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Introduction

In fundamental interactions research, dipolar magnets are particularly interesting to study since they
provide a large spectrum of quantum phenomena [1-2]. Magnetic dipolar interaction are omnipresent
in magnetic systems. However, in most of materials, various exchange interactions within the crystal
environment hide the purely dipolar interaction.

It has been shown [2-3] that in LiRF4 family, where R is a rare earth element the exchange interactions
with nearest neighbours can be neglected. Moreover, by simply changing the R ion in the tetrafluoride
lithium matrix, the magnetic behaviour can completely differ at low temperature. For instance LiHoF4 is
a Ising ferromagnet [4], while LiErF4 is a XY antiferromagnet [5] and LiTmF4 a Van Vleck paramagnet
[6]. In order to understand theses systems, a detailed comprehension of the electronic crystal field is
necessary, since the ground state is determined by this interaction [7]. The energy range corresponds
typically to the infrared region. While a lot of studies have been done in other LiRF4, LiTmF4 has not
be fully investigated.

This work presents the spectroscopy analysis from the far to the near infrared regions (10−10′000 cm−1)
of a pure LiTmF4 single crystal at cryogenic temperatures using Fourier Transform Spectroscopy
technique.

The first part details the structure and the energy scale. The experimental details and FTIR spectroscopy
will be then presented. The third chapter is dedicated to explain how the energy levels have been
assigned and their strength. The results for the first three manifolds are presented and exhibit some
intriguing results such as splitting. Finally, one will discuss the perspectives.
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1 The Quantum Magnet LiTmF4

The LiTmF4 is an insulating Van Vleck paramagnet and exhibits a giant magnetostriction [8]. Thulium
is one of the heaviest rare element and its ion Tm3+ has a 4f12 electronic configuration which gives
91 degenerate states. The ground state configuration is given by Hund’s rules and is represented in
Fig.1.1(c). Tm element has a non zero nuclear spin which can give rise to hyperfine splitting.

The degeneracy of the 91 energy levels is lifted by the Spin-Orbit coupling depending on the electronic
configuration plus the crystal field interaction representing the electrostatic repulsion and orbital
hybridization between the surrounding ions. The purpose of this work consists to analyse this lifting.
The electronic ground state configuration of last rare earth elements are given in Table 1.1.

R3+ Shell Term S L J I

Gd 4f7 8S7/2 7/2 0 7/2 3/2
Tb 4f8 7F6 3 3 6 3/2
Dy 4f9 6H15/2 5/2 5 15/2 5/2
Ho 4f10 5I8 2 6 8 7/2
Er 4f11 4I15/2 3/2 6 15/2 7/2
Tm 4f12 3H6 1 5 6 1/2
Yb 4f13 2F7/2 1/2 3 7/2 1/2∗

Table 1.1 – Electronic ground state structure given by the Hund’s rules of the heavier 4f elements,
where S is the spin momentum, L the angular momentum, J the total momentum and I is the nuclear
spin.
∗ 173Yb isotope has a nuclear spin = 5/2.

1.1 Crystal Structure

The LiRF4 compounds belongs to the family of Scheelite crystal structure, where R is the Rare earth
ion. Its structure shown in the Fig.1.1(a) and (b) taken from [7] is in the I41/a space group. The rare
earth ion has a point-symmetry group S4 yielding to a term reduction of the crystal field Hamiltonian
discussed in the next section.

4



Figure 1.1 – (a) Scheelite tetragonal crystal structure of LiRF4 compound, with a S4(4/m) point group
symmetry, lattice constants are approximately a = b ' 5.2Å and c ' 10.5Å. (b) In the ab plane the
ions have an angle of ϕ1 = 34ř, ϕ2 = 37ř, ϕ3 = 45ř from the a-axis. (c) Ground state representation of
the 4f12 electrons configuration given by Hund’s rules.

According to the S4(4̄) point group symmetry of the ion, there are three irreducible representation,
Γ1, Γ2 unidimensional and Γ34 of dimension two, where the same notation convention used in [9] is
followed. The Table 1.2 give the number of each irreducible representation depending on the total
angular momentum and the crystal symmetry.

S4 symmetry
J Γ1 Γ2 Γ34

7 3 4 4
6 3 4 3
5 3 2 3
4 3 2 2
3 1 2 3

Table 1.2 – Number of states with its irreducible representation depending of the total angular momentum
for the S4 point group symmetry.
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1.2 Energy Scales

In this work, we are interested to the identification and characterization of the LiTmF4 energy levels
splitted by the interactions with its crystal environment and the electronic configuration. Since no
significant external magnetic or electric field were applied during the experiment and the interaction
exchange can be neglected in this compound, the effective single-ion Hamiltonian H is given by

H = HCF +HSO (1.1)

where the first term is the crystal-field Hamiltonian and the last term is the Spin-Orbit coupling.
Although thulium have a nonzero nuclear spin, the hyperfine interaction would not be considered in the
model. The Spin-Orbit interaction is given by the usual relation

HSO = ζ
∑
i

Li · Si (1.2)

where ζ is the atomic spin-orbit coupling, L the angular momentum and S the spin of each ion.

The crystal-field (CF) Hamiltonian describes the interaction between the rare earth ion and its
surrounding Li+ and F− ions. The general form is given by

HCF =
∑
i

∑
l,m

Bm
l Ô

m
l (Ji) (1.3)

where the first summation goes over all ions and Ôml are the Stevens’ Operators with Bm
l as coefficients

and Ji the total angular momentum. The CF Hamiltonian is defined by the environment surrounding
the R ion. Since the local point group symmetry of the R ion is S4(4/m), the nonzero Bm

l coefficients
are constrained to have m = 0,±4

HCF =
∑

l=2,4,6
B0
l Ô

0
l (J) +

∑
l=4,6

B4
l (c)Ô4

l (c)(J) +B4
l (s)Ô4

l (s)(J) (1.4)

where by convention and for m 6= 0

Ôml (c) = 1√
2

[
Ô−ml + (−1)mÔml

]
, (1.5)

Ôml (s) = i√
2

[
Ô−ml − (−1)mÔml

]
. (1.6)

By rotating the basis described in [7], one can vanish the B4
4(s) term so as B4

4 is real.
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For the first manifold, the CF Hamiltonian is given by

HCF = B0
2Ô

0
2(J) +

[
B0

4Ô
0
4(J) +B4

4(c)Ô4
4(c)(J)

]
+
[
B0

6Ô
0
6(J) +B4

6(c)Ô4
6(c)(J) +B4

6(s)Ô4
6(s)(J)

]
. (1.7)

It can be shown [9] that the CF Hamiltonian can be extended to higher energy levels. The Fig.1.2
obtained by a numerical calculation illustrates the lifting of the degeneracy due to the Spin-Orbit
coupling and the crystal field interaction. The first excited manifold is around 8’200K above the ground
state, while the difference energy of the ground state and the first excited energy level is approximately
40K. The Table 1.3 gives the formulation of the Stevens Operators considered.
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Figure 1.2 – Calculated energy levels of the LiTmF4 using the spectre software and the CF parameters
from Romanova (2014) [10]. Left : eight first manifolds, middle : example of LS splitting, right : further
splitting in ground manifold due to the crystal field, the dashed line represents a doubly degenerate
state.

Ô0
2 = [3Ĵ2

z −X]
Ô0

4 = [35Ĵ4
z − (30X − 25)Ĵ2

z + (3X2 − 6X)]
Ô4

4 = 1
2 [Ĵ4

+ + Ĵ4
−]

Ô0
6 = [231Ĵ6

z − (315X − 735)Ĵ4
z + (105X5 − 525X + 294)Ĵ2

z − 5X3 + 40X2 − 60X]
Ô4

6(c) = 1
4 [(11Ĵ2

z −X − 38)(Ĵ4
+ + Ĵ4

−) + (Ĵ4
+ + Ĵ4

−)(11Ĵ2
z −X − 38)]

Ô4
6(s) = 1

4i [(11Ĵ2
z −X − 38)(Ĵ4

+ + Ĵ4
−) + (Ĵ4

+ + Ĵ4
−)(11Ĵ2

z −X − 38)]

Table 1.3 – Expression of the Stevens Operators, X = J(J + 1) and Ĵ± = Ĵx ± iĴy.
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1.2.1 Numerical Calculation

In order to compare the experimental results obtained by FTIR spectroscopy presented further with
theoretical expectations, one has used the spectre software provide by the university of Oxford1 which
allows us to calculate the energy levels.

The software assumes a fn configuration which means that the n f -electrons are equivalent. The same
Hamiltonian as in eq(1.1) is considered. Additional terms like the Zeeman interaction or an exchange
field energy could be included. However, theses terms are set to zero in our case, since none external
magnetic field has been applied and the exchange interaction can be neglected.

Electronic and spin-orbit parameters in the free ion Hamiltonian is already implemented and are taken
from [11]. A list of the free parameters Bm

l found in previous works is summarized in Table 1.4.

The first 68 energy levels and the first excited manifold 3F4are plotted in Fig.1.3. Although the CF
parameters varies from one article to another, global locations of the manifolds are very similar. It is
expected since, this forbidden region is related to the Spin-Orbit interaction and not to Crystal Field
Splitting. The 3F4 manifold shows the variation between the parameters. Note the doubly degenerate
state is always at second and last energy levels of the manifold.

B0
2 B0

4 B4
4 B0

6 B4
6(c) B4

6(s) Ref.

45.56 -88.89 113.97 -7.95 76.35 14.65 [12]
45.69 -89.02 114.10 -8.07 76.85 0 [12]
44.53 -75.46 104.81 -21.48 78.12 0 [13]
42.80 -79.58 107.08 -18.90 77.82 0 [13]
43.21 -79.33 -107.27 -22.60 -79.58 0 [14]
45.69 -89.39 -104.94 -8.06 -76.80 -0.006 [6]
45.69 -89.39 -109.74 -8.06 -77.92 2.41 [10]

Table 1.4 – Crystal Field parameters of LiTmF4 in meV used for the energy levels calculation using
spectre software.

1https://groups.physics.ox.ac.uk/Boothroyd/software.htm
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Figure 1.3 – Numerical calculation of the LiTmF4 energy levels using the CF parameters in Table 1.4

9



2 Experimental Details

In this chapter, one covers how the energy spectrum of the sample is obtained. In particular, the
technique of the Fourier Transform Infrared Spectroscopy (FTIR) is presented. The experimental
conditions of the experiment are also discussed.

2.1 Principle of Fourier Transform Infrared Spectroscopy

The interest for Fourier Transform Infrared Spectroscopy has growth this last decades since it can
provide a spectrum with a drastic higher resolution than common grating spectrometers with a much
faster time acquisition. Unlike dispersive spectrometers, FTIR spectroscopy uses a broad spectrum
including all the frequencies which drastically increases the throughput and sampling time. However,
FTIR techniques give an interferogram and an extra step is needed to retrieved the spectrum. This
additional step is the computation of the Fourier transform of the interferogram giving the name to the
method. The following sections describe operations and essential components of FTIR spectroscopy.
More details about that technique can be found in the following references [15–17].

2.1.1 Interferogram and Spectrum

The heart of Fourier transform spectrometer is an interferometer. The Michelson Interferometer is
usually preferred because of its simplicity.

A bright polychromatic light is introduced in the interferometer. The incident light is splitted by a
beam splitter in two equivalent beams. One is reflected by a fixed mirror while the second is reflected
by a movable mirror which modify the optical path length. They recombine and interfere i.e. modify
the incident spectrum at the beam splitter. Indeed for each step of the movable mirror one wavelength
vanishes because of destructive interferences. Then the light passes through and interacts with the
sample. The transmission signal depending on the movable mirror is finally recorded by a photo-detector.
A sketch of a FITR spectrometer using Michelson interferometer is depicted on the Fig.2.3
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Figure 2.1 – top : Fourier transform of a
boxcar truncation function with a cardinal
sine function shape. Bottom : Fourier
transform of sinusoidal interferogram at
wavenumber ν̃1 for a monochromatic signal
with ∆ retardation.

For a polychromatic white light, Chamberlain (1979) has
shown [18] for a wavenumber-dependent intensity function
I(ν̃) the interference signal I interf(x) is given by

I interf(x) =
∫ ∞

0
I(ν̃)dν̃ +

∫ ∞
0

I(ν̃) cos(2πν̃x)dν̃ (2.1)

where x is the position of the movable mirror and the
integration goes over all the wavenumbers ν̃. We call zero-
path-difference the case x = 0, i.e. when the optical path
difference is zero. It gives rise to constructive interferences,
one has

I interf(x = 0) = 2
∫ ∞

0
I(ν̃)dν̃. (2.2)

Combining eq.(2.1) and eq.(2.2), one obtains

I interf(x) = 1
2I

interf(0) +

interferogramF (x)︷ ︸︸ ︷∫ ∞
0

I(ν̃) cos(2πν̃x)dν̃ . (2.3)

The second term corresponds to the interferogram F (x)
which depends on the position of the movable mirror. By
taking the Fourier transform of the interferogram, we finally
obtain the spectral distribution wavenumber-dependent

I(ν̃) = C

∫ ∞
0

F (x) cos(2πν̃x)dx (2.4)

with C as a normalization constant. The eq.(2.4) shows
that theoretically the entire spectrum can be deduced (from
0 to +∞ cm−1) with an infinitely high resolution. However,
in practice, the resolution is finite since the distance x of the movable mirror is finite. If the maximum
optical path difference i.e. retardation is restricted to ∆ in centimeters (xmax in Michelson interferometer
sketch Fig.2.3), the spectral distribution is then multiplied by a boxcar truncation function D(x). The
unapodized resolution ∆ν̃ is linked by ∆ν̃ ' 0.6∆. In this project a Bruker instrument was used
with ∆ = 11.7m and has a theoretical resolution ∆ν̃ = 0.00053 cm−1/0.066µeV while precision of the
absorption peak center is directly related to the precision of the movable mirror.
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Figure 2.2 – Temperature=5K, Detec-
tor=InSb, BS=CaF2, polarization=//,
resolution=0.03 cm−1, aperture=1.7mm

D(x) is defined by

D(x) =
{

1 if −∆ ≤ x ≤ ∆
0 else

(2.5)

which gives an effective intensity

Ieff(ν̃) = C

∫ ∞
0

F (x)D(x) cos(2πν̃x)dx. (2.6)

Since the Fourier transform of the product of two functions
is equal to the convolution of the Fourier transform of each
function, the eq.(2.6) can be written as

Ieff(ν̃) = I(ν̃) ∗ SI(ν̃) (2.7)

where SI is the instrumental line function resulting from
the Fourier transform of D(x) expressed by

SI(ν̃) = 2∆ sin(2πν̃∆)
2πν̃∆ ≡ 2∆ sinc(2ν̃∆). (2.8)

The Fig.2.1 illustrates the eq.(2.8) and its consequences for
the Fourier transform of a monochromatic light.

In addition, the aperture has a finite size d and creates
circular fringes which leads to the multiplication of the
interferogram envelope by a sinc function, this effect is
called self-apodization. An optimum size aperture can be
found in order to maximize the fringe amplitude for the
largest measurable wavenumber ν̃max given by [19]

d =

√
4f2

∆ν̃max
(2.9)

with f the focal distance of the parabolic mirror (f = 41.8 cm in this work).

The effect of having a finite size aperture has to be considered in SI(ν̃).
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For a peak position ν̃0 the relation becomes

SI(ν̃) '

finite aperture size︷ ︸︸ ︷[
Ωmax

2π
ν̃0Ωmax

Π
( 2πν̃
ν̃0Ωmax

)]
∗

finite path difference︷ ︸︸ ︷
2∆ sinc(2ν̃∆) (2.10)

with Ωmax = π
∆ν̃max the considered solid angle.

In eq.(2.6), one has used the truncation function D(x) which leads to a convolution of the true spectrum
with a sinc function. Two case can appear, if the width of true absorption is large compare to the width
of the instrumental sinc function, the effect of its oscillatory behaviour is limited. On the contrary,
the side lobes affect the true spectrum. To reduce this artefact, one uses apodization1 functions. The
chosen apodization function depend on the absorption peak features and the instrumental limitations.
Finally, the eq.(2.6) can be written in a general form of

Ieff(ν̃) = C

∫ ∞
0

F (x)W (x) cos(2πν̃x)dx (2.11)

with W (x) a weighting function, called apodization function. There is always a trade off between
resolution and the amplitude oscillation which will depend on each specific configuration. For this work
the selected apodization function is the Blackman-Harris 3-terms.

The ZPD corresponding to the movable mirror position where maximum interference occur can be
placed close to the beginning or in the middle of the interferogram. The interferogram is called
respectively Single-Sided and Double-Sided. One can collect data in both movable mirror direction, if so
the bi-directional term is added. The two measures are usually combined with the forward scan in the
first half and the backward-direction in the second half of the interferogram. In this configuration, the
two measures have to be performed independently, since the interferogram are not in phase and need a
different phase correction. One then recombines the result by averaging. A phase correction has to be
applied since the interferogram can contain out-of-phase elements caused by different optical paths.

An example of a Single-Sided Bi-Directional interferogram is presented on the Fig.2.2(a). The data
points correspond to each measure at a given position with a fixed step size and are characteristic
to the spectrometer used. By performing the Fourier transform with the Blackman-Harris 3-terms
as apodization function and a phase correction using Mertz [20] method, the spectrum wavenumber-
dependent is obtained on the Fig.2.2(b).

2.1.2 Advantages

The resolution limitation is only determined by the maximal optical path distance. In general, FTIR
spectrometer provide a much better resolution than dispersive instruments.

1from Greek literally meaning "removing the feet"
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Fellgett Advantage

One main advantage of the Fourier Transform Spectroscopy is the ability to take multiplexed measure-
ments instead of direct measures in dispersive methods. One consequence is for one single measure the
signal-to-noise (SNR) ration is greater by a factor of

√
m, where m is the number of sample points

within the desired spectrum. Furthermore, one measure can be taken in identical conditions, while in
dispersive instrument there is grating, or one has to change the filter.

Jacquinot Advantage

Unlike dispersive methods which need slits to properly collimate the beam, in FTIR instruments the
energy throughput is higher. In combination with the Fellgett advantage, FTIR measurement take a
much shorter time with a better SNR.

Figure 2.3 – (a) Sketch of a Michelson interferometer used for Fourier Transform Spectroscopy. A bright
light from a polychromatic source is splitted by the Beam Splitter. One beam is reflected by a fixed
mirror while the second is reflected by a movable mirror which modifies the optical distance. They
recombine and pass through the sample. Finally the spectrum is retrieved by computing the Fourier
Transform (FT) of the obtained interferogram.
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2.1.3 Detectors

Several detectors are used depending the energy range we are interested in. The Fig.2.4 illustrates the
efficiency of different detectors. Three detectors are installed.

For the far-infrared region (FIR) 30 − 400 cm−1 a Bolometer cooled with liquid helium is used. An
additional filter in front of the detector is applied to cut off the higher energies.

The mid-infrared region (MIR) 4′000− 10′000 cm−1 has been investigated using a Indium Antimonide
(InSb) photo-detector cooled with liquid nitrogen. A Mercury Cadmium Telluride (MCT) is also
available, but was not useful for our measurements.

Figure 2.4 – Detectivity for several detectors depending on the wavelength. The InSb D413 and the Si
Bolometer D211 have been used for this experiment, graphic taken from [21]
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2.1.4 Beam Splitters

Different Beam Splitters (BS) are used depending on the region scanned. Indeed the efficiency of the BS
depends on the wavelength. In our setup, for the far-infrared a 23µm Mylar beam splitter is mounted,
while in the mid-infrared a 3.5µm Mylar or a calcium fluoride (CaF2) beam splitter are used. The
Fig.2.5 shows the working region for several beam splitter.

Figure 2.5 – Strong dependence between the Beam Splitter efficiency and the photon energy. A Calcium
Fluoride, a 23µm and a 3.5µm Mylar have been used, graphic taken from [21]

2.1.5 Sources

Several sources can be used and provide different brightness and spectrum. To name only a few, for
the NIR region a tungsten-halogen lamp is commonly used since it can reach high temperature and
therefore radiates a broad spectrum. A light from a heated silicon carbide compound is appropriate for
the MIR while a mercury-vapor discharge lamp can be used for the far IR. Finally, synchrotron light
source presents several advantages since it provide a bright, polarized light and a broad spectrum.
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2.2 Experimental Setup

Figure 2.6 – (a) The Bruker IFS 125HR high-
resolution FT-IR with its two arms. Inside the
red circle the cryostat chamber. (b) the trans-
parent LiTmF4 sample glue with silver paint (c)
Three photo-detectors (1) Mercury Cadmium
Telluride (MCT), (2) Indium Antimonide (InSb)
and (3) the Bolometer.

The optical spectroscopic features of the pure LiTmF4
single crystal have been obtained by using a Bruker
IFS 125HR high-resolution FT-IR Fig.2.6(a) under
vacuum with a theoretical unapodized resolution of
0.00053 cm−1/0.066µeV where the maximum opti-
cal path distance of the instrument is 11.7m. The
spectrometer is linked with the third-generation Syn-
chroton light source of the Paul Scherrer Institute,
the Swiss Light Source with an electron beam energy
of 2.4GeV. The light emitted by the source is highly
linearly polarized >99.999% therefore is very suitable
for polarization analysis.

The LiTmF4 single crystal of 120µm thickness has
been growth by AC materials is mounted within the
cryostat using silver paint to ensure the cooling, pre-
sented in Fig.2.6(b). The c-axis of the sample found
by Laue diffraction can be adjusted to be parallel
or perpendicular with the incident beam. We will
use thereafter the notation x and z polarization to
refer as perpendicular and parallel polarization re-
spectively. The cryostat is then placed in a vacuum
chamber (red circle) with a working pressure around
10−7 mbar. An Oxford Instrument in combination
with a liquid helium cooling system and a heater
control the desired temperature from 3.6K to room
temperature.

Three different detectors can be used depending on
the energy region scanned as discussed in chapter 4
and are shown in Fig.2.6(c).

The optical settings (size aperture and resolution)
and data record is done by the Bruker software Opus
which also computes the spectrum. The obtained
spectrum is finally analysed by a home made Matlab
code.
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3 Data Analysis

Before presenting the results, this section describes the systematic analysis used to extract the Ab-
sorbance peak resonance and its characteristics such as the full width at half maximum (FWHM) and
the integrated intensity.

One starts by the fundamental quantitative spectroscopy law [22], named Beer-Lambert law which is
found empirically and links the transmittance T (ν̃) to a decreasing exponential depending on a linear
absorption coefficient α(ν̃) and the thickness d of the sample at a given wavenumber ν̃.

T (ν̃) is defined by the ratio of the emerging radiant power just after passing through the sample I(ν̃)
to the incident radiant power before penetration I0(ν̃), the Beer’s law is thus written as

T (ν̃) = I(ν̃)
I0(ν̃) = e−α(ν̃)d. (3.1)

Note, usually the Beer’s law is expressed in base 10. As presented in the section 2.1, the incident and
emerging radiative power is obtained by performing the Fourier transform of the interferogram. For
low energy, i.e., in the far infrared region, the reference I0(ν̃) taken is a measure at high temperatures
(≈ 40K), when for mid infrared region the reference is the signal without the sample and cryostat,
called void thereafter.

The napierian absorbance A(ν̃) quantity is derived by taking the Napierian logarithm of the inverse
transmittance in order to extract the characteristic α(ν̃), one has

A(ν̃) = log(1/T (ν̃)) = α(ν̃)d. (3.2)

The integrated peak absorbance A, named integrated intensity thereafter reflects the strength of the
resonance and is simply given by A =

∫
bandA(ν̃)dν̃.

Lineshape and integrated intensity will be then used to describe a transition. In next subsections, noise
reduction, profile fitting and transition assignment are presented.
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3.1 Averaging and smoothing

Depending on the resolution and the energy range selected, a huge amount of data can be collected.
Indeed, one measure can contain millions of data points. To reduce noise, around fifty measures were
taken per configuration. Here are the steps followed :

(1) Average all the files corresponding to the same configuration.

(2) Depending on the transition we are interested in, the resolution could be decreased to obtain
smaller signal to noise ratio. A simple median filter with a given binning is applied.

(3) Apply a smoothing function such as the Savitzky-Golay, a moving average filter.

Note the median is preferred than average because of the randomness of noise intensity. Note also
this method does not significantly affect the fitting process, since it is basically only averaging. The
smoothing step (3) is not applied when the fits are computed. An illustration of step (2) and (3) is
shown on the Fig.3.1 where the transmission signal depending on the wavenumber and its associated
absorbance are plotted. The process highlights clearly the resonance. One will discuss this results later
in section 4.3, since the energy range chosen presents a peculiarity which is a temperature-dependent
peak position.
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Figure 3.1 – Highlighting peak resonance process using noise reduction by taking the median and
applying a Savitzky-Golay smoothing function. Detector=InSb, BS=3.5µm Mylar, Polarization=//,
resolution=0.01 cm−1, aperture=1.3mm.
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3.2 Profile fitting

Two kinds of broadening process can appear : homogeneous and inhomogeneous. The homogeneous
mechanism is related to effects which broad the linewidth of a transition by affecting radiation or
emission in equivalent manners. On the opposite, inhomogeneous broadening relates to a process which
increases linewidth depending on the acting atoms.

Inhomogeneous broadening

As introduced this type of broadening interacts differently depending on the absorbing atoms. Especially
when the temperature is increased, thermal motion of the atoms arises and the ions start to interact with
their nearest neighbour leading to an inhomogeneous broadening described by a Gaussian distribution.

G(ν̃; ν̃0, σ) = 1
σ
√

2π
e−

(ν̃−ν̃0)2

2σ2 (3.3)

where ν̃0 is the resonant peak position and σ the standard deviation.

Natural broadening

When an electron is in an excited state, after a certain time called lifetime it returns spontaneously to
a lower energy state. Since the energy difference between the two states is quantized the photon energy
absorbed or emitted is also quantized. Nevertheless due to the Heisenberg uncertainties the energy can
be shortly violated. Hence not only one wavelength can be absorbed or emitted and thus it creates a
specific profile, characterizing the absorbance depending on the energy instead of a δ function.

Assuming the probability to be in the initial state is proportional to a an exponential decay, expressed
by

|ψi|2 = e−Γt, (3.4)

where ψi is the associated wave function, Γ the transition rate and t > 0 the time. It can be shown [23]
that the spectral distribution intensity is a Lorentzian distribution given by,

L(ν̃; ν̃0,Γ) = 1
2π

Γ
(ν̃ − ν̃0)2 + Γ2

4
(3.5)

Where for this profile the FWHM is Γ related to the natural life time τ by

τ = 1
2πΓ , (3.6)

ν̃ the variable wavenumber, and ν̃0 the energy center of the transition. The natural broadening is an
homogeneous broadening since all transitions are concerned in equivalent manners.
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Voigt Profile

Voigt profile V is defined as the convolution of a Lorentzian and a Gaussian distributions. The Voigt
profile fitting is used in order to include the two broadening mechanisms. Mathematically, one has

V (ν̃; ν̃0, σ, γ) = G ∗L =
∫ ∞
−∞
G(ν̃ ′; ν̃0, σ)L(ν̃ − ν̃ ′; ν̃0, γ) dν̃ ′. (3.7)

Extracting the contribution of the Gaussian and Lorentzian distribution by fitting the absorbance peaks
could therefore provide information about the broadening process. The full width at half maximum
(FWHM) of the Voigt Profile αV can be accurately approximated by [24]

αV = 1
2

[
C1αL +

√
C2α2

L + 4α2
G

]
, (3.8)

where C1 = 1.0692 and C2 = 0.86639, αL and αG are the widths of the Lorentzian and the Gaussian
respectively. The Fig.3.2 shows the absorbance for the same energy level at two different temperatures.
It can clearly be observed for low temperatures the lineshape follows a Lorentzian profile while for
higher temperatures the Gaussian distribution fits better. This result is expected since thermal motion
is drastically reduced at low temperatures. Voigt profile is thus a good fitting function candidate.
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Figure 3.2 – Detector=InSb, BS=CaF2, polarization=//, resolution=0.03 cm−1, aperture=1.7mm
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3.3 Transition assignment and selection rules

In general, a nominal temperature of 3.6K is achieved by the helium cooling system in order to see only
transitions from the ground state (Γ2 symmetry). Indeed, by calculating the Boltzmann distribution, the
ground state 3H6.1 has more than 99.999 % of the total electron population. Even at this temperature,
some transitions from the first excited state 3H6.2 have been seen. Because of imperfections of the
experimental setup, it is important to keep in mind that the nominal temperature can differ from the
effective sample temperature.

A second set of measurements with increasing the temperature has been done such as to investigate
other transitions coming from higher states 3H6.2 and 3H6.3. We can expect a more intense contribution
for transitions which do not come from the ground state, since the electron population of higher energy
levels increases with the temperature. While for GS transition, we may expect a decreasing contribution,
represented by weaker absorption band.

Each manifold contains 2J + 1 states. Due to the symmetry of the crystal (see Table 1.2) the number
of observed transition lines is smaller, corresponding to degenetated states. Moreover, a transition may
not be observed because of the selection rules. To assign the transition with its initial state, one used
these following procedure :

(1) Identify all features which could be a transition in the absorbance spectrum at 3.6K.

(2) As we know from Christensen (1979) measurements [12], numerical calculation and from our results
(see chapter 4) the 3H6.2 and 3H6.3 state are approximately 31 cm−1 and 62 cm−1 respectively
above the ground state, thus we start to look at transitions with an energy shift of theses ranges.

(3) By warming the sample, transitions from excited states become stronger and thus it highlights
transitions from excited states.

(4) By comparing our results to the Christensen results.

(5) By comparing our results to the different numerical simulation.

Trying to unscramble the assignment puzzle in the best way, the results are presented in the next
chapter.

To have a complete picture of the transition, the coupling between the electronic excitation and the
incoming photon has to be determined. The excitation can occur through different interactions, electric-
dipole, magnetic-dipole or higher orders. Selection rules dictates the most probable. For instance a
electric dipole transition following Γi → Γi is forbidden with i = 1, 2. For magnetic dipole transition
∆J ≤ 1 and therefore transition from the 3H6 manifold to 3F4 cannot occur via a magnetic dipole
transition. Unfortunately, this work does not present such assigment. More details can be found in
Matmon’s work [9] for a S4 symmetry, present in LiTmF4 crystal structure.
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4 Results and discussion

This chapter presents the analysis of the electronic excitations in the far and mid-infrared of the first
three manifolds 3H6, 3F4, 3H5 in a pure LiTmF4 crystal. In the following, the notation // and ⊥
represent the z and x polarization respectively.

4.1 Far Infrared

This region corresponds to the lowest energy excitations. The bolometer detector cooled with liquid
helium is used with a filter cutting higher energy, in combination with the 23µm Mylar Beam Splitter.
In this energy range, due to longer wavelengths and higher refractive index, Fabry-Perot interferences
are clearly visible. The short oscillation in the Fig.4.1 and the big wiggles at the top of the Fig.4.2
and Fig.4.3 with a period of around 0.25 cm−1 and 10 cm−1 respectively come from the optics and the
sample. Although, in certain cases, Fabry-Perot interferences can be comparable to the absorbance
intensity, they do not significantly affect the fit since the interference are periodic and a least mean
square fit is performed. However it gives rise to high fit uncertainties given by the 95% confidence
interval, especially in the integrated intensity. In order to improve confidence of the fit, one can Fourier
transform the transmission spectrum and remove the frequency caused by the Fabry-Perot interference.
This process is shown in the Fig.4.1. As expected the fits are very similar even with the correction, but
the uncertainties of integrated have been reduced.

Only the electronic excitations occurring inside the 3H6 manifold are expected to be found in that
measurement. Indeed, because of the spin orbit interaction the second manifold is separated by almost
6’000 cm−1 and stands in higher energy, in the mid infrared.
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Figure 4.1 – Left: Data corrected by removing the frequency due to Fabry-Perot interferences. Right:
fitting method comparison by taking raw data and corrected data for T=6K.

4.1.1 3H6 manifold

The first manifold of the LiTmF4 is given by Hund’s rules (J = 6) and has 2J + 1 = 13 states
decomposed in 3Γ1 + 4Γ2 + 3Γ34 irreducible representations according to the Table 1.2.

Only the first three transitions have been observed because of the setup limitations. The Fig.4.2 and
Fig.4.3 shows respectively the transmission and the absorbance measured for parallel and perpendicular
polarization. For both polarizations the absorption of the first transition is very strong. Especially
for the x polarization measurement where the crystal absorption for the first (30.8 cm−1) and second
(68.8 cm−1) transition becomes too high and no clear analysis can be performed. Even when the
temperature is increased and depopulate the ground state, the absorption remains too strong. At
the opposite, the third transition around (291.7 cm−1) is very barely observable for the x polarization
data and invisible for the parallel measurement. One would expect to strengthen that transition by
increasing the temperature. Although the absolute transmission values are lower, the dip present at
low temperature, in the right inset of the Fig.4.3, vanishes. One should note that the transmitted beam
is close to zero, therefore we should not do early conclusion. A thinner sample would probably solve
this issue.

The triplet around 202 cm−1/25.1meV in the z polarization configuration is probably caused by ambient
environment since it is not temperature-dependent. However, it is intriguing to not be able to observe
this triplet in perpendicular polarization data. The transmitted signal is again very weak and may be
the cause.
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(a) Transmission

(b) Absorbance

Figure 4.2 – Detector=Bolometer, BS=23µm Mylar, polarization=//, resolution=0.01 cm−1,
aperture=5mm
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(a) Transmission

(b) Absorbance

Figure 4.3 – Detector=Bolometer, BS=23µm Mylar, polarization=⊥, resolution=0.01 cm−1,
aperture=5mm
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The only suitable peak for a precise analysis is the first transition at 30.67 cm−1 in z polarization
configuration. The evolution of the first transition depending on the temperature is presented in Fig.4.4.
The peak position (left graph) shows a complete independence as expected in that low energy regime.
Indeed, no drastic modification of the effective Hamiltonian has been triggered and hence we would
expect to have the same energy difference between the states. An example of a peak temperature-
dependent is discussed in subsection 4.2.2. The integrated intensity in function of the temperature is
plotted on the right graph. A clear correlation appears. It can be explained by the depopulation of
the ground state, since the electronic population follows the distribution of Fermi-Dirac, leading to a
reduction of the probability of transition. It would have been interesting to fit the data and find the
correspondence between the population of the ground state and the intensity of that transition.
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28



Figure 4.5 – Zoom on the energy region between
150 cm−1 and 200 where a strong absorption
occurs in both polarization and is attributed to
a phonon band.

In the energy range between 150 cm−1 and 200 cm−1

a curious feature occurs for perpendicular polariza-
tion, the intensity of the transmitted light seems to
depend strongly on the temperature. It can not be
attributed to the refractive index of the sample which
is temperature-depend, since for parallel polarization
this feature does not appear in similar way. The
question remains open. Moreover, by comparing the
two polarization measurements differentiated only by
the way of orienting the crystal,the transmission ap-
pears to be weaker, in average, for the perpendicular
case. The observation makes even more intriguing
that temperature dependent effects. A zoom of region
of interested is shown in Fig.4.5. In the same region,
in both measurement, a really sharp absorption is
observed around 173 cm−1. This energy range corre-
sponds to phonon excitations, in Babkevitch study
a similar feature is present at the same energy and
has been assigned to a phonon band.

The Table 4.1 summarized the observed transitions
inside the first manifold. The second column correspond to neutron scattering experimental results
from Babkevitch et al. (2015). All transitions observed agree with the previous results and the
relative difference is smaller than 4%. At the exception of the 3H6.3 line where for the x polarization
measurements the difference is around 12%. The deviation of the later is not understood. However,
those results are to take with precaution, since the absorption by the crystal in this energy range is
very strong, which saturates the signal. Moreover, other artefacts like Fabry-Perot interferences could
hide the true signature.

State Obs. transitions

Index Energy [7] Symmetry Initial Polar- Energy Int. intensity
[cm−1] State ization [cm−1] [cm−1]

3H6.1 0 Γ2
3H6.2 31.72 Γ34

3H6.1 x (30.8± 0.5) -
z (30.67± 0.02)∗ (360± 30)∗

3H6.3 61.66 Γ1
3H6.1 x (68.8± 1.5) -

z (64.4± 1.5) -
3H6.4 293.0 Γ2

3H6.1 x (291.7± 0.5) -
z - -

Table 4.1 – Observed transitions in the 3H6 ground manifold. ∗Only this level has been correctly fitted,
the rest is given by visual consideration.
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4.2 Mid and Near Infrared

The second 3F4 and third 3H5 manifolds are located around 5′700 cm−1 and 8′300 cm−1 respectively
above the ground state, which corresponds to the mid and near infrared regions. It turns out the
indium antimonide detector was the most sensitive to investigate the two manifolds. Therefore, the
same configuration has been set up and two beam splitters (BS) were tested, the CaF2 and the mylar
beam splitter with a thickness of 3.5mm.

The Fig.4.6 and Fig.4.7 show the raw transmission and its associated absorbance spectrum for parallel
polarization (z) using the CaF2 and the mylar beam splitter. It highlights the effect of the beam splitter.
The absorption around 4′000 cm−1 is caused by optic elements within the interferometer, since without
the cryostat (void data) the lineshape remains identical and presents no temperature dependence.
Moreover, the feature is visible in both configuration. The cut-off energy around 3′500 cm−1 is due to
the limitation of the detector. In both configurations the second and the third are present, however the
data from the CaF2 beam splitter is preferred for the analysis since it provide better signal to noise
ratio.

The peak assignments were done following the procedure described in section 3.3 and are summarized
in the Table 4.2 and Table 4.3 for the 3F4 and 3H5 manifolds respectively.

Figure 4.6 – Transmission data spectrum using the CaF2 BeamSplitter, detector=InSb, polarization=//,
resolution=0.03 cm−1, aperture=1.7mm
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Figure 4.7 – Detector=InSb, polarization=//, resolution=0.03 cm−1, aperture=1.7mm, (a) absorbance
spectrum using the CaF2 BS, (b) Transmission data and (c) its associated absorbance spectrum using
the 3.5mm Mylar BeamSplitter. 31



4.2.1 3F4 manifold

The Fig.4.8 shows the second manifold where new transitions appear when the temperature is increased.
Those transitions originate from the excited state 3H6.2 and 3H6.3. Indeed, their positions correspond to
the expected value. To take one example, the energy difference between the main peak around 5763 cm−1

present at low temperature and the new peak around 5732 cm−1 appearing at higher temperature is
around 31 cm−1. This energy shift corresponds to the energy difference between the ground state and
the first excited level. One can conclude that this new transition occurs between the same arrival
state but its initial state associated is the first excited state 3H6.2. With the same logic, one expects
to find new absorption lines at lower energy corresponding when increasing the temperature coming
from the (more) excited state 3H6.3 and so on. Indeed, at 25K three new transitions are observed
around 5920 cm−1 and are denoted in red 3H6.3 →3 F4.5−7. Because of inhomogeneous broadening,
the transitions tend to flatten and it is getting harder to distinguish them. Nonetheless, knowing the
energy difference between the states in the first manifold, it is possible to perform a very good fit with
a convolution of 9 peaks as depicted in the top of the Fig.4.9. This assumption is probably not be
valid for very high temperature, since the effective Hamiltonian is expected to be modified by external
perturbation such as crystal vibrations. At the bottom of the figure, the emergence of new peaks as the
disappearance of others are well observed depending on the temperature in the 3D plot.

It is important to notice the birth of a resonance at 5805.8 cm−1, since no peak is found close to
5836.8 cm−1(= 5805.8 + 31 cm−1). Although very unlikely, assuming a transition from the second
excited state, no peak is found close to 5870 cm−1 either. With a deeper investigation, one remarks
that its intensity increases with temperature which suggests a transition from an excited state and
not the ground state. Moreover, according to symmetry and the total angular momentum (J=4) of
that manifold, one expect to see 5 non-degenerate states and 2 doublets. However, only 6 transitions
are clearly visible. In addition, the numerical calculation suggests the presence of one resonance from
the GS close to 5836.8 cm−1, comforting the idea to have the transition 3H6.1 →3 F4.4 that one can
not see. It can be explained by the selection rule, 3F4.4 has a Γ2 symmetry like the ground state.
Therefore electric and magnetic dipole transition are forbidden, but 3H6.2 has a Γ34 symmetry. Hence
this coupling is allowed for an electric dipole transition. Finally, we attribute the resonance 5805.8 cm−1

to the transition 3H6.2 →3 F4.4 and deduce the position of the 3F4.4 state indicated by the yellow dashed
line on the Fig4.8.
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Figure 4.8 – Transitions from the ground manifold to the 3F4 manifold, Detector=InSb, BS=CaF2,
resolution=0.03 cm−1, aperture=1.7mm.
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Figure 4.9 – top: convolution of nine Voigt profiles corresponding to all possible transitions between
3H6.1−3 and 3F4.5−7 states. bottom: absorbance spectrum for different temperatures, Detector=InSb,
polarization=//, resolution=0.03 cm−1, aperture=1.7mm, BS=CaF2.
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One has chosen to investigate the evolution of the transition 3H6.2 →3 F4.2 (5732.5 cm−1). The center
of the selected transition does not show any dependence on the temperature. More generally, not
center temperature dependent up to 50K has been observed inside that manifold. The top Fig.4.10
demonstrates the process of broadening when increasing the temperature. It is possible to estimate
precisely the contribution of the Gaussian and the Lorentzian distributions. Those contributions are
represented in the middle panel. While the Gaussian contribution increases, the Lorentzian contribution
remains constant. As discussed in the previous chapter, the Lorentzian profile is directly related to
the life-time of the state. In the present case, the natural life time is temperature independent and
the broadening comes from only inhomogeneous contributions. Using the Heisenberg uncertainties
principles, we found a life time of few picoseconds for that transition.

A first attempt to resume the observed transitions is presented in the Table 4.2. Unfortunately, the
table does not include yet all the transitions and needs to be completed.

Figure 4.10 – top: total FWHM of the Voigt profile, bottom: distinct contributions between Gaussian
and Lorentzian distribution.

The Fig.4.11 compares the obtained results of this manifolds to the numerical calculation of the best
matched CF parameters from Romanova where the relative error is in average 0.11% and the absolute
error is between 1.3 cm−1 and 12.2 cm−1, which is in good agreement for this manifold. It is important
to mention that the numerical calculation is consistent with the experimental results. That confirms
that our model taking in account the crystal field and the spin orbit interactions are in good agreement.
Moreover, theoretical prediction was useful to complete the picture and deduce the missing transition
because of selection rules. Nevertheless, the first doublet state expected numerically is actually two
singlets experimentally as shown on the right figure where two Voigt profiles are needed to fit correctly
the data. The splitting is around 5 cm−1/0.62meV and is too large to correspond to the hyperfine
splitting. Its origin is probably because of imperfections within the crystal structure leading to lower
the symmetry and resulting to the loss of degeneracy.
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State Observed transitions

Index Energy [12] Symmetry Initial Energy Pol. Int. intensity
[cm−1] State [cm−1] [cm−1]

3F4.1 5585 Γ1
3H6.1 (5599.85± 0.01)∗ x (0.53± 0.02)

(5599.86± 0.01)∗ z (0.23± 0.01)
3F4.2a 5757 Γ34

3H6.1 (5762.85± 0.04) x (26.86± 3.64)
(5762.87± 0.05) z (28.68± 3.45)

3F4.2b - (5768.42± 0.41) x (1.93± 0.09)
(5768.09± 0.22) z (6.73± 0.26)

3F4.3 5757 Γ1
3H6.1 (5776.68± 1.82) x (0.07± 0.01)

(5776.69± 1.25) z (0.22± 0.01)
3F4.4 5828 Γ2

3H6.1 (5836.70± 0.55)∗∗ x -
(5836.60± 0.03)∗∗ z -

3H6.2 (5805.76± 0.05) x (2.00± 0.24)
(5805.89± 0.03) z (5.14± 0.44)

3F4.5 5957 Γ1
3H6.1 (5974.69± 0.06) x (1.48± 0.03)

(5975.18± 0.11) z (0.80± 0.01)
3H6.2 (5946.80± 0.29) x (5.95± 0.32)

(5944.74± 0.07) z (2.33± 1.23)
3H6.3 - x -

(5903.05± 7.89) z (3.21± 11.21)
3F4.6 5961 Γ2

3H6.1 (5975.80± 0.48) x (4.32± 0.52)
(5980.78± 0.56) z (16.14± 2.08)

3H6.2 (5955.62± 1.78) x (16.23± 2.12)
(5953.74± 1.52) z (10.53± 1.79)

3H6.3 - x -
(5911.57± 7.89) z (0.75± 8.42)

3F4.7 5965 Γ34
3H6.1 (5985.67± 0.41) x (5.87± 0.82)

(5990.43± 0.31) z (9.77± 1.63)
3H6.2 (5960.41± 0.26) x (0.24± 0.41)

(5960.81± 0.79) z (0.10± 0.20)
3H6.3 - x -

(5923.51± 16.09) z (4.01± 13.34)

Table 4.2 – For the initial state 3H6.1, 3H6.2, 3H6.3 the measure at T=3.6K, T=15K, T=25K have been
respectively used. No tangible values have been found in x polarization for the transition 3H6.3 →3 F4.5.
∗The data at T=10K are used for the fit.
∗∗These transitions was deduced from the transition 3H6.2 →3 F4.4 and the energy corresponding to
3H6.1 →3 H6.2 has been subtracted. An approximately constant deviation of around +15 cm−1 is found
between the Christensen values our results.
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Figure 4.11 – left: In red the calculated energy levels from Romanova [10] CF parameters. Dashed
lines represented doublet state. In black the experimental data found in that work. In yellow the
expected level deduced by its excited level. Right: Splitting of the numerically expected doublet state,
BeamSplitter= CaF2, detector=InSb, polarization=//, resolution=0.03 cm−1, aperture=1.7mm.

Another splitting is found at 5600 cm−1. The splitting is visible for the two polarizations. The Fig.4.12
shows a set of 6 peaks at low temperature of the first state of the manifold (Γ1). However the energy
difference between each center is much smaller, of the order of tens of µeV. Above 10K, the splitting is
no more distinguishable due to the Doppler broadening effect. The origin may comes from the hyperfine
interaction. Indeed, referring to the Table 1.1, thulium has a nuclear spin I = 1/2 which can lead to a
hyperfine splitting of 2I + 1 = 2 states. However, six peaks are observed. Although Thulium posses 35
known isotopes it is a monoisotopic element. The others isotopes have different nuclear spin which
could create new hyperfine splitting and match the number of peaks observed. Nevertheless, to achieve
that configuration, it would mean that the Thulium sample decays. In that perspective, the irradiation
of the sample could trigger the decay. However it is very unlikely because of the energy insufficiency to
activate a nuclear reaction. Moreover, in comparison to a another set of measurements in the sample of
LiY1−xHoxF4 with x = 0.01 %, the isotopic splitting caused by the lithium ion observed has a difference
energy of around one µeV which is one order of magnitude lower. The question of this splitting origin
remains open.
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(a) (b)

(c) (d)

Figure 4.12 – Detector=InSb, resolution=0.03 cm−1, aperture=1.7mm, BS=CaF2. Splitting of the 3F4.1
energy level (a) transmission data, polarization=// (b) with its associated absorbance. (c) absorbance
data with x polarization. (d) Fit of the 6 observed peaks using 6 Voigt profiles.

38



4.2.2 3H5 manifold

This manifold corresponds to the highest energy manifold investigated in this work. The same analysis
procedure as the 3F4 manifold is followed. The main results are displayed in Fig.4.13 and Fig.4.14.
However, 3H5 manifold is more complex and its interpretation more difficult, because of missing peaks
and signal saturation.

To start, a potential splitting appear in the first energy level (Γ2) shown in Fig.4.13(b) and (c). The
expected first excited state is a singlet according to our numerical calculation. It is not clear if this
splitting is an artefact or is real since the transmission signal is saturated and small. One should pay
attention to the other satellite absorptions around the main peak. The only possible observation is that
the presence of the peaks can only emerge from the sample and not from the instrument.

Looking now to the second energy level, a doublet state is expected. This energy level has been
presented in the precedent chapter and its transmission and absorbance data are plotted in Fig.3.1. The
filtering process highlights two centers which show a temperature-dependent position while a doubly
degenerate state with only one center is expected according to the numerical results. At 4K, the energy
difference is around 3 cm−1 and is similar to the energy difference seen in the 3F4 manifold where the
loss of degeneracy of the state was caused because of the crystal imperfection. The same assumption
can be made here and therefore the loss of degeneracy is attributed to a lower symmetry than the one
considered in the numerical model. It is interesting to note that the gap between the two center become
larger when increasing the temperature which means that each center has an opposite temperature
dependence. Their "center of mass" remains constant. We can try to explain this phenomenon including
phonons contribution. Indeed, by increasing the temperature, one expects to introduce distort due
to the lattice vibration and therefore change the crystal orientation. This hypothesis reinforces the
assumption of the origin of the splitting. Although the lineshape of the splitting of the doublet state in
3F4 manifold does not show a distinct temperature dependent behaviour, the same consideration can
be done. Further work needs to be done to de-convolute the two peaks and determine the presence or
not of a temperature dependence.

Unlike the previous manifold, one remarks a strong intensity dependence on the light polarization, which
indicates different coupling mechanisms. A total of 8 distinct transitions have been assigned and at
least one is missing. Looking at the numerical expectations, the transition should located in the upper
i.e. highest energy part of the manifold. As a result of convoluted transition, it is difficult to clearly
identify a new peak that might me hidden in the lineshape. In our first attempt, we have considered
the possibility that the missing transition is either hidden because of the presence of the other peaks
or either can not be detected because of experimental limitation. In that option, the the transition
3H6.1 →3 H5.7 does not have the same energy between the two polarization. However, the key could be
that, actually there are two different transitions which are respectively not visible for one polarization
to the other because of selection rules. Unfortunately, all transitions from the second excited state
3H6.2 the temperature have been assigned and therefore the identification of the missing peak remain
unsuccessful. The temperature dependence of the 3H5 manifold is presented in the Fig.4.14.
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Figure 4.13 – detector=InSb, BS=CaF2, resolution=0.03 cm−1. (a) Absorbance spectrum of 3H5
manifold (b) transmission and (c) absorbance of the first state with z polarization.

40



The Fig.4.15 right compare the obtained results to the numerical simulation. Although, the peak
locations are in good agreement with the calculation (the relative error average is 0.5% and absolute
error is comprised between 7.8 cm−1 and 180 cm−1), at least one state is missing in the upper part 3H5.
A important thing to notice is a constant deviation of around +15 cm−1 in the same direction for both
3F4 and 3H5 manifolds in our results compare to the Christensen’s results. Moreover, new peaks that
Christensen did not succeed to measure have been observed analysed. The left graph shows the ability
to produce a good fit even with saturated signal. A first try of transition assignments is given in Table
4.3. Further work is needed in order to completely unscramble the puzzle. Some ideas are given in the
next and last chapter.

Figure 4.14 – absorbance spectrum for different temperatures, Detector=InSb, polarization=//,
resolution=0.03 cm−1, aperture=1.7mm, BS=CaF2.
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Figure 4.15 – Left: Voigt fit of a peak having a saturated signal, Detector=InSb, resolution=0.03 cm−1,
aperture=1.7mm. Right: in red the calculated energy levels from Romanova [10] CF parameters. In
dashed line the doublet state, in black the experimental results of this work.

State Observed transitions

Index Energy [12] Symmetry Initial Energy Pol. Int. intensity
[cm−1] State [cm−1] [cm−1]

3H5.1 8270 Γ2
3H6.1 (8287.25± 0.06)∗ x (0.45± 0.42)

(8287.26± 0.05)∗ z (1.94± 1.33)
3H5.2 8287 Γ34

3H6.1 (8300.76± 0.07) x (0.58± 0.30)
(8300.71± 0.07) z (0.39± 0.21)

3H5.3 8287 Γ1
3H6.1 (8303.22± 0.06) x (6.72± 3.71)

(8303.22± 0.06) z (7.16± 3.89)
3H5.4 8500 Γ34

3H6.1 (8323.65± 0.05) x (0.58± 0.24)
(8323.71± 0.08) z (0.20± 0.12)

3H5.5 8519 Γ1
3H6.1 (8513.25± 0.29) x (1.39± 1.13)

(8513.37± 0.08) z (7.79± 2.96)
3H5.6 - Γ2

3H6.1 (8521.73± 0.45) x (3.32± 1.87)
(8521.16± 0.08) z (9.39± 3.69)

3H5.7a - Γ34
3H6.1 (8531.47± 1.03) x (0.40± 0.23)

(8527.32± 0.29) z (0.23± 0.13)
3H5.7b - (8534.44± 0.24) x (0.18± 0.11)

(8531.04± 0.18) z (3.57± 2.01)
3H5.8 - Γ1

3H6.1 (8542.41± 0.04) x (7.66± 2.84)
(8542.46± 0.12) z (1.63± 1.22)

Table 4.3 – Transition from the ground state to the 3H5 manifold.
∗the data at T=10K are used for the fit.
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5 Conclusion and Perspectives

This work has presented the principle of the Fourier Transform Spectroscopy which was used to get
the three first electronic excitation manifolds of the LiTmF4 compound at cryogenic temperatures.
Absorbance peaks from the first, second and third manifolds have been assigned to transitions from the
ground state and the two first excited states.

For the far-infrared region some peaks are missing due to instrumental limitations and a too strong
absorption from the sample. In the 3F4 manifold, the first level observed at 5600 cm−1 is splitted in 6
resonances, while the second doubly degenerate states becomes two singlets due to crystal imperfection.
By increasing the nominal temperature, one has been able to see transition arising from the first and
second excited level instead of the ground state, which was initially hidden from the GS because of the
selection rules, and therefore able to deduce the missing transition which matches the expecting values.
The importance of Selection rules for electric and magnetic dipole has been then highlighted.

The unique high resolution and the brightness of this spectrometer have enable us to see a hyperfine
splitting in the second manifold and its full origin remains unknown. The role of the selection rules has
been highlighted, since there was a missing transition. However, knowing the energy difference between
the ground state and the first excited as well as the emergence of new absorption peaks when increasing
the temperature, leads to the deduction of the missing peak energy level. Furthermore, the numerical
calculation are in very good agreement with the experimental results, since the relative difference is of
the order of 0.1%. However, while a doublet is numerically expected, two singlets are instead observed.
As in the third manifold, the interpretation is the crystal imperfection, leading to lower the symmetry
and a loss of degeneracy.

The transitions occurring in the 3H5 manifold are the most complex to assign. Another other splitting
appeared with an unknown origin. At the same time, two peak centers temperature dependent are
identified and are attributed to the lattice vibration induced when heating. Finally, one transition
remains untraceable and the selection rules might be the cause, since in that manifold the intensity
transition depends strongly on the incident polarization beam. Nonetheless, new resonances that have
not been measured before have been observed. The CF parameters which fit the best with our results
are provided by Romanova study.
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Further work needs to be done to unscramble all the transition and assign the type of transition. In
particular, the low energy measurement was not completely satisfying since the second excited level
could not be determinate accurately. In addition, the transmission signal was completely saturated.
A thinner sample could solve this technical issue. The crystal studied is a pure LiTmF4 compound,
by doping one would be able to study deeper the absorption strength. Using the selection rules and
polarization data we can in principle determine the nature of the transition.

It would have been great to retrieve the new set of CF parameters associated with the present work.
spectre software provides the possibility to calculate the wave function for each state. We can use this
information to directly find the relation between the experimental intensity and the calculated ones.
Although, the numerical model does not take in account the hyperfine interaction which should be taken
if the observation at 5600 cm−1 proves to be an hyperfine splitting, it is possible to include the Zeeman
interaction. Therefore, applying an external magnetic field could lead to interesting comparisons.
Finally, only the first 33 energy levels have been investigated. It will be worthwhile to reach the higher
manifolds in order to get the most precise CF parameters and potentially discover new interesting
features.
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