposed in literature very promising methods for extracting as many vitals as

possible from a PPG sensor.

Among those vitals, blood pressure has a prestigious role. Hypertension is the major cause

of premature death worldwide: it causes each year more than 7.5 million deaths, about 13%

of the total death and an estimated 1.13 billion people worldwide have hypertension. For

this reason, it is essential that the blood pressure is measured regularly and continuously. A

PPG signal carries several information that are directly or indirectly linked to hypertensive

pathologies. The advent of artificial intelligence through machine learning and deep learning

is changing the paradigm increasing the probability of seeing fully wearable and non-invasive

blood pressure monitoring systems.
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In the previous chapters, we have seen that a PPG signal is at the heart of any wearable system,

from the wellness/fitness to the medical space. Indeed, the PPG signal can be extensively used

to monitor several physiological measurements.

The objective of this chapter is to describe a typical PPG readout chain. Specific design

challenges and bottlenecks, such as the dynamic range and the DC offset, are also introduced

and treated from a design perspective. Finally, state-of-the-art’s solutions, both academic and

commercial, are presented, with special regards with respect to those challenges.

4.1 Description of the basic readout chain

A simplified block diagram of a classic PPG readout chain is presented in Fig. 4.1. A PPG

readout chain receives the weak PPG optical signal, converts it, and amplifies it into a strong

electrical signal. The optical signal is usually converted into an electrical current by the means

of a photodiode (PD). The PD’s size is key (often few mm2) in order to collect most of the

PPG optical signal, given the large tissue attenuation [117, 118]. This attenuation pushes the

final PPG power bottlenecks on the LED driving current, which should emit enough light to

build up a signal on the PD side. A low-noise, high-gain closed loop transimpedance-amplifier

(TIA) usually follows the PD to amplify the weak photocurrent into a strong voltage. The main

requirements of a TIA are high sensitivity, high gain and wide dynamic range. The combined

action of the large DC component of the PPG signal and the ambient light reduces the possible

feedback amplification, not to saturate the amplifier’s output for large photocurrents. In

this regard, a typical PPG readout chain usually embeds the possibility of reducing the DC

component of the photogenerated current, by the means of feedback loops. This operation

can be performed both in the analog and in the digital domain.

The TIA is the most important block of a PPG readout chain since it directly determines the

receiver sensitivity and bandwidth. The TIA feedback operation minimizes the impact of the

PD capacitance thanks to the lower TIA input impedance, introduced by the closed loop gain
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Figure 4.1 – A classic PPG readout chain, embedding the LED, the PD and the electronic
processing circuitry.

[119]. This allows the measurement of fast changes in the detected photocurrent, despite

the PD parasitic capacitances which can be of the order of a few pF [46, 118]. This feature is

particularly important since the LED light is usually modulated with very short pulses in order

to reduce the power consumption. The PD junction capacitance limits the signal bandwidth,

particularly at larger PD size [120, 118, 121]. PD reverse-operations (photoconductive mode)

reduce the impact of the parasitic capacitance thanks to the larger depletion area, at the cost

of more dark current [121]. In the next chapter, we will see how the PD capacitance also affects

the TIA noise performance.

A TIA amplifier is usually operated in two possible ways, as shown in Fig. 4.2, being both

the solutions commonly used. In a capacitive TIA (CTIA), the feedback element consists of

a capacitor, which defines, together with the integration time, the TIA gain. In other words,

a CTIA integrates the input photocurrent. On the contrary, a RC TIA (ZTIA) embeds both a

resistor and a capacitor as feedback elements and simply converts the photocurrent into a

voltage by the means of the feedback resistor. State-of-the-art works have used both ZTIA

[122, 123, 124, 125, 126, 127] and CTIA configurations [128, 122, 129, 130, 131].

In the ZTIA, the feedback capacitor ensures stability and lower noise operations, at the cost of

the TIA bandwidth [121]. For smaller gains operations a ZTIA is usually preferred, since a CTIA

would require a large capacitor and consequently larger silicon area. On the contrary, a CTIA

allows to cover a wide range with fine resolution without the need of configurable circuity. The

CTIA feedback capacitor is always accompanied by a parallel switch which resets the capacitor

to avoid the monotonic increase of the output voltage. In this way, the effective CTIA gain

depends only on the integration time and the feedback capacitance. This operation is called

autozero which, in parallel of resetting the feedback capacitor, also reduces the low frequency

noise and the offset of the amplifier [132].

State-of-the art’s work usually embeds programmable feedback elements to avoid any possible

saturation, which is particularly important given the small PPG perfusion index (PI). Next

chapter will compare these two possible configurations in terms of noise and power. We will

see that the integration of the photocurrent reduces both the effect of the wideband noise
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Figure 4.2 – Two possible TIA configurations: ZTIA and CTIA.

and the necessary bandwidth, as also shown in [130]. The ZTIA and CTIA have also been

compared in [46] in terms of achievable dynamic range for a given power. In particular, the

limitations introduced by the ZTIA settling time should tip the balance in favour of the CTIA,

unless incomplete settling operations are envisaged. In this case, the introduced gain loss

corresponds to a proportional increase in the amplifier noise and consequently a dynamic

range drop. Another possibility, as presented in [118], is to have a TIA with resistive feedback

immediately followed by a switched integrator. This solution takes advantage of a TIA larger

bandwidth thanks to the pure resistive feedback. The noise penalties introduced by the purely

resistive feedback [121] are compensated by the integrator which operates as a low-pass filter

reducing the wideband noise. Moreover, the integrator can also be used as anti-aliasing filter

before the analog-to-digital-converter (ADC). Logarithmic TIA implementations have also

been proposed in order to boost the achievable dynamic range [133, 134]. A logarithmic TIA

can also take advantage of the natural logarithmic operations behind the Beer-Lambert law,

as shown in Chapter 2. In other words, employing a logarithmic amplifier allows a faster

calculation of the R parameter, (3.5), and so of the SpO2. Moreover, the logarithmic operations

leads to a wide range of input signal intensity at almost uniform signal-to-noise-ratio (SNR).

The downside of this solution is the intrinsic lower sensitivity and speed.

Independently of the feedback elements, the TIA is almost always designed as a broadband

amplifier. As mentioned above, the LED light is ultimately the power bottleneck. For this

reason it is usually modulated with narrow pulses in order to reduce the power consumption.

This also leads to most of the signal power being distributed to a large number of harmonics
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with respect to the fundamental modulating frequency [117, 135]. In other words, a broadband

amplifier let most of the input signal power enter the front-end. We recall that among the

most important features of a TIA amplifier we find the bandwidth and the speed. The wide

bandwidth is key to ensure fast settling given the short LED pulse, while the gain ultimately

defines the amplifier sensitivity. Achieving a wide bandwidth while keeping the TIA gain

high is a difficult problem [121], which has been faced in several state-of-the-art’s work in

order to lower the PPG sensor power consumption. Another solution which has also been

presented is to use a narrowband TIA, in other words an amplifier having a response tuned to

a particular harmonic of the modulation frequency, whose advantage would be a lower input

noise bandwidth.

With respect to Fig. 4.1, a TIA is usually followed by a filtering stage, which is a key element of

the signal conditioning. For instance, low-pass filters are often used for anti-aliasing purposes

before the signal is sampled by the ADC or by a sample-and-hold (SH) prior to the ADC. Several

circuit topology have been proposed including active-RC biquadratic filters or correlated-

double-sampling (CDS) implementations [120]. The work in [136] has compared several

possible filter types and orders in order to get the optimal PPG filtering.

ADCs are also key in PPG readout chains. Different ADC topologies have been proposed, such

as the SAR [131, 46, 122], the ∆Σ [137, 138], the dual slope [129] and the incremental [139, 80].

The advances in the technology and design of ADCs are making them even more important in

the latest PPG readout chains. For instance, some designs make the ADC follow directly the

TIA without any signal conditioning or DC removal [131, 140]. Other designs directly digitize

the PD output [141, 142]. This design choice shifts most of the signal processing in the digital

domain with the downside of an ADC with quite large number of bits, so requiring more

power and more silicon area. Generally speaking, any design with extensive analog signal

conditioning would result into an ADC with lower number of bits.

LED drivers are also important building blocks in building a PPG sensor front-end. Indeed,

particularly for wearable applications, the battery lifetime can be extended by reducing the

LED on time. A key characteristic for the PPG LED driver circuit is its low noise: indeed, any

introduced in-band noise would corrupt the SNR. LED drivers are very often part of a more

complex feedback loop. The LED driving current is often adapted in real-time not to saturate

the TIA or to keep the signal within a given scale.

For applications such as the SpO2, PPG readout chains have to be multiplexed. Indeed, most

designs use a single wideband PD, meaning that switches or SHs are employed to decompose

the received signals into the corresponding input wavelengths.

4.2 Challenges and bottlenecks

Any electronic design comes with challenges and bottlenecks. Indeed, it is the task of the

designer to ensure that the specifications in terms of noise, dynamic range and power are

48



4.2. Challenges and bottlenecks

Figure 4.3 – Spectral power distribution of the solar radiation.

eventually fulfilled. The design of a PPG readout chain doesn’t escape from this. While post-

poning the discussion about the noise on PPG front-ends for the next chapter, the objective of

this section is to deepen two main challenges while designing the readout circuitry for PPG

sensors: the ambient light and the dynamic range. We will see that the two are also linked.

4.2.1 Ambient light: static and dynamic interferers

Ambient light artefacts are induced by both the sun light (static interferer) and the indoor fluo-

rescent/incandescent lighting conditions (dynamic interferers). The first and more straight-

forward approach to reduce these artefacts is an effective optical screening, which is, unfor-

tunately, not always possible considering the probe-tissue displacement and, as well, the

miniaturization of the sensor probe.

Depending on the environment, the ambient light can be quite different. In a clinical or

laboratory environment, the dominant ambient light is the indoor one coming from the bulbs.

This is likely to be generated from the main supply, meaning at 50 Hz in EU and 60 Hz in

US. When accounting for both 50 and 60 Hz power frequencies, the irradiated spectrum

becomes very crowded due to the existence of harmonics. This is due to the often non-linear

relationship between input current and output irradiated light.

Outdoor activities are dominated by the sun light, whose spectral power distribution is shown

in Fig. 4.3. Sun light also tends to have a much higher intensity than LED light sources. In other

words, it has to be seriously considered in the design of a PPG systems. Fig. 4.3 also shows that

a big portion of the spectral power is distributed in the IR. This is particularly dangerous for

the PPG sensors given the high penetration of IR photons in the skin, as shown in Chapter 2.

One possibility would be to build a PPG module with an IR blocker as done in [142].

One additional limitation of the sun light comes from its static nature. Indeed, it contributes
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in increasing the already large PPG DC component. This is a major concern in pulse oximetry,

since the signal has to include its DC, as shown in section 3.3. Although efforts are made to

ensure optical shielding by the mechanical design of the sensor probe, the residual ambient

light incident to the photodiode can be large enough to distort SpO2 readings.

Removal of time-varying interferers from the PPG signal is another difficult design challenge.

As mentioned above, most lamps irradiate a quite broad spectrum. On the other hand, LED

are often driven at very short pulse time (less than 100µs) which imposes the PPG front-end

bandwidth to be quite large in order to enable correct settling operations. This is even worse,

as the LED duty cycle gets smaller and smaller [117], since the receiver bandwidth has to

increase accordingly. This can cause harmonics of the ambient light at multiple of the driving

frequency to alias into the PPG bandwidth of interest if they are not filtered properly [131]. For

example, a PPG system that samples at 100 Hz will modulate 120 Hz from fluorescent lights

down to 20 Hz and 60 Hz from incandescent lights down to 40 Hz.

Correlated-double-sampling

A quite effective way to perform the ambient light cancellation (ALC) is the CDS: an ambient

sample is taken, which is then subtracted from the LED sample, meaning the PPG signal. If

the time between the two samples, ∆, is comparable with the LED pulse time width, TON , an

(almost) ambient light free PPG signal is obtained. Typical CDS is performed by the means of a

SH stage. We will see that the CDS has also an important impact on the noise. Indeed, together

with any offset, e.g. the ambient light, it dramatically reduces the low frequency noise, such as

the flicker noise.

Designing a PPG system with a CDS stage requires careful analysis of the expected frequency

content of the ambient light. Indeed, the two samples should be quite close not to have

the ambient light changing meanwhile. This means that the sampling rate must be set high

enough. A higher sampling rate, at constant LED duty cycle, requires higher bandwidth LED

drivers and photodetectors which inherently are more complicated and have higher current

consumptions. Fig. 4.4 reports how efficient the cancellation introduced by the CDS is versus

the ∆ between the two samples. It shows, for a 50 Hz artificial light, that more than 90% of

light attenuation can be achieved if the time between the two samples is shorter than 300

µs. From a design perspective, this means that, supposing the LED pulse equal to ∆, the PPG

front-end should have enough bandwidth to settle in about one tenth of that time, meaning

30 µs, which corresponds to more than 5 KHz bandwidth. A shorter ∆would increase the CDS

efficiency at the cost of larger required bandwidth, so power consumption.

4.2.2 Dynamic range and DC offset cancellation

As explained in Chapter 2, the PPG signal consists of a large DC (static) component with on

top a small AC (pulsatile) one. The ratio between these two components, i.e. PI, has serious

50



4.2. Challenges and bottlenecks

0 200 400 600 800 1000
CDS time [ s]

65

70

75

80

85

90

95

100

C
D

S
 a

tte
nu

at
io

n 
[%

]

Figure 4.4 – Percentage reduction of a 50 Hz interfere thanks to CDS. More than 90% attenua-
tion requires the two samples to be shifted not more than 300 µs. No reduction takes place for
samples distant more than 3 ms.

implications on the dynamic range constraints of the PPG readout chain. In addition, ambient

light can further increase the overall dynamic range requirements.

This is particularly important for clinical application, such as the SpO2, requiring particular

resolution. As demonstrated in [46, 122], the required DR for a certain target noise depends

on the PI and the oxygen saturation value, as shown in Fig. 4.5.

Fig. 4.5 shows that for a worst case PI condition (0.1 %) and worst case oxygenation level (70 %),

a DR as close to 90 dB is needed. For the full derivation, the reader should refer to appendix A.

From an electronic design point of view, the PI determines one of the most severe challenges

in the design of pulse oximetry. Indeed, such large DC may result both on the saturation of the

signal amplifiers and power hungry dynamic range conditions and also ADC resolution. For

instance, let’s suppose to directly digitize, with a 12-bit ADC, a PPG signal with a 5 V full scale

(FS) and PI of 1%. This means setting the DC equal to 2.5 V and the AC equal to 25 mV. A 12-bit

ADC leads to a maximum 4096 levels. Considering the AC to be just 1% of the DC, the former

will use only 20 levels, leaving 4076 levels to the latter. Such scenario would lead to weak SNR

due to the impact of quantization noise [26].

In literature, two techniques have been proposed to extend the TIA dynamic range: automatic

gain control and signal compression. The automatic gain can be implemented by using a

variable resistor changing with the input optical signal power[143]. The variable feedback

resistor can be implemented with a MOSFET operating in the linear region, connected in

parallel with a fixed resistor to improve the linearity and to limit the maximum resistance.
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As far as the signal compression is concerned, this can be implemented by the means of a

logarithmic TIA [134, 133].

Any effort in boosting the dynamic range at the level of the TIA has been always accompanied

by DC offset reduction loops which dynamically subtract, from the input photocurrent, a

current proportional to the wanted DC reduction. A differential output TIA with a DC pho-

tocurrent rejection loop has been presented in [144]. An error amplifier integrates over time

an offset depending on the differential TIA output. The amplifier’s output drives a transis-

tor which operates as a variable current sink that eliminates the DC photocurrent from the

TIA input signal path. Despite the robustness of these feedback loops in reducing the DC

photocurrent level, they come with significant power and area overhead.

4.3 State-of-the-art: academic works

The objective of this section is to revise the state-of-the-art of academic works in PPG sensing.

A total of 10 works will be presented, spanning over more than 10 years. Each work will be

presented with a special focus on how the PPG sensor challenges, as presented above, have

been handled, from a design perspective. Eventually, a table summarizing these works is also

presented.
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Figure 4.5 – Dynamic range requirement for different PI with respect to the SpO2 level.
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Tavakoli et al. [133]

This work is, to the best author’s knowledge, the only fully analog PPG front-end. It is based on

a logarithmic TIA, that thanks to a feedback loop and multi-stages operations, achieves large

dynamic range (thanks to the inherent logarithmic features) together with good sensitivity. The

proposed solutions comes with two interesting points. First, in the feedback loop a capacitive

divider, thanks to a sinh resistance, amplifies the AC component of the PPG 1
β times more than

the relative DC, β being the feedback factor (equal to 1 in DC and progressively decreasing for

larger frequencies). In other words, the feedback loop already performs a DC offset reduction.

Secondly, it relies on multi-stages operations. The settling time of the TIA has been identified

to be a limiting factor for lowering the LED duty cycle. The gain has been distributed over

three stages rather than one only, this intended to boost the Gain-Bandwidth. This work shows

that up to a certain number of stages the amplifier cascade extends the total gain-bandwidth

of the amplifier, for almost the same total power consumption. In fact both a large bandwidth

and a large gain are important. The structure presented in Fig. 4.6 is complemented by trans-

linear analog circuits, generating a single output current corresponding to the R parameter,

(3.5), and so the oxygen saturation value. In other words, the output current will result being

proportional to the oxygen saturation. This is the reason why this solution is considered a fully

analog one. A total power consumption of 4.8 mW was achieved for the whole system.

Figure 4.6 – Logarithmic TIA and multi-stages operations as in [133].
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Patterson et al. [130]

This work has proposed to use a a CTIA as first stage to lower both the power consumption

and the wideband noise of the front-end, the latter built by off-the-shelf components. It has

used a digitally-assisted analog technique to subtract ambient light from the PD, as shown in

Fig. 4.7. The current is subtracted at >10 Hz intervals, and the subtraction steps are digitally

tuned. This work is mostly centered on the sensor placement and artifacts reduction. Indeed,

it focuses on signal processing techniques for the compensation of motion artifacts and

ambient light offsets and also on LED modulation schemes to reliably cancel fixed pattern

noise. The proposed paradigm exploits the fact that a ratiometric comparison of the IR and

red hemoglobin absorption characteristics cancels out noise that is multiplicative in nature.

The algorithm is supposed to be simple enough to be implemented in a microcontroller unit

(MCU), without computationally costly conversions into the logarithmic domain, while also

being robust against ambient light induced and systematic offsets between the multi-channels

PPG. This work also proposes an alternative method to CDS for removing fixed pattern noise

and DC offset. Indeed, as above-mentioned, the CDS is an attractive method as soon as the

two samples are close enough. Moreover, this can result into a larger LED sampling frequency

to compensate for time-varying ambient interferes. This work has proposed to modulate the

LED emission with a sine wave, unlike a standard square wave method. This generates an

amplitude-modulated (AM) image of the LED sine wave at frequency equal to the sum and

the difference with respect to the carrier. Careful selection of the LED modulation frequency

places it not to overlap with any frequencies present in the noise signal, otherwise the noise

would also be mixed down into the low frequency band so corrupting the absorption signal.

The demodulation happens in an homodyne fashion since the carrier signal is fully controlled.

The reported front-end consumes in total approximately 13 mW.

Figure 4.7 – ZTIA topology with a digitally assisted DC offset cancellation loop and homodyne
demodulation as in [130].
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Glaros et al. [117]

This work has been the first academic one reaching near sub-mW operations. The readout

circuitry, shown in Fig. 4.8, consists of two paths: the first one, i.e. forward path, measures

the PD current, while the second one, i.e. feedback path, is employed to control the LED

drive current so to achieve a desired average (DC) photocurrent level at the PD. Instead of

measuring the DC and the AC photocurrents, the system, by the means of the feedback-path,

sets the DC photocurrent to a desired value, called Iref, which is the same for both the visible

and the IR channels. This DC tuning happens via a feedback mechanism at regular intervals,

i.e. calibration phases, during the normal operation of the system. In other words, once the

LED is switched on, the front-end is directly connected to the LED driver and more precisely

to the gate of the transistor acting as a transconductance to provide the LED driving current.

Knowing a priori the average expected photocurrent allows for the removal of the DC in a

quite easy way, which is to say exploiting the differential operation of an electronic amplifier.

With respect to Fig. 4.8 the reference current will be converted into a reference voltage which

is supplied to the positive terminal of the switched integrator following the TIA: the integrator

both limits the (thermal) noise bandwidth of the TIA, so reducing the corresponding noise

power, and behaves as anti-aliasing filter before the sampling, SH stage. As above-mentioned,

having the switched integrator directly following a TIA with resistive feedback leads to a larger

bandwidth. Indeed, a ZTIA usually embeds a resistor and a capacitor in the feedback for a

better noise performance [121], at the cost of lower bandwidth, which becomes, on the other

hand, independent of the PD capacitance. In this work, the pure resistive feedback comes with

little noise penalties thanks to the low-pass filter operations of the integrator. The reported

front-end consumes in total approximately 837 µW.

forward path

feedback path

Figure 4.8 – TIA followed by a switched integrator and feedback loop controlling the LED light
for controlling the DC photocurrent level [117].
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Winokur et al. [131]

In this work, shown in Fig. 4.9, the photocurrent is integrated by a CTIA and then transposed

into the digital domain by a 9-bit SAR ADC. In other words, a big portion of the signal con-

ditioning happens in the digital domain. The digital core has three main functions: digital

filtering, PPG demodulation and control signal managements. The proposed front-end em-

beds a “Dynamic-Range Enhancer” (DRE), whose algorithm, shown in Fig. 4.9, subtracts a

static current (up to 100 µA) from the photogenerated one, so to keep the output of the TIA

within a wanted range. This works also shows an interesting way of reducing the impact of

time-varying interferes, in a low power manner, without employing a CDS. It exploits the

intrinsic modulation of the PPG signal coming from the LED drivers: indeed, the PPG signal

gets modulated at integer multiples of the LED frequency, fled , whereas the interferes stay at

low frequency (they are not modulated). By the means of digital FIR filters, the PPG spectrum

is filtered around the second image (at 2 fl ed ) and then eventually decimated to bring the

image to baseband. The value of fled has been properly chosen so to reduce as much as

possible the intermodulation with the time varying interferes. This work reports the 300-360

Hz in the US and 300-350 Hz in EU as the best sampling frequency ranges to minimize the

effect of time varying interferes, such as the artificial light. The reported front-end consumes

in total roughly 336 µW.

front‐end

Flow‐diagram of the digital feedback algorithm

Figure 4.9 – CTIA followed by a 9-bit SAR and digital processing. The front-end embeds a DRE
to reduce the input of the DC offset [131].
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Gubbi et al. [128]

This work, shown in Fig. 4.10, has used off-the-shelf component and embedded a CTIA

followed by two comparators and a time-to-digital-converter (TDC). The CTIA converts the

photocurrent into a voltage ramp. The amplified ramp is then thresholded against two voltage

references thanks to two comparators. Eventually, the TDC measures the difference between

the times when the amplified ramp hits the two reference voltages. Measuring the difference

helps suppressing the flicker noise of the CTIA, similarly to a CDS. Unlike other works, the LED

driving current is kept fixed so to enable the LED to always operate at its highest efficiency.

The photocurrent is then controlled by dynamically tuning the LED duty cycle, at a constant

current. A TDC is proposed instead of an ADC, since it is relatively easier to obtain large

dynamic range in TDCs rather than ADCs, particularly at lower supply voltages. This work also

focuses on two techniques in order to minimize the PPG sensor power consumption, namely

the "Minimum SNR tracking" and the "PLL tracking". The former measures the SNR of the

acquired PPG signal and dynamically adjust the LED duty cycle so that the system operates at

just sufficient SNR. The latter, reduces the duration for which the LED is on, by taking fewer

samples. Indeed, for the oxygen saturation measurements, only the peaks and troughs of

the PPG signal are needed. In other words, the sampling can be performed only just before

the time when these events are expected to occur. The reported front-end consumes in total

roughly 800 µW.

front‐end

Flow‐diagram of the dynamic adaptation techniques

Figure 4.10 – CTIA followed by two comparators and a TDC and the diagram of the dynamic
adaptation techniques [128].
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Pamula et al. [125]

This work, shown in Fig. 4.11, has exploited the compressive sampling (CS) technique to reduce

the LED power consumption. The PPG signal is naturally sparse in the frequency domain. This

can be exploited to achieve a strong reduction of the LED duty-cycle and generally speaking

of the average sampling frequency by the means of sub-sampling operations. A duty-cycle

as low as 0.0125% and an effective sampling frequency of 4 Hz have been obtained. The

proposed PPG front-end embeds a ZTIA, with programmable gain, followed by a switched

integrator. The switched integrator, with programmable feedback capacitor, improves further

the gain programmability and behaves as an anti-aliasing filter. A feedback loop is capable

of subtracting up to 10 µA of current from the TIA input to improve the dynamic range by

reducing the DC offset. A digital back-end block samples, at non-uniform sampling times,

the output of a 12-bit SAR for further digital processing. It also generates the control signals

required for the LED driver, the ZTIA, the switched integrator and the ADC. The digital back-

end calculates the HR on the processed data which has been stored, after the digital processing,

into a local memory. The reported front-end consumes in total roughly 172 µW.

Figure 4.11 – CS based PPG readout chain [125].
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Schönle et al. [122]

Fig. 4.12 shows the proposed analog front-end. The reported PPG sensor supports probes with

up to 32 LEDs and 4 PDs. The analog front-end is based on a differential TIA and switched

capacitor summation for analog ALC. The TIA is operated either as a ZTIA or a CTIA thanks to

different clocking. In the ZTIA operations, a differential DC current, up to 10 µA is subtracted

from the amplifier input, based on an initial estimate of its DC level. In the CTIA operations,

the DC offset compensation happens by pre-charging the feedback capacitor. The DC value

is restored digitally in order to compute the oxygen saturation. A 14-bit SAR ADC is used to

convert the TIA output. The LED driver array and the electronics are coordinated by a digital

finite state machine (FSM) that provides all control and clock signals for the analog circuits.

The proposed solutions achieves a dynamic range of 96 dB at slightly more than 5.5 mW total

power.

Figure 4.12 – Proposed PPG front-end as in [122].

59



Chapter 4. A classic PPG readout chain

Kim et al. [137]

This work, shown in Fig. 4.13, has presented a CMOS monolithic PPG sensor. A monolithic

PPG sensor refers to the integration of the PD together with the analog front-end, on the same

silicon. As described earlier in the chapter, and further deepen in the next chapter, a PD comes

with large parasitic capacitance which ultimately limit the power and noise performance

of the readout chain. Integrating the PD on the same silicon with respect to the front-end

would reduce the power consumption and noise. The proposed work takes advantage of a

distributed array of 1-bit∆Σ light-to-digital-converter (LDC). The chip embeds 128 LDCs. Each

LDC integrates a PD in reverse mode whose anode voltage is converted to a ∆Σmodulated

1-bit stream. Simple addition of the 128 LDCs outputs finalizes the reading. Off-chip digital

filter removes high frequency noise taking advantage of the noise shaping mechanism. The

dynamic range requirement of each LDC is relaxed thanks to the light being distributed over

128 LDCs. Proposed monolithic and distributed architecture minimizes the effect of noise

and improves the dynamic range of the sensor. The proposed solutions achieves a power

consumption lower than 25 µW, without accounting for the LED.

Figure 4.13 – Proposed monolithic PPG front-end as in [137].
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Lee et al. [127]

This work has aimed at reducing as much as possible the LED power, which is, as mentioned

earlier in the chapter, the most power hungry element of a PPG sensor. The work is shown

in Fig. 4.14. It is based on a heartbeat-locked loop (HBLL) that turns on the LED only during

the PPG peaks, thus achieving an effective duty cycle of 0.0175%. The readout chain consists

of analog and digital blocks. On the analog side, the chip integrates a DC offset cancellation

circuit, a ZTIA with programmable gain, a switched capacitor low pass filter, two SHs, and

a comparator. The comparator compares two consecutive samples. Its output is high when

the PPG signal increases and low when it decreases. Consequently, a high-to-low transition

is created when there is a peak in the PPG signal, which results in a digital clock signal,

synchronized with the PPG signal and the HR. This creates a periodic window, in phase

with respect to the HR, in which the electronic operates. Beyond the window, the PPG is

expected not to show any peak and so the electronic is switched off, further reducing the

power consumption. On the digital side, the HBLL block receives the clock converted from the

PPG signal from the comparator and measures the peak-to-peak interval by using a counter.

Thanks to a variable moving average filter it also estimates the heartbeat interval (HBI). Based

on the HBI algorithm, the digital circuit centres the observation window at the estimated peak

location and locks it for the next samples. The size of the window is set to 100 ms. The LED

shines only in this window. If the peak doesn’t occur within two consecutive windows, then

the HBLL increases the window size to 400 ms. If the peak is still not visible, then the window

is disables and the LED is duty cycled continuously, without the window. In this case, the

HBI algorithm will look for two consecutive peaks to reactivate the "windowing" process. The

proposed solutions achieves a total power consumption lower than 45 µW.

Figure 4.14 – PPG front-end as in [127].
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Lin et al. [129]

This work, shown in Fig. 4.15, has used a LDC based PPG sensor. The LDC converts light

into the time domain with a dual-slope mode integrator, which is then followed by a counter-

based TDC. The input stage consists of a periodically reset CTIA and a reference current

source, I r e f , which generates the dual-slope output voltage. The amplifier is followed by a

dynamic comparator and a counter, converting the integrator output directly into a digital

code. The readout operations are based on two phases: the integration and the conversion

phase. In the integration phase, the LDC integrates the ambient light signal on the feedback

capacitor Cf during t1. This is performed by closing the switch I I N SW . Then the LED is pulsed,

and both signal current and ambient light current are integrated on the feedback capacitor

Cf. Since the LED pulse width is exactly the same as t1, the polarity of Cf is swapped just

before the LED pulse in order to effectively cancels the ambient light in each sampling period.

This is the same technique as shown in [122]. After the LED pulse, the integrated signal is

automatically sampled on Cf. As mentioned earlier in the chapter, the switched integration

also acts as a low pass, anti-aliasing filter. In the conversion phase, I I N SW is disabled and

IREF SW is enabled. Then, the voltage stored on Cf is converted into a digital code by counting

the number of needed time intervals to discharge Cf to the initial reference VREF, by the means

of a predetermined Iref. In order to remove the large baseline component from the input

PPG signal, before the integration, two 7-bit current DACs synchronized with the LED pulses

provide compensation current, enhancing the dynamic range. The LED driver can provide up

to 100 mA peak current for two LEDs. The proposed solutions achieves 196 µW total power

consumption.

Figure 4.15 – PPG front-end as in [129].
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Chapter 4. A classic PPG readout chain

4.4 State-of-the-art: commercial works

Objective of this section is to revise the state-of-the-art of commercial products in PPG sensing.

As shown in Chapters 2 and 3, the duo between wearable devices and optical heart rate sensor

is becoming a must. Consequently, the number of PPG sensors on the market is significantly

increasing.

Texas Instruments: TI4403 [138]

The TI4403 PPG sensor is presented in Fig. 4.16. It consists of 4 main blocks: a differential

ZTIA, an ambient cancellation block, a low pass filter and an ADC. The output of the ZTIA is

sourced to a second stage with consists of a current DAC sourcing the cancellation current, up

to 10 µA, and an amplifier which amplifies the ZTIA voltage subtracted by the DC offset. This

second amplification is tunable. The output of the second amplifier is then low pass filtered,

with 500 Hz cut-off, and buffered for the 22-bit ∆Σ ADC. The 22-bit ADC converts the LED

samples and the ambient signals sequentially. In other words, for each conversion it provides

a single digital code at the ADC output. The ALC takes place in the digital domain.

Figure 4.16 – TI4403 front-end as in[138].
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Maxim Integrated: MAX86140 [141]

Fig. 4.17 shows the MAX86140 from Maxim integrated. The PD output is digitized by the means

of a 19-bit current ADC. An ALC and picket fence detect and replace algorithm are integrated

on chip for up to 70 dB artificial light (120 Hz) resilience. Thanks to a digitally controlled

feedback loop, the dynamic range can be enhanced by subtracting more than 100 µA from the

PD current. The MAX86140 embeds a 128-words first-input-first-output (FIFO) register and

supports a standard serial peripheral interface (SPI) and fully autonomous operations.

Figure 4.17 – MAX86140 front-end as in[141].
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Chapter 4. A classic PPG readout chain

AMS: AS7026GG [140]

Unlike the AFE4403 and the MAX86140, the AS7026GG from AMS, shown in Fig. 4.18, is a

module integrating 5 PDs on chip and the 3 LEDs off chip. A TIA, either in ZTIA or CTIA con-

figuration, reads the output of the PD. After the TIA, the system allows multiple configurations.

One possibility is to directly digitize the TIA output by the means of a 14-bit ADC. Another

possibility is to perform some signal conditioning before the ADC. Several filters are available

such as low pass, high pass and band pass. This is used to remove unwanted components, e.g.

noise or DC offset, from the PPG signal and it allows further amplification.

Figure 4.18 – AS7026GG front-end as in[140].
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Chapter 4. A classic PPG readout chain

Conclusions

Designing a good PPG sensor undergoes several bottlenecks and engineering trade-offs. The

LED power, due to its few tens of mAs driving current, is still the largest power hungry element.

State-of-the-art PPG sensors, both in academia and in commercial products, still follows a

quite standard design paradigm. Indeed, they rely on off-chip PDs and relatively standard

circuitries.

In the last 10 years, we have seen the PPG circuit power scaling down at an almost constant

LED power. This ultimately limits the applicability of PPG sensors in platforms for continuous

monitoring. One possible solution relies on reducing as much as possible the LED duty cycle to

values well below 1%. The downside of this is the increased complexity of the analog front-end.

Indeed, in order to cope with those very short pulse, the TIA has to be capable of settling

within a short amount of time. From a design perspective, this means a larger bandwidth and

consequently more power consumption and larger (thermal) noise. Additional complexity

may also come from sub-Nyquist sampling operations which effectively reduce the duty cycle

and sampling frequency at the cost of more processing power. Reducing the LED duty cycle

also means distributing the signal power over a very large number of harmonics so increasing

the needed bandwidth to recover the signal power. For this reason, wideband TIAs are often

chosen, followed by analog or digital filters.

The majority of PPG sensors still utilize off chip PDs. The parasitic capacitance of those devices

degrades the speed and noise performance of the front-end. For this reason, some few works

have proposed to integrate the PD together with the processing chains for better performance.

Despite a PPG sensor always comes with an optical shielding, handling the ambient light is

not easy. The large IR power of the natural light can saturate the front-end due to the large IR

penetration in the skin. The artificial light often comes with large order of harmonics whose

effect cannot be easily cancelled by CDS blocks, otherwise using a large sampling frequency

which increases the LED and circuit power consumption.

The extremely low PI of a PPG signal makes the design of a PPG sensor even more complicated.

First of all, the DC has to be properly corrected at the input by the means of feedback loops,

bringing power and area overheads. Secondly, for applications requiring strict resolutions,

such as the oxygen saturation, the extremely low PI imposes a minimum dynamic range at

the front-end, which is usually larger than 90 dB in the worst PI conditions. Designing a PPG

sensor for a large dynamic range, low noise and low power operations is not an easy task

and very often requires some engineering trade-offs. For instance, the dynamic range can be

traded versus the power for applications, such as the HR, not requiring a strict resolution or

large SNR.
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5 Noise and artefacts in PPG sensors

In the previous chapters, we have seen that the PPG technology can provide valuable infor-

mation about the cardiovascular system. Indeed, a PPG sensor can be used to monitor the

HR, the HRV, the oxygen saturation and the blood pressure. Moreover, the PPG technology is

intrinsically suitable for wearable sensing, as long as its power consumption is reduced.

Despite the advantages of the PPG, this technique is known to be susceptible to noise and

artefacts. It is the objective of this chapter to deepen the noise and artefacts analysis of PPG

sensors.

5.1 Noise types

Whatever analogue signal processed by an integrated circuit, it is corrupted by two different

noise types: the electronic noise coming from the circuit itself and the noise coming from

the environment. The environmental noise may result being quite generic. Indeed, it may

refer to both the random disturbances introduced in the circuits by the power lines or the

substrate and also to the noise introduced by the light. Despite the importance of those

random disturbances, this chapter will focus on the noise introduced by the circuit only.

As described earlier in this manuscript, a PPG sensor is a full opto-electronics system. Indeed,

it can be decomposed in two elementary blocks: the optical part, related to the LED and PD,

and the electronics part, meaning the readout circuits. As shown in Fig. 5.1, the noise finds

its way both on the optical and the analog part. It is then important to identify the main

noise sources ultimately limiting the PPG sensor performance. As pointed out in Chapter 4,

the power consumption of PPG systems is limited by the LED driving current. However, the

LED power can be reduced provided the noise floor of the readout electronics is decreased

proportionally to achieve the same SNR.
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LED

Light

PD CDS

‐ ADC +

Amplifier Signal conditioning ADC

Figure 5.1 – The different noisy elements of a PPG readout chain: the light, the amplifier, the
signal conditioning and the ADC.

5.1.1 Thermal noise

The thermal noise is a fundamental phenomenon which is observable in whatever conducting

device at absolute positive temperature. The origin of the thermal noise goes back to the

fluctuations of the charge carriers velocity in a conductor due to thermal excitation. This

noise has usually been microscopically modelled as a carrier ensemble whose exchange

energy happens either by collisions or by thermal process, very similarly to an ideal gas. The

resulting random electrons’ motion, called Brownian motion, in the conducting device gives

rise to voltage fluctuations across the conductor itself. In the case of a resistor, this voltage

fluctuations can be modelled by a series voltage source whose power-spectral density (PSD) is

Sv = 4kT R, (5.1)

where k is the Boltzmann constant equal to 1.38 ·10−23 J/K and T the absolute temperature.

The thermal noise of a resistor can also be modelled by a parallel current source with PSD of

4kT /R. Eq. (5.1) suggests that the thermal noise is frequency independent, so corresponding

to a white PSD. Actually, this is true with good approximation up to roughly 100 THz. Since the

circuits bandwidth is usually much lower with respect to this intrinsic cut-off frequency, the

thermal noise can be considered as a purely white noise.

In the case of MOS transistors, each slice of its channel can be considered to have a local

resistance ∆R with a PSD equal to 4kT /∆R. Using the EKV formalism [145] and accounting

for the contribution of this current noise source to the total drain current gives rise to the

following current PSD

Si = 4kTγGm , (5.2)

where Gm is the MOS gate transconductance and γ the thermal excess noise factor, defined as

GmRn (Rn is the input referred thermal noise resistance) [145]. For a long-channel transistor

γ is equal to n/2 and 2n/3 in weak inversion and strong inversion operations, respectively,

where n is the EKV model parameter defining the slope factor. In other words, similarly to a
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R

CVin Vout

f

Vout/Vin

f

Sv(f) 4kTR

f

Sout(f) 4kTR

fc
fc

Noise BW: πfc/2 

4kTR

Figure 5.2 – The noise spectrum is shaped by the transfer function. Particularly, in the case of
a RC low pass filter, this gives rise to a KT/C output noise power.

resistor, the thermal noise in the case of a MOS transistor can be modelled by a parallel current

source whose power-spectral density (PSD) is defined by (5.2).

kT/C noise

The noise spectrum, i.e. PSD, is shaped by the system transfer function, as defined by the

Wiener-Kintchine theorem. It is possible to define an equivalent noise bandwidth (ENBW)

which defines the maximum PSD frequency extent with regard to the system bandwidth. If

the input noise is white, then the ENBW depends on the system transfer function only. So, in

this case, the noise power can be defined as

σ2
n =V 2

n = Sn ·E N BW, (5.3)

where ENBW is defined as

E N BW = (
1/H 2

n (0)
) ·∫ ∞

0

∣∣Hn( f )
∣∣2 d f . (5.4)

In (5.4), Hn( f ) is the noise transfer function. The noise transfer functions, for noise cal-

culations, are usually of three types: 1st -order low-pass (LP), 2nd -order LP (with zero) and

2nd -order band-pass (BP)

Hn |1st ( f ) = 1

1+ j f
fc

Hn |2nd LP ( f ) =
1+ j f

fz

1+ j f
f0·Q +

(
j f
f0

)2

Hn |2nd BP ( f ) =
j f
f0

1+ j f
f0·Q +

(
j f
f0

)2 , (5.5)
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for which the ENBW is equal to

E N BW |1st = π

2
fc E N BW |2nd LP = π

2
f0Q

[
1+

(
f0

fz

)2]

E N BW |2nd BP = π

2

f0

Q
, (5.6)

respectively.

What was stated so far can be applied in the case of an RC low pass filter, as shown in Fig. 5.2.

The thermal noise originated by the resistor can be modelled by a series voltage source with a

4kT R PSD filtered by the RC circuit. Exploiting the ENBW given by (5.6), the noise variance

across the capacitor C can be calculated as

σ2
n =V 2

n = Sn ·E N BW = 4kT R
π

2
fc = 4kT R

π

2

1

2πRC
= kT

C
. (5.7)

(5.7) implies that the output thermal noise power is independent of the value of R. Indeed,

for smaller values of R, the ENBW increases while the associated noise per unit bandwidth

decreases, so keeping the overall noise power constant. On the contrary, larger capacitors are

related to smaller noise power. This introduces some design issues since larger capacitors

come with more power consumption and silicon area.

5.1.2 Shot noise

The shot noise is a statistical phenomenon which appears in nature for physical processes

resulting from a series of independent random events occurring at any time with the same

probability. If we consider a lamp irradiating a given photon flux,Φ, the probability of receiving

n photons in the interval [0, t ] tends to a Poisson distribution as

pn(t ) = (Φt )n

n!
·e−Φt , (5.8)

where Φ is supposed to be constant. The most peculiar property which characterizes the

shot noise is the fact that the variance of the number of received particles is equal to the

constant average number. In other words, supposing the lamp shining N photons in the

interval [0, t ], the associated shot noise standard deviation (STD) is equal to
p

N , meaning that

the resulting SNR is equal to
p

N . The quantized nature of light and charge makes a photon or

electron flux obeying this Poisson process. In optical devices, shot noise dominates whenever

a large number of particles are detected. In this case, the Poisson distribution approaches

a normal distribution about its mean, resulting into the elementary events, e.g. photons or

electrons, no longer individually observed. This makes the shot noise in actual observations

indistinguishable from the true Gaussian noise.
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Figure 5.3 – The integration of the white noise over a capacitor gives rise to noise voltage
output increasing with the square root of the integration time.

In the case of a p-n junction, as a PD, the shot noise is dependent on the DC current value.

Indeed, large photon fluxes result into large electron-hole recombination and consequently

larger number of photogenerated electrons. The (current) shot noise PSD is expressed as

Si = 2q I , (5.9)

where q is the electrons’ charge, equal to 1.6 ·10−19C , and I the photogenerated current.

Integrated white noise - Wiener process

The integration of a stationary white (current) noise over a capacitor is usually associated with

a Wiener process [146]. This applies to both the thermal and the shot noise, since both can be

considered as white noises. As shown in (5.3), supposing to start integrating, at the time t0, a

white PSD Si over a capacitor C , the noise power is linearly increasing with the integration

time ti nt as

σ2
n =V 2

n = Si

C 2 ti nt . (5.10)
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5.1.3 Flicker noise

The flicker noise, or 1/f noise, is a very important noise source whose exact mechanism is

still a matter of debate. Indeed, its origin is still not precisely understood. The most common

physical model behind the flicker noise refers to the interface between the gate oxide and

the conductive channel in a MOS transistor. Since the silicon crystal reaches an end at this

interface, many dangling bonds appear. A dangling bond is usually referred to free radicals,

meaning atoms, molecules or ions with unpaired valence electrons and consequently highly

chemically reactive. In the oxide-silicon interface, those dangling bonds give rise to extra

energy states. This can randomly trap and later release charge carrier moving at the interface,

resulting into a device conductance fluctuation introducing flicker noise in the drain current.

This model has been introduced by McWhorter [147]. Historically speaking, an another model

has been introduced by Hooge [148] which, unlike McWhorter, explains the MOS conductance

fluctuation as a result of the mobility fluctuation of the free carriers. Although both models

have been accepted, a long debate still exist.

What can be surely said about the flicker noise is that, unlike the thermal noise, its average

power cannot be predicted that easily. Depending on the MOS manufacturing process and

technologies, the flicker noise PSD can assume different order of magnitude. For instance, in

some older technologies PMOS devices exhibit less flicker noise than NMOS because the holes

flow into a buried channel at a further distance with respect to the oxide-silicon interface. In

other words, the probability of conductance fluctuation due to trapping and detrapping is

lower.

The flicker noise is also named 1/f noise since its PSD decreases with respect to the frequency.

This noise can be modelled as a voltage source in series with the gate having a PSD given by

Sv ( f ) = KF /
(
Cα

oxW L f
)

, (5.11)

where KF is the flicker (technological) noise parameter, Cox the gate oxide capacitance per unit

area, α is 1 for the Hooge’s model and 2 for the McWhorter’s one, and W L the MOS channel

area. For a 180 nm process KF = 1 ·10−27[ J ·F
m2 ] and Cox = 8.46 ·10−3[ F

m2 ]. We should also notice

that (5.11) doesn’t depend on the bias current. Actually, the PSD is slightly bias dependent,

but, to first order, it can be considered as bias independent when referred to the gate.

5.2 Noise analysis in PPG readout chains

In Chapter 4 several possible PPG readout chains, as presented in the state-of-the-art, have

been proposed. The readout chain that has been used the most is the one embedding a

transimpedance amplifier (TIA), a SH-based CDS block and an ADC. For this reason, the noise

analysis of this chapter will be focused on the latter.

It has been mentioned earlier that the power consumption of PPG systems is limited by the
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CDS ADC
OUT
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Figure 5.4 – Schematic of a classical PPG readout chain showing the two possible implementa-
tions, i.e. ZTIA-based or CTIA-based.

LED driving current. However, the LED power can be reduced provided the noise floor of the

front-end electronics is decreased proportionally. In this regards, it is important to define

analytically how the noise sources affect the SNR. Indeed, the proposed analysis clarifies, by

the means of analytical equations, the impact of the input photocurrent, the PD parasitic

capacitance, the feedback impedance and the system bandwidth on the SNR of the a PPG

readout, as shown in Fig. 5.4. Several noise sources have been considered including the shot

noise associated with the input light and the thermal, flicker and quantization noise of the

readout chain. Since, as mentioned in Chapter 4, the TIA is usually proposed either with an RC

feedback (ZTIA) or a purely capacitive one (CTIA), the noise analysis has been independently
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Chapter 5. Noise and artefacts in PPG sensors

carried out for both.

With respect to Fig. 5.4, the PD shunt resistance, RPD , can be usually neglected since typically

large enough to be considered as an open circuit. The overall noise variances contributions

has been evaluated at the output of the ADC and eventually used to compare the two proposed

structures in terms of SNR vs photogenerated current, I ph. Moreover, the comparison high-

lights the trade-off between the SNR and the power consumption. Note that I ph is roughly

linearly proportional to the LED current, i.e. LED power, through a constant representing the

tissue attenuation, whose values range from 10−3 to 10−4, [117]. The TIA has been modelled

as an operational transconductance-amplifier (OTA).

As already mentioned in Chapter 4, the PD also absorbs ambient light photons whose associ-

ated photocurrent has to be compensated in the readout chain. The simplest and usual way to

do it is to perform CDS. As mentioned earlier in this manuscript, typical CDS is performed by

the means of SH stage and the CDS has an important impact on the noise. Indeed, it cancels

the offset, e.g. the ambient light, and dramatically reduces low frequency noise, such as the

flicker noise. The CDS transfer function can be expressed as∣∣HC DS( f )
∣∣2 = 4sin2 (

πTC DS f
)

, (5.12)

[150], where TC DS is the time between two consecutive CDS samples [149, 150]. For a generic

noise source, having a PSD Sn( f ), its corresponding noise variance, accounting for the effect

of CDS, is equal to

σ2
n =

∫ ∞

0
Sn( f ) · ∣∣Hn( f )

∣∣2 · ∣∣HC DS( f )
∣∣2 d f , (5.13)

where Hn( f ) and HC DS( f ) are the noise transfer function and the CDS transfer function, given

in (5.12), respectively. It has been shown in [150] that the CDS has no impact on the noise

variance.

5.2.1 ZTIA

Shot noise

Since the shot noise current appears in parallel to the photocurrent source, the noise transre-

sistance is identical to the signal transresistance

Hn,shZ T I A ( f ) = RF · 1− j f / fzsh(
1+ j f / fp1

)(
1+ j f / fp2

) , (5.14)

where fp1 = Gm
2π(CPD+CF Gm RF ) , fp2 = (CPD+CF Gm RF )

2πCF CPD RF
and fzsh = Gm

2πCF
. For noise calculations the

noise transresistance (5.14) can be approximated by a first order response, whose cut-off

frequency is fp1. Indeed, in practical cases fp1 ¿ fp2 ¿ fzsh . Using (5.13), the shot noise
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variance for the ZTIA case becomes

σ2
shZ T I A

∼=αshZ T I A ·2q Iph ·E N BWn,shZ T I A ·R2
F , (5.15)

where E N BWn is, for the ZTIA shot noise case, approximately equal to

E N BWn,shZ T I A
∼= π

2
fp1 (5.16)

and αshZ T I A is an unit-less circuit design parameter, accounting for the effect of CDS, given by

αshZ T I A =
1

E N BWn,shZ T I A

∫ ∞

0

4sin2
(
πTON f

)
1+ (

f / fp1
)2 d f ∼= 2. (5.17)

This integral has been numerically calculated and is simply equal to 2, when 2πTON fp1 > 5

(which is the condition for sufficient settling of the signal) [150]. Indeed, the shot noise behaves

as a white noise. Hence, the CDS corresponds to the differentiation of two uncorrelated noise

samples, which results in doubling the noise variance.

Thermal noise

Two thermal noise contributions should be taken into account: the one related to the MOS

channel and the one coming from the feedback resistance, RF . Nevertheless, the noise variance

related to the channel dominates over the feedback resistance’s, which means that the latter

will be neglected. For the channel thermal noise the corresponding noise transresistance is

Hn,thZ T I A ( f ) = 1

Gm
· 1+ j f / fzth(

1+ j f / fp1
)(

1+ j f / fp2
) , (5.18)

where fzth = 1
2πRF (CF+CPD ) . From (5.13), the channel thermal noise variance for the ZTIA case

becomes

σ2
thZ T I A

∼=αthZ T I A ·
4kTγ

Gm
·E N BWn,thZ T I A , (5.19)

where αthZ T I A is

αthZ T I A =
1

E N BWn,thZ T I A

∫ ∞

0

4sin2
(
πTON f

)[
1+

(
f

fzth

)2
]

[
1+

(
f

fp1

)2
][

1+
(

f
fp2

)2
] d f ∼= 2 (5.20)

and E N BWn,thZ T I A is

E N BWn,thZ T I A
∼= π

2
fp2 · (CPD +CF )2 (GmRF )2

(CPD +CF GmRF )2 , (5.21)

considering fzth ¿ fp1 ¿ fp2.
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So far we have shown that, no matter the PSD source, the CDS simply doubles the thermal

noise variance. This result is expected since, as far as the thermal noise is concerned, the CDS

subtracts two samples which are uncorrelated. We will see that the same considerations apply

to the CTIA case.

Flicker noise

Regarding the ZTIA circuit, the flicker noise transresistance is the same than the channel

thermal noise, (5.18). Using (5.13), the flicker noise variance for the ZTIA case becomes

σ2
1/ fZ T I A

∼=α1/ fZ T I A KF /
(
C 2

oxW L
)

, (5.22)

where α1/ fZ T I A is

α1/ fZ T I A =
∫ ∞

0

1

f

4sin2
(
πTON f

)[
1+

(
f

fzth

)2
]

[
1+

(
f

fp1

)2
][

1+
(

f
fp2

)2
] d f ∼= 4.5, (5.23)

under the assumption of fzth ¿ fp1 ¿ fp2. α1/ fZ T I A is the CDS parameter, increasing (loga-

rithmically) with the ratio between TC DS and the signal settling-time. Assuming that TC DS is

roughly equal to the settling time, α1/ fZ T I A is, as shown by (5.23), approximately equal to 4.5.

Quantization noise

The variance due to the quantization process in the ADC is given by

σ2
ADC =∆2/12, (5.24)

where, in (5.24), ∆ is the quantization step (assuming uniform quantization) which depends

on the reference voltage Vr e f and the resolution Nbi t and typically ranges from 50 µVr ms to

150 µVr ms [151].

5.2.2 CTIA

Shot noise

Unlike the ZTIA case, in the case of the CTIA, the PSD of the shot noise gets fully integrated by

the feedback capacitance, CF . The shot noise transresistance of the CTIA is

Hn,shC T I A ( f ) = 1

j 2π f CF

1− j f / fzsh

1+ j f / fp
, (5.25)
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where fzsh and fp are the zero and the pole (signal BW), respectively, related to the shot noise

transresistance. For noise calculations the transresistance in (5.25) can be approximated by a

first order response, whose cut-off frequency is given by

fp =Gm/2πCPD . (5.26)

Using (5.13), the shot noise variance for the CTIA case becomes

σ2
shC T I A

∼=αshC T I A ·2q IphTON · 1

C 2
F

, (5.27)

where αshC T I A is

αshC T I A =
1

TON

∫ ∞

0

1(
2π f

)2 · 4sin2
(
πTON f

)
1+

(
f
fp

)2 d f ∼= 1

2
. (5.28)

This integral has been numerically calculated and is simply equal to 1/2, when 2πTON fp > 5.

Thus, the shot noise for the CTIA case corresponds to a Wiener process for which the variance

increases linearly with TON [146], as shown in (5.27).

Thermal noise

Regarding the CTIA based circuit, the only thermal noise contribution is the one related to the

transconductor, whose transresistance is

Hn,thC T I A ( f ) = 1

Gm
· CPD +CF

CF
· 1

1+ j f / fp
, (5.29)

where fp is the pole (signal BW) related to the channel thermal noise transresistance. Using

(5.13), the thermal noise variance for the CTIA case becomes

σ2
thC T I A

∼=αthC T I A ·
4kTγ

Gm
·E N BWn,thC T I A , (5.30)

where αthC T I A
∼= 2 (same calculation as in αshZ T I A ) and E N BWn,thC T I A is

E N BWn,thC T I A =
π

2
fp ·

(
CPD +CF

CF

)2

. (5.31)

Flicker noise

As for the ZTIA case the 1/f noise shares the same transresistance than the transconductor

thermal noise, (5.29). The flicker noise variance for the CTIA is given by

σ2
1/ fC T I A

∼=α1/ fC T I A

KF

C 2
oxW L

(
CPD +CF

CF

)2

, (5.32)
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where α1/ fC T I A is

α1/ fC T I A =
∫ ∞

0

1

f
· 4sin2

(
πTON f

)
1+

(
f
fp

)2 d f ∼= 4.5. (5.33)

Quantization noise

The quantization noise analysis of the CTIA is the same as in the ZTIA case.

5.2.3 ZTIA and CTIA comparison

This section compares the two readout structures, i.e. ZTIA and CTIA, in terms of noise and

power trade-off. Specifically, the comparison is driven with respect to the minimum SNR value

to ensure an accuracy within 2% of the SpO2. As shown in [117], this value is equal to 28.5 dB.

The SNR at the output of the ADC can be expressed as

SN R = 10log10
S2

N 2 = 10log10

V 2
out

σ2
sh +σ2

th +σ2
1/ f +σ2

ADC

. (5.34)

The ZTIA and CTIA readout chains are compared assuming the same signal bandwidth

fp = fp1 = BW = 1

2πτ
. (5.35)

In the case of the ZTIA, the output voltage is given by

Vout = PI ·RF · Iph , (5.36)

where PI is the perfusion index, i.e. AC
DC , as introduced in Chapter 2. In this comparison PI has

been considered equal to 0.2% in order to account for the worst case (perfusion) condition.

The output voltage in the CTIA case is given by

Vout = PI ·TON · Iph/CF , (5.37)

where TON is the ON-time of the LED (LED time duration).

Fig. 5.5 shows the SNR of both circuit topologies as function of the average input photocurrent,

i.e. LED power, for different PD parasitic capacitances, pointing out the shot noise and

the electronic read noise limited regions. The analysis has been performed based on the

parameters given in Tab. 5.1 (these parameters are related to CPD = 100 pF ). Assuming full

shot noise limitation, i.e. large Iph condition, the ratio between the two SNR is

SN RC T I A

SN RZ T I A

∼= 2π ·BW ·TON = TON

τ
. (5.38)
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2π ·BW ·TON must be much larger than 1 to ensure enough signal settling. The condition

to ensure efficient signal settling is 2π ·BW ·TON
∼= 10. This means that the SNR of the CTIA

based configuration is at least 10 times better than the ZTIA based one. Indeed, Fig. 5.5 shows

exactly 10 dB difference between the two cases in the shot noise dominated region.

Assuming the same signal bandwidth between the two compared structures, a ZTIA-based

readout chain comes with both larger LED power(8 times more) and a larger Gm, compared to

a CTIA-based one. This advantage is attributed to the integration feature of the CTIA. Indeed,

the CTIA comes intrinsically with a larger bandwidth than the ZTIA. Comparing the two for

the same bandwidth means, in other words, having a larger signal gain for the CTIA than the

ZTIA. Moreover the ZTIA shows a larger read noise than the CTIA, which is, on the contrary,

intrinsically more shot noise limited. A ZTIA solution should be preferred only when low gain

operations are needed. Indeed, the CTIA gain being inversely proportional to the feedback

capacitance, this results into a large silicon area for low gain operations. It should also be

noticed that for the target SNR, both solutions show still an important electronic read noise

level, calling for further design optimizations.

Analogies with other works

Other works have tried to compare the ZTIA-based readout chain versus the CTIA-based one.

For instance, the work in [46] has compared them in terms of the achievable dynamic range for

a given power. In particular, the limitations introduced by the ZTIA settling time should tip the

balance in favour of the CTIA, unless incomplete settling operations are envisaged. In this case,

the introduced gain loss corresponds to a proportional increase in the amplifier noise and

consequently a dynamic range drop. The work in [130] has also shown that the integration of

the photocurrent reduces both the effect of the wideband noise and the necessary bandwidth,

similarly to what is presented in this work.

Table 5.1 – Design Parameters

Parameter Value Parameter Value

GmC T I A 10 µS TON 100 µs

GmZ T I A 100 µS RL 100 MΩ

RF 1 MΩ W 5 µm

CF 9 pF L 2 µm

CL 1 pF ∆ 100 µVRMS

Cox 8.46 f F /µm2 KF 10−27C 2
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Figure 5.5 – SNR of both CTIA (solid line) and ZTIA (dashed line) based design versus the input
photocurrent, for three different PD parasitic capacitance values.

5.2.4 Correlated double sampling: a kTC analysis

Despite CDS circuits reduce dramatically the low frequency noise, they remain limited by

circuit non-idealities. Indeed, CDS circuits are mainly limited by analog switches non-idealities

(on and off resistances), charge injection and thermal noise, the latter usually referred to as kTC

noise, as shown in section 5.1.1. The sampled noise voltage variance (kT /C ) is, by definition,

inversely proportional to the capacitance. On the contrary, both power and silicon area are

directly proportional to the capacitance, resulting into a noise/power-area trade-off. From

a design perspective, it is necessary to be fully aware of the capacitances ultimately limiting

the circuit performance. kTC noise analysis of SC circuits is never a simple task, considering

that the noise transfer function, for these circuits, changes in time. Modern CAD simulators

are useful in the estimation of the overall noise features, despite they require a very high

accuracy set-up, resulting into extremely long simulations. Moreover, they don’t provide

simple analytical expressions to optimize the SC circuit noise.

In this perspective, this section aims at presenting a simple and comprehensive kTC noise

analysis of three different CDS circuits: a fully passive CDS, a voltage buffer-based CDS and an

amplifier-based CDS. The three proposed CDS circuits are depicted in Fig. 5.6.
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Figure 5.6 – Schematic of the three proposed CDS circuits with the timing diagrams: (a) fully-
passive CDS, (b) voltage buffer-based CDS, (c) amplifier-based CDS, (d) timing diagram for (a)
and (b), (e) timing diagram for (c).

Fully-passive CDS

The circuit of Fig. 5.6a embeds passive elements only. Referring to the timing diagram shown

in Fig. 5.6d, during phaseΦ1, all switches are open except switch S1 which is closed. Then a

generic input signal voltage, V1, is first sampled on the capacitor C1 when switch S1 opens,

which means at the end of phase φ1. During phaseΦ2, the switches S2 close and, at the end of

phase φ2, a second input signal voltage, V2, is sampled on the capacitor C2. During the third

phase φ3, the switches S3 close, connecting C1 and C2 in parallel. The charge conservation

principle applied at the output node leads to an output voltage equal to

Vout = V1C1 −V2C2

C1 +C2
= V1 −V2

2
, (5.39)

assuming that C1 =C2. Eq. (5.39) results into a CDS action, with a loss equal to two. From now

on, we will refer to the fully passive CDS of Fig. 5.6a as C DS1.

Due to the thermal noise originating from the on-resistance of the switches, two uncorrelated

kTC noise charge are injected in the switched capacitors C1 and C2 at the end of phase φ1

and φ2, respectively. In both phases φ1 and φ2, the on-resistor, Ron , of the switches and the

capacitor form a RC low-pass filter. Applying (5.13), (5.5), (5.6) to this case and considering

Sn = 4kT Ron results into noise voltage variances across C1 and C2 equal to

V 2
nC1

|φ1 =
kT

C1
V 2

nC2
|φ2 =

kT

C2
. (5.40)

During the third phase φ3 the two capacitors share both their signal and uncorrelated noise

charge, resulting into a noise voltage variance at the output node equal to

V 2
out |φ3 =

(
C 2

1 kT /C1 +C 2
2 kT /C2

)
(C1 +C2)2 . (5.41)

At the end of phase φ3, due to the switch S3, an additional kTC noise charge, uncorrelated

with the one generated in the previous phases, is injected in C1 and C2 resulting into an overall
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output voltage variance equal to

V 2
nout

=
(
C 2

1 kT /C1 +C 2
2 kT /C2

)
(C1 +C2)2︸ ︷︷ ︸

shared noise from φ1,φ2

+ kT

C1

C2

C1 +C2︸ ︷︷ ︸
added noise from φ3

= kT

C1
. (5.42)

If we consider the typical case where all the capacitances are equal to C , then the total voltage

variance results equal to kT /C .

Voltage-buffered based CDS

The circuit depicted in Fig. 5.6b consists of a voltage buffer-based CDS. Referring to the timing

diagram shown in Fig. 5.6d, two independent input signals V1 and V2 are sampled on C1 and

C2, respectively, during phase φ1. In the next phase φ2 the charge previously stored in C1 and

C2 is transferred, through the two voltage buffer of gain Av , to the output capacitor C3. At the

end of this phase, the voltage across C3 is

Vout = Av (V1 −V2) . (5.43)

Referring to (5.43), Av is the gain of the voltage buffer. In case of source follower stages,

featuring body effect, Av = 1/n, where n is the slope factor (larger than one), accounting for

the body effect in MOS transistors, [145]. Av takes values closer to one for source to bulk

connected devices. As in the previous case, (5.43) represents a CDS, with a loss accounting for

the source follower non-idealities, i.e. n > 1. From now on, we will refer to the CDS of Fig. 5.6b

as C DS2.

Under the assumption that C1 =C2 and exploiting the fully-differential structure, the small

signal schematic of C DS2, from a noise perspective, simplifies to the half circuit shown in

Fig. 5.7a. The total output noise voltage variance of the circuit of Fig. 5.6b is then simply equal

to twice the output voltage variance of Fig. 5.7a. With reference to the small signal schematic,

three noise sources have to be accounted for: the on and off resistances of the two switches,
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S1 and S2, and the saturated MOS transistor in the source-follower. The noise coming from

the off-resistor Ro f f can be neglected as long as the corresponding time constant is much

larger than the fraction of the period over which it is integrated (typically 1/3). As shown above,

the thermal noise (current) PSD of the transconductor is 4kTγGm . Referring to Fig. 5.7a, the

voltage-controlled current source nGmV2 accounts for the additional transconductance due

to the body effect [145]. During phase φ1, R1 is equal to the on-resistor, Ron , while R2 is equal

to the off-resistor, Ro f f . Evaluating the noise transfer functions related to the noise sources

InMOS , InR1 and InR2 and applying (5.13), (5.5), (5.6) leads to (considering the differential

structure)

V 2
nC1

|φ1
∼= 2kT

C1︸ ︷︷ ︸
S1 Ron

. (5.44)

Repeating the same procedure during phase φ2 and exploiting again the differential structure

results into a voltage variance on C3

V 2
nC3

|φ2
∼= γkT

nC3

(
1

1+nGmRon

)
︸ ︷︷ ︸

MOS channel

+ kT

C3

(
nGmRon

1+nGmRon

)
︸ ︷︷ ︸

S2 Ron

. (5.45)

In this case, R1 is equal to the off-resistor, Ro f f , while R2 is equal to the on-resistor, Ron .

C3 accounts for any additional parasitic capacitance too, despite these have been initially

neglected. Eventually, assuming that the noise on C1 in φ1 and on C2 in φ2 are uncorrelated,

and that GmRon
∼= 0, the overall kTC variance on the output capacitor C3 is

V 2
nout

= A2
v V 2

nC1
|φ1 +V 2

nC3
|φ2

∼= 2kT

C1
+ γkT

nC3
. (5.46)

Amplifier based CDS

Fig. 5.6c shows an amplifier-based CDS. Referring to the timing diagram of Fig. 5.6e, the

amplifier (transconductor) is first autozeroed. This phase, i.e. AZ , reduces the low frequency

noise and the offset of the amplifier [132] and resets the feedback capacitor C1. After this

phase, in the scenario that the input signal, to the amplifier, toggles between the level V1 and

the level V2, the amplifier output variation, i.e. ∆Vout , results in

∆Vout =α (V1 −V2) , (5.47)

where α∼=−Ci nput /C f eedback is the closed-loop gain assuming the OTA DC gain much larger

than one. As in C DS1 and C DS2, (5.47) shows the CDS operation on the input signal levels.

From now on, we will refer to CDS of Fig. 5.6c as C DS3.

As far as the thermal noise analysis is concerned, this stage operates in two phases, namely,

the AZ phase and the amplification phase, during which the amplifier provides a closed-
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loop gain α. In both phases, the overall kTC noise at the output of C DS3 consists of two

terms, both caused by the AZ and Hold switch resistance and the OTA. First, the overall

noise generated during the AZ phase which is frozen in αC1 and eventually transferred

to the feedback capacitor during the Amp phase. Secondly, the one generated during the

amplification phase. Both noise variances add to the output, contributing to the overall kTC

output thermal noise variance. Note that the frozen noise generated during the AZ phase

could be cancelled by a second CDS stage. The noise sampled on αC1 at the end of the AZ

phase can be calculated from the schematic shown in Fig. 5.7b. In this case, RAZ and RHold

represent the on-resistor, Ron , of the switch AZ and Hold , respectively. Evaluating the noise

transfer functions related to the noise sources InMOS , InR AZ and InRHold and applying (5.13),

(5.5), (5.6) leads to

V 2
nαC1

|AZ
∼= γkT

αC1 +C2︸ ︷︷ ︸
transconductor

+ kT

αC1

C2

αC1 +C2︸ ︷︷ ︸
Hold Ron

. (5.48)

Referring to (5.48), it can be shown that the noise contribution of RAZ is negligible with respect

to the RHold one. Repeating the same procedure during the Amp phase results in

V 2
nC2

|Amp
∼= γkT (1+α)2

αC1 +C2 (1+α)︸ ︷︷ ︸
transconductor

+ kT

C2

αC1

αC1 +C2 (1+α)︸ ︷︷ ︸
Hold Ron

. (5.49)

In this case, RAZ represents the off-resistor, Ro f f , of the switch AZ , whilst RHold the on-

resistor, Ron . As in CDS2, the off-resistor contribution can be neglected. Assuming that the

noise given by (5.48), (5.49) are uncorrelated, the overall kTC variance at the output capacitor

C2 is then given by

V 2
nout

∼=α2V 2
nαC1

|AZ +V 2
nC2

|Amp . (5.50)

As mentioned above, at the end of the AZ phase, the noise variance (5.48) gets frozen in the

input capacitor, αC1, and simply added, multiplied by the square of the closed-loop gain,

to the one generated in the next phase. In the above analysis, the parasitic capacitors are

neglected. Note that the expression of the total output noise variance given by (5.50) includes

the effect of the switches on-resistance which is usually neglected in the literature.

The work presented in [152], whose full text is reported in appendix A, reports the same results

as the one proposed above for the amplifier based CDS. [152] proposes a simple method for

estimating the thermal noise voltage variance at any port of passive and active circuit made of

OTA with capacitive feedbacks, like the amplifier based CDS. The proposed method is based

on the Bode theorem [153] and allows the calculation of the thermal noise voltage variance

across any capacitor of a passive RC network by simple inspection of several equivalent

schematics made of capacitors only. This avoids the evaluation of complex transfer functions

and cumbersome integrals.
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Simulation results

In order to confirm the analytical noise calculations presented above for the three CDS struc-

tures, we have performed noise simulations. All the presented CDS circuits have been sim-

ulated by using SpectreRF Noise and Transient Noise simulations and Eldo Transient Noise

simulations. SpectreRF Noise performs AC small-signal analysis, deriving the noise transfer

functions, for all the noisy elements, and eventually integrating the result (multiplied by the

PSD, as in (5.13)) over the chosen frequency span. This is the same approach as reported in the

above analysis. Indeed, all the equations reported above have been validated, for each phase,

by the means of SpectreRF Noise simulations. On the contrary, both Eldo and SpectreRF

Transient Noise simulations model each noise source as a sum of sinusoids over the frequency

range of interest, with random phase, and with amplitude equal to the given noise PSD [154].

Transient noise simulations become particularly useful when the noise is large or the circuit

highly nonlinear. Moreover, these simulations are the best ones to assess how the noise evolves

in time, which means in the most realistic condition. All the capacitors and switches of the

circuits meet the condition fth,max À 1/(2πRonC ), where fth,max is a simulation parameter

setting the maximum noise frequency. The simulations are performed on a circuit where

the OTA is modelled by a simple VCCS and the switches are modelled by an ideal switch in

series with a noisy resistor of resistance Ron = 50kΩ. The simulation results, for the three CDS

circuits, are shown in Figs. 5.8 to 5.10: both SpectreRF and Eldo show an excellent match with

respect the calculated noise. Particularly, for C DS3, Fig. 5.10 shows the effect of neglecting the

switches on-resistance in the final computation. Their contribution is particularly important

for lowα or low γ. In most practical cases whereα> 2 or γ> 2, then the switches on-resistance

becomes negligible with respect to the transconductor.

The noise is reported referred to the input (output noise rms divided by the gain). The

simulations are performed with fth,max = 8 G H z, 100 noise simulations, T = 300 K , γ= 1.5,

n = 1.2 and Gm = 20 µS.

Table 5.2 – Simulation parameters

Parameter Value Parameter Value

γ 0.9 Ron 50 kΩ

Gm 20 µS fth,max 8 G H z

Discussion

The fully passive features of CDS1 make it particularly suitable for ultra-low power applications,

despite the SNR is affected by the intrinsic signal loss due to the charge sharing mechanism.

Moreover, it is not affected by any signal saturation, the latter usually due to active elements.

One of the main advantages of this implementation is that the SNR can be improved without

limiting the input signal range and only at the cost of more silicon area (larger capacitors). On
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Figure 5.10 – Simulated and calculated RMS noise vs C1 for CDS3.

the contrary, the amplifier-based CDS3 features an input-referred noise inversely proportional

to the gain which depends directly on the size of the input capacitor. Hence, a lower noise is

obtained at the cost of a lower input range, larger silicon area and power consumption. The

advantage of CDS1 over CDS3 becomes even more obvious for values of γ larger than two.

CDS3 remains a good solution for combining amplification with CDS. The voltage buffer-

based CDS2 shows roughly the same noise performance than CDS1 at the cost of more power,

area and non-linearity.

In addition, the presented analysis highlights the impact of switches on-resistance which are

usually neglected. This is even more true whenever the designer needs to minimize as much

as possible the noise, γ, due to active elements.
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5.3 Beyond the CTIA: the CIS readout chain

In the previous sections, the classic PPG readout chains, as shown in Chapter 4, have been

compared in terms of SNR for a given optical power. Specifically, it has been shown in

section 5.2.3 that a CTIA-based structure comes with some key advantages in terms of power

and noise with respect to the ZTIA-based one. Indeed, in the case of a CTIA, the amplifier

output only needs to track the integrated photocurrent, which is much lower in bandwidth

than in the ZTIA case. This implies that an amplifier with lower bandwidth and slew rate, and

hence lower quiescent current, can be chosen to achieve a given photodetector bandwidth.

It has also been highlighted that for a target SNR, both solutions show still an important

electronic read noise level, calling for further design (and technology) optimizations. In

this regard, it is objective of this section to analyse whether it is possible to go beyond the

advantages introduced by the CTIA-based structure, leading to truly low-noise and low-power

PPG sensors.

The CMOS image sensors (CIS) started by occupying the market of low cost and low per-

formance image sensors and took advantage of the exploding consumer electronic devices

market such as smartphones, tablets and digital cameras. Quickly, CMOS image sensors

became the technology of choice with respect to speed, resolution, power consumption and

on-chip integration thanks to the introduction and consolidation of the pinned photodiodes

(PPDs) technology in CIS. In this section we will first deepen the technology and working

principle behind the PPDs and also compare the CTIA-based structure performance with

respect to the CIS one (PPD-based) in the PPG application.
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5.3.1 The pinned photodiode

Historically, PPDs have been first developed for charged-coupled device (CCD) technology for

their enhanced performances, such as low dark current and good effective quantum efficiency

(EQE), as illustrated in Fig. 5.11c [164]. A PPD consists of a np junction buried under a shallow

highly doped p+ thin layer, as sketched in Fig. 5.11a. A PPD behaves as a charge well where the

photogenerated electrons can be stored. As shown in Fig. 5.11a the potential across the two

junctions takes its maximum (pin voltage, Vpi n) in the depleted n region. Due to the electric

field in the depleted region, the photogenerated electrons are attracted by the maximum

potential across the junction. The transfer gate (TG) is used to control the potential barrier

at the edge of the PPD and consequently allowing the accumulated charge to move towards

the sense node (SN). When the TG voltage is low enough, the potential under the transfer

gate is lower than the pin voltage of the PPD, allowing the photogenerated electrons to be

integrated in the potential well. Moreover, the TG isolates the SN capacitance from the PPD

one, leading to a lower SN capacitance and hence a larger voltage on the SN for the same

charge accumulated in the PPD. The SN is simply a n+p junction capacitance. The voltage at

the surface of the n+ layer is initially set, during the reset phase, to a high voltage, Vr eset , in the

2.5 to 3.3 V range creating a depletion at the n+p interface. At first, the reset level is sensed, i.e.

Vr eset . After sensing the reset, the TG voltage is increased creating a depletion layer under the

TG. The potential under the TG is larger than Vpi n , but still lower than Vr eset . During this time,

i.e. transfer, the depletion layers will merge leading to the photogenerated electrons to diffuse

towards the larger SN potential. The charge diffusion to the SN causes its voltage to drop

from Vr eset to Vtr ans f er , with a step proportional to the quantity of photogenerated electrons,

i.e. impinging light. This step is processed by the readout circuitry by subtracting the reset

level. This operation corresponds to a CDS and not only subtracts the reset level, but as well

reduces the low-frequency readout noise and the kTC noise sampled at the level of the sense

node during the reset operation, [132, 165], as shown in Chapter 5. The above-mentioned

operations, i.e. SN reset, charge integration and transfer, can be described by the hydraulic

model as shown in Fig. 5.11b.

Nowadays, PPDs are the key ingredients of CMOS image sensors (CIS), thanks to the lower

dark current and a lower noise achieved due to the CDS reference. Several markets including

security, scientific imaging and medical are relying today on this technology. The excellent

performance of a PPD device makes it particularly suitable for the PPG application. Indeed, an

on-chip high sensitivity and low noise PD can significantly reduce the LED power needed to

target a specific SNR. Since the LED is the most power hungry part of a PPG chain, this would

dramatically enhance the PPG sensor’s battery lifetime.

Fig. 5.11d shows the PPD timing diagram properly adapted for the PPG application. It will

shown in Chapter 6 that the same timing diagram can be exploited for efficiently cancelling

the ambient light (AL) thanks to the intrinsic CDS mechanism. Referring to Fig. 5.11d, the

timing diagram consists of two successive readouts having as light source the AL and the

AL+LED, respectively. With respect to Fig. 5.11b, Vr eset and Vtr ans f er are the SN voltages due
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Figure 5.12 – Conventional source follower based CIS readout chain.

to the AL and the AL + LED light integration and transfer, respectively. As discussed above, the

CDS scheme will differentiate the two samples leading to an efficient ALC.

5.3.2 The CIS readout chain

Most of the CIS readout chains are based on the in-pixel source follower. This scheme offers a

simple design, a high dynamic range and simple reset robust against charge injection [150].

For this reason, this is the most used CIS readout chain. Fig. 5.12 shows the schematic of a

conventional CIS readout chain based on a PPD, an in-pixel source follower stage, column

level amplification and correlated sampling. It has been shown in [150] that a correlated

multiple sampling immediately after the amplifier leads to noise reduction. As far as this

analysis is concerned, a correlated double sampling block has been considered.

5.3.3 The CIS readout chain noise analysis

Similarly to the CTIA readout chain, three noise sources have been considered: the shot noise

of the light, the thermal noise and the flicker noise. For each noise source, the variance at the

output of the readout chain is first calculated and then referred to the input as a noise charge.

Hence the pixel conversion gain is a key parameter in the noise analysis. It has been shown in

[150] that the pixel conversion gain can be approximated to

ACG ≈ 1

CSN
, (5.51)

where CSN is the total SN capacitance. Eq. (5.51) neglects the intrinsic and extrinsic capaci-

tance of the in-pixel source follower transistor. Indeed, unlike a classic CIS application, for the
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PPG case CSN should be large enough to ensure the correct SNR and dynamic range. In this

regard, the design of a PPG sensor should meet at least the SNR requirement of 28.5 dB, to

achieve an accuracy within 2% of the peripheral oxygen saturation [117]. Accounting for the

light shot noise only, the SNR is equal to

SN R = NAC√
σ2

shot

= PI ·Np
N

, (5.52)

where N is the number of impinging photons and PI the perfusion index. Rounding 28.5 dB to

decimal 30 and considering a worst case PI value of 0.2%, (5.52) can be solved for N , leading

to N = 225 ·106. Supposing a SN dynamic equal to VSN , then CSN can be calculated as

CSN = qN

VSN
, (5.53)

where q is the electron charge and N is the minimum number of impinging photons. Suppos-

ing VSN = 1.5V and N = 225 ·106, CSN results equal to 24 pF, whose value is sufficiently large

to neglect any extrinsic or intrinsic capacitance.

The shot noise

In the case of a CIS readout chain, two shot noise sources have to be considered. First, the

shot noise introduced by the light itself, whose noise variance is simply equal to the mean

quantity of photons or photogenerated electrons.

Second, during the readout, the charge transferred to the SN may be corrupted by all the

leakage currents through the junctions and gate oxide due to tunnelling. Since these leakage

currents are due to barrier control processes, they give rise to shot noise [150]. It has been

shown above that the minimum number of photons to cope with the PPG application can be

larger than several hundred million. In other words, any leakage current shot noise can be

neglected with respect to the shot noise of the light.

The thermal noise

In the CIS readout chain the column level amplifier plays two major roles. First, it controls

the bandwidth limiting the thermal noise originating from the in-pixel source follower stage.

Second, it introduces a gain large enough to make the contribution of the next stages to

the total input-referred noise negligible. Under these assumptions, only two thermal noise

sources can be considered: the in-pixel source follower and the column level amplifier. The

two dominant pixel and column level noise sources are uncorrelated, thus their noise PSDs add.

As detailed in [150], the total input-referred thermal noise charge variance can be calculated
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as

Q2
th =αth ·

kT

Acol ·C

(
γSF Gm,A(CSN )2

Gm,SF
+ γA

A2
CG

)
=αth ·

kT

Acol
· C 2

SN

C

(
γSF Gm,A

Gm,SF
+γA

)
, (5.54)

where C =CL + Cin
Acol+1 . αth is a unitless circuit design parameter reflecting the impact of CDS.

It can be calculated numerically and is simply equal to 2, supposing sufficient settling time

operations [150].

The flicker noise

It is well-known that the drain current 1/f noise PSD is inversely proportional to the gate

area. In CIS readout chains, the transistors located outside the pixel array (e.g. column level

amplifier) and fed with a low impedance signal can be designed with gate dimensions much

larger than the in-pixel source follower transistor. In this case, source follower transistor

becomes the dominant 1/f noise source in the CIS readout chain and the other 1/f noise

sources can be neglected. Consequently, in the 1/f noise analysis, we only consider the noise

originating from the pixel. As detailed in [150], the total input-referred flicker noise charge

variance can be calculated as

Q2
1/ f =α1/ f ·

KF C 2
SN

C 2
ox ·W L

, (5.55)

where α1/ f is a unitless circuit design parameter reflecting the impact of the CDS noise

reduction on the 1/ f noise. Based on the detailed analytical calculation [150], it is simply

equal to 4.5, supposing sufficient settling time operations.

CTIA and CIS comparison

As far as the CTIA noise is concerned, the noise equations presented earlier in the chapter will

be re-utilised and referred to the input. The quantization noise is supposed to be the same

between the two structures and for this reason neglected in the comparison.

Before deepening the comparison between the two structures, it is important to draw the

reader’s attention on one important point already tipping the balance in favour of the CIS

readout. Indeed, unlike a standard PD-based readout chain, such as the CTIA, the intrinsic

double sampling readout scheme of the PPDs, like the CCDs, cancels the reset noise (together

with an important reduction of the electronic low frequency noise). This is one of the major

reason why first the CCDs and then the PPDs have replaced the 3 transistors (3T) pixels. The

read noise in 3T pixel is dominated by the reset noise sampled at the SN after the reset resulting

into a noise floor standard deviation generally of about a few tens of electrons (e-rms) [150].

Similarly to a 3T-based readout chain, the CTIA readout chain is also limited by the reset noise

which corresponds to the noise charges frozen in the PD parasitic capacitance during the
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autozeroing of the TIA, as shown in section 5.2.4 in (5.48).

Independently of the readout chain, it has been shown earlier in the chapter that the input

referred SNR can be expressed as

SN R = 10log10
S2

N 2 = 10log10
S2

σ2
sh +σ2

th +σ2
1/ f

, (5.56)

supposing the noise variances to be uncorrelated. The individual signal and noise variances

are reported in Tab. 5.4 both for the CTIA and the CIS-based readout.

The CTIA and CIS readout chains are compared assuming the same signal bandwidth and

with respect to the parameters listed in Tab. 5.3. The CIS integration time is set to be equal

to the CTIA one, e.g. TON . The sensitivity of the PD and the PPD is supposed to be the same

and so the photosensitive area. It has been decided to compare the two structures for three

different PI values, i.e. 0.2%, 1% and 10%, and as well three different PD parasitic capacitances

CPD , i.e. 100 pF, 500 pF and 1000 pF. The comparison is shown in Figs. 5.13 to 5.15.

Table 5.3 – Design Parameters

Parameter Value Parameter Value

Gm,CTIA =Gm,SF 10 µS TON 100 µs

Gm,A 3.5 µS RL 100 MΩ

γSF = γC T I A 1 γA 1

RF 1 MΩ W 5 µm

CF 9 pF L 2 µm

CL 1 pF KF 10−27C 2

Cox 8.46 f F /µm2 T 300K

Figs. 5.13 to 5.15 report the SNR as by (5.56) versus the photogenerated input electrons,

meaning the input optical power. Similarly to the ZTIA/CTIA comparison, the target SNR is

set to 28.5 dB which is the minimum value in order to achieve an accuracy within 2% of the

peripheral oxygen saturation [117]. Independently of the PI value, Figs. 5.13 to 5.15 show that

the CIS based structure features a lower read noise. This results into more shot noise limited

operations. This is even more clear, as the PI increases. According to (5.53), the larger the

PI, the smaller the SN capacitance has to be, resulting into a lower input referred noise floor.

Figs. 5.13 to 5.15 also show that, independently of the PI value, the CIS structure achieves the

target SNR with a lower input power level leading to an important LED power reduction. The

LED power saving ranges from roughly 2 up to about 40 times, for larger PI values. In this

regard, it should be mentioned that a PI value equal to 0.2% corresponds to a quite unrealistic

scenario. This means that accounting for a PI of about 1% the CIS structure requires roughly 1

order of magnitude lower LED power with respect to the CTIA-based one.
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Figure 5.13 – CIS vs CTIA at 0.2% PI and for three different PD parasitic capacitances.
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Figure 5.15 – CIS vs CTIA at 10% PI and for three different PD parasitic capacitances.
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5.4. Artefacts: the motion-induced signal corruption

5.4 Artefacts: the motion-induced signal corruption

General types of noises have been presented in the previous sections, all affecting the PPG

signal quality. In addition, PPG is known to be particularly susceptible to motion-induced arte-

facts (MA). Overcoming MA presents one of the most challenging problems while designing a

PPG sensor. For this reason, we have decided to dedicate a full section to it.

During a PPG monitoring, various types of motions can distort the PPG signal. MA can be

periodic or non-periodic and can present a much larger amplitude than the AC component of

the PPG signal [155]. In addition, the MA can fall within the same frequency band as the HR

[156]. This ultimately renders linear filtering with fixed cut-off frequency useless. Eventually,

additional hardware or advanced signal processing techniques are required to deal with MA.

This is particularly important for wearable devices in the wellness and fitness space.

5.4.1 Motion artefacts sources

MA can be the outcome of several sources. First of all, the displacement between the PPG

sensor and the skin. This can ultimately corrupt the way the reflected or transmitted light

reaches the PD. Any periodic displacement of the PPG sensor with respect to the skin would

behave as a mixer for the received light, in other words corrupting its frequency component.

In addition, any motion-induced skin displacement would result into a vascular volume

change, ultimately causing noise. This ultimately changes the DC component of the PPG

signal and consequently its time and frequency features. The vascular volume change is

mainly due to movement of the blood in the vessels. In other words, the emitted light will

propagate through a time-varying tissue whose absorbance is not anymore purely static.

The MAs effect on the PPG signal also changes with respect to the body location. For instance,

a PPG signal measured on the wrist suffers from more intense MA. This is due to the tissue

deformation induced by the large tendons.

Last but not the least, the blood acceleration induced by the body movement is also an

additional cause behind the MA. Any body acceleration causes an additional pressure gradient

on the blood which is superimposed on the heart’s one [157]. This effect is particularly

important for large arteries since, according to the Bernoulli’s law, their larger section imposes

lower pressure gradients. On the contrary, small blood vessels intrinsically undergo larger

pressure gradients making them more resilient to the effect induced by the body movements.

In other words, the additional pressure gradient due to the body movement has a lower effect

on the small blood vessels, which are associated with peripheral sites.
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Figure 5.16 – Effect of MAs on simultaneously recorded reflective PPG signals at different
wavelengths. The deeper light penetration comes with more pronounced MA [46].

5.4.2 Wavelength dependency

In the previous section several MA sources have been illustrated. Among them, the effect of

the body movement on the blood acceleration plays an important role. It has been illustrated

that smaller vessels tend to be more resilient to this effect thanks to their intrinsically larger

pressure gradient. As explained in Chapter 2, smaller blood vessels are usually associated with

both peripheral sites and shallower skin layers (outermost dermis layer, as shown in Fig. 2.6).

As presented in Chapter 2, the green light is often preferred thanks to its lower penetration

in the skin. So far, this has been explained as the result of a simpler light tissue interaction

and larger photon survival rates. In addition, thanks to its lower penetration, green light tend

to shine smaller vessel which are less sensitive to MA. In other words, the green light is also

preferred due to its larger resilience from MA, when compared to red or IR [158]. Unlike the

green, the extremely limited blue light penetration makes the resulting PPG quite noisy due to

the reduced shined blood volume changes [159]. This is the reason why this wavelength is not

implemented in PPG sensors.

Fig. 5.16 shows, for different motion types, the effect of MA on simultaneously recorded

reflective PPG signals, at different wavelengths [46]. Clearly, the deeper light penetration

comes with more pronounced MA, or consequently lower signal-to-motion-ratio (SMR) [155].

The work in [158] has also shown that the least MA effect on the green light PPG sensor

takes place at the upper arm, confirming the impact of the body location in MA. Indeed, as

mentioned earlier and confirmed in [158], peripheral sites tend to be less resilient to MA. In

particular, this applies to the green light and little to the IR, whose SMR doesn’t show similar

trends along the body.
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Figure 5.17 – Block diagram of the adaptive noise cancellation (ANC) technique. The noise
reference is generated by an accelerometer [156].

5.4.3 Proposed techniques to reduce motion artefacts

Several solutions have been proposed to reduce the effect of MA in PPG sensors. The ma-

jority of the motion artefacts cancellation (MAC) techniques rely on the use of an external

accelerometers or gyroscopes. These devices are used to provide a motion reference signal

which is dynamically used to filter out in-band MA. This technique is called adaptive noise

cancellation (ANC) and has been introduced in [160].

Fig. 5.17 shows how the ANC works. The output of the PPG sensor, y , is a combination of the

physiological signal, depending on the blood volume change, x, and a motion-induced noise,

m. If m is known, then a simple subtracter can recover x out of y . An adaptive filter, whose

coefficients are adaptively computed, is in charge of estimating m, so to extract x. This filter

requires a MA reference signal that is supposed to show a strong correlation with the MA and

the MA-free PPG signal. In other words, the MA is estimated from the MA reference signal, i.e.

the accelerometer. Several filter types have been proposed, including finite impulse response

(FIR) [156].

A passive MAC has been proposed in [161], which is based on a PPG sensor placed on the

superior and posterior auricular skins. The excellent ear perfusion, limited ear MA and a

special module design has significantly reduced the MA without the need of any additional

hardware or signal processing scheme. Similarly, the work in [162] has proposed to place, with

respect to the PD, two sets of LEDs, on the left and the right. This would help minimizing the

effect of the skin-probe displacement, above all at the wrist level.

The work in [163] has suggested to perform the MAC by employing two PPG sensors, as shown

in Fig. 5.18. The main PPG sensor is in contact with the skin to detect the PPG signal, d(n) in

Fig. 5.18, which is corrupted by the MA. The second PPG sensor is not in contact with the skin

and placed into a 7.5 mm air gap. This second PPG is intended to detect the MA only, u(n)

in Fig. 5.18. Eventually, the MAC takes place thanks to a non-linear adaptive canceller filter

exploiting a recursive least square algorithm.
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Figure 5.18 – MAC based on two PPG sensor: the first is in contact with the skin and so used to
detect the PPG with MA. The PPG signal carries the blood volume pulse (BVP) components.
The second PPG sensor is not in contact with the skin and used to evaluate the MA [163].

MA may also result from micromotions, which are not always accurately captured by ac-

celerometers. For instance, slightly moving one finger generates quite low MA which are

not easily detectable by an accelerometer positioned on the wrist. On the contrary, such

little movement can be large enough to reduce the PPG signal quality. The work in [155] has

proposed to replace the accelerometer or gyroscope with a photoelectric motion reference. It

has been proposed to use a PPG signal recorded by the green light as the main PPG channel

and a second IR PPG channel as the motion reference. Indeed, as mentioned earlier in the

chapter, green PPG signals come with at least 10 dB larger SMR than the IR. Seven types of

periodic motions have been analysed in order to study the correlation between the MA in

the green and in the IR. The proposed solution relies on a 5 steps algorithm implementing

continuous wavelet transform and time domain decomposition and reconstruction. The

downside of this technique, as pointed out in [155], is the larger power consumption coming

from the additional IR PPG channel, since an accelerometer consumes around 10%-20% of

the power burnt by the IR PPG channel, and the increased signal processing complexity.

Because of our constraints in terms of power consumption, the sensor proposed in this work

cannot afford to embed any ANC technique, which goes beyond this PhD work. On the other

hand, as it will be pointed out in the next chapter, all the possible passive methods have been

implemented in order to reduce the effect of MA.
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Conclusions

Despite the advantages and opportunities behind the PPG technology, today PPG sensors

are still limited by noise and artefacts. Indeed, several noise sources should be accounted

for when designing a PPG sensor: the shot noise of the photogenerated current, the thermal

and flicker noise of the readout chain and the quantization noise of the ADC. Among the

different proposed PPG readout chains, discussed in Chapter 4, the one with a TIA, a CDS and

an ADC is the most used one, both in academic and commercial solutions. The TIA is often

proposed either as a ZTIA or a CTIA. Providing a detailed and comprehensive noise analysis

in PPG readout chains is key in order to reduce the LED power. Indeed, the LED power can

be reduced provided the noise floor of the readout electronics is decreased proportionally to

achieve the same SNR. A classic PPG readout chain has been analysed both in ZTIA and CTIA

configurations in terms of SNR and power trade-offs. Assuming the same signal bandwidth

between the two compared structures, a ZTIA-based readout chain comes with both larger

LED power (8 times more) and a larger Gm, compared to a CTIA-based one. This advantage is

attributed to the integration feature of the CTIA. Indeed, the CTIA comes intrinsically with a

larger bandwidth than the ZTIA. Comparing the two for the same BW means, in other words,

having a larger signal gain for the CTIA than the ZTIA. Moreover, the ZTIA shows a larger read

noise than the CTIA, which is, on the contrary, intrinsically more shot noise limited. It should

also be noticed that both solutions show still an important electronic read noise level, calling

for further design optimizations.

The CMOS image sensors (CIS) is today dominating the exploding consumer electronic devices

market such as smartphones, tablets and digital cameras. Quickly, CMOS image sensors

became the technology of choice with respect to speed, resolution, power consumption and

on-chip integration thanks to the introduction and consolidation of the PPD technology in

CIS. The important advantage of PPDs in terms of sensitivity and noise make them a serious

candidate in the PPG application to go beyond the CTIA-based structure and the limitations

introduced by the off-chips PDs. Assuming a PI equal to 1%, same signal bandwidth and

comparable sensitivity between the CTIA and the CIS readouts, the latter achieves the target

SNR with more than 1 order of magnitude lower LED power. The advantage introduced by

the CIS can also be extended for larger PIs. Indeed, the CIS readout chain shows, no matter

the PI value, a lower electronic noise floor resulting into intrinsically more shot noise limited

operations.

The CDS is key for reducing the effect of the ambient light, offsets and 1/f noise. Despite this,

CDS circuits are still limited by circuit non-idealities, including analog switches non-idealities

(on and off resistances), charge injection and thermal noise, the latter usually referred to as

kTC noise. The sampled noise voltage variance (kT/C) is, by definition, inversely proportional

to the capacitance. On the contrary, both power and silicon area are directly proportional to

the capacitance, resulting into a noise/power-area trade-off. From a design perspective, it is

necessary to be fully aware of the capacitances ultimately limiting the circuit performance. kTC

noise analysis of SC circuits is never a simple task, considering that the noise transfer function,
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for these circuits, changes in time. Modern CAD simulators are useful in the estimation of the

overall noise features, despite they require a very high accuracy set-up, resulting into extremely

long simulations. Moreover, they don’t provide simple analytical expressions to optimize

the SC circuit noise. In this perspective, three possible CDS circuits have been compared

analytically and benchmarked in terms of kTC noise. A fully passive CDS is particularly suitable

for ultra-low power applications, despite the SNR is affected by the intrinsic signal loss due

to the charge sharing mechanism. Moreover, it is not affected by any signal saturation, the

latter usually due to active elements. One of the main advantages of this implementation is

that the SNR can be improved without limiting the input signal range and only at the cost of

more silicon area (larger capacitors).

In addition to the noise, PPG is known to be particularly susceptible to motion artefacts.

Overcoming those artefacts presents one of the most challenging problems while designing

a PPG sensor. Several solutions have been proposed to reduce the effect of motion in PPG

sensors. First of all, motion artefacts are wavelength dependent. Thanks to the shorter

penetration of the green light, the latter achieves more resilience to MA with respect to red and

IR. Secondly, these artefacts can be reduced by choosing specific body locations. For instance,

the ears report less MA with respect to the arms. Other cancellation techniques rely on the

use of an external accelerometers, gyroscopes or optical channel. These devices are used

to provide a motion reference signal which is dynamically used to filter out in-band motion

artefacts. This technique is called adaptive noise cancellation.
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As illustrated in Chapter 4, the design of a PPG sensor, on the AFE side, still follows a quite

standard paradigm. Despite few differences, almost all the prior works embed an off-chip PN

or PiN-based PD, converting the photogenerated electrons into a current, followed by a TIA,

amplifying and translating into a voltage the photogenerated current.

Despite the quality of the engineering solutions presented so far, both in academia or in

commercial products, their power consumption is still strongly affected by the few tens of

mAs of the LED drivers and we should not expect dramatic improvements unless there are

fundamental changes in the PPG sensor technology. This is particularly true for the PD which

is limiting the power/noise trade-off due to its rather large capacitance. In this regard, any new

PD technology combining high sensitivity and low-noise operations can lead to a dramatic

LED power saving, towards truly micropower PPG sensors. Chapter 5 has demonstrated that

a pinned photodiode-based readout chain (CIS) can lead to lower noise and lower power

PPG operations. The objective of this chapter is to show how a CIS readout can be further

optimized for the PPG application leading to truly micropower operations.

6.1 The double TG pinned photodiode structure

As shown in Chapter 5, today PPDs are the key ingredients of CMOS image sensors (CIS), thanks

to the lower dark current and a lower noise achieved due to the CDS reference. Several markets

including security, scientific imaging and medical are relying today on this technology. The

excellent performance of a PPD device makes it particularly suitable for the PPG application.

Indeed, an on-chip high sensitivity and low noise PD can significantly reduce the LED power

needed to target a specific SNR. Since the LED is the most power hungry part of a PPG

chain, this would dramatically enhance the PPG sensor’s battery lifetime. A double TG PPD

device, as shown in Fig. 6.1a, is the best fit for the PPG application. Indeed, the double TG

scheme, i.e. TGsink (TGs) and TGtransfer (TGt), allows to precisely control the amount of

charges integrated in the PPD well and eventually reaching the SN for readout. This scheme

is actually helpful for any application needing a consistent amount of impinging photons,
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Figure 6.1 – PPD device: (a) double TG PPG cross section, (b) PPD hydraulic equivalent model,
(c) PPD EQE, (d) Conventional PPD readout timing diagram, (e) Modified timing diagram for
ALC.

to avoid any possible well saturation, like the PPG one. In addition, controlling precisely

the photoelectrons’ integration means avoiding any possible LED light waste, leading to a

power efficient lighting scheme. Another competitive advantage of the double TG scheme is

the capability of efficiently cancelling the ambient light (AL) thanks to the CDS. The timing

diagram of the ambient light cancellation (ALC) is shown in Fig. 6.1d. As explained above, it

consists of two successive readouts having as light source the AL and the AL+LED, respectively.

With respect to Fig. 6.1b, Vr eset and Vtr ans f er are the SN voltages due to the AL and the AL
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Figure 6.2 – Block diagram of the proposed monolithic PPG sensor. The implemented ASIC
consists of an array of macro-pixels, as photosensitive area, an averaging block, an amplifier
and an ADC.

+ LED light integration and transfer, respectively. As discussed above, the CDS scheme will

differentiate the two samples leading to an efficient ALC. The double TG scheme and the µs

transfer PPD operations guarantee that the AL, both natural and artificial, integrated within

the two windows is the same. This will be further detailed in section 6.2.3.

6.2 The micropower PPG sensor architecture

The block diagram of the micropower PPG sensor is shown in Fig. 6.2. The proposed solution

consists of a fully integrated chip embedding an array of PPDs, a passive averaging block, a

switched-cap (SC) amplifier and an ADC, which will be described in details in the next sections.
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6.2.1 Array of PPDs

As discussed in section 6.1, a PPD is intrinsically a diffusion-based device. For this reason, a

PPD cannot operate correctly with a pitch size considerably larger than a few hundred µm, not

to end up with an inefficient charge transfer and also losing the advantage of having a low dark

current, [164, 166, 167]. In addition, a larger pixel comes with a larger parasitic capacitance

which ultimately affects the noise performance. With these considerations, an array of double

TG PPDs has been designed, as shown in Fig. 6.2. Placing the PPDs into an array eases the

engineering trade-off between the possible achievable dynamic range and the overall noise

performance. The total number of pixels has been chosen according to the target SNR. Indeed,

the design of a PPG sensor should meet at least the SNR requirement of 28.5 dB, to achieve an

accuracy within 2% of the peripheral oxygen saturation [117].

Accounting for the light shot noise only, the SNR is equal to

SN R = NAC√
σ2

shot

= PI ·Np
N

, (6.1)

where N is the number of impinging photons and PI the perfusion index. Rounding 28.5 dB

to decimal 30 and considering a worst case PI value of 0.2%, (6.1) can be solved for N , leading

to N = 225 ·106. If one considers a PPD well saturation, Nsat of 6.4 ·103, as in [164], then the

number of pixels needed to cope with the SNR requirement is

pi xel s = N

Nsat
= 225 ·106

6.4 ·103 = 35156. (6.2)

Eq. (6.1) considers the shot noise only. Another important noise source is the quantization

noise and the electronic readout noise, which modify (6.1) to

SN R = NAC√
σ2

shot +σ2
ADC +σ2

r

= PI ·N√
N + ∆2

12 +σ2
r

, (6.3)

where ∆ is the quantization step (assuming uniform quantization) which depends on the

full-scale range (FSR) and the chosen bit resolution, Nbi t , and σr the read noise standard-

deviation (STD). Accounting for these additional noise sources and keeping a margin of some

dBs on the SNR requirement, the chosen number of pixels is 51200.

Indeed, the photosensitive area consists of four clusters of 50 rows and 256 columns, meaning

51200 total pixels, as discussed above. The 50 pixels along the i-column are assembled in a

macro-pixel (MP), as shown in Fig. 6.2. The pixels of one MP share the same source-follower

(SF) saving power while maintaining a reasonably low parasitic capacitance at the shared SN.

The MP consists of an array of PPDs having each two TG, a sink TGs and a transfer gate TGt .

TGs sinks the charge cumulated in the PPDs to the reset voltage (VRST), while TGt allows

the charge transfer to the SN. The SN is shared between multiple PPDs, which are gated to
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either sink or transfer their charge synchronously. This process is also referred to as charge

binning. It allows averaging the outputs of the MP PPDs without the need for any additional

circuitry. This charge binning presents key advantages when compared to the implementation

of a single photodiode as large as the macropixel. Indeed, PPDs may suffer from charge

transfer inefficiency due to the slow diffusion charge transfer mechanism or to the presence

of a potential barrier under the transfer gate [168]. These non-idealities scale with the size of

the photodiode. Hence, such a combination of pixels enables more efficient and faster charge

transfer compared to a single large PPD with equivalent area by mitigating the effect of charge

transfer non-idealities.

The spatial averaging is done in two steps: first, a charge averaging on the shared SN within

the same column and, second, a voltage averaging among the 1024 columns at the SFs output.

This leads to a considerable shot and read noise reduction, together with a full pre-filtering

of the PPG signal itself. In addition to the noise optimization, the proposed pixel achieves

between 66% and 75% EQE for the selected LED wavelengths as shown in Fig. 6.1c, further

reducing the LED power needed for achieving the target SNR [117]. It should be mentioned

that the full integration of the PPD in silicon offers an excellent EQE within the visible range,

but comes at the cost of less sensitivity in the IR region.

Next, the PPG signal is amplified by a low noise programmable gain SC amplifier.

6.2.2 One big pixel versus an array of pixels?

This section aims at deepening the competitive advantage of having an array of pixels versus a

single big one. The two embodiments are both possible and shown in Fig. 6.3, for comparison.

First of all, as discussed in section 6.2.1, a PPD is intrinsically a diffusion-based device. For

this reason, a PPD cannot operate correctly with a pitch size considerably larger than a few

hundred µm. As shown in (6.2), the minimum number of pixel needed to cope with the SNR

requirements for the peripheral oxygen saturation, if one considers a PPD well saturation,

Nsat of 6.4 ·103, is more than 35156. Having one single PPD pixel as large as 35156 pixels

would result into an inefficient charge transfer and also a larger dark current. If the one big

pixel configuration is needed, a regular PN or PiN junction has to be envisaged, with all the

consequent power and noise challenges, as explained in Chapter 5.

The MP structure, as explained above, comes with the competitive advantage of spatial averag-

ing, which leads to further noise reduction. Actually, as far as the kTC noise coming after the

pixel is concerned, the large pixel may supply charges to one SF, whose output is connected to

a capacitor Cbi g , as shown in Fig. 6.3, being 1024 times larger than the one used for the single

column, in the array structure. We recall that the array has 1024 columns. In terms of the kTC

noise after the pixel the two structures are the same. On the contrary, whatever kTC noise

taking place at the level of the pixel would definitely benefit from any averaging process among

the 1024 columns. On the other hand, the array enables an important power optimization.

Indeed, in the array structure, the SF corresponding to one column is biased in weak inversion
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(WI). We should recall that in weak inversion the transconductance is linearly proportional to

the current. On the contrary, in the single pixel approach, the large capacitive load and the

bandwidth requirements force the SF to be biased in strong inversion (SI). In this case, the SF

transconductance scales with the square root of the biasing current. In other words, both the

capacitor and the transconductance scale linearly, unlike the biasing current. Fig. 6.4 shows,

for the same SF bandwidth, how the ratio of the two SF currents, i.e. Ibi g /Iar r ay , scales with

respect to both the (W /L)bi g and the inversion coefficient (IC) of the big pixel SF, i.e. ICbi g .

The proposed comparison has been carried out for a 1024 columns array, considering a CMOS

NMOS 180 nm process with the following technological values: n = 1.2, βSI = 300 µ A/V 2.

Moreover, Ibi g has been fixed to 0.5 mA, whose value leads to a reasonable bandwidth, given

the large capacitive load. Fig. 6.4a shows that Ibi g is always larger than Iar r ay and eventually

tends to Iar r ay only for the unrealistic value of (W /L)bi g equal to 1000. In other words, as

shown in Fig. 6.4b, this means having the big pixel SF biased in WI, for which IC tends to unity

[145]. On the other hand, it is not possible, at the given Ibi g , to bias the big pixel SF in WI since

this would require an unrealistically large transistor. The reader should refer to appendix A

for further details. The same analysis shows that, for the same bandwidth, the 0.5 mA biasing

current in the single pixel corresponds to less than 50 µA biasing current in the array structure,

leading to a dramatic power saving thanks to the current efficiency of the WI. It should also

be recalled that the weak inversion comes with better thermal noise performance, thanks to

the lower generated γ at a given transconductance, and avoids any velocity saturation that is

present in minimum length transistors, further degrading the current efficiency [145].

Simulating the two structures in terms of equal SF bandwidth has resulted into the big pixel

structure consuming more than 2.5 times larger biasing current than the array one. Since the

SF determines the largest part of the micropower PPG sensor power budget and accounting

for the above considerations, the array structure has been finally preferred.

6.2.3 Switched-cap averaging and amplifier

Fig. 6.5 shows the analog-front-end (AFE) implementation with the related timing diagram.

The sense nodes, shared by 50 PPDs and corresponding to the SFs inputs, are first reset.

Meanwhile, each individual PPD starts integrating the impinging light corresponding to the AL.

In order to precisely control the light-induced charge integration, the PPDs are first emptied

by the sink switch TGs. At the end of the first integration phase, the generated photoelectrons

are transferred, via the transfer gate TGt, to the SNs. The capacitance of each SN, shared by

the 50 pixels along the same column, converts the integrated photoelectrons into a voltage

and performs the charge averaging across the 50 rows. After the transfer is completed the

SF output voltages are sampled on capacitors C1i via S1i . Next, the SNs are reset again and

the LED is pulsed on. As above, the PPDs precisely integrate the LED light superimposed

to AL, and the related voltage level is sampled on C2i , via S2i , where C2i and C1i are made

equal to 0.5 pF. The power switch SSF is only closed during this charge transfer and sampling

phase for minimal power consumption. By closing S3i and S4i all the capacitors C1i and
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C2i related to the same sample are connected in parallel and share their charge, resulting

into a voltage equal to the spatial average of the array pixel output samples. In addition, the

large capacitor resulting from the parallel connection of multiple column-level capacitors

acts as a large hold capacitor for the following stage. The full averaging operation comes

with a shot noise variance reduction of 50x1024 and a read noise variance reduction of 1024.

In order to extract the difference of the two averaged samples, corresponding to the AL and

the AL plus LED light, a SC amplifier is operated as shown in Fig. 6.5. First, the averaged AL

sample is stored in C3, via S5 and SAZ. This phase enables to autozero the amplifier which

is key for offset and 1/f noise reduction [132]. Then, SAZ is opened and the charge stored in

C3 (2 pF) is transferred to C4. At the closing of S6, the amplified difference between the two

average values is obtained at the amplifier’s output, leading to an efficient AL cancellation.

The amplifier embeds a programmable gain (set by the value of C4), from 1 to 32 to adapt to

different operating conditions. It then drives an incremental ADC, through SF2. The power

switches SAmp and SADC are only closed at the beginning of the array averaging and opened

after the A-to-D conversion.
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6.2.4 A low-power incremental ADC

The block diagram of the low-power incremental ADC is shown in Fig. 6.6. Incremental ADCs

are often the best choice for low frequency and high resolution sensor interface [169]. An
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incremental ADC works as a ∆Σ ADC, but with a periodic reset at the end of the conversion

cycle. The overall ADC is operated at 1.8 V power supply, except for the four input switches

CKs and CKf which are driven at a 3.3 V gate voltage to cope with the amplifier’s output that

can take values larger than 1.8 V.

The designed ADC consists at first of a passive subtractor (∆) followed by an OTA-based SC

integrator (Σ). At the beginning of the ADC operation, the SC-OTA is autozeroed, during phase

CKAZ. In addition, it resets the SC-OTA feedback capacitor and the asynchronous counter,

determining the stop condition for the ADC. During the next phase CKs, the output of SF2,

V i n, is subtracted from the ADC reference voltage, V r e f . The difference between the two is

integrated by the integrator, during phase CKf. Apart from CKAZ, all the ADC phases happen

at 10 MHz frequency. The larger the input subtraction, the faster the SC-OTA output reaches

V r e f , causing the latched comparator to move from logic state 0 to 1, during phase CKcomp.

In CKDFF, a D-Flip Flop (DFF) tracks this new value and, thanks to a feedback loop, imposes to

the SC-OTA to revert the direction of integration. The number of times the comparator toggles

from 0 to 1 is counted by an asynchronous counter, during phase CKcount. In other words, a

small input signal will see the comparator output more often at 0 rather than 1, determining

a low final count. On the contrary, a large input signal will immediately make the SC-OTA

output reach V r e f , determining the comparator output to stay much often at 1 rather than 0,

so consequently a large final count.

One of the advantages of this design relies on the tunable ADC resolution. Indeed, a larger

resolution is achieved by making the counter count for a longer time. At 10 MHz frequency

operations, resetting the counter after 409.6 µs and 1.6 ms means reaching 12-bits and 14-bits,

respectively. The ADC power consumption is dominated by the OTA static current, 12 µA at

1.8 V supply, which guarantees the correct settling time at the chosen operating frequency.

6.2.5 Micrograph picture and measurement set-up

The objective of this section is to introduce the measurement set-up with which the microp-

ower PPG sensor has been fully characterized.

Testing printed-circuit-board 1.0

The first measurement set-up and the micrograph die photo of the 0.18 µm chip are shown in

Fig. 6.7. The chip measures 4 mm by 5 mm.

The printed-circuit-board (PCB) as in Fig. 6.7a drives the chip, by providing the bias voltages

and the clock phases. This is done by the means of a National Instruments PXI e-1082 machine.

The same tool handles the data acquisition, whose values are shown on a Labview interface,

as in Fig. 6.7b.

The micropower PPG sensor is bonded on a PGA together with 6 RGB LEDs and a resin optical
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barrier to avoid any direct optical cross-talk. Visible LEDs have been preferred so to match the

maximum EQE of the array, as presented in Fig. 6.1c.

Testing printed-circuit-board 2.0

A second experimental set-up has been also implemented with the aim of getting a portable

testing platform. The second experimental set-up is shown in Fig. 6.8. It consists of a field-

programmable-gate-array (FPGA) board driving the PPG chip. By means of an universal-

asynchronous-receiver-transmitter (UART) protocol, the chip’s data are real-time streamed

out to a computer, via the FPGA, for displaying or further processing. The chip and the LEDs

(all surrounding the chip) are placed on a compact board, shown in Fig. 6.8b. The latter

measures 2 cm by 3 cm and allows PPG measurements on different body locations. Two LED

families, each one both in green and red, have been chosen and both are mounted on the PCB.

Visible LEDs, green and red, have been preferred to match the maximum EQE of the array, as

presented in Fig. 6.1c. The LEDs are driven off-chip by the means of discrete current sources

and switches. The silicon and the LEDs are protected by a plastic 3D-printed case which has

been sealed by a highly-transparent glass. To enhance the quality of the PPG reading and

to reduce the impact of any motion artefact, particular attention has been dedicated to the

realization of this compact board. Indeed, as already shown in Chapter 2, while engineering

a PPG module the direct light cross-talk between the LED and the PD, the PD-LED distance

and the LED’s height versus the PD’s are particularly important variables that can ultimately

enhance or deteriorate the PPG readings. Moreover, as presented in section 5.4, the visible

LEDs have been preferred since the corresponding PPG signal is more resilient to the effect of

motion. In addition, the LEDs within the same family are placed on the left and the right with

respect to the PPG sensor. As pointed out in section 5.4, this helps minimizing the effect of the

skin-probe displacement, above all at the wrist level.
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(a)

(b)

(c)

Figure 6.7 – (a) PCB 1.0, (b) PPG set-up and optical signal, highlighting the DC and AC compo-
nents , (c) Micrograph of the monolithic PPG sensor, 4 mm by 5 mm.
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(a) (b)

Figure 6.8 – (a) PCB 2.0: measurement set-up consisting of an FPGA device interfacing with an
application running on a computer and the monolithic PPG sensor on a compact board, (b)
Zoom on the compact evaluation board of 2 cm by 3 cm.

6.2.6 The characterization of the micropower PPG sensor

The bjective of this section is to provide the characterization of the micropower PPG sensor.

The first part is devoted to the electronic characterization, while the second to the in-vivo PPG

acquisition and performance.

Light to digital conversion

The linearity of the light to digital conversion for the micropower PPG chip is shown in Fig. 6.9.

The sensor is exposed to an LED shining at increasing driving current and the resulting output

digital number is acquired. The programmable amplifier gain has been set to 8 which enables

a wide range of emitting light conditions without saturation. With the exception of sub-mA

LED operations, the chip shows ±3% non-linearity in the light to digital conversion. Note

that this includes all the sources of non-linearity from the LED, the readout chain to the ADC.

On the other hand, as described in Chapter 2, the PPG signal consists of a relatively large

DC component that can change due to respiration, AL conditions, skin tone and LED-PD

distance [26]. Hence, the PPG signal is generally maintained around half of the full dynamic

range, which means, with respect to Fig. 6.9, keeping the ADC output around 7000 DN, (Digital

Numbers). In this condition, the non-linearity is less than ±1%.
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Figure 6.9 – Measured chip light-to-digital conversion linearity.

Total noise

Fig. 6.10 shows the overall sensor’s output noise standard deviation (STD). The STD remains

constant across the dynamic range, demonstrating the effectiveness of the shot noise reduc-

tion by the spatial averaging mechanism, as discussed in section 6.2.1. In other words, the

shot noise is maintained negligible in the working conditions. The total noise measured at

the output of an off-chip 11 taps FIR low-pass filter is 3.1 DNrms in average corresponding to

an input-referred noise as low as 0.68 e-rms per PPD, thanks to the noise shaping introduced

by the incremental ADC. Indeed, the noise measured directly at the output of the ADC cor-

responds to 9.43 DNrms. This accounts for all the noise components including the readout

noise, quantization noise, shot noise and LED flicker noise.

Fig. 6.11 shows the impact of the variable analog gain on the overall noise. The output noise

STD is reported at the output of the ADC as well as the off-chip digital LPF. The noise obtained

at the output of the LPF is referred to the input after normalization with the analog gain.

Fig. 6.11 shows that the noise decreases gradually by increasing the gain before reaching

a plateau. The plateau represents the noise contribution level of the array and SC circuits

preceding the amplifier. The contribution of the amplifier and ADC dominates only when an

analog gain below 8 is applied.
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Ambient light cancellation

As already shown in Chapter 4, ALC is key in PPG sensors. As it is described in the previous

sections, two consecutive samples can be sensed by the PPDs and subtracted thanks to the SC

network and amplifier autozeroing. Assuming the ambient light conditions to be static during

the two sampling interval, the fist sample can sense the ambient light and the second one can

have the signal superimposed on the same ambient light level. Hence the subtraction of the

two samples leads to ALC. As shown in section 4.2.1, the closest the two samples are, the more

efficient the ALC is.

Fig. 6.12 shows the sensor performance for ALC. The sensor is exposed to varying lighting

conditions from 500 to 8500 Lux. The sensor is operated in two modes: with and without the

ALC. The chip outputs, in each mode, are plotted in Fig. 6.12. The figure shows that the sensor

chip, when operating with the ALC, reduces considerably the background light by about 20 dB

with respect to the other mode. Note that the light source used in the experiment oscillates at

50 Hz.
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Table 6.1 – ADC characterization

Parameters [169] This work
Technol og y [nm] 65 180
E NOB [bit] 14.78 10.44 11.7 12.08
FoMw [p J/conv.] 0.76 0.79 1.33 4.09
BW [kH z] 0.25 9.76 2.44 0.61
Ar ea[mm2] 0.2 0.0089*
Note *included a counter-based decimation filter

ADC

In order to assess our ADC design, the Walden Figure-of-Merit (FoM) defined as

FoMw = Power

2E NOB ·2BW
, (6.4)

has been considered, where Power is the overall ADC power consumption, E NOB the effec-

tive number of bits, accounting for the Signal-to-Noise-and-Distortion (SINAD), and BW the

maximum signal bandwidth. The FoM, the lower the better, is expressed in p J/conv.− step

[169]. In our design, the maximum signal BW depends on the chosen resolution. Indeed,

as shown in section 6.2.4, lower resolutions come with faster conversions and consequently

larger allowable signal BW. The results are shown in Tab. 6.1. Our design reaches almost the

same FoM as the reference work [169], but at much lower area and larger signal bandwidth,

despite a less advanced technology node 180 nm in our case compared to 65 nm in [169]. On

the other hand, this is achieved at a lower E NOB .

In-vivo PPG measurements

An in-vivo acquisition of PPG has been performed in reflection mode on the index finger.

Fig. 6.13 shows a comparison between the HR directly extracted from the sensor output and a

commercial ECG chest strap. The comparison features a HR average error and max error of

1.38 bpm and 3 bpm, respectively. These measurements have been taken on three healthy

male subjects for a total of 222 measurements. These measurements have been obtained with

a sampling frequency of 40 Hz, an average LED driving power of 1.97 µW (red light), at a duty

cycle of 0.07%, and a readout (AFE+ADC) average power consumption of 2.63 µW only. This is

obtained, referring to Fig. 6.5, by closing SSF for 80 µs and SAmp with SADC for 0.5 ms.

In Fig. 6.14 two PPG signals are shown, both recorded on the index finger. The PPG signals are

recorded and displayed thanks to an application running on a computer whose interface is

shown in Fig. 6.14. The two signals are recorded for a green and red LED and shown both in

time and frequency domain. For both the emitting wavelengths, the Fast-Fourier-Transform

(FFT) shows a clear signal component with a measured SNR of 45.1 dB for the green channel at

a sampling frequency of 25 Hz. Due to the lower tissue absorption encountered by the red light,
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the measured PI for the red channel is roughly 4 times lower giving rise to an SNR of about

33 dB. Together with the recorded PPG signals, Fig. 6.14 displays the real-time HR, heart rate

variability (HRV ) and SpO2. Indeed, the measured SNR on the two channels clearly overcomes

the requirements for a reliable SpO2 measurement, as discussed in section 6.2.1. Regarding

the SpO2 measurement, as shown in section 3.3, the difference in the extinction coefficient of

oxygenated and deoxygenated haemoglobin at the green wavelength is comparable with the

difference at near-IR (800 nm). Moreover, the choice of the visible range fits best the EQE of

our PPD, Fig. 6.1c, further reducing the needed LED power. The measurements as in Fig. 6.14

have been performed at a total power consumption (LED Green+LED Red+AFE+ADC) of 44

µW , out of which only 35 µW are burnt by the LEDs.

Fig. 6.15 displays a real time PPG signal recorded on the wrist for the green channel at a total

power consumption (LED+AFE+ADC) of 29 µW, out of which only 20 µW are burnt by the LED.

Despite the severe challenges at the wrist location due to the extremely low PI, the recorded

SNR of 29.6 dB is sufficient for the strict requirement around the measure of the SpO2. Unlike

Fig. 6.13, measurements in Figs. 6.14 and 6.15 have been obtained with a sampling frequency

of 25 Hz and a duty cycle of 0.7%. The reported power consumption is obtained, referring to

Fig. 6.5, by closing SSF for 400 µs and SAmp with SADC for 2.5 ms.

The objective behind Fig. 6.13 is to report the lowest power consumption which is still enough

to guarantee reliable HR monitoring versus a gold standard. Figs. 6.14 and 6.15 show, re-

spectively, how much power overhead one has to account while using this sensor for more

constrained applications, such as the SpO2, or more challenging body locations, such as the

wrist. In all cases, the micropower operations are always guaranteed.
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Figure 6.13 – Correlation of HR data between this work and a commercial ECG chest strap.
The experiment has been carried out at 4.6 µW total power (LED+AFE+ADC) on three healthy
individuals (each color representing one person).

Figure 6.14 – Measured PPG raw signals at the finger for two emitting wavelengths, green and
red. The real-time HR , HRV , SpO2 are displayed from the top to the bottom, respectively. The
measured SN R is related to the green channel.
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Figure 6.15 – Measured PPG raw signals at the wrist for the green channel. The real-time HR,
HRV and SN R are displayed from the top to the bottom, respectively.
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Figure 6.16 – Measured SN R vs fs and logarithmic fit.

SNR vs sampling frequency

The objective of this section is to show how the measured SNR of the PPG signal changes with

respect to the sampling frequency, fs . The SNR has been measured on the same subject and

identical body location, i.e. finger, in order to avoid any possible measurement mismatch. The

SNR is evaluated by considering the total PPG AC signal power carried by the fundamental

frequency, f AC , and the two harmonics, 2 f AC and 3 f AC , versus the noise floor, as reported in

the following equation

SN Rmeasur ed = 10log10

(
S2

f AC
+S2

2 f AC
+S2

3 f AC

N 2
f loor

)
. (6.5)

For the experiment, fs has been swept from 25 Hz to 200 Hz, whose span guarantees a quite

versatile field of use. During the measurement the subject’s HR has ranged between 72 bpm

and 75 bpm, meaning an f AC of 1.2 Hz and 1.25 Hz, respectively. Obviously, a larger fs comes

with a larger LED and chip power consumption. In order to account for the increased power, a

FoM has been introduced

FoM = SN Rmeasur ed

Powertot al
, (6.6)

expressed in dB/µW , which reports the overall sensor efficiency. Fig. 6.16 shows how the

measured SNR changes according to fs . Increasing fs results into an SNR increase. On the

other hand, this translates into a consistent power increase which reduces the sensor efficiency.
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Figure 6.17 – Measured sensor efficiency vs fs and logarithmic fit.

Indeed, as shown in Fig. 6.17, the maximum sensor efficiency is reached for fs equal to 25 Hz.

Fig. 6.16 shows that the SNR depends logarithmically on fs . This can be explained by the effect

of the sampling frequency on the noise floor in the Nyquist band. Indeed the PPG signal is

sampled without any anti-alising filter, which results into aliasing. In the Nyquist band the

noise floor is amplified by the undersampling factor [132], which is inversely proportional to

fs . This linear behavior is transposed into a logarithm one by (6.5) which confirms the trends

reported in Figs. 6.16 and 6.17. Indeed, as shown in Fig. 6.16, increasing fs by a factor 4 results

into an SNR increase of about 20log10 4 = 12 dB , which is exactly the measured SNR difference

in dB between the 25 Hz and the 200 Hz case.

Discussion and comparison to state-of-the-art

The measurement results of the proposed PPG sensor, presented in the previous sections, are

summarized and compared to the most recent and relevant state-of-the-art’s work in Tab. 6.2.

Tab. 6.2 shows that the proposed new sensor architecture comes with a dramatic power saving.

Indeed, the enhanced sensitivity and noise performance of our chosen photodetecting scheme

enable a significant power saving leading to the record low level of 4.6 µW, LED included. This

is about 10 to 100 times lower than state-of-the-art [117, 131, 124, 125, 126, 127, 170, 137].

Moreover, this record low power performance doesn’t come at the cost of a low SNR. Indeed,

the measured SNR, even at low sampling frequency, is larger than the one provided in state-of-

the-art which is often lower than 40 dB [117, 131].

The improvements achieved in this work were obtained by carefully re-shaping the photode-
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6.2. The micropower PPG sensor architecture

tecting scheme and AFE. Indeed, the excellent sensitivity, EQE and noise performance of PPDs

enable a consistent reduction of the needed LED power to target a specific SNR. The PPDs

have been integrated into an array, this enabling spatial averaging and a consistent noise

reduction. The number of PPDs has been carefully chosen based on an SNR and dynamic

range analysis. This accounts for both the most important noise sources and the minimum

number of impinging photons guaranteeing enough SNR at the fairly low PI of the PPG signal.

The biggest challenge to efficiently reduce the PPG sensor power consumption comes from

the LEDs driving current. Indeed, due to the intrinsic limitations coming from the biological

tissues [26] the LED driving current should be large enough to ensure enough light reflection.

This becomes even more severe in the presence of dark skin tones. State-of-the-art’s works

have mostly focused on reducing the LED power by heavily duty-cycling the light emission. At

first, this has happened at uniform sampling [117, 131], even though the reached total power

consumption is still in the order of several hundreds of µW, as shown in Tab. 6.2.

The works in [124, 125] have presented a non-uniform, i.e. compressive, sampling PPG sensor.

Indeed, the PPG signal is sparse in the frequency domain and this can be exploited to achieve

a strong reduction of the LED duty-cycle and generally speaking of the average sampling

frequency. A duty-cycle as low as 0.0125% and an effective sampling frequency of 4 Hz have

been obtained, as shown in Tab. 6.2. Although the compressive sampling scheme comes with

competitive advantages, on the other hand this is still challenging. Indeed, it requires a tight

synchronization of all the system’s components and reconstructing the compressive-sampled

data requires additional power. Consequently, even for this work, the reached total power

consumption is still in the order of several hundreds of µW, as shown in Tab. 6.2.

A heart-beat-locked loop system that significantly reduces the LED power by activating the

light emission only during the PPG peaks has been recently demonstrated in [126, 127]. How-

ever, this power reduction comes at the cost of more complexity since it requires a non-trivial

heart beat prediction scheme and intrinsically hinders the full PPG wave representation.

The proposed solution relying on a PPD array enables the full integration of the photosensitive

area together with the AFE. Indeed, an off-chip PD comes with a non-negligible parasitic

capacitance, ultimately limiting the noise performance and the speed/power of the AFE.

Moreover, it increases the silicon area. The recent work in [137] shows an interesting PPG

sensor integrating on silicon an array of PDs with distributed 1b delta-sigma light-to-digital

converter. Despite the achieved power consumption is very promising versus the state-of-the-

art’s work, this doesn’t account for the LED driving current which is supposed to be quite large

given the fairly high sampling frequency.
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6.3. AC/DC ratio enhancement

6.3 AC/DC ratio enhancement

As already mentioned earlier in this manuscript, the extremely low PI of a PPG signal, makes

the dynamic-range (DR) a key constraint in PPG sensors design. As shown in Chapter 4, the

DR ultimately determines, for instance, the resolution with which the SpO2 can be measured.

The tight link between the required DR, the SpO2 and the PI has been shown in Fig. 4.5. For

the worst PI case, i.e. 0.2%, a receiver DR larger than 90 dB is needed to ensure an accuracy

within 0.2% of the SpO2 in the 70%-100% range.

State-of-the-art works have tried to solve the DR challenge in PPG analog front-end (AFE)

either by the means of logarithmic amplifiers [133] or thanks to feedback loops which subtract

a variable DC current from the AFE input [46, 117, 131, 126]. All the above-mentioned solutions

rely on additional circuitry at the cost of more complexity, power consumption and silicon

area. Another possibility, as shown in Chapter 2, relies on increasing the PD to LED distance,

at the cost of a larger LED power [26].

This chapter shows an extremely low-power PPG sensor taking advantage of the high sensi-

tivity of PPDs together with an ultra-low noise and low power AFE. Moreover, the PD area

is implemented as an array of double TG PPDs. The double TG structure allows to precisely

control the integrated charges and to efficiently cancel the AL. The double TG structure men-

tioned above can also be exploited to enhance the PI of the PPG signal at the device level

consequently relaxing the DR requirements on the AFE. Measurement results show that by

tuning the TG control voltage and the transfer time, the PPG PI can be enhanced by a factor 5

without any signal loss or additional circuitry.
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SNPPD

TGt TGs
SNPPD

TGt TGs
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DC
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p
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Figure 6.18 – The double TG PPD device and the three most important phases: Integration, PI
Enhancement and Sink. The PI Enhancement illustrates a PPD readout in which only a part of
the integrated photo-generated electrons reaches the SN.
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6.3.1 Working principle

As shown in section 6.1, a PPD consists of a np junction buried under a shallow highly doped

p+ thin layer. It behaves as a charge well where the photo-generated electrons are stored. The

TG controls the potential barrier at the edge of the PPD. The two transfer-gates structure, a

sink gate (TGs) and a transfer gate (TGt ), allows to precisely control the charge integrated into

the well and eventually reaching the sense-node (SN). TGt allows only the part of the charge

corresponding to the AC component of the PPG signal to reach the SN, whereas TGs dumps

the remaining DC charge. The work in [168] shows that the potential barrier encountered

by the photo-generated electrons while diffusing towards the SN is modulated by the TG

control voltage, VTG . The amount of diffusing charge depends exponentially on VTG , while

logarithmically on the transfer time, ttr ans f er . Hence, VTG and ttr ans f er can be used to set the

proportion of the diffusing charge towards the SN with respect to the one remaining in the

PPD. This mechanism can be efficiently exploited to improve the PI of the PPG signal. Indeed,

during the integration phase, assuming the PPD is far from saturation, the PPD stores both

the DC and AC components of the PPG wave, as shown in Fig. 6.18. By tuning both VT G and

ttr ans f er , the PI can be enhanced by transferring only the AC-related charge, leaving the DC

part in the well. The double TG scheme enables, thanks to the sink phase, to empty the PPD

well from this remaining DC-related charge. Transferring only the AC-related charge to the SN

relaxes the DR constraints on the AFE and hence reduces its power consumption.

6.3.2 Measurements results

The idea described above is validated using the micropower PPG sensor described earlier

in this chapter. The PPG signal is emulated by a green LED shining at 525 nm which is

continuously driven by a sinusoidal current oscillating at 0.8 Hz (corresponding to an HR of

48 bpm), superimposed onto a DC current in order to mimic a PPG wave featuring a PI equal

to 10 %. It should be mentioned that the proposed method works throughout the full possible

PPG frequency range (up to 4 Hz), as long as the PPD integration time remains shorter than

the maximum frame rate. The green LED is chosen since usually preferred in a PPG sensor for

its intrinsic larger PI, as shown in Chapter 2. On the other hand, the proposed method can

be implemented even for different emitting wavelengths, i.e. red. The measures have been

performed at 50 Hz sampling frequency. The proposed set-up guarantees no artefacts coming

from measurements on human beings. Indeed, factors such as the displacement between

the body location and the PPG sensor or specific metabolic conditions may have introduced

incoherent measurement results.

The measurement results are shown in Figs. 6.19 to 6.21. Fig. 6.19 shows the transferred DC

and AC components of the emulated PPG signal versus VTG , ranging from 0.3 V to 3 V and for

different ttr ans f er , ranging between 100 ns and 1 µs, at steps of 100 ns. In Fig. 6.19 the trade-off

between VTG and ttr ans f er is illustrated. For the longest ttr ans f er equal to 1 µs almost all the

DC charge is transferred for VTG larger than 2.5 V. Whereas, for the shortest ttr ans f er equal to
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Figure 6.19 – Measured DC and AC components of the emulated PPG wave vs the TG control
voltage for several transfer times.

100 ns only 80% of the DC charge is transferred even at the maximum VTG .

Regarding the AC component, as expected, the full scale of the AC signal is roughly 10% of the

DC one. Unlike the DC component, a complete AC transfer already happens at VT G equal to 2

V for the longest ttr ans f er . Fig. 6.19 illustrates that transferring the same fraction of charges

requires less VTG for the AC component than the DC one. This property can be exploited to

enhance the PI of the PPG signal as demonstrated in Fig. 6.20. Fig. 6.20 shows the PI computed

from the measured signals of Fig. 6.19 versus VTG , for the same values of ttr ans f er . For all the
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Figure 6.20 – Measured PI vs the TG control voltage for several transfer times.
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Figure 6.21 – Measured PI vs the TG control voltage at three different emulated PPG PI, 10%,
5% and 1%, for ttr ans f er of 100 ns.
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Figure 6.22 – Measured SNR vs the TG control voltage for several transfer times.

proposed ttr ans f er , reducing VT G down to a certain value comes with a significant increase in

the measured PI, as explained above. A maximum PI has been measured between 0.75 V and 1

V. Below these values, the increasing potential barrier encountered by the photo-generated

electrons comes with a consistent PI reduction. In addition to VTG , ttr ans f er represents a

second degree of freedom. Indeed, Fig. 6.20 also shows that even for the optimal VT G , as above,

shortening the transfer time is beneficial to enhance the PI. In particular, ttr ans f er and VTG

equal to 100 ns and 0.75 V, respectively, show the best measured PI. Unlike the standard way

of operating a PPD, ttr ans f er and VTG larger than 1 µs and 2.75 V, respectively, the proposed

configuration enhances the PI by more than a factor 5. Fig. 6.21 shows the impact of the

proposed PI enhancement technique for three different emulated PI cases, 10%, 5% and 1% for

ttr ans f er of 100 ns. It confirms that this technique can also adapt to PPG signals with different

PIs.

6.3.3 Discussion on the AC/DC ratio enhancement technique

As shown in Fig. 6.19, thanks to the PI enhancement, the DC component drops from 10000 DN

to 80 DN. This relaxes the DR constraints on the readout chain by 42 dB. On the other hand, the

AC component is also reduced. Hence, analysing the effect of the proposed PI enhancement

technique on the SNR is also important. In PPG applications the best achievable SNR is

limited by the shot noise related to the charge transfer mechanism, whose standard deviation

corresponds to
p

DC + AC . The maximum SNR can then be expressed as AC /
p

DC + AC .

Fig. 6.22 shows the impact of the PI enhancement technique on the SNR. For the 100 ns

ttr ans f er case, the SNR can be maintained constant up to VTG equal to 2.1 V. In this case, for

the same SNR, the DR is relaxed by more than 15 dB.
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Conclusions

This chapter demonstrates that a PPD device is an excellent alternative to conventional PN

or PiN-based PD for PPG applications. Indeed, the extremely low noise and high sensitivity

performance of PPD devices accompanied by an ultra low noise and low power AFE represent

the two key ingredients for reducing the LED power consumption.

The PPG sensor presented in this chapter integrates and array of PPDs, a SC AFE and an ADC.

Placing the PPDs into an array eases the engineering trade-off between the possible achievable

dynamic range and the overall noise performance. The total number of pixels has been

chosen according to the target SNR to achieve an accuracy within 2% of the peripheral oxygen

saturation. The photosensitive area consists of four clusters of 50 rows and 256 columns,

meaning 51200 total pixels. The 50 pixels along the i-column are assembled in a macro-pixel

(MP). The pixels of one MP share the same source-follower, so saving power while maintaining

a reasonably low parasitic capacitance at the shared SN.

Each pixel within the MP embeds a double TG structure: a sink TGs and a transfer gate TGt .

The double TG structure allows to precisely control the charge integrated into the PPD well

and eventually reaching the SN for processing. Specifically, TGs sinks the charge cumulated in

the PPDs to the reset voltage, while TGt allows the charge transfer to the SN. The SN is shared

between multiple PPDs, which are gated to either sink or transfer their charge synchronously.

This process is also referred to as charge binning. It allows averaging the outputs of the MP

PPDs without the need for any additional circuitry. This charge binning also enables more

efficient and faster charge transfer compared to a single large PPD with equivalent area by

mitigating the effect of charge transfer non-idealities.

Compared to recent state-of-the-art this work comes with the lowest power consumption.

Moreover, among the most relevant state-of-the-art’s works, this is the only solution featuring

a full integration of the photosensitive area together with the AFE and the ADC at an extremely

low power consumption, i.e. smaller than 10 µW, this accounting both for the LED and the

AFE+ADC.

The double TG structure, within the MP, can also be exploited for enhancing the PI of a PPG

signal, without any power or silicon overhead, by properly tuning the TG control voltage and

the charge transfer time. TGt can allow only the part of the integrated charge corresponding to

the AC component of the PPG signal to reach the SN. Whereas, TGs can dump the remaining

DC charge. In this regards, this work further illustrates the trade-off between the TG control

voltage and the charge transfer time. It points out that a larger fraction of the AC signal is

transferred at a lower TG control voltage with respect to the DC one. This translates into a

maximum PI occurring at TG control voltage around 1 V, for charge transfer time ranging

between 100 ns and 1 µs. A maximum PI enhancement of a factor 5 is reached for TG control

voltage and charge transfer time equal to 1 V and 100 ns, respectively. In addition, the PI can

also be increased considerably without any impact on the SNR for optimal transfer parameters.
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Compared to state-of-the-art PI enhancement techniques, this work comes without any circuit

power consumption or silicon area overhead. Indeed, the PPG PI is corrected right at the level

of the PPD by properly tuning the TG control voltage and the charge transfer time.

It should be recalled that, despite the great potential behind the PPG technology, the fairly

large power burnt by the LEDs still represent a serious challenge towards truly continuous PPG

operations. In this perspective, the proposed micropower PPG sensor represents a turning

point. The extremely low power consumption and excellent signal quality combined with the

possibility of PI enhancement makes this solution a serious answer to the increasing demand

of continuous and reliable health monitoring devices, especially when the body location

makes the PPG recording suffer from a particularly low PI.
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7 A low-power and mm-resolution 1D
ToF sensor

In the ever expending field of consumer electronics and wearable devices, light sensing is

playing a key role in closing the loop between the user, his environment and the electronic

device. Devices such as smartphones, smartwatches or wrist bands embed photonic sensors

for imaging, display control, user recognition, proximity sensing and even health monitoring

involving measurements of the light intensity, photons time-of-flight (ToF) or spectroscopy.

Increasing the interest for portable consumer electronics relays on two conflicting factors

which are the miniaturization and the battery lifetime on one side, and enhancing the ap-

plications and interaction possibilities on the other side. Hence, integrating more and more

sensors is becoming one of the key challenges in the smartphone and smartwatch industry

especially for photonic sensors that require specific constraints such as being all located at

the surface of the device.

One question rises when addressing this problem: would it be possible to converge several

photonic applications in a single sensor? The move of some semiconductor market leaders

towards this direction supports the relevance of this question [171].

7.1 Towards "all-in-one" photonic sensors

One of the challenges facing this "all-in-one" trend resides at the early front-end of each light

sensing readout chain: the photosensitive device. Indeed, today large junction photodiodes

are used for ALS [151], CMOS PPDs are used for imaging [172], single photon avalanche

photodiodes (SPADs) are used for direct ToF [173] and so on. Each of these sensors originate

from a different mainstream technology making it complicated to integrate all of them on a

same chip.

The PPD [174] presents a great opportunity in this regard. PPDs are perfectly integrated

into CMOS processes with even advanced technology nodes [175] [176]. The performance

proven in the last decade at the level of noise, sensitivity and dynamic range makes the PPDs

ultimately suitable for high precision light sensing [177, 178, 166, 164, 179]. In addition, the
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fast gating of these devices offers the possibility of addressing time resolved applications such

as ToF [180, 181, 182]. Last but not least, the compatibility of PPDs with CMOS processes [175]

reduces dramatically the cost for large volume production.

In this chapter we aim at answering the question raised above: is it possible to design a PPD

based sensor chip suitable for a variety of applications related to mobile and wearable devices

with key features such as ultra-low power, high sensitivity and ultra-low noise?

In Chapter 6 we have demonstrated that the PPDs are excellent alternatives to standard PDs in

the emerging digital health domain. Their enhanced performance, in terms of both noise and

sensitivity, accompanied by an ultra low-power and low-noise AFE leads to a truly micropower

PPG sensor design, reducing the total power consumption from one to two order of magnitude

with respect to the state-of-the-art.

The objective of this section is to demonstrate that the same chip can be also used for ToF

distance measurements, at low-power and mm resolutions operations.

7.2 Direct and indirect ToF operations

ToF devices are active illumination system consisting of a laser, usually a vertical-cavity

surface-emitting laser (VCSEL) and a sensor. The laser emits the light towards a target, which

is, partially, reflected back to the sensor. The time needed for the light to travel back-and-forth

from the target, i.e. ToF, is measured and translated into a distance. The travelled distance is

the product of the speed of light with the half of the measured time.

Historically, there are two ways of measuring the ToF: by the means of direct or indirect

operations, as shown in Fig. 7.1. In the direct mode, the time difference (delay) between the

emitted pulse and the received signal is evaluated. In other words, the VCSEL sends a light

pulse and a counter measures how long it takes for this pulse to reach the sensor back from the

target. This is usually called "stop-watch" approach. On the contrary, the indirect approach

modulates the emitted light at a certain frequency and measures the ToF by evaluating the

phase difference between the modulated laser emission and the incoming signal from the

target.

Direct ToF systems usually embed SPADs. By knowing the speed of light, TDCs are used

to measure the time between the incident and the reflected light, exploiting the excellent

sensitivity of SPADs. Despite direct ToF camera are nowadays the key elements behind the

LiDAR (light-detection-and-ranging), especially in the automotive business where the range

requirements are usually in the hundred of meters, they show some limits at sub-mm reso-

lutions. Indeed, achieving 1 mm resolution means being capable, on the electronics side, to

discriminate 6.7 ps, which relies on excellent timings.

Indirect ToF systems usually embed demodulation pixels (2 taps, 4 taps), including PPDs.

Indirect ToF operations are today preferred for small range 3D imaging applications, since
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less constrained by the usually longer required integration time, with respect to the LiDAR

applications. For indirect operations, the modulation frequency determines the maximum

measurable distance. Indeed, given a modulation frequency fm , the maximum range is the

speed of light divided by two times fm . Beyond this value, the modulated laser emission

and the incoming signal become indistinguishable. The indirect ToF range imagers can be

sub-classified depending on the light source. Indeed, the laser can be either modulated by a

sinusoidal wave (continuous wave) or by a square wave (pulsed illumination). Pulsed illumi-

nations require simpler distance evaluation. On the contrary, continuous wave stimulation

usually requires quadrature sampling techniques to evaluate the phase delay.

The objective of this chapter is to explore whether an indirect PPD-based ToF system can

become a serious alternative to SPADs in LiDAR applications.

Figure 7.1 – Indirect and direct ToF operations.

7.3 A low-power 1D indirect ToF sensor

For the sake of clearness, the chip architecture is re-proposed in Fig. 7.2. Indeed, this is the

same as in Chapter 6.

1D ToF distance ranging is key in several applications from consumer electronics to industrial

metrology. For portable applications such as drones, cameras and smartphones, safety and

power consumption constraints make ToF sensors suffer from a generally poor signal reflected

back from the scene featuring a small contrast with ambient light. This section shows how the

micropower PPG sensor presented in Chapter 6 is used to perform single point ToF distance

measurement while addressing the aforementioned issues. In the following, it is demonstrated

how high fill factor and ultra-low noise featured by the presented sensor enable the reduction

of both the light source and the sensor power consumption to cope with the constraints of

portable applications.
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Figure 7.2 – The PPD-based sensor: (a) block diagram of the proposed sensor, (b) Architecture
of the sensor and detailed schematic of the OTA, used in the amplifier, and the averaging
block.
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Fig. 7.3 shows how the circuit of Fig. 7.2 is driven to perform an indirect ToF measurement. As

shown in Figs. 7.3b and 7.3c, the source is modulated at the same frequency as the TGs and

TGt . The readout operation as shown in Fig. 7.3a is repeated twice.

For the first readout, TGs and T Gt are operated as shown in Fig. 7.3b. At the end of the phase

Φ1 a first voltage proportional to a charge Q1 is sampled and held in capacitors C11...n. The
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Figure 7.3 – PPG timing diagram related to Fig. 7.2b. (a) Readout chain, (b) Transfer gates and
source control for first acquisition and (c) second acquisition.
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charge Q1 can be expressed roughly as

Q1 =α ·ToF ·Q +Qamb,1 + cte, (7.1)

where Q is the charge corresponding to the total light emitted by the source, α is the attenua-

tion depending on the distance and reflectivity of the object, Qamb,1 is the charge correspond-

ing to the ambient light and ToF is the time that light needs to travel from the source to the

sensor. Indeed, the longer ToF the more emitted light gets integrated within the exposure

windows. In the phaseΦ2, the same operation is repeated without pulsing on the source in

order to integrate only the charge related to ambient light Qamb,1. A voltage proportional

to this charge is sampled and held on capacitors C21...n. Thanks to the switched capacitor

amplifier, the two samples are subtracted, leading to a first sample proportional to Q1−Qamb,1.

A second readout is then performed with TGs and TGt operated as shown in Fig. 7.3c. At

the end of the phase Φ1, a first voltage proportional to a charge Q2 is sampled and held in

capacitors C11...n. The charge Q2 can be expressed roughly as

Q2 =α ·Q +Qamb,2 + cte, (7.2)

where Qamb,2 is the charge corresponding to the ambient light. Indeed, in this phase, the

integration window is large enough to integrate the total amount of charge α×Q. In the phase

Φ2 the same operation is repeated without pulsing on the source in order to integrate only

the charge related to ambient light Qamb,2. In the same way as above the two samples are

subtracted leading to a second sample proportional to Q2 −Qamb,2.

Thanks to the two separated readouts the ToF can be calculated as

ToF = Q1 −Qamb,1

Q2 −Qamb,2
+ cte, (7.3)

where cte is a calibration parameter depending on the offset and time windows characteristics.

The ratio used to calculate ToF is a normalization which makes the ToF measure insensitive

to the source power and the target colour.

7.3.1 Characterization of the low-power 1D ToF sensor

The performance of the proposed 1D ToF sensor has been characterized with the testing set-

up, as shown in Fig. 7.4. It is the same as the one presented in Fig. 6.7a, for the PPG application,

with the only difference of an external 10 mW 650 nm VCSEL. Like the PPG application, the data

acquisition has been performed by means of the National Instruments PXI e-1082 machine. A

Labview interface is used for computing the ratio given by (7.3) and displaying the measured

distance.

The chip characterization for the ToF operations has started with the assessment of the perti-

nence of the sensor itself for time-resolved applications. In this regard, the sensor has been

directly exposed to a VCSEL without any intermediate optical system. All the measurements
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Figure 7.4 – ToF measurement set-up showing the sensor and the VCSEL without any lenses
and the labview interface displaying the real time measured distance.

have been performed at room temperature. The source is duty cycled to generate, during

the exposure time of 6 µs, 144 consecutive pulses of 16 ns duration with a period of 40 ns, as

shown in Figs. 7.3b and 7.3c. The average (accounting for the duty cycle) current consumption

during the exposure is as small as 6 µA with a driving voltage of 2.1 V. The delay between the

source pulses and the transfer windows is swept in order to characterize the way the output

of the sensor follows the laser pulse delay. Fig. 7.5a shows how linearly the sensor output

follows the delay generated, first in steps of 100 ps and then is steps of 1 ns. The cumulative

measured error standard deviation accounting for non-linearity, noise and source noise is less

than 10 ps. This demonstrates that this architecture is suitable for time-resolved applications

requiring 10 ps timing resolution without having to use any on-chip or off-chip high speed

circuits. Applications like fluorescence lifetime imaging can strongly benefit from such a

timing resolution.

With less than 10 ps timing resolution, the sensor is expected to be capable of achieving mm

range resolution in a ToF set-up. The VCSEL is oriented towards the scene as well as the sensor

without any focusing lenses or light filters. Only a small fraction of the VCSEL pulse light

gets reflected back to the sensor from the target. The sensor is set for an exposure of 640 µs

during which the VCSEL emits pulses of 16 ns with a frequency of 12.5 MHz, while the transfer

windows last for 40 ns following the scheme shown in Fig. 7.3. The VCSEL average current

consumption during the exposure is less than 2 mA. The target is then moved away from the

sensor and the VCSEL with steps of 1 cm up to 35 cm and then with steps of 10 cm up to 170

cm. The maximum range of 170 cm is not an absolute limit, since extendible by increasing the
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Table 7.1 – ToF Sensor Performance

Parameter Value

Process 180 nm CIS

Voltage supply 3.3/1.8 V

Array size 1024(H) × 50(V)

Frame Rate 500 Hz

ADC resolution 14 bits

Integration time 640 µs with a 2 mA current supply VCSEL

Fill factor 80%

Repetition Frequency 12.5 MHz

Emitter 650 nm VCSEL

Sensor current consumption 3 µA

Emitter current consumption 2 mA

Optical set-up No lenses for emitter and sensor

Measurable range 1.7 m

Range resolution 2 mm @50Hz

VCSEL power and by changing its modulation frequency. The two ambient-light-free samples

corresponding to Q1 and Q2, as shown in Fig. 7.3, are processed and converted into the digital

domain by the on-chip ADC. The ratio of the two samples and the extraction of the measured

distance thanks to a linear fit obtained with a first calibration is calculated off-chip. Fig. 7.5b

shows the measured versus target distance when sweeping the target from 10 to 170 cm under

an ambient light level of 3000 Lux and averaging 10 consecutive frames to mitigate the set-up

noise. Since the sensor operates at 500 Hz, the effective measurement frame rate is 50 Hz. The

inset of Fig. 7.5b shows a focus on positions between 10 and 35 cm where the sweep step is

only 1 cm. By measuring the standard deviation of the difference between the measured and

target distances, an RMS value of 2 mm is obtained. The ToF sensor performance are summed

up in Tab. 7.1.

7.4 Discussion and comparison to the state-of-the-art

For the ToF application, the sensor performance is compared with two commercial product

just released by market leading companies active in the field of ToF sensors [183, 184]. The

comparison is summarized in Tab. 7.2. Both products used for comparison implement SPAD

technology. Indeed SPADs are suitable for direct ToF or wave front detection [185], but such

devices still present several design and industrialization challenges [186]. Indeed, SPADs

require significant CMOS process optimization to cope with the large voltages needed for

biasing the photodiodes close to their breakdown limit. At the design level, as mentioned

earlier, direct ToF requires highly precise timing with jitters below 10 ps and suffers from small

fill factors, the latter reducing the EQE. The exploitation of the indirect operations makes the

architecture of the presented chip more relaxing in terms of timing constraints. Indeed, a ToF

system embedding this architecture would operates at 40 ns transfer time.

146



7.4. Discussion and comparison to the state-of-the-art

y = 1622.9x - 394.74

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

10000
11000
12000
13000

0 1 2 3 4 5 6 7

Ch
ip 

Ou
tpu

t [D
N]

Pulse Delay [ns]

0
400
800

1200
1600
2000
2400
2800

0 0.20.40.60.8 1 1.21.41.61.8 2

(a)

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170

Me
as

ur
ed

 di
sta

nc
e [

cm
]

Target distance [cm]

Measured points
y = x

10

20

30

10 20 30

(b)

Figure 7.5 – (a) Sensor output versus source pulse delay steps of 100 ps up to 2 ns and 1 ns
after with a zoom onto the 100 ps steps. (b) The target versus measured distance with steps
of 1 cm up to 35 cm and 1 cm after measured with the sensor chip and light emitted from a
VCSEL and reflected back from the target.
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Table 7.2 – ToF Sensing Comparison Table

Parameter This work [184] [183]

Process 180 nm CIS NA NA

Pixel technology PPD SPAD SPAD

Voltage supply 3.3/1.8 V 2.8 V 3.3 V

Sensor size 4×5 mm2 without VC-
SEL

4.4×2.4 mm2 with VC-
SEL

2.2×3.6 mm2 with VC-
SEL

Frame Rate 50 Hz 33 Hz 60 Hz

ADC resolution 14-bits 8-bits NA

Emitter and sensor average
consumption

2 mA 19 mA NA

Optical set-up No lenses with lenses with lenses

Measurable range 130 cm 120 cm 60 cm

Range resolution 2 mm 48 mm 30 mm

The high fill factor of this sensor together with the high EQE of PPDs and the low noise of

the readout chain enable the sensor to operate with lower integration time and lower VCSEL

light intensity. Compared to [183, 184], this sensor features one order of magnitude better

precision with one order lower emitter light, at a larger covered distance range. Indeed, the

sensor requires less than 2 mA average current dissipation in the VCSEL during exposure and

only 10 µW power dissipation at the level of the sensor when operating at 50 Hz, eventually

enabling a 2 mm resolution for 130 cm range.

Last, but not the least, it should also be recalled that the proposed sensor, as in Fig. 7.2, has

been primarily designed for the PPG application. Indeed, the number of PPDs involved in

the sensor, as described in section 6.2.1, has been chosen based on the dynamic range and

SNR constraints of the PPG application. A second version of the chip, tailored for the ToF

application, would result into even better performance.

Conclusions

The increasing demand for embedding more and more light sensors in portable and wearable

devices is calling for higher integration and reuse of the sensor interface electronics.

In this chapter, it is shown that the same chip used for the PPG can also be used for realizing a

low-power ToF distance ranging device thanks to the double TG structure in the pixel. The

sensor requires less than 2 mA average current in the VCSEL during exposure and only 10 µW

for the sensor chip when operating at 50 Hz enabling a 2 mm resolution for 130 cm range.

Moreover, the presented architecture is implemented in a standard CIS process which presents

a considerable advantage for large volume consumer applications and for miniaturization. The

CMOS implementation also allows the integration of digital processing or machine learning

for specific applications on the same die opening the way for edge computing.
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Eventually, the sensor architecture presented in this work not only offers the advantage of

covering ALS, PPG and ToF using the same device, but it also brings significant performance

improvement in each application field. As mentioned above, for single point ToF distance

ranging, the resolution and emitter (VCSEL) power consumption are reduced by more than one

order of magnitude as well. This architecture represents a promising step towards all-in-one

miniaturized photonic sensors.
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8 Conclusions

PPG sensors are nowadays integral parts of wearable devices. The importance of PPG for

medical monitoring is proven by the number of primary vital signs directly or indirectly record-

able out of it, such as the heart rate, the respiration rate and the blood pressure. Nowadays,

specific factors such as the increase of CVDs, as a consequence of increased obesity and

population ageing, are changing the modern healthcare needs and already impacting on the

countries’ budgets. In this perspective, any technology leading to efficient and remote health

monitoring would represent a societal breakthrough. In this regard, the PPG technology is a

serious candidate to lead the digital health revolution. Today, the popularity of PPG sensors in

smartwatches, smartphones or smartrings is largely due to the convenience and low cost of

these devices. Despite this, accurately estimating people’s vitals by the means of these devices

still remains challenging and we should not expect dramatic improvements in reliability unless

there are fundamental changes in the sensor technology. On the other hand, thanks to the

"readiness" of such sensors into wearable platforms, any fundamental change in the today

PPG sensor technology leading to better sensing would be simply welcomed as a serious game

changer.

A PPG signal consists of a tiny AC component, fully synchronous with respect to the cardiac

period, which is superimposed on a large quasi-static baseline. The majority of the medical

information are brought by the AC component. For this reason, it is key to build PPG sensors

maximizing the AC part of the PPG signal. The physics behind a PPG signal is the Beer-Lambert

law which describes the attenuation of monochromatic light travelling through an uniform

medium containing an absorbing substance. On the other hand, despite the Beer-Lambert

law gives a good understanding of how a PPG signal is generated, the interaction of light with

biological tissues is more complex than what is described by the Beer-Lamber law. Indeed,

such interaction includes the optical processes of scattering, reflection, transmission and

fluorescence. In this regard, building a performing PPG sensor requires some attention. For

instance, the choice of the light wavelength has implications on the light-tissue interaction

and generated artefacts. Moreover, the distance from the PD and the LED (and relative height)

is key in enhancing the AC component of the PPG signal.
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So far, the PPG technology has been extensively used to monitor several physiological mea-

surements such as the heart rate and the blood oxygen saturation. On the other hand, a PPG

signal carries additional information ultimately related to stress, respiration rate and blood

pressure. In this perspective, several works in literature have very promising methods for

extracting as many vitals as possible from a PPG sensor. For instance, some of them have

exploited the variability of the heart rate to predict the atrial fibrillation. Among the vitals

that can be detected from a PPG signal, the blood pressure has a key role. Hypertension is

the major cause of premature death worldwide: it causes more than 7.5 million deaths, about

13% of the total death and an estimated 1.13 billion people worldwide have hypertension. For

this reason, it is essential that the blood pressure is measured regularly and continuously. A

PPG signal carries several information that are directly or indirectly linked to hypertensive

pathologies. The advent of artificial intelligence through machine learning and deep learning

is changing the paradigm increasing the probability of seeing fully wearable and non-invasive

blood pressure monitoring systems.

Designing a good PPG sensor undergoes several bottlenecks and engineering trade-offs. The

LED power, due to its few tens of mAs driving current, is still the largest power hungry element.

In the last 10 years, we have seen the PPG circuits power scaling down at an almost constant

LED power. This ultimately limits the applicability of PPG sensors in platforms for continuous

monitoring. One possible solution relies on reducing as much as possible the LED duty cycle to

values well below 1%. The downside of this is the increased complexity of the analog front-end.

Indeed, in order to cope with those very short pulse, the AFE has to be capable of settling

within a short amount of time. From a design perspective, this means a larger bandwidth and

consequently more power consumption and larger (thermal) noise. Additional complexity

may also come from sub-Nyquist sampling operations which effectively reduce the duty cycle

and the sampling frequency at the cost of more processing power. Reducing the LED duty

cycle also means distributing the signal power over a very large number of harmonics so

increasing the needed bandwidth to recover the signal power. For this reason, wideband TIAs

are often chosen, followed by analog or digital filters.

Despite a PPG sensor always comes with an optical shielding, handling the ambient light is

not easy. The large IR power of the natural light can saturate the front-end due to the large IR

penetration in the skin. The artificial light often comes with large order of harmonics whose

effect cannot be easily cancelled by CDS blocks, otherwise using a large sampling frequency

which increases the LED and circuit power consumption. The extremely low PI of a PPG

signal makes the design of a PPG sensor even more complicated. First of all, the DC has

to be properly corrected at the input by the means of feedback loops, bringing power and

area overheads. Secondly, for applications requiring strict resolutions, such as the oxygen

saturation, the extremely low PI imposes a minimum dynamic range at the front-end, which

is usually larger than 90 dB in the worst PI conditions. Designing a PPG sensor for a large

dynamic range, low noise and low power operations is not an easy task and very often requires

some engineering trade-offs. For instance, the dynamic range can be traded versus the power

for applications, such as the heart rate, not requiring a strict resolution or a large SNR.

152



Despite the advantages and opportunities behind the PPG technology, today PPG sensors are

still limited by noise and artefacts. Indeed, several noise sources should be accounted for while

designing a PPG sensor: the shot noise of the photogenerated current, the thermal and the

flicker noise of the readout chain and the quantization noise of the ADC. Among the different

proposed PPG readout chains, as presented in Chapter 4, the one with a TIA, a CDS and an

ADC is the most used one, both in academic and commercial solutions. The TIA is often

proposed either as a ZTIA or a CTIA. Providing a detailed and comprehensive noise analysis

in PPG readout chains is key in order to reduce the LED power. Indeed, the LED power can

be reduced provided the noise floor of the readout electronics is decreased proportionally to

achieve the same SNR. A classic PPG readout chain has been analysed both in ZTIA and CTIA

configurations in terms of SNR and power trade-offs. Assuming the same signal bandwidth

between the two compared structures, a ZTIA-based readout chain comes with both larger

LED power (8 times more) and a larger Gm, compared to a CTIA-based one. This advantage is

attributed to the integration feature of the CTIA. Indeed, the CTIA comes intrinsically with a

larger bandwidth than the ZTIA. Comparing the two for the same BW means, in other words,

having a larger signal gain for the CTIA than the ZTIA. Moreover, the ZTIA shows a larger read

noise than the CTIA, which is, on the contrary, intrinsically more shot noise limited. It should

also be noticed that both solutions show still an important electronic read noise level, calling

for further design optimizations.

The CMOS image sensors (CIS) is today dominating the exploding consumer electronic devices

market such as smartphones, tablets and digital cameras. Quickly, CMOS image sensors

became the technology of choice with respect to speed, resolution, power consumption and

on-chip integration thanks to the introduction and consolidation of the PPD technology in

CIS. The important advantage of PPDs in terms of sensitivity and noise make them a serious

candidate in the PPG application to go beyond the CTIA-based structure and the limitations

introduced by the off-chips PDs. Assuming a PI equal to 1%, same signal bandwidth and

comparable sensitivity between the CTIA and the CIS readouts, the latter achieves the target

SNR with more than 1 order of magnitude lower LED power. The advantage introduced by

the CIS can also be extended for larger PIs. Indeed, the CIS readout chain shows, no matter

the PI value, a lower electronic noise floor resulting into intrinsically more shot noise limited

operations.

The CDS is key for reducing the effect of the ambient light, offsets and 1/f noise and, for

this reason, it is widely used in PPG circuits. Despite this, CDS circuits are still limited by

circuit non-idealities, including analog switches non-idealities (on and off resistances), charge

injection and thermal noise, the latter usually referred to as kTC noise. The sampled noise

voltage variance (kT /C ) is, by definition, inversely proportional to the capacitance. On the

contrary, both power and silicon area are directly proportional to the capacitance, resulting

into a noise/power-area trade-off. From a design perspective, it is necessary to be fully aware of

the capacitances ultimately limiting the circuit performance. kTC noise analysis of SC circuits

is never a simple task, considering that the noise transfer function, for these circuits, changes in

time. Modern CAD simulators are useful in the estimation of the overall noise features, despite
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they require a very high accuracy set-up, resulting into extremely long simulations. Moreover,

they don’t provide simple analytical expressions to optimize the SC circuit noise. In this

perspective, three possible CDS circuits have been compared analytically and benchmarked in

terms of kTC noise. A fully passive CDS is particularly suitable for ultra-low power applications,

despite the SNR is affected by the intrinsic signal loss due to the charge sharing mechanism.

Moreover, it is not affected by any signal saturation, the latter usually due to active elements.

One of the main advantages of this implementation is that the SNR can be improved without

limiting the input signal range and only at the cost of more silicon area (larger capacitors).

In addition to the noise, PPG is known to be particularly susceptible to motion artefacts.

Overcoming those artefacts presents one of the most challenging problems while designing

a PPG sensor. Several solutions have been proposed to reduce the effect of motion in PPG

sensors. First of all, motion artefacts are wavelength dependent. Thanks to the shorter

penetration of the green light, the latter achieves more resilience to MA with respect to red and

IR. Secondly, these artefacts can be reduced by choosing specific body locations. For instance,

the ears report less MA with respect to the arms. Other cancellation techniques rely on the

use of an external accelerometers, gyroscopes or optical channel. These devices are used

to provide a motion reference signal which is dynamically used to filter out in-band motion

artefacts. This technique is called adaptive noise cancellation and goes beyond the scope of

this work.

The majority of PPG sensors, both in academia and in commercial products, still utilize off-

chip PDs, mostly PN or PiN junctions. The parasitic capacitance of those devices degrades the

speed and noise performance of the front-end. For this reason, some few works have proposed

to integrate the PD together with the processing chains for better performance. Integrating

the PD would also result into lower costs in production.

Today, PPDs are the key ingredients of CMOS image sensors, thanks to the lower noise and

enhanced sensitivity. Several markets including security, scientific imaging and medical

are relying today on this technology. The excellent performance of a PPD device makes it

particularly suitable for the PPG application. Indeed, an on-chip high sensitivity and low noise

PD can significantly reduce the LED power needed to target a specific SNR. Since the LED is

the most power hungry part of a PPG chain, this would dramatically enhance the PPG sensor’s

battery lifetime.

The PPG sensor presented in this work integrates an array of PPDs, a SC AFE and an ADC.

Placing the PPDs into an array eases the engineering trade-off between the possible achievable

dynamic range and the overall noise performance. The total number of pixels has been

chosen according to the target SNR to achieve an accuracy within 2% of the peripheral oxygen

saturation. The photosensitive area consists of four clusters of 50 rows and 256 columns,

meaning 51200 total pixels. The 50 pixels along the i-column are assembled in a macro-pixel

(MP). The pixels of one MP share the same source-follower, so saving power while maintaining

a reasonably low parasitic capacitance at the shared sense node (SN).
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Each pixel within the MP embeds a double TG structure: a sink T Gs and a transfer gate T Gt .

The double TG structure allows to precisely control the charge integrated into the PPD well

and eventually reaching the SN for processing. Specifically, T Gs sinks the charge cumulated in

the PPDs to the reset voltage, while TGt allows the charge transfer to the SN. The SN is shared

between multiple PPDs, which are gated to either sink or transfer their charge synchronously.

This process is also referred to as charge binning. It allows averaging the outputs of the MP

PPDs without the need for any additional circuitry. This charge binning also enables more

efficient and faster charge transfer compared to a single large PPD with equivalent area by

mitigating the effect of charge transfer non-idealities. Compared to recent state-of-the-art this

work comes with the lowest power consumption. Moreover, among the most relevant state-of-

the-art’s works, this is the only solution featuring a full integration of the photosensitive area

together with the AFE and the ADC at an extremely low power consumption, i.e. smaller than

10 µW, this accounting both for the LED and the AFE+ADC.

The double TG structure, within the MP, can also be exploited for enhancing the PI of a PPG

signal, without any power or silicon overhead, by properly tuning the TG control voltage and

the charge transfer time. TGt can allow only the part of the integrated charge corresponding to

the AC component of the PPG signal to reach the SN. Whereas, TGs can dump the remaining

DC charge. In this regards, this work further illustrates the trade-off between the TG control

voltage and the charge transfer time. It points out that a larger fraction of the AC signal is

transferred at a lower TG control voltage with respect to the DC one. This translates into a

maximum PI occurring at TG control voltage around 1 V, for charge transfer time ranging

between 100 ns and 1 µs. A maximum PI enhancement of a factor 5 is reached for TG control

voltage and charge transfer time equal to 1 V and 100 ns, respectively. In addition, the PI can

also be increased considerably without any impact on the SNR for optimal transfer parameters.

Compared to state-of-the-art PI enhancement techniques, this work comes without any circuit

power consumption or silicon area overhead. Indeed, the PPG PI is corrected right at the level

of the PPD by properly tuning the TG control voltage and the charge transfer time.

It should be recalled that, despite the great potential behind the PPG technology, the fairly

large power burnt by the LEDs still represent a serious challenge towards truly continuous PPG

operations. In this perspective, the proposed micropower PPG sensor represents a turning

point. The extremely low power consumption and excellent signal quality combined with the

possibility of PI enhancement makes this solution a serious answer to the increasing demand

of continuous and reliable health monitoring devices, especially when the body location

makes the PPG recording suffer from a particularly low PI.

Last but not the least, the increasing demand for embedding more and more light sensors in

portable and wearable devices is calling for higher integration and reuse of the sensor interface

electronics. Inspired by this need, this work has investigated whether the micropower PPG

sensor could have been used for a different application, taking advantage of its low power, low

noise and high sensitivity features. It has been shown that the same chip used for the PPG can

also be used for realizing a low-power 1D indirect ToF distance ranging device thanks to the
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double TG structure in the pixel. The sensor requires less than 2 mA average current in the

VCSEL during exposure and only 10 µW for the sensor chip when operating at 50 Hz enabling

a 2 mm resolution for 130 cm range.

Moreover, the presented architecture is implemented in a standard CIS process which presents

a considerable advantage for large volume consumer applications and for miniaturization. The

CMOS implementation also allows the integration of digital processing or machine learning

for specific applications on the same die opening the way for edge computing. Eventually, the

sensor architecture presented in this work not only offers the advantage of covering ALS, PPG

and ToF using the same device, but it also brings significant performance improvement in each

application field. As mentioned above, for single point ToF distance ranging, the resolution and

the laser power consumption are reduced by more than one order of magnitude as well. This

architecture represents a promising step towards all-in-one miniaturized photonic sensors.

8.1 Future perspectives

The sensor architecture presented in this PhD work offers the advantage of covering several

possible applications with significant performance improvement in each of them. For this

reason, possible future works may go in multiple directions. Nevertheless, in the following

some of these directions are highlighted.

1) the number of pixel as presented in Chapter 6 can be decreased by roughly 30%, leading to

an important saving on the silicon area. This is particularly important in the perspective

of re-utilizing this device in commercial applications.

2) this PhD work has mostly focused on the power and signal quality optimization at the level

of the PPG sensor, without any system level consideration. The quality of the PPG signal

and the incredibly low power consumption make this micropower PPG sensor a key

element of whatever monitoring system. In this regard, it would be interesting to utilize

the saved silicon area from the reduced array to integrate on silicon the LED drivers, the

clock generation and a communication protocol.

3) in the perspective of developing a system out of the micropower PPG sensor, special

attention should be devoted to the effect of motion artefacts. In particular, as presented

in section 5.4, an active motion artefacts cancellation technique has to be implemented.

Eventually, the integration of an accelerometer would be beneficial.

4) the excellent SNR and signal morphology, at the extremely low power budget, obtained

from the micropower PPG sensor make it particularly interesting in the perspective of

extracting as many as possible vitals from the PPG signal. In particular, as presented in

Chapter 3, blood pressure represents today a hot topic. A PPG signal carries several infor-

mation that are directly or indirectly linked to hypertensive pathologies. On one hand,

the excellent PPG signal morphology would make those information easily visible. On
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the other hand, the micropower operation can give rise to a truly continuous PPG moni-

toring, eventually generating more observation data. This, combined with the advent of

artificial intelligence through machine learning and deep learning, would represent the

first step towards a fully wearable and non-invasive blood pressure monitoring systems.
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A Appendix

Chapter 4

In Chapter 3 we have seen that the relationship between the oxygen saturation and the R

coefficient is the following

SO2 % = εHb(λ1)−εHb(λ2)R

εHb(λ1)−εHbO2 (λ1)+ [
εHbO2 (λ2)−εHb(λ2)

]
R
·100, (A.1)

being ε the extinction coefficients at a given emitting wavelength for the oxygenated and

deoxygenated hemoglobin. Taking advantage of the extinction coefficients of Tab. A.1, (A.1)

can be rewritten as

SaO2 % = 1.61−20.23R

1.45+2.88R
·100. (A.2)

Inverting (A.2) results in R equal to

R = 161−1.45SaO2%

2023+2.88SaO2%
. (A.3)

The minimum dynamic range for a given oxygen level depends on the PI, but as well on the

maximum acceptable error on the R parameter. The maximum acceptable error of R in terms

of oxygen saturation can be derived by differentiating (A.3) as following

∆R

R
≤ ∆SaO2

R

dR

dSaO2
= 2

R

dR

dSaO2
=− 2 ·3397

(161−1.45SaO2%)(2023+2.88SaO2%)
, (A.4)

where ∆SaO2 = 2 since a maximum error of 2 digits is required in the oxygen saturation mea-

surements [117]. Eq. (A.4) shows that for larger saturation levels, larger errors are acceptable

without compromising the goodness of the oxygen saturation. This is one of the reason why

oxygen saturation measurements below a certain value (70%) are not reliable anymore, since

requiring stricter tolerances.
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Figure A.1 – Maximum acceptable ratio of R for the oxygen saturation. Larger oxygen levels are
more robust to errors.

Table A.1 – Extinction coefficients of Hb and HbO2 in the visible range.

Wavelength [nm] Extinction coefficient [l ·mmol−1 · cm−1]

Hb HbO2

λ2 540 20.23 23.11

λ1 650 1.61 0.16

The dynamic range is defined as following

DR = 20log10

(
DC

noi se f l oor

)
= 20log10

(
DC

AC ∆AC
AC

)
. (A.5)

In (A.5), the noise floor is expressed in terms of the AC component. Indeed, the ratio between

the AC component and the noise floor should always be larger than 30 to guarantee the

maximum error of 2 digits in the oxygen saturation measurements [117].

Eq. (A.4) can be rewritten in terms of the maximum tolerable error on the AC component as

following

∆R

R
≈p

2
∆AC

AC
. (A.6)

This takes into account that, first, for the oxygen saturation two wavelengths are needed,
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meaning two AC components are calculated and, second, the variation on the DC component

is supposed to be negligible.

Eventually, taking advantage of (A.5), (A.6), the minimum dynamic range accounting for the

maximum error on R is equal to

DR = 20log10

( p
2DC /AC

abs(∆R
R )max

)
= 20log10

( p
2PI−1

abs(∆R
R )max

)
. (A.7)
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Chapter 6

As introduced in section 6.2.2, the assumption of equal bandwidth between the single pixel

structure and the array means

Gmcolumn

Ccolumn
= Gmbi g

Cbi g
, (A.8)

where

Cbi g = N ·Ccolumn , (A.9)

being N the number of the columns in the array, i.e. 1024 in our case. In other words, taking

advantage of (A.9), (A.8) can be rewritten as

N ·Gmcolumn =Gmbi g , (A.10)

Supposing the single column SF in WI and the bix pixel one in SI leads to

N · Icolumn

nUt
= Iar r ay

nUt
=

√
2Ibi gβ

n
, (A.11)

where n is the slope factor, Ut the thermal voltage and β=µ ·Cox · (W /L). Eventually, (A.11)

can be rewritten as

Iar r ay =Ut

√
2nIbi gβ. (A.12)

Taking advantage of the EKV formalism [145], we can rewrite (A.11) in terms of the inversion

coefficient, ICbi g , of the bix pixel SF. We recall that

ICbi g = Ibi g

2 ·n ·β ·U 2
t

. (A.13)

Fixing Ibi g equal to Ībi g , i.e. 0.5 mA as in section 6.2.2, and taking advantage of (A.13) means

Ībi g

Iar r ay
=

√
ICbi g . (A.14)

This means that Iar r ay will always be smaller than Ībi g and eventually it becomes equal to Ībi g

for ICbi g equal to 1, corresponding to the big pixel SF biased in WI. As already pointed out in

section 6.2.2, at the given Ībi g , it is not possible to bias the big pixel SF in WI since this would

require an unrealistically large transistor, i.e. (W /L)bi g À 100. On the other hand, the WI is

always possible for the big pixel SF at the price of reduced bandwidth and larger silicon area.

Fig. A.2 shows, for the same SF bandwidth, how the big pixel SF current scales with respect to
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the array one. The proposed comparison has been carried out accounting for a (W /L)bi g equal

to 10. Fig. A.2 demonstrates that the same bandwidth can be achieved with 48 µA biasing

current in the array structure versus 0.5 mA in the single pixel, ultimately leading to a dramatic

power saving.
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Figure A.2 – Single pixel current consumption versus the array one, at the same SF bandwidth.
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Simple Thermal Noise Estimation of Switched
Capacitor Circuits Based on OTAs – Part I:

Amplifiers with Capacitive Feedback
Christian Enz Fellow, IEEE, Antonino Caizzone Member, IEEE, Assim Boukhayma Member, IEEE,

and François Krummenacher

Abstract—This paper presents a simple method for estimating
the thermal noise voltage variance in passive and active switched-
capacitor (SC) circuits using operational transconductance ampli-
fiers (OTA). The proposed method is based on the Bode theorem
for passive network which is extended to active circuits based on
OTAs with capacitive feedback. It allows for a precise estimation
of the thermal noise voltage variance by simple inspection of
three equivalent circuits avoiding the calculation of any transfer
functions nor integrals. In this Part I, the method is applied to SC
amplifiers and track & hold circuits and successfully validated
by means of transient noise simulations. Part II extends the
application of the method to integrators and active SC filters.

Index Terms—thermal noise, kTC, Bode theorem, amplifier.

I. INTRODUCTION

SWITCHED-CAPACITOR (SC) circuits were invented in
the 70’s as a way to perform analog signal processing on-

chip using the capacitors, switches and amplifiers available
in MOS technologies [1], [2]. They take advantage of the
fact that the circuit characteristic only depends on capacitance
ratios which turn out to be very accurate tanks to the excellent
matching of capacitors. Additionally the frequency response of
SC filters can be tuned by changing the clock frequency [3].
SC circuits have then been used broadly for various circuits
including analog-to-digital and digital-to-analog converters
[4]. They are increasingly used in many more applications
like radio frequency (RF) circuits [5]–[7] or sensor front-end
circuits [8]–[10] to perform various analog signal processing
operations such as sampling, amplification or filtering.

The analysis of SC circuits has received considerable atten-
tion in the 80s’ in particular for the computation of the noise
[11]–[17]. With the application of SC circuits to a wider range
of analog and RF circuits, new computation techniques have
also been proposed more recently [18]–[20]. Today, modern
circuit simulators allow to compute noise for example in the
time domain using transient noise analysis [21]. However all
of these techniques remain complex and are mostly focused on
an efficient numerical computation of the PSD by dedicated
EDA tools. They cannot be used for the derivation of simple
analytical expressions of the noise voltage variance.
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The performance of SC circuits is ultimately limited by
the thermal and flicker noise (or 1/f noise) generated by the
amplifiers and by the thermal noise coming from the switches.
Since SC circuits are sampled-data systems, the broadband
thermal noise is aliased into the Nyquist band, resulting in
an increase of the noise power spectral density (PSD) by a
factor equal to the ratio of the equivalent noise bandwidth
to the Nyquist frequency which is usually much larger than
one [14], [22], [23]. The 1/f noise contribution can therefore
usually be neglected and if it still remains important, the
amplifier 1/f noise and offset can be reduced by increasing the
transistor gate areas or eventually eliminated thanks to circuit
techniques like auto-zeroing [23]–[26] or chopper stabilization
[23], [27], [28]. Under such conditions, the sampled thermal
noise remains the dominant noise source particularly when
minimal capacitance values are used, since the sampled noise
voltage variance is inversely proportional to the capacitance.

Since the power consumption and silicon area are propor-
tional to the capacitance [29], whereas the noise voltage vari-
ance is inversely proportional to the capacitance, it is crucial
to identify which capacitances are setting the noise voltage
variance. Unfortunately, the derivation of the noise PSD and
variance is not easy because SC circuits are periodically time-
varying circuits. The noise is therefore cyclostationary and
usually characterized by the power spectral density (PSD)
averaged over one period [30].

The optimization of SC circuits for achieving at the same
time low-noise operation at low-power requires an accurate
estimation of the noise variance. The latter is traditionally
calculated for each phase in the frequency domain by first
evaluating the transfer functions from all the noise sources
to the node where the noise needs to be evaluated. The total
noise PSD is then integrated over frequency to provide the
noise variance. This approach is however quite tedious and
impractical [31] and for large networks, it becomes extremely
cumbersome to get an analytical expressions [32].

This work proposes a simple method for estimating the
thermal noise voltage variance at any port of passive and
active circuits made of operational transconductance amplifiers
(OTA) with capacitive feedback as found in SC circuits [33].
The proposed method, based on the Bode theorem [34], allows
the calculation of the thermal noise voltage variance across any
capacitor by simple inspection of several equivalent schematics
made of capacitors only, avoiding the evaluation of complex
transfer functions and cumbersome integrals.
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Part I is dedicated to the derivation of the extended Bode
theorem and its application to SC amplifiers and track & hold
circuits. Part II is focused on the application of the extended
Bode theorem to SC filters. Section II of this first Part starts
by recalling the Bode theorem, which is at the heart of the
proposed method. Section III then presents an extension of
this theorem to OTAs with capacitive feedback as found in
SC circuits. The method is then illustrated in Section IV by
two simple examples, namely a SC amplifier and a SC track &
hold circuit. The calculated noise in each case is compared to
transient noise simulations results showing an excellent match.
Conclusions are then given in Section V

II. THE BODE THEOREM FOR PASSIVE NETWORKS

The Bode theorem [34]–[36] is a very efficient method to
calculate the noise voltage variance at any port of an RLC
circuit and particularly of capacitive networks. However, this
method is limited to passive RLC networks.

In linear circuits, the noise analysis is traditionally per-
formed by integrating the noise PSD. This requires the calcu-
lation of the transfer functions from each uncorrelated noise
source to the node where the noise has to be evaluated (for
example at the circuit output) and then adding the obtained
uncorrelated contributions. In case of a passive RLC network,
the thermal noise is generated in the resistors while the rest of
the circuit made of ideal capacitors and inductors is noiseless.
The circuit can then be represented as shown in Fig. 1a
where all resistors are modeled by a noiseless resistor in
parallel with a noisy current source with power spectral density

VnCR C C C

C0=C =C

(a) (b) (c)

Fig. 2: Example of a 1st-order low-pass passive filter.

4kBT/R. The thermal noise variance between any nodes k
and l of the passive RLC circuit can be calculated using the
Bode theorem without the need for computing any integral by
simple inspection of two equivalent circuits. The thermal noise
voltage variance at any port is simply given by [34]–[36]

V 2
n = kBT ·

(
1

C∞
− 1

C0

)
, (1)

where kB is the Boltzmann constant and T the absolute
temperature. Capacitance C∞ is defined as

1

C∞
= lim

s→+∞
sZ(s), (2)

which corresponds to the capacitance obtained when looking
into the port after having removed all resistances from the
circuit (or set them to infinity) as illustrated in Fig. 1b.
Capacitance C0 is defined as

1

C0
= lim

s→0
sZ(s), (3)

which corresponds to the capacitance obtained when looking
into the port after having replaced all resistances by a short
circuit (or set them to zero) as illustrated in Fig. 1c.

The simplest example of the application of the Bode the-
orem to a passive RC circuit is the 1st-order low-pass filter
illustrated in Fig. 2a. As shown in Fig. 2b, capacitance C∞ is
obtained after removing the resistance and is therefore equal
to C. Capacitance C0 is obtained from (3) after replacing the
resistance by a short resulting in 1/C0 = 0. Applying the
Bode theorem (1), the noise voltage variance is then simply
equal to the well-known formula V 2

n = kBT/C.

III. EXTENSION OF THE BODE THEOREM TO
TRANSCONDUCTANCE AMPLIFIERS WITH CAPACITIVE

FEEDBACK
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Gm Vout

Vin
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(b) Phase Φ2.

Fig. 3: SC autozero (AZ) amplifier.

This Section presents an extension of the Bode theorem to
be used for calculating the thermal noise voltage variance seen
at any port of an OTA-based SC circuit during a given phase.
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Ron

V
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(b) Phase Φ2.

Fig. 4: Small-signal equivalent circuit of Fig. 3 for the
calculation of the output noise voltage.

The Bode theorem presented above strictly applies only
for the calculation of the thermal noise voltage variances of
passive networks. However, it will be shown below that it can
be extended to estimate the thermal noise voltage variance of
amplifiers implemented with transconductance stages having
a capacitive feedback. The simplest of such amplifier is the
capacitive feedback amplifier shown in Fig. 3, where the
amplifier is a differential OTA [3], [37]. Note that the amplifier
can also represent a single-ended transconductance stage as
simple as a single transistor or cascoded transistor for im-
proved dc gain [38]. For more power-efficient implementation,
the single-ended amplifier can be implemented by a simple
inverter to take advantage of its current reuse feature [39].
In the following discussion, the OTA is assumed to be ideal
(infinite DC gain, offset free, no saturation) and can be
modelled by a voltage controlled current source (VCCS).

The amplifier operates with two non overlapping phases: the
autozero (AZ) phase Φ1, followed by the amplification phase
Φ2. During phase Φ1, shown in Fig. 3a, the amplifier output is
connected to its input, discharging the feedback capacitor C2.
Assuming the DC gain of the OTA is infinite, capacitors C1

and Cin are then also discharged. In the amplification phase
Φ2, switch S1 is connected to the input, amplifying the input
voltage. The voltage gain between the input and output voltage
is simply equal to Av = −C1/C2. Note that this amplifier
is called autozero amplifier because it strongly reduces the
OTA offset and flicker noise [23]. It can be shown that the
residual input-referred offset of the amplifier is equal to the
OTA original offset divided by the amplifier voltage gain Av

(assuming again that the OTA has an infinite DC gain). It
can also be shown that the amplifier equivalent input-referred
noise is free from the original OTA flicker noise and increased
due to the aliasing of the broadband thermal noise due to the
sampling process [23].

We are interested in the output noise variance at the end of
the amplification phase Φ2, when the signal is actually read at
the output. As mentioned above, thanks to the AZ process, the
flicker noise of the OTA is strongly reduced [23] and hence the
noise at the amplifier output during phase Φ2 is dominated by

4kBTγGm
4kBTGon CL

C1

Ron VnoutCin

Ron

4kBTGon

C2

Gm·hfb

(a) Phase Φ1.

4kBTγGm
CLCin

C2

VnoutGm·hfb4kBTGon Ron

C1

(b) Phase Φ2.

Fig. 5: Equivalent circuit replacing the VCCS of Fig. 4 by a
resistance with conductance Gm · hfb for the calculation of
the output thermal noise voltage.

the thermal noise coming from the OTA and from the switches.
The noise voltage variance at the output can be calculated in
a classical way by integrating the output noise voltage PSD
over frequency or calculating the equivalent noise bandwidth.
An additional noise component needs to be accounted for at
the end of phase Φ2, namely the noise that is generated across
capacitor C1 during phase Φ1. This noise is sampled as a noise
charge on C1 when the switch S1 opens at the end of phase
Φ1 and then transferred to the feedback capacitor C2 during
phase Φ2. The variance of this output noise voltage is obtained
by first calculating the variance of the noise voltage across
C1 during phase Φ1 by calculating the noise voltage PSD
across C1 and integrating it over frequency. This noise voltage
variance corresponds to a frozen charge that is then transferred
to the feedback capacitor during phase Φ2. Assuming that the
OTA DC gain is infinite, the voltage across C2 is equal to
the output voltage. The output noise voltage variance due to
the noise sampled on C1 at the end of phase Φ1 is simply
equal to the noise voltage variance across C1 multiplied by the
square of the voltage gain Av . Now, although the procedure
is straightforward, it is actually not always possible to get
simple analytical expressions for the noise voltage variances
mentioned above. Of course the latter can always be calculated
numerically using a simple .NOISE simulation, but for circuit
optimization it is useful to have analytical expressions showing
the dependence of the noise to the various components. The
Bode theorem can unfortunately not be used because we now
have an active component. However, we will show below that
the noise voltage variances can be estimated by extending
the original Bode theorem to circuits including amplifiers
implemented as transconductance amplifiers with a capacitive
feedback.

For the noise analysis, it is reasonable to use a small-signal
analysis. The small-signal equivalent circuit of the amplifier
of Fig. 3 used to calculate the output noise voltage is shown
in Fig. 4, where the noise current sources across resistances
Ron represent the thermal noise of the switches having a PSD
4kBTGon, where Gon = 1/Ron, whereas the noise current



source across the VCCS represents the OTA thermal noise
referred to the output with a PSD 4kBTγGm, where γ is the
thermal noise excess factor close to unity for a single transistor
and usually larger than 2 for a differential OTA.

In both phases Φ1 and Φ2, neglecting the current noise
sources, the voltage at the transconductance amplifier virtual
ground is only a function of the output voltage

V = hfb · Vout, (4)

where hfb , V/Vout is the feedback voltage gain. During
phase Φ1 it is simply equal to unity, whereas during phase Φ2

it is given by

hfb =
C2

C1 + C2 + Cin
. (5)

The circuits of Fig. 4 can therefore be simplified by replac-
ing the VCCS by a simple resistance having a conductance
equal to Gm ·hfb resulting in the simplified circuits shown in
Fig. 5. The later circuits can now be considered as passive
and can be represented as in Fig. 6a. However, the Bode
theorem cannot be applied directly because the noise current
source corresponding to the conductance hfb ·Gm is not equal
to 4kBThfbGm like for the noise sources associated to the
switch resistances. In order to apply the Bode theorem, the
OTA noise current source PSD 4kBTγGm can be split into
the sum of 4kBThfbGm and a term 4kBT (γ−hfb)TGm that
includes the OTA thermal noise excess. The circuit of Fig. 6a
can hence be decomposed into two circuits, the circuit shown
in Fig. 6b, where all the conductances have the same noise
temperature T , and the circuit of Fig. 6c, where the switches
are considered noiseless and the noise source corresponding to
conductance hfb·Gm is considered to have a noise temperature
equal to (γ/hfb − 1) · T . The variance of the noise voltage
V 2
n(kl) between any node k and l of the circuit of Fig. 6a

can then be calculated using the superposition of the noise
sources as the sum of the noise voltage variance V 2

n1(kl) of the
circuit shown in Fig. 6b, where all the conductances have the
same noise temperature T , and noise voltage variance V 2

n2(kl)

of the circuit shown in Fig. 6c, corresponding to the excess
noise in the equivalent conductance of the OTA with a noise
temperature (γ/hfb − 1) · T

V 2
n(kl) = V 2

n1(kl) + V 2
n2(kl). (6)

The Bode theorem for passive networks can then be applied
to the circuit shown in Fig. 6b to calculate the noise voltage
variance V 2

n1(kl) as

V 2
n1(kl) = kBT ·

(
1

C∞(kl)
− 1

C0(kl)

)
, (7)

where C∞(kl) corresponds to the capacitance seen when
looking between the nodes k and l when all the switches and
transconductance amplifiers are removed, and C0(kl) corre-
sponds to the capacitance obtained looking between the nodes
k and l when the switches are replaced by short-circuits and
all OTAs have their output shorted to ground.

The circuit of Fig. 6c can be further simplified considering
that usually Gon � hfb ·Gm and hence the on-conductances
of the switches can be replaced by short-circuits resulting in

Gon
non-

dissipative
capacitor
network

4kBTGon

hfbGm4kBTγGm

k

l

Vn(kl)

(a) transconductance amplifier-based SC circuit in one phase
represented as a passive RC network.

Gon
non-

dissipative
capacitor
network

4kBTGon

hfbGm4kBT hfbGm

k

l

Vn1(kl)

(b) Circuit of Fig. 6a with all conductances having the same noise
temperature T .

Gon
non-

dissipative
capacitor
network

hfbGm4kBT(γ/hfb−1)hfbGm

k

l

Vn2(kl)

(c) Circuit of Fig. 6a without the switch noise sources and
accounting for the excess noise of the transconductance amplifier
with a noise temperature (γ/hfb − 1) · T .

non-
dissipative
capacitor
network

hfbGm4kBT(γ/hfb−1)hfbGm

k

l

V’n2(kl)≈Vn2(kl)

(d) Simplification of the circuit of Fig. 6c accounting for the fact
that usually Gon � hfb ·Gm.

Fig. 6: Simplified schematic of transconductance
amplifiers-based circuit [33].

the circuit shown in Fig. 6d. The noise voltage variance V 2
n2(kl)

accounting for the OTA excess noise temperature can therefore
be estimated by applying the Bode theorem to the circuit of
Fig. 6d resulting in

V 2
n2(kl)

∼= kBT ·
(
γ

hfb
− 1

)
·
(

1

C ′∞(kl)

− 1

C0(kl)

)
, (8)

where C ′∞((kl)) corresponds to the capacitance seen between
the nodes k and l when all the switches are replaced by short-
circuits and the transconductance amplifiers are removed.

The total thermal noise voltage variance seen between nodes
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(a) Equivalent circuit used for the calculation
of C∞(kl): all switches and OTAs of the SC
circuit are removed.
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(b) Equivalent circuit used for the calculation
of C′

∞(kl): all switches that are closed during
the clock phase in consideration are replaced
by short-circuits and all OTAs of the SC
circuit are removed.
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non-
dissipative
capacitor
network

k
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Gm→∞

(c) Equivalent circuit used for the calculation
of C0(kl): all switches that are closed during
the clock phase in consideration are replaced
by short-circuits and all OTAs of the SC
circuit have their output shorted to ground.

Fig. 7: Capacitances calculation for the extended Bode theorem [33].

k and l is then given by summing (7) and (8), resulting in

V 2
n(kl) = kBT ·

[
1

C∞(kl)
+
γ/hfb − 1

C ′∞(kl)

− γ/hfb
C0(kl)

]
. (9)

Eq. (9) is central to this calculation method. It shows that
the computation of V 2

n(kl), for example at the amplifier output,
only requires the evaluation of the three capacitances C∞(kl),
C ′∞(kl) and C0(kl). The latter can easily be calculated by
inspection of the three equivalent circuits depicted in Fig. 7
which are each composed only of capacitors.

The extension of the Bode theorem presented in this Sec-
tion will now be illustrated and validated by transient noise
simulations for various SC circuits in the next Section.

IV. PRACTICAL EXAMPLES OF THERMAL NOISE
ESTIMATION IN OTA-BASED SC CIRCUITS

A. SC Amplifier

1) Analysis: Let’s now get back to the SC amplifier shown
in Fig. 3 and apply the extended Bode theorem to calculate the
noise voltage variances. We start calculating the noise voltage
variance across the sampling capacitor C1 during phase Φ1

V 2
nC1

∣∣
Φ1

. To this purpose, we need to calculate the three
capacitances seen across C1, namely C∞(C1), C ′∞(C1) and
C0(C1) during phase Φ1. They can easily be calculated from
the equivalent circuits shown in Fig. 8, resulting in

C∞(C1) = C1, (10a)
C ′∞(C1) = C1 + Cin + CL, (10b)

C0(C1) =∞. (10c)

Recognizing that the feedback gain during phase Φ1 is simply
equal to unity, the noise voltage variance across C1 during
phase Φ1 can be evaluated from (9) as

V 2
nC1

∣∣
Φ1

=
kBT

C1 + Cin + CL
·
(
γ +

Cin + CL

C1

)
. (11)

Eq. (11) is actually identical to the result derived analytically
in Appendix VI-A by calculating the noise contributions from
each of the noise sources shown in Fig. 4a, namely the two
switches and the OTA. Each contribution is obtained by first
calculating the transfer function from each noise source to the
voltage across capacitor C1 and integrating the corresponding

noise PSD over frequency. The noise voltage variances due to
each of the noise source assuming that the switch resistances
are negligible compared to 1/Gm (i.e. GmRon � 1) are given
in Table II. The total noise voltage variance is obtained by
summing these three variances resulting in the result shown
in the last row of Table II which is identical to (11). Note that
when setting Cin = 0 in (11), we also get the same result than
found in [40] which has been computed using the equivalent
noise bandwidth approach. As expected, (11) does not depend
on C2 since the later is short-circuited. This happens even
though the individual contributions of each switch depends on
C2 as shown in Table II, but their sum does not depend on
C2 anymore.

To this noise voltage variance corresponds a noise charge
sampled on C1 at the end of phase Φ1 and having a variance

Q2
nC1

∣∣
Φ1

= C2
1 · V 2

nC1

∣∣
Φ1
. (12)

This charge is then injected to the virtual ground at the begin-
ning of phase Φ2 and transferred to the feedback capacitor C2

during phase Φ2 thanks to the action of the OTA. Assuming
that the latter has an infinite DC gain and a zero offset voltage,
the output voltage is equal to the voltage across C2. The output
noise voltage variance due to the noise sampled on C1 at the
end of phase Φ1 is then given by

V 2
nout

∣∣
Φ1

=
Q2

nC1

∣∣
Φ1

C2
2

=

(
C1

C2

)2

· V 2
nC1

∣∣
Φ1

=

(
C1

C2

)2

· kBT

C1 + Cin + CL
·
(
γ +

Cin + CL

C1

)
.

(13)

The variance of the output noise voltage during phase Φ2 is
simply evaluated using (9) which requires the calculation of
the three capacitances C∞(out), C ′∞(out) and C0(out) seen from
the output. The later can be calculated from the equivalent
schematics shown in Fig. 9 resulting in

C∞(out) = CL +
C2Cin

C2 + Cin
, (14a)

C ′∞(out) = CL +
C2(C1 + Cin)

C1 + C2 + Cin
, (14b)

C0(out) =∞. (14c)
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(a) Equivalent SC amplifier
circuit during phase Φ1.
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(b) SC amplifier circuit for
calculation of C∞(kl):

C∞(C1) = C1.

CL
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(c) SC amplifier circuit for
calculation of C′

∞(kl):
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= C1 + Cin + CL.
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(d) SC amplifier circuit for
calculation of C0(kl):

C0(out) =∞.

Fig. 8: SC amplifier equivalent circuit schematics for phase Φ1.
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(a) Equivalent SC amplifier
circuit during phase Φ2.
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(b) SC amplifier circuit for
calculation of C∞(kl):

C∞(out) = CL + C2Cin
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.
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(d) SC amplifier circuit for
calculation of C0(kl):

C0(out) =∞.

Fig. 9: SC amplifier equivalent circuit schematics for phase Φ2.

Eq. (9) also requires the feedback gain hfb which during phase
Φ2 is given by

hfb|Φ2
=

C2

C1 + C2 + Cin
. (15)

The output noise voltage variance during phase Φ2 can now
be evaluated from (9) leading to

V 2
nout

∣∣
Φ2

=
kBT

C2
· (γ · βota|Φ2

+ βsw|Φ2
), (16)

where

βota|Φ2
=

(C1 + C2 + Cin)2

B
, (17a)

βsw|Φ2
=

C1C
3
2

(C2Cin + C2CL + CinCL) ·B , (17b)

with

B = C1C2 + C2Cin + C1CL + C2CL + CinCL. (18)

Note that (16) is identical to the result derived in Ap-
pendix VI-A using the classical approach described above and
given in the last row of Table IV.

Eq. (17a) and (17b) can be rewritten as

βota|Φ2
=

(|Av|+ αin + 1)2

D
, (19a)

βsw|Φ2
=

|Av|
(αin + αL + αinαL) ·D, (19b)

D =
B

C2
2

= |Av|+ αL · (|Av|+ αin + 1) + αin,

(19c)

where |Av| , C1/C2, αin , Cin/C2 and αL , CL/C2.

Assuming that |Av| � 1, αin < 1 and αL < 1, D ∼=
|Av| · (αL + 1) and equations (19a) and (19b) simplify to

βota|Φ2

∼= |Av|
αL + 1

, (20a)

βsw|Φ2

∼= 1

(αin + αL + αinαL)(αL + 1)
, (20b)

Before calculating the total noise voltage variance at the
output, we can rewrite (13) as

V 2
nout

∣∣
Φ1

=
kBT

C2
·
(
γ · βota|Φ1

+ βsw|Φ1

)
, (21)

where

βota|Φ1
=

|Av|2
|Av|+ αin + αL

∼= |Av|, (22a)

βsw|Φ1
=
|Av| · (αin + αL)

|Av|+ αin + αL

∼= αin + αL. (22b)

The total output noise voltage variance at the end of phase
Φ2 is then given by summing (21) and (16), resulting in

V 2
nout = V 2

nout

∣∣
Φ1

+ V 2
nout

∣∣
Φ2

=
kBT

C2
·(γ ·βota+βsw), (23)

where

βota = βota|Φ1
+ βota|Φ2

∼= |Av| ·
αL + 2

αL + 1
, (24a)

βsw = βsw|Φ1
+ βsw|Φ2

∼=
∼= αin + αL +

1

(αin + αL + αinαL)(αL + 1)
.

(24b)

It can be shown that the effect of Cin is negligible as long
as the DC gain of the OTA is infinite. The switch contribution
given by (24b) can be further simplified by setting Cin = 0
(or αin = 0) resulting in

βsw ∼= αL +
1

αL(αL + 1)
. (25)
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Fig. 10: Output noise rms voltage versus the amplifier gain
|Av| for γ = 0, 1, 2.

2) Simulations: The above results for the SC amplifier have
been verified by transient noise simulation [21] in ELDO c©.
The simulations are performed on a circuit where the OTA is
modeled by a simple VCCS and the switches are modelled by
an ideal switch in series with a noisy resistor of resistance
Ron = 5 kΩ. The noise of the OTA is generated by a
noisy resistor of value γ/Gm and injected at the OTA output
by means of a VCCS with a unity transconductance. The
sampling period has been chosen equal to 1 µs and the
temperature is set to T = 300 K.

Fig. 10 shows the output noise rms voltage versus the
gain |Av| for different values of the OTA excess noise factor
γ = 0, 1, 2. The simulations have been performed for different
gains |Av| = 1, 2, 4, 8 by changing the value of C1 keeping
C2 = CL = 0.5 pF . When increasing capacitance C1, it also
increases the effective load capacitance Cout = CL+(1−β)C2

with β = C2/(C1 + C2 + Cin) and the settling time tset =
Ceq/Gm where Ceq = Cout/β. The VCCS transconductance
Gm has therefore been chosen to keep a constant settling time
tset = Ts/10 = 100 ns for each values of C1 and hence of
|Av|. Note that the influence of the input capacitance Cin is
negligible and the later has been set to a realistic value of
Cin = 20 fF . The simulation results for γ = 1 and γ = 2 are
very close to the estimation computed from (23). However, a
small deviation is observed for the case where γ = 0 which
corresponds to the noise generated by the switches only. The
simulation results are slightly larger than the values predicted
by (23), particularly for the maximum gain |Av| = 8. The
reason for this is that larger gains require larger Gm resulting
in the product Gm ·Ron increasing to about 0.27 which does
no more fulfill the assumption of Gm · Ron � 1 used in the
Bode theorem derivation. The impact of a non-zero Gm ·Ron

has been checked using the full analytical expressions obtained
from the classical analysis detailed in Appendix VI-A1. The
results are plotted in Fig. 10 by dashed lines which are very

1Note that, for the sake of compactness, the analytical expressions including
the effect of a non-zero Gm ·Ron could not be included in the Appendix VI-A
because they are rather large expressions.
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Fig. 11: Output noise rms voltage versus αL for γ = 0, 1, 2.
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Fig. 12: Output noise voltage versus γ for C1 = 0.5 pF and
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close to the simulation results, confirming the origin of the
deviation.

Fig. 11 shows the output noise rms voltage versus αL for
γ = 0, 1, 2 and for a unity voltage gain |Av| = 1 (C1 = C2 =
0.5 pF ). The noise simulation results are very close to the
estimation using (23).

Finally, Fig. 12 shows the output noise rms voltage versus
the OTA noise excess factor γ for two different values of C1

(C1 = 0.5 pF and C1 = 2 pF corresponding to a voltage
gain |Av| = 1 and |Av| = 4, respectively). As expected from
(23), Vnout,rms increases as

√
βota · γ + βsw. The simulation

results fall again very close to the value predicted with (23).

B. SC Track & hold

Fig. 13 shows the schematic of a basic SC track & hold (TH)
circuit which can operate either as a TH or as a SC amplifier
featuring a voltage gain set by the capacitance ratio C1/C2.
This circuit operates in two phases as shown in Fig. 13.
During phase Φ1, shown in Fig. 13a, the sampling capacitor C1

samples the input signal Vin. During this phase, the feedback
capacitor C2 is shorted to be reset, while the capacitor CL



holds the charge that has been sampled at the end of phase
Φ2 of the previous switching period. During phase Φ2, shown
in Fig. 13b, the charge sampled in C1 is transferred to the
feedback capacitor C2. The output voltage seen across CL is
then simply equal to C1/C2 ·Vin. This voltage is then sampled
and held on CL at the end of phase Φ2.

Gm Vout
Vin

S2 S3

S1 S4

S5

S6
Cin

C1

C2

CL

(a) SC track & hold circuit during phase Φ1.

Gm Vout
Vin Cin

C1

C2

CL

S1

S2 S3

S5

S6
S4

(b) SC track & hold circuit during phase Φ2

Fig. 13: SC Track & hold circuit.

1) Analysis: The output voltage is read during phase Φ1

from the hold capacitor CL and the sampled output noise
must therefore be calculated at the end of phase Φ2. As in
the example above, this circuit presents two non-overlapping
phases for which the equivalent linear circuits are depicted in
Fig. 14a and Fig. 15a, respectively.

The capacitors sampling a noise charge at the end of phase
Φ1 are C1, C2 as well as the parasitic capacitance at the OTA
input Cin. The sum of these noise charges is injected into the
virtual ground during phase Φ2 and transferred to the feedback
capacitor C2. This noise charge on capacitor C2 results in a
noise voltage at the OTA output which will be sampled on CL

at the end of phase Φ2.
The extended Bode theorem is used to calculate the noise

voltage variances across capacitors C1, C2 and Cin for phase
Φ1. The calculations of capacitors C∞, C ′∞ and C0 for each
capacitor C1, C2 and Cin during phase Φ1 is done using the
equivalent circuits shown in Fig. 14. The resulting voltage
variances based on (9) are then given by

V 2
nC1

∣∣
Φ1

= kBT ·
[

1

C1
+ 0− 0

]
=
kBT

C1
, (26a)

V 2
nC2

∣∣
Φ1

= kBT ·
[

1

C2
+ 0− 0

]
=
kBT

C2
, (26b)

V 2
nCin

∣∣
Φ1

= kBT ·
[

1

Cin
+ 0− 0

]
=
kBT

Cin
. (26c)

The total noise charge generated during phase Φ1 and
injected into the virtual ground is then given by

Q2
n

∣∣
Φ1

= C2
1 · V 2

nC1

∣∣
Φ1

+ C2
2 · V 2

nC2

∣∣
Φ1

+ C2
in · V 2

nCin

∣∣
Φ1

= kBT · (C1 + C2 + Cin) .
(27)

The charge Q2
n

∣∣
Φ1

is subsequently transferred to capacitor
C2 during phase Φ2. Assuming again that the OTA has an

infinite DC gain and a zero offset voltage, the output voltage
is equal to the voltage across C2 and the variance of the
noise voltage seen at the output of the OTA resulting from
this charge is hence given by

V 2
nCL

∣∣
Φ1

= V 2
nC2

∣∣
Φ1

=
Q2

n

∣∣
Φ1

C2
2

=
kBT

C2
· βsw|Φ1

. (28)

where
βsw|Φ1

= Av + αin + 1, (29)

with Av , C1/C2, αin , Cin/C2.
For phase Φ2, the noise charge held on capacitor CL can be

directly calculated using the extended Bode theorem applied
at the output. Fig. 15 shows the equivalent circuit schematics
used for the noise voltage variance calculation using (9), which
additionally also requires the feedback gain hfb given by

hfb =
V

Vout
=

1

Av + αin + 1
. (30)

The variance of the noise voltage generated across CL during
phase Φ2 is then given by

V 2
nCL

∣∣
Φ2

=
kBT

C2
·
(
γ · βota|Φ2

+ βsw|Φ2

)
. (31)

where

βota|Φ2
=

(Av + αin + 1)2

D
, (32a)

βsw|Φ2
=

1

αL
· Av + αin

D
, (32b)

where D is given by (19c) and αL , CL/C2. The first term in
(31) corresponds to the contribution of the OTA during phase
Φ2 and is actually identical to the expression (19a) obtained
for the SC amplifier. This not surprising since, assuming the
inputs are grounded and the switches are ideal (zero resistance
and hence noiseless), the circuit of Fig. 13b is identical to that
of the SC amplifier shown in Fig. 3a. The second term in (31)
corresponds to the contribution of the switches.

In this circuit, none of the capacitors is holding a noise
charge from one switching period to the next. Indeed, capacitor
C2 is reset during phase Φ1, capacitors C1 and Cin are reset
during phase Φ2 by the action of the OTA, while capacitor CL

is connected to the OTA output during phase Φ2 to sample the
new value. Consequently, at the end of each switching period,
the noise variance of the output voltage corresponds to the
sum of the noise injected from phases Φ1 and Φ2 without
any contributions from the previous switching periods. The
variance of the total noise voltage sampled on CL can hence
be expressed as

V 2
nCL

= V 2
nCL

∣∣
Φ1

+ V 2
nCL

∣∣
Φ2

=
kBT

C2
· (γ · βota + βsw) ,

(33)
where

βota = βota|Φ2
, (34a)

βsw = βsw|Φ1
+ βsw|Φ2

, (34b)

The first term in brackets of (33) is the noise contribution
coming from the OTA, which only contributes during phase
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G3

VC2

G1
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V CL
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C1 Cin

(a) Equivalent SC TH circuit
during phase Φ1.

VC1

VC2

CL

C2

C1 Cin

(b) TH circuit for calculation of
C∞(kl):

C∞(C1) = C1, C∞(C2) = C2

and C∞(Cin) = Cin.

VC1

VC2

CL

C2

C1 Cin

(c) TH circuit for calculation of
C′

∞(kl):
C′

∞(C1) = C′
∞(C2) =

C′
∞(Cin) =∞.

VC1

VC2

CL

C2

C1 Cin

(d) TH circuit for calculation of
C0(kl):

C0(C1) = C0(C2) =
C0(Cin) =∞.

Fig. 14: TH equivalent circuit schematics for phase Φ1.
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(a) Equivalent SC TH circuit
during phase Φ2.
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(b) TH circuit for calculation of
C∞(kl): C∞(CL) = CL.

CL

C2C1

Cin VCL

(c) TH circuit for calculation of
C′

∞(kl):
C′

∞(CL) = CL + C2(C1+Cin)
C1+C2+Cin

.

CL

C2C1

Cin VCL

(d) TH circuit for calculation of
C0(kl): C0(CL) =∞

Fig. 15: TH equivalent circuit schematics for phase Φ2.
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Fig. 16: Output noise rms voltage versus αL for γ = 0, 1, 2.

Φ2, while the second term is due to the noise coming from
the switches during phases Φ1 and Φ2. Note that (33) matches
the result presented in [41] except for the second term βsw|Φ2

in (34b) which corresponds to the contribution of the switches
in phase Φ2 and which is omitted in [41]. This is reasonable
since this term is usually small and can be neglected for the
TH circuit because in general Cin � C1 = C2 (Av = 1).

2) Simulations: The results obtained for the SC TH have
also been validated by transient noise simulation for a gain
Av = 1 with the same sampling period and temperature as for
the SC amplifier. The output noise rms voltage is plotted versus
αL in Fig. 16 for 3 different values of γ = 0, 1, 2. Fig. 17
shows the output rms noise voltage versus the OTA thermal
noise excess factor γ for C1 = C2 = CL = 0.5 pF . In both
cases, the simulation results are very close to the theoretical
results predicted from the extended Bode theorem (23).
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Fig. 17: Output noise voltage versus γ for C1 = 0.5 pF .

V. CONCLUSION

The optimization of SC circuits for achieving at the same
time low-noise operation at low-power requires an accurate
estimation of the integrated noise at the circuit output. Part I
of this paper presents a simple method to obtain an analytical
expression of the thermal noise voltage variance at any port of
an active SC circuit made of OTAs with a capacitive feedback.
The thermal noise variance is derived by simple inspection
of three different circuits avoiding the laborious calculation
of the noise transfer functions and integrals. It is based on
an extension of the original Bode theorem which allows the
exact calculation of the thermal noise voltage variance but
only in passive circuits [34]. In Part I, the proposed method is
applied to a SC amplifier and a SC track & hold circuit and
is successfully validated by transient noise simulations. Part II
of the paper will illustrate how this method can be extended
to the calculation of thermal noise voltage variances in SC
filters.



VI. APPENDICES

A. SC Amplifier Noise Calculation
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R1

V

VnoutCin

In1 In3

C2

(b) Phase Φ2.

Fig. 18: Small-signal equivalent circuit of Fig. 3 for the
calculation of the output noise voltage.

The noise of the SC amplifier of Fig. 3 can be calculated
in a classical way. The noise voltage variance across capacitor
C1 during phase Φ1 can be calculated from the equivalent
small-signal circuit shown in Fig. 18a using

V 2
nC1

∣∣
Φ1

=

3∑

i=1

V 2
nC1,i

∣∣
Φ1
, (35)

and

V 2
nC1,i

∣∣
Φ1

=

∫ +∞

0

|Rm,i(f)|2 · SIn,i · df, (36)

where Rm,i are the noise transfer functions (NTF) (actually
transresistances) from the current noise sources In,i to the
voltage across C1 and SIn,i are the PSD of the thermal noise
current sources In,i given by SIn,1

= SIn,2
= 4kBT/Ron and

SIn,3
= 4kBTγGm. The NTF Rm,i are given by

Rm,i ,
VnC1

In,i
= Ri ·

n2s
2 + n1s+ n0

d3s3 + d2s2 + d1s+ d0
(37)

where the scaling factors Ri and the coefficients of Rm,i

for i = 1, 2, 3 are given in Table I. For thermal noise, the
PSD SIn,i

are constant and the noise voltage variance can be
calculated using the equivalent noise bandwidth Bn,i as

V 2
nC1,i

∣∣
Φ1

= |Rm,i(0)|2 · 4kBT · SIn,i
·Bn,i. (38)

In the case of the SC amplifier in phase Φ1, the NTF are
of 3rd-order. The noise bandwidth and variances can then be
obtained by using the expression (22) in [32]. The resulting
noise voltage variances for each noise source assuming that
the switch resistances are negligible (GmRon � 1) are given
in Table II. The total noise voltage variance is obtained by
summing the 3 contributions, leading to the result shown in
the last row of Table II. Note that even though the individual
contributions of the switch noise sources In,1 and In,2 given
in Table II both contain capacitance C2, when summing both
contributions, as expected, the result becomes independent of
C2 as shown in the fourth row of Table II.

The same approach can be used to calculate the noise
voltage variance at the amplifier output during phase Φ2 using
the small-signal schematic of Fig. 18b. The coefficients of the
2nd-order NTF are given in Table III. Using the technique
presented in [32] we get the noise voltage variances at the
amplifier output during phase Φ2 due to noise sources In,1
and In,3 given in Table IV. The total output noise voltage
variance is then given by summing these two contributions,
leading to the result shown in the last row of Table IV.



ENZ et al.: SIMPLE THERMAL NOISE ESTIMATION OF SC CIRCUITS BASED ON OTAS – PART I: AMPLIFIERS WITH CAPACITIVE FEEDBACK

TABLE I: Coefficients of the NTF for the SC-Amplifier in phase Φ1.

Term Rm,1 Rm,2 Rm,3

Ri Ron
1
Gm

− 1
Gm

n2
Ron(C2Cin+C2CL+CinCL)

Gm
0 0

n1
C2GmRon+Cin+CL

Gm
RonCL RonC2

n0 1 0 1

d3
C1R

2
on(C2Cin+C2CL+CinCL)

Gm

d2
Ron(C1C2GmRon+C1C2+C1Cin+2C1CL+C2Cin+C2CL+CinCL)

Gm

d1
C1GmRon+C1+C2GmRon+Cin+CL

Gm

d0 1

TABLE II: Contributions of the various noise sources to V 2
nC1

during phase Φ1.

Noise source Corresponding noise voltage variance across C1

In,1 V 2
nC1,1

kBT(C1(C2(Cin+CL)+C2
in+3CinCL+C2

L)+(Cin+CL)(C2(Cin+CL)+CinCL))
C1(C1+Cin+CL)(C1(C2+Cin+2CL)+C2(Cin+CL)+CinCL)

In,2 V 2
nC1,2

C2
LkBT

(C1+Cin+CL)(C1(C2+Cin+2CL)+C2(Cin+CL)+CinCL)

In,3 V 2
nC1,3

γkBT
C1+Cin+CL

Switches only V 2
nC1,1

+ V 2
nC1,2

kBT (Cin+CL)
C1(C1+Cin+CL)

Total V 2
nC1

kBT
C1+Cin+CL

·
(
γ + Cin+CL

C1

)

TABLE III: Coefficients of the NTF for the SC-Amplifier in phase Φ2.

Term Rm,1 Rm,3

Ri
RonC1
C2

−C1+C2+Cin
GmC2

n1 − C2
Gm

RonC1(C2+Cin)
C1+C2+Cin

n0 1 1

d2
RonC1(C2Cin+C2CL+CinCL)

GmC2

d1
C1C2+C2Cin+C1CL+C2CL+CinCL+GmRonC1C2

GmC2

d0 1

TABLE IV: Contributions of the various noise sources to V 2
nout during phase Φ2.

Noise source Corresponding noise voltage variance at the amplifier output

In,1 V 2
nout,1

kBTC1C
2
2

(C2(Cin+CL)+CinCL)(C1(C2+CL)+C2(Cin+CL)+CinCL)

In,3 V 2
nout,3

γkBT (C1+C2+Cin)2

C2(C1(C2+CL)+C2(Cin+CL)+CinCL)

Total V 2
nout

kBT
C2

1
CinCL+C1(C2+CL)+C2(Cin+CL)

(
(C1 + C2 + Cin)

2 · γ +
C1C

3
2

CinCL+C2(Cin+CL)

)
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