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Periodic winds acting on a stratified waterbody can amplify normal modes of motion
and enhance the basin-scale circulation via resonance. Here, we use idealized large-
eddy simulations to investigate the flow features and quantify the horizontal transport in
periodically wind-forced stratified basins. Motivated by observations in lakes, we focus on
systems in which daily winds either resonate with the second vertical basin-scale internal
mode, V2H1 (case 1), or the first vertical basin-scale internal mode, VIH1 (case 2). In
particular, we analyze the case when strong nonlinearities affect the evolution of the V2H1
mode (case 3). To achieve these three resonance scenarios, we hold the basin morphology
and the periodic forcing invariant, but change the background stratification. Our results
show that a quasilinear V2H1 modal response has more active mass transport in the
boundary regions than does the quasilinear V1H1 case. This difference arises from the
lack of midlayer horizontal transport in the V1IH1 mode, whereas the midlayer current in
the V2H1 mode intensifies the transport along the slopes in both directions by splitting
the flow into two branches, one running upslope and one running downslope. Nonlinear
dynamics further amplify the along-slope transport in case 3, in which a second mode,
an undular borelike wave, emerges from the periodic forcing. This study shows that the
horizontal transport under wind-induced resonance is sensitive to the amplified mode of
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motion in the stratified basin and that nonlinear flow dynamics can considerably enhance
mass transport in sloping regions.

DOI: 10.1103/PhysRevFluids.5.054503

I. INTRODUCTION

Horizontal transport regulates the heat and matter distribution in aquatic systems, such as lakes
[1-4]. In stratified waterbodies, periodic winds induce surface and internal flows and can amplify
normal modes via resonance [1]. As a result, an oscillation mode with a frequency close to the
forcing frequency [5-8] is overamplified relative to the rest of the modes that the system admits.
Observations in lakes show that basin-scale internal waves, commonly called internal seiches [9],
are susceptible to resonating with diurnal winds [1,7,10-16]. Examples of these modes of motions
are the first vertical, first horizontal mode, V1H1 [Fig. 1(a)] [1,7,10,12,17], and the second vertical,
first horizontal mode, V2H1 [Fig. 1(b)] [11,16]. Although any normal mode with a natural frequency
near the forcing frequency can be theoretically amplified by resonance, higher vertical mode seiches
(e.g., V3HI, V4H1) are more difficult to identify in the field [13,14] than V1HI and V2HI.
These latter modes usually have strong signatures both in the horizontal currents and the isotherms
displacement [18-20].

Wind-induced resonance is a particularly interesting hydrodynamic regime since the entire basin
is driven into motion. In this scenario, the amplified basin-scale circulation can physically connect
ecologically relevant regions, such as nearshore and interior waters [21]; help to ventilate deep
waters [22,23]; resuspend sediment and nutrients [24,25]; and, generally enhance lateral exchange
[15,26]. While the cross-shore mass transport between nearshore sloping boundaries and interior
waters due to shoaling internal waves has been investigated [27-30], the impact of resonance
on basin-scale flows has been little explored and quantified. How does the horizontal transport
change over the resonant cycle and the distance from the lateral boundaries? Is the horizontal
transport affected by the amplified modal response hosted by a system? Addressing these questions
requires finding systems under resonant regimes and determining their spatiotemporal mass and
flow distribution. Here, we investigate this problem via a series of idealized numerical experiments
with dimensions of a real system.

Inspired by observations in stratified lakes and the challenge of measuring the horizontal
transport in such aquatic systems, we quantify the horizontal mass transport in periodically wind-
forced, stratified waterbodies under resonance. We examine systems whose amplified basin-scale
internal modes are the commonly observed V2H1 (case 1) and VIHI (case 2). In this study, cases
1 and 2 are characterized by quasilinear (QL) wave dynamics and are denoted as QL-V2H1 and
QL-V1HI, respectively [Fig. 1(e)]. These cases are used to provide insights into how the horizontal
transport is affected by changes in the vertical modal structure. Additionally, we examine a third
case in which the V2H1 internal wave is affected by strong nonlinearities (NL) that resemble
previous observations [e.g., 10,31]. We denote this case as NL-V2H]1 [Fig. 1(e)]. Ulloa et al.
[20] investigated the hydrodynamics of QL-V2H1 to delve into the macroscopic dynamics of Lake
Alpnach (Switzerland). QL-V2H1 shows good agreement with the observations of Lake Alpnach,
including the bottom boundary layer currents and the vertical distribution of the kinetic energy
dissipation rate. Here, our numerical results show how the hydrodynamics and transport may
dramatically change due to varying the background stratification in the waterbody (e.g., density
difference between the top and bottom constant-density layers and the thickness of the middle layer)
and the basin-scale internal wave dynamics.

In Sec. II, we present the method adopted to perform and analyze the numerical experiments.
Section IIT shows the basin-scale and local features of the horizontal transport. Then, we assess
the impact of the horizontal transport on the rate of mass exchange and the flushing timescales of
nearshore waters. Finally, we discuss our results in Sec. IV and summarize our findings in Sec. V.
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FIG. 1. (a),(b) Schematics of modes VIH1 and V2H]1, respectively. (c) Sketch of the computational domain
of a periodically wind-forced stratified basins. D is the maximum depth. A;, h,,, and h, are the surface-, mid-,
and bottom-layer thicknesses, respectively. s = tan(g) is the slope of the side bottom. p, and p, are the initial
surface- and bottom-layer densities. () is a sinusoidal time-varying shear stress acting at the free surface with
period T and amplitude 7y. Two reference systems are used in this work: one located at the center bottom of
the basins, (x,y, z) in magenta color, and one at the left bottom corner of the numerical domain, (xy, y, z) in
cyan color. (d) Initial density profile. The blue line corresponds to cases 1 and 2, while the red dashed line
corresponds to case 3. (¢) Summary of the layer thicknesses for each case along with their Richardson number.
Nondimensional vertical profiles of the (f) background density, (o — p;)/Ap, and (g) fluid stability, N>/N2,
after eight wind cycles. N? is the initial fluid stability of the stratified midlayer.

II. METHOD

A. Numerical method

The governing equations, the large-eddy simulation (LES) model, and the numerical method are
described in detail in Ulloa et al. [20]. Here, we briefly review the main features of the model.
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The Boussinesq approximation is employed to account for stratification effects. The Navier-Stokes
and density transport equations are solved in their nondimensional form. The length scale D is
the depth of the basin away from the side slopes, while the velocity scale Uy is selected to
be near to the peak velocity magnitude inside the basin due to wind-induced flow at the free
surface. The nondimensional density is defined as p = (p — p;)/Ap, where p is the dimensional
density and Ap = p, — p; is the difference between the maximum (bottom-layer) density o,
and the minimum (top-layer) density p;, respectively, at the start of the simulation. The three
parameters in the nondimensional governing equations are the Reynolds number, Re = UyD/v, the
Richardson number, Ri = g(Ap/p1)D/U, 2 and the molecular Prandtl number, Pr = v /k, where v
is the molecular viscosity, « is the molecular diffusivity, and g is the gravitational acceleration. The
subgrid-scale viscosity vsgs and subgrid-scale diffusivity ksgs are estimated from the instantaneous
velocity and density fields using the dynamic Smagorinsky model [32]. We limit our analysis to
stratified waterbodies in which the Earth’s rotation plays a negligible role in the basin-scale internal
wave dynamics (see discussion in Ulloa et al. [20]).

In the present finite-volume approach [33,34], the conservative forms of the Navier-Stokes
equations are integrated in time using a semi-implicit iterative method and are discretized in space
using a second-order central scheme. This minimizes the numerical dissipation and damping of the
resolved eddies in the simulations, which is critical for accurate results using LES. The pressure
Poisson equation is solved using a multigrid approach. The numerical algorithm is second-order
accurate in both space and time and discretely conserves energy [35]. A conserved scalar equation
is solved for the nondimensional density. The advective term in this equation is discretized using the
quadratic upstream interpolation for convective kinematics (QUICK) scheme. Directly relevant for
the flows investigated in the present study are three-dimensional (3D) numerical studies of intrusion
currents [36], gravity currents propagating over inclined surfaces, or interacting with them [37,38],
studies of internal bore and internal wave dynamics [34,39], and studies of bioconvection in lakes
[40] conducted using the same flow solver. These investigations validate the numerical predictions
using data from laboratory experiments and provide a comparison with shallow water theory results
where available.

B. Simulations setup

Simulations are performed in a quasi-trapezoidal-shaped basin of depth D = 40 m in the z axis,
a free surface of length 120D, and a bottom horizontal length of 60D in the streamwise x axis
[Fig. 1(a)]. The domain in the x axis is bounded by vertical walls of depth 0.15D. The slope of
the inclined lateral boundaries is s & 3%. The domain width along the spanwise y axis is 1.6D,
which is essential to capture vortex stretching phenomena and the development of 3D turbulence.
These dimensions approximate a streamwise-vertical cross section of Lake Alpnach, Switzerland
[11] along the direction of the dominant wind, and the flow is assumed to be homogeneous in the y
direction.

The horizontal and lateral inclined boundaries of the basin are treated as no-slip boundaries.
At the top, a sinusoidal shear stress boundary condition is imposed: 7, = 7 = 7 sin(27¢/T) and
7, = 0, where 7 is the time, T = 24 h is the wind period, and 7y = CD,oairUlz0 =0.025 Nm~2 [4]
is the maximum value of the wind-induced shear stress. The magnitude of 7y corresponds to winds
with a speed of about 4 ms~! and a wind-induced velocity scale of Uy = 0.05 ms~! [11,18]. As
the top surface is assumed to be a rigid lid, the vertical velocity is set equal to zero. The density
gradient at the top, lateral, and bottom boundaries is also set to zero. As the flow is assumed to be
homogeneous in the y direction, periodic boundary conditions are imposed for all variables at the
spanwise boundaries.

The parametrization of the three study cases is presented next. A stable three-layer initial
distribution for the density is assumed for all cases. The initial vertical density structures are chosen
to obtain (theoretical) 24 h periods for the considered basin-scale internal modes. The density is
uniform in the top (epilimnion) layer (0 = p) of thickness %, and in the bottom (hypolimnion) layer
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(p=p2 =999 kg m ) of thickness A;. The maximum density differences are Ap = 1 kg m~3 for
cases 1 and 3 and Ap = 0.1 kgm™ for case 2. A midlayer of thickness h,, is characterized by
a linear density distribution. Figure 1(b) shows the initial vertical profiles of the nondimensional
density p. Atz/(D/Up) = 0, the velocity field is set equal to zero in the middle and bottom layers,
while random (uniformly distributed) values with a mean of 0.03U are assigned to the three velocity
components inside the top layer. This is done so that turbulence develops faster inside the basin
once the wind forcing becomes active. The heights of the three layers are identical in cases 1 and
2 (hy = 0.15D, h,, = 0.45D, h;, = 0.4D). Case 3 is close to a two-layer (h,, = hy = 0.49D) initial
density distribution with a sharp interface, as the height of the midlayer is only 4,, = 0.02D. Given
that the density is assumed to be a function only of the temperature, the molecular Prandtl number is
assumed to be equal to 6. The Richardson number, Ri, is set equal to Ri = 160 in cases 1 and 3. This
corresponds to an initial temperature difference between the top and bottom layers of about 9 °C.
In case 2, Ri = 16, which corresponds to a reduced initial temperature difference of only 0.9 °C.
Besides the value of the Richardson number, all the other flow variables and initial conditions are
identical in cases 1 and 2.

All three simulated cases have identical meshes. The flow is resolved in the homogeneous
direction y using 64 nodes. Nearly 300 000 grid points are used to mesh the flow domain in a
streamwise-vertical cross section (x, 7). Away from the free surface and the no-slip boundaries,
the cell size is close to 0.025D in all three directions. The grid resolution is refined to about
0.001D near the free surface and the flat bottom boundary to resolve the wind-induced and bottom
boundary layers. The nondimensional time step is 0.002(D/Up). To properly resolve the flow and
temperature fields in this numerical setting, we integrated the nondimensional equations of motion
with an effective Reynolds number of Re = 10° [20], which is one order of magnitude lower than
its real-scale magnitude. The code was run on 128 processors on a high-performance computing
(HPC) cluster.

Here, we do not address the problem of how a basin-scale internal mode enters into or out
of resonance [10,12]. Instead, we detail how the resonance regimes are achieved. The periodic
solutions for the three cases are analyzed after the turbulent flow has become quasiperiodic. Based
on an inspection of the 2 — D spanwise-averaged density and velocity flow fields and of the time
series of the density and velocity at several points, the flow can be considered quasiperiodic for
t/T > 7. Thus, the flow hydrodynamics is analyzed in all cases for 9 < ¢/T < 10 (tenth cycle).
For simplicity, we consider that /T = 9.0 is ¢ /T = 0 at the start of the tenth wind (diurnal) cycle
analyzed in this work.

As the flow becomes quasiperiodic, the vertical density distribution becomes smoother, as
illustrated in Fig. 1(d). Due to the periodic shearing and the mixing at mid depths, the three
cases show an increase in the midlayer thickness. Case 3 shows evidence of the largest difference
compared to its initial midlayer thickness (%,, = 0.02D). Although cases 1 and 2 start from the same
density distribution, case 2 develops a thicker top layer (~0.3D) than case 1 (~0.2D). Additionally,
in case 1, the density distribution beneath the top layer is almost linear, with an intense smoothing of
the bottom layer. Figure 1(e) illustrates, for each case, the nondimensional background profile of the
square of the Brunt-Viisili frequency, N2. Case 3 has its maximum peak at z/D = 0.51, whereas
cases 1 and 2 have their maximum peaks at z/D = 0.42 and z/D = 0.40, respectively. It should also
be noted that the background density distributions have evolved in such a way that their respective
N? profiles show more than one local peak. This feature is especially visible for cases 1 and 3.

III. RESULTS

We first present a global characterization of the basin-scale internal motions amplified by periodic
diurnal winds. Then, we take a closer look at the along-slope and near-bottom mass transport.
Finally, we map the horizontal mass exchange and the flushing timescale of nearshore waters as
a function of space and time.
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FIG. 2. Wind-forced, basin-scale response of the (a)—(d) spanwise-averaged density and (e)—(h) streamwise
flow, u. Fields are shown in nondimensional form. Case 1: (a) and (c) show the density (along isopycnals in the
midlayer tracking its boundaries and mean density contour) characterized by the second vertical, first horizontal
(V2H1) modal response (three layers). Case 2: (b) and (d) show the same fields, but the fluid response is
characterized by the first vertical, first horizontal (V1H1) modal response. Both modes of motion have a period
near 7. Arrows in (a)—(d) show flow direction. Flow circulation in (e) and (f) are shown with a time /7 = 0.0
to illustrate the overall basin-scale flow structure. (g),(h) The flow circulation at a time ¢ /7" = 0.25.

A. Basin-scale internal motions under resonance
1. Quasilinear (QL) V2H1 and V1H1 modes of motion

Figure 2 shows the modal response for cases 1 and 2. Linear normal modes can well characterize
their basin-scale features [41,42]. Nevertheless, they are not free of nonlinearities. Resonance
magnifies the amplitude of the internal seiches. In both cases, we observe the formation of weak
fronts attributed to nonlinear steepening [see white isopycnals in Figs. 2(a) and 2(b)], albeit not
strong enough to lead to dispersive processes [43—46]. Here, we denote their basin-scale response
as quasilinear (QL) modes of motion.

In case 1, the oscillatory wind amplifies the QL-V2H1 mode, which is characterized by three-
layer dynamics. Figures 2(a) and 2(c) illustrate the QL-V2H]1 density response at /7 = 0.25 and
0.75. At these wind phases, the maximum stretching and squeezing of the midlayer isopycnals occur
over the sloping boundaries [11]. In addition, Figs. 2(e) and 2(g) show the flow circulation for the
same wind phases. The flow circulation is characterized by two basin-scale cells that occupy most of
the stratified basin, including the shallow nearshore regions. When there is wind shear at the surface,
a thin surface layer flows parallel to the wind direction, whereas a mid-depth layer flows against the
wind, from nearshore toward the interior. Interestingly, once the wind diminishes and the fluid is
free to oscillate by inertia, there is a significant enhancement of horizontal currents, specifically at
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FIG. 3. Wind-forced, basin-scale, nonlinear response of case 3. (a),(c),(e),(g) The spanwise-averaged
density along with isopycnals that highlight the vertical displacement of the midlayer. (b),(d),(f),(h) The
spanwise-averaged streamwise velocity along with streamlines. Fields are shown in nondimensional form.

mid-depth and deep water. These currents generate convergence and divergence of fluid along the
slopes.

In case 2, the oscillatory wind amplifies the QL-V1HI1 mode. This mode of motion is char-
acterized by two-layer dynamics, with a pycnocline rocking up and down along the side slopes
[Figs. 2(b) and 2(d)]. A basin-scale circulation cell takes place over most of the system; however,
it barely involves the shallow regions [Fig. 2(f)]. Similar to case 1, the wind forces a thin surface
current in the same direction, while deeper waters flow in the opposite direction following tortuous
paths [Fig. 2(h)]. In case 2, the free flow evolution also leads to stronger currents than the ones under
forced conditions. Unlike case 1, however, horizontal transport is suppressed at mid depths, so the
horizontal transport is concentrated within the upper and deeper layers.

2. Nonlinear (NL) V2H1 mode of motion

The flow dynamics of case 3 vary strikingly compared to the previous cases. Figure 3 illustrates
the density and flow response during the first half of the diurnal phase (0.0 < #/T < 0.5); the second
half is fully antisymmetric. The basin-scale internal wave is characterized by a second-mode undular
bore [47] [Figs. 3(a), 3(e), 3(g)]; its propagation shows a sharp flow discontinuity at the wavefront
[Figs. 3(b), 3(d), 3(f), 3(h)]. This steep front—resembling a shock wave—is followed by a train
of second-mode solitary-type waves. The macroscopic structure of this nonlinear (NL) basin-scale
internal wave, NL-V2H]1, is similar to the internal surge observed in Loch Ness by Thorpe [10,48],
but characterized by the second mode.

Even though cases 1 and 3 exhibit similar global fluid patterns, their flow propagations reveal
remarkable contrasts. Unlike the QL-V2HI response in case 1, the wavefront of the NL-V2HI1 in
case 3 divides the fluid and flow into two different regions: the one downstream of the wave, in
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characterized by counter-rotating vortices
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FIG. 4. Case 3: Close-up of the inner core circulation induced by the nonlinear internal gravity wave
resulting from the periodic wind forcing. Nondimensional vorticity, w,/(Uy/D), along with streamline in the
plane x — z at¢/T = 9.0. The aspect ratio of the figure is 2 : 1. Streamlines are not shown over the upper inner
core circulation to highlight the vorticity patches.

which the fluid remains almost quiescent, and the one upstream of the wave, in which the fluid
is displaced from its equilibrium position by the undular bore propagation [Figs. 3(a) and 3(g)].
Figures 3(e)-3(h) highlight this feature in the streamwise velocity. The horizontal transport stems
from a vigorous lateral current in the midlayer, bounded vertically by weaker currents flowing in
the opposite direction. In contrast to the QL-V2H1 dynamics in case 1, the impact of the internal
bore on the sloping bottom causes a weak stretching of the isopycnals, while their compression is
negligible on the opposite slope [Figs. 3(c) and 4(b)].

Figure 4 shows a close-up of the vorticity field of the solitarylike waves developed from the NL-
V2HI1 in case 3. Each of them has an inner circulation pattern characterized by two quasisymmetric
cells with opposite vorticity signs. This localized inner circulation has been observed previously
within second-mode internal solitarylike waves propagating [as in Figs. 3(a) and 3(b)] in a still
fluid environment [e.g., 49-51]. Here, however, we observe the case of an internal undular bore
propagating with and against the wind-induced horizontal currents, as shown in Figs. 3(g) and 3(h).
When the bore propagates against the wind-induced current [e.g., Fig. 3(f)], the results show a drop
in the midlayer velocity magnitude. This phenomenon occurs in enclosed basins when the wind-
driven flow velocity and the wave phase speed are mismatched. The linear wave frequency and phase
speed of the excited basin-scale internal mode can be obtained by resolving the Sturm-Liouville
eigenvalue problem [41,42]. However, this mode is amplified by resonance and its properties are
affected by nonlinearities.

3. Propagation speed of basin-scale motions

To obtain the effective phase speed of the dominant modes of motion, we examine the isopycnal
displacement as a function of space and time to compute the characteristics of these modes. Figure 5
shows Hovmoller diagrams for the nondimensional vertical displacement of an isopycnal, (1)sw/D,
near the pycnocline, p = 0.15, on the x/D-t /T plane. The time vertical axes in Figs. 5(a)-5(c) and
the time horizontal axis in Fig. 5(d) are expressed in terms of the wind phase (0 < #/T < 1).

For case 1, the wave-front position in the x/D-t /T plane allows an estimate of the average phase
speed of the QL-V2HI1 seiche, ¢; [red dashed lines in Fig. 5(a)]. For case 2, however, the QL-
VI1HI1 seiche shows no front that can be used to track its position. Its average phase speed, ¢5,
is instead obtained by computing the time required to reach the maximum and minimum vertical
displacements at the sloping lateral boundaries [red dashed lines in Fig. 5(b)]. By contrast, the wave
front in case 3 has a well-defined position on the x/D-t/T plane [red dashed lines in Fig. 5(c)].
The average phase speed of the NL-V2H1 wave, ¢3/Uy = 1.90, is higher than that of QL-V1HI,
¢2/Up = 1.49, and lower than that of QL-V2H1, ¢, /Uy = 2.01.

Considering the estimated magnitudes of ¢; and ¢3, and the horizontal length along which the
waves propagate, we extrapolate the evolution of their wave fronts forward in time. We find that
the QL-V2H]1 seiche has the period of wind forcing, T, whereas the NL-V2H1 wave has a slightly
longer period, close to 1.05 7. The latter leads to a diurnal delay on the NL-V2HI phase relative
to the wind-induced circulation [Fig. 5(d)]. This implies that the NL-V2H1 wave has the same
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FIG. 5. Hovmoller diagram for basin-scale wave propagation. (a)—(c) The spanwise-averaged isopycnal
displacement, (n)s,/D, as a function of x/D and ¢/T for (p — p;)/Ap = 0.15 (see top bold white lines in
Figs. 2 and 3). The dashed red lines denote the characteristic curves of the basin-scale internal waves along
with their average phase speed (blue triangles). The red dashed lines denote the characteristic curves in the
x/D-t/T plane. The average slope of these curves provides an estimation of the basin-scale internal wave
phase speed shown in the upper boxes for each case. (d) The extrapolated position of the wave front for cases
1 and 3 as a function x/D and ¢ /T .

relative phase as the diurnal wind (Fig. 3) every 20 oscillatory cycles. As a consequence of the time-
dependent diurnal shift between the wind phase and the NL-V2H1 wave phase, the spatiotemporal
distribution of the horizontal transport can either be amplified or weakened over the 20 wind cycles.

B. Along-slope and near-bottom processes
1. Shoaling process

We examine the interactions between the basin-scale internal seiches and the sloping boundaries,
focusing on the shoaling process of the NL-V2H1 wave. The train of solitarylike waves developed
in case 3 is ~15D long, and its leading wave amplitude approaches Ay =~ 0.1D [Fig. 6(a)] before
reaching the sloping boundary. The leading second-mode solitarylike wave in case 3 has an Iribarren
number [44,52,53] I, = s/+/Ao/* = 0.12. Its shoaling behavior is illustrated in Figs. 6(c), 6(f), 6(i),
and 6(1). As the train of waves approaches the sloping boundary, the presence of the bottom modifies
the lower half of the second-mode waves, so that they diminish in amplitude and speed relative to
the upper side. The latter affects the wave symmetry with respect to the pycnocline [Fig. 6(f)]. When
the leading solitarylike wave starts colliding with the sloping boundary, its second-mode structure
degenerates into mode-one waves of elevation that propagate upslope [Fig. 6(i)]. A similar shoaling
process for second-mode solitary waves has been recently reported in laboratory and numerical
experiments by Carr et al. [31], who found that the wave disintegration resembles the fission process
characterized by Aghsaee et al. [52] and Arthur and Fringer [54]. In our experiments, however, the
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FIG. 6. Case 3. Undular borelike internal wave resulting from the periodic wind forcing. (a) Close-up
to the density distribution of the solitarylike internal waves approaching the sloping boundary along with
(b) the horizontal turbulent transport at /T = 0.0 and y/D = 0.5. (¢),(f),(i),(1) Close-up of the undular internal
bore interacting with the sloping bottom along with the respective (d),(g),(j),(m) horizontal turbulent transport
and (e),(h),(k),(n) along-slope BBL transport. Fields are shown in nondimensional form and the time interval
between the panels is AT /T = 0.02.

shoaling processes occur periodically. By contrast, the seiches QL-V2HI1 (case 1) and QL-V1H]
(case 2) have a wave-slope interaction described by a surging breaker (not shown).

Figures 6(d), 6(g), 6(j), 6(m) and Figs. 6(e), 6(h), 6(k), 6(n), respectively, show the along-slope
turbulent transport, (o’ u.), and the bottom boundary layer transport (BBLT), (p — p1)us, during
the shoaling process. The BBLT is measured at x/D = —45, across the normal axis 4/D shown in
Figs. 6(e), 6(h), 6(k), and 6(n). A strengthening of the transport occurs as the lower half of the waves
interacts with the sloping boundary, generating intensive shear and small-scale fluctuations around
h/D =~ 0.015. As the solitarylike waves degenerate and propagate upward, the transport is confined
and intensified near the bottom.
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FIG. 7. BBL mass transport along the sloping bottom over the diurnal phase for the three different cases.
The along-slope flow is determined as u; = (). - §, where § is the along-slope normalized vector (positive
downslope). /D corresponds to the nondimensional height relative to the local bottom boundary. The along-
slope mass transport, (a),(c),(e) above and (b),(d),(f) below the pycnocline, respectively. Fields are shown in
nondimensional form.

2. Along-slope mass transport

We now examine the BBLT as a function of the diurnal phase and space. Figure 7 summarizes
the diurnal evolution of the along-slope BBLT, (p — p1)u;/(UpAp), for each case at two different
positions. The shallower spot [Figs. 7(a), 7(c), 7(e)] is located above the equilibrium pycnocline
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depth, (x, z),/D = (—52.5,0.61), while the deeper spot [Figs. 7(b), 7(d), 7(f)] is located below
the pycnocline, (x, z),./D = (—37.5, 0.2). Each profile in Fig. 7 corresponds to a different diurnal
phase. The line colors define the wind direction (positive winds in blue, negative winds in red),
while the shaded area denotes the bottom layer.

The BBLT in cases 1 (QL-V2H1) and 3 (NL-V2H1) shows similar features. In both cases, the
baroclinic flows concentrate the mass transport near the bottom [shaded areas in Figs. 7(a), 7(b),
7(e), and 7(f)]. In case 1, the midlayer flow reaching the sloping boundary [Figs. 2(a), 7(a), and 7(b)]
is split into two branches. The upper branch drives the upslope mass transport [Fig. 7(a)], whereas
the lower branch drives a more vigorous downslope mass transport. The along-slope transport is
maximized when the flow is wind free (t/T = 0 on the left sloping bottom and ¢#/7 = 0.5 on the
right sloping bottom) and it decays when the wind intensity reaches its maximum. Nevertheless,
in case 3, the downslope transport is concentrated in a substantially thicker layer than the upslope
transport [Figs. 7(e) and 7(f)]. The intensification of the downslope transport may be related to the
fact that the midlayer flow reaches the sloping boundary while the wind is reaching its maximum
magnitude at /7 = 0.125 on the left slope and ¢#/7 = 0.625 on the right slope. For these wind
phases, the downslope transport is wind reinforced.

By contrast, case 2 (QL-V1H1) shows an along-slope mass transport that is significantly weaker
than that for cases 1 and 3. Furthermore, it does not show baroclinic dynamics near the bottom.
We attribute a drop in the BBLT to the absence of a midlayer flow toward and from the sloping
boundaries in the QL-V1H1 mode. The latter is a key mechanism that reinforces the along-slope
transport in both directions.

3. Bottom shear stress

BBL flows are a relevant mechanism for sediment resuspension [24,37,38,55-57] and enrichment
of waters with benthic biogeochemical properties [23,25]. Figure 8 shows and contrasts the diurnal
variation of the wind-induced surface stress, |t|/7y [Fig. 8(a)], the average bottom shear stress,
(Itpl) = u( % [} [Fig. 8(b)], and the average bed shear stress fluctuations, ;ms = (| @ )
[Fig. 8(c)], over the basin’s bottom for each case; p is the dynamic viscosity. In case 1 (QL-V2H1),
the maximum (|t;|) is predicted at the times when the wind stress is null. In case 3 (NL-V2H1), the
maximum of (|tp|) is delayed by 1/8 of a period with respect to that for case 1. Case 2 (QL-V1H1) is
characterized by the lowest values of |7,|, and its highest magnitudes are delayed by 1/8 of a period
with respect to the maximum values of |7|. Results show that for cases 1 and 3, the maximum values
of T;ms are well correlated with those of .

In case 3, the peaks of (|t|) and t;s at /T =~ 0.1 and 0.6 are associated with the times when
the undular bore interacts with the inclined bottom (see the impact of the internal wave front hitting
the left sloping bottom in Fig. 6). In case 1, however, (|t3|) and Ty reach their highest magnitudes
around #/T ~ 0.0 and 0.5, when the maximum magnitude of the horizontal currents (horizontal
isopycnals) is achieved [Fig. 2(e)]. At these wind phases, the horizontal flow starts interacting with
the sloping bottom and its magnitude reduces. The latter leads to a decrease in 7, and 7, until these
quantities reach their minimum magnitudes. This occurs when the maximum midlayer stretching
and squeezing occurs on the sloping regions at /T =~ 0.25 and 0.75. This is not quite the scenario
for case 2, as Ty is delayed by 1/8 from the maximum magnitudes of t,. The maximum Ty is
obtained when the fluid is wind free at 7/T = 0 and 0.5, while the maximum 7, is reached during
the flow acceleration phase along slope, 0.25 < /T < 0.5 and 0.75 < t/T < 1. The results show
that case 2 has the weakest t;, and 7,5, While the highest magnitudes are found in case 1.

C. Residual flow

An inviscid, immiscible, linear basin-scale internal wave with period 7 that is in phase with the
wind forcing leads to a null net transport at the end of its cycle. By contrast, viscous, miscible,
advective flows admit residual flows at the end of the wind-forcing cycle, T'. The diurnally averaged
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FIG. 8. (a) Magnitude and direction of the surface stress, (b) average bottom shear stress, and (c) average
bed shear stress fluctuations over the diurnal phase for each experiment.

velocity field thus provides a residual (secondary) circulation [e.g., 27,29] resulting from coupling
the wind-driven flow and the basin-scale internal waves. Although the residual flow might vary
seasonally due to changes in the background stratification and forcing, here we assume that it is
invariant in time as long as the resonance regime lasts.

Figure 9 shows the diurnally averaged (0 < /7T < 1) density (p)sw.7 (left panels) and stream-
wise velocity (u)q, r along with the streamlines (right panels) for each case. We denote these
quantities as the residual fields. The density (o)sw.r has a symmetric distribution with respect
to the vertical axis that bisects the domain at x = 0, (p)sw.7(x <0,2) = (P)sw.7(x > 0,2). On
the other hand, (u)s, r has an antisymmetric distribution with respect to the vertical plane at
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Residual streamwise flow along with streamlines for each case.

x=0, Uewrx <0,2) = —(U)swr(x > 0,2). In cases 1 (QL-V2H1) and 3 (NL-V2H1), (4)sw.7
and (p)sw.7 show similar spatial distributions [Figs. 9(a), 9(b), 9(e), and 9(f)]. In both cases, the
isopycnals are slightly stretched near the sloping boundaries, while being slightly squeezed at the
center of the basin.

Case 2 (QL-V1H1), by contrast, shows that the isopycnals are squeezed near the sloping
boundaries and slightly lifted in the center of the basin [Fig. 9(c)], with well-defined clockwise
and counterclockwise circulation cells in the upper layer [Fig. 9(d)]. The residual flow along the
slopes has the same features as that obtained by Nakayama et al. [27,29] via laboratory experiments
of internal wave shoaling over uniform slopes in a two-layer stratified basin. Yet, unlike Nakayama
et al. [27,29], our results reveal that the residual flow is characterized by an array of circulation
cells. The largest cells encompass almost half of the domain in the upper waters, whereas deeper
waters are associated with smaller cells.

D. Horizontal mass exchange

We quantify the rate of mass exchange between the shallows and the interior basin due to
horizontal flows as a function of time and space [Fig. 10(a)]. We first integrate in time the mass
flux per unit width, F, exchanged between two volumes vertically bisected at a distance x;
from the left lateral boundary. This integration provides the exchanged mass, M, over a time
window At =t —ty < T at a position x;. By dividing M.« by the mass contained in the nearshore
volume, M [Fig. 10(a)], we obtain the nondimensional rate of exchange of nearshore waters, Rey.
The latter ratio is a function of the diurnal phase and the distance from the lateral boundary,
Xy.

Figures 10(b)—10(d) map Rex (¢, x,) for each experiment. The horizontal axis shows R at a given
position x;/D, while the vertical axis shows its evolution over the diurnal phase, /D. Bold lines
highlight regions that are partially (25%, 50%, and 75%) and fully (100%) flushed. The results
show that very shallow waters (x;,/D < 5) can be fully flushed and exchanged with interior waters
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Color lines illustrate four specific exchange rates (25%, 50%, 75%, and 100%) from the left boundary to a
distance x;/D offshore as a function of t /7.

over T/2 (e.g., half of a day). We found that cases 1 (QL-V2H1) and 2 (QL-V1H1) can fully
exchange and thus renew waters up to a distance of ~15D from the left shore over a diurnal phase
[see the red and green curves in Figs. 10(b) and 10(c) labeled “1” in black]; this means 63% of
the sloping volume is flushed. Case 3 (NL-V2H1), however, can exchange and flush waters up to a
distance ~20D over T [see the cyan curve in Fig. 10(d) labeled “1” in black]; this means 75% of the
sloping volume is flushed. The bold curves in Figs. 10(b)-10(d) show that Ry is, in general, similar
in space and time for the VIH1 and V2H1 modes. By contrast, R.x in case 3 suffers a substantial
change around x; = 5D; for a given time and position, case 3 shows higher values of R. than do
cases 1 and 2. For instance, compare curves R.x = 0.25 in Figs. 10(b)-10(d).

We finally assess the mass exchange between the shallow and interior regions due to the diurnal
residual flow. From the residual fields (u)y.7 and (p)sw.7 (Fig. 9), we compute for each case the
flushing timescale in terms of the diurnal wind period, 7 /T, as a function of x;/D (Fig. 11). The
results show that the residual flow for case 2 is less efficient in flushing nearshore waters, especially
close to the lateral boundaries where the secondary circulation is extremely weak compared with
cases 1 and 3 (Fig. 11; green curve near x;/D =~ 2).

The green curve of case 2 (Fig. 11) is generally above the other two curves for 0 < x;/D <
30, indicating that its flushing time is the longest over the sloping boundary. However, this trend
changes abruptly near the transition to the flat interior basin for 30 < x,/D < 36. In this region,
case 2 has the lowest Tr /T and the strongest residual circulation. At x;/D = 40, Tr /T increases
asymptotically due to a strong drop in horizontal transport near the basin’s center. In this interior
region, for 40 < x,/D < 50, case 3 and case 2 have the shortest and the longest flushing times,
respectively.
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IV. DISCUSSION AND SUMMARY

Although the resonance of basin-scale internal waves is not frequently observed, it is not an
unusual hydrodynamic regime in stratified lakes. As suggested by Mortimer [1], of all the internal
waves that are theoretically possible in stratified lakes, the one most commonly amplified and set in
motion is the basin-scale internal mode, also known as the uninodal seiche [9]. The above implicitly
suggests that this normal mode could be regarded as the canonical resonant response of stratified
basins to wind [1]. After Mortimer’s work, several studies have reported wind-induced resonant
regimes in lakes [1,7,10-16]. However, these observations show that the first vertical seiche (V1H1)
is not the only one susceptible to wind-driven amplification. In smaller basins, uninodal horizontal
modes with higher vertical modes (e.g., the V2H1 and V3H1 modes) can also be found to resonate
with diurnal winds [13,14].

As shown by Antenucci and Imberger [12], and most recently by Woolway and Simpson [15],
lakes subject to diurnal winds may reach resonance regimes at different periods of the annual
thermal cycle. With annual information of the stratification and the basin’s topography, one might
use Sturm-Liouville theory to identify periods when diurnal winds may amplify basin-scale normal
modes whose frequencies are near 24 h [41,42]. Wind-induced resonance of basin-scale internal
motions might occur more frequently than we reported. For instance, temperate lakes embedded
in valleys and mountain regions subject to local diurnal (day and night) breezes [58] are potential
candidates for basin-scale internal waves under resonance conditions.

In this study, we achieved resonance regimes by running simulations over several cycles before
obtaining periodic flows with frequencies near the wind frequency. Longer numerical experiments,
however, might result in basin-scale internal waves that deviate from resonance conditions due
to vertical mixing. The latter affects the background density distribution and thus the dispersion
relationship of the internal waves. Laboratory experiments show that significant modal amplification
occurs when the ratio of the basin-scale internal wave frequency, ,, to the forcing frequency, wg,
is w,/wr € [0.9, 1.1]. On the other hand, when w,/wr < 0.8, a substantial decrease in the wave
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amplitude is observed [5-8]. To characterize how periodically wind-forced stratified basins reach or
escape from resonance, we require a more in-depth examination of the system’s evolution.

As shown in the present study, even mild periodic winds can magnify the amplitude of basin-scale
internal waves and thus trigger nonlinear wave regimes [6,7,43,59] that intensify on sloping regions
[30,44,57]. Under a resonance regime, the periodic interaction between vigorous basin-scale internal
waves and sloping boundaries supports an active bottom boundary layer transport, BBLT [22], that
in turn can enhance sediment and nutrient resuspension [25,26,57,60] and the exchange of dissolved
gases between deep and shallow regions [23]. The features of the BBLT described here have been
commonly observed in the context of nonlinear internal waves interacting with cross-shelf sloping
boundaries [e.g., 57,61], yet observations of the BBLT in lakes under resonance are rather rare [18].

Carr et al. [31] investigated the shoaling of second-mode solitarylike waves via laboratory and
numerical experiments generated using a lock-release method in a still, three-layer stratified fluid.
By contrast, the second-mode nonlinear internal waves in case 3 (NL-V2H1) result from a periodic
forcing, and they coexist with a wind-driven basin-scale circulation. Although the mechanisms
leading to the second-mode solitarylike waves differ, in both studies, the nonlinear internal waves
have similar degeneration processes as they approach the sloping boundary. However, for the same
bottom slope, s ~ 3%, the second-mode nonlinear internal waves (in case 3) present a robust wave
reflection, while the similar internal solitarylike waves in Carr et al. [31] show no wave reflection.
This last result suggests that the wind-driven baroclinic circulation might be crucial for supporting
the periodic propagation of the nonlinear internal waves from side to side in the stratified basin.

In the present study, the slope steepness is not varied. We adopt a mild slope, s & 3%, that is
characteristic of many shallow lakes. In this scenario, internal waves degenerate along the slope,
which enhances turbulence and vertical mixing. However, previous studies show that, as the slopes
steepen, the degeneration of internal waves becomes weaker and waves can reflect more energy
[31,52]. This implies less mixing and less dissipation of kinetic energy on the sloping boundaries
[30,44]. We speculate that stratified waterbodies with steeper slopes would suffer weaker changes
in the background stratification, allowing resonance regimes to last longer before mixing allows
an escape from resonance. Additionally, steeper slopes might reduce along-slope transport and the
bottom shear stress due to the restoring effect of stratification. However, since steeper slopes also
reduce the volume of the shallow regions, the flushing time of nearshore waters might be reduced.

Our first numerical experiment (case 1) provides a global picture of the hydrodynamics of Lake
Alpnach, Switzerland, a stratified lake that experiences resonance regimes during the stratified
season. The residual flow obtained for case 1 [Fig. 9(b)] can entirely flush the sloping bottom region
in less than 14 wind cycles. This result agrees with the in situ experiments of Goudsmit et al. [22].

V. CONCLUSIONS

In the present study, we found that the along-slope bottom boundary layer transport (BBLT) is
sensitive to the resonant basin-scale internal mode and the wave dynamics. The results show that
the BBLT associated with the nonlinear, second-mode, undular bore in case 3 (NL-V2H1) [e.g.,
10,47,62] is more vigorous than the BBLT observed in the quasilinear, second-mode, basin-scale
internal seiche in case 1 (QL-V2H1). The first vertical basin-scale internal seiche in case 2 (QL-
V1H1) is associated with the weakest BBLT.

Differences in the circulation pattern across stratified basins have strong effects on the rate of
mass exchange and flushing timescales of nearshore waters. Over the diurnal wind cycle, we found
that the horizontal mass transport in the region with the sloping bottom is comparable for the two
QL-V1HI and QL-V2H1 modes. Both modal responses can fully flush 63% of the water contained
in the wedgelike volume of the stratified basins. However, the mass transport attributed to NL-V2H]1
is stronger and can flush 75% of the water contained in the same volume over the same time.

The net horizontal transport at the end of the wind-forcing cycle is not zero. This result is a
consequence of the phase mismatch between the wind-driven nonlinear transport in an enclosed
basin and the amplified basin-scale internal waves. One of the implications of the last regime is
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the existence of a residual flow that affects the mass distribution in the stratified basin at the end
of the forcing cycle. We found that the residual circulation in case 1 can entirely flush the sloping
bottom region in less than 14 wind cycles. On the other hand, due to the lack of residual circulation
in the very shallow regions, a basin that hosts the QL-V1H1 mode is characterized by long flushing
timescales for shallow waters. We also found that the basin hosting the NL-V2H1 mode has the
most vigorous residual flow and, in general, the shortest flushing timescales.
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