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Abstract

In reinforcement learning (RL), an agent makes sequential decisions to maximise the reward

it can obtain from an environment. During learning, the actual and expected outcomes

are compared to tell whether a decision was good or bad. The difference between the actual

outcome and expected outcome is the prediction error. The prediction error can be categorised

into two types: the reward prediction error (RPE) and the state prediction error (SPE), which

can serve as teaching signals in reinforcement learning models.

The reward prediction error (RPE), i.e., the difference between the actual and the expected re-

ward, is one of the crucial variables in model-free reinforcement learning. In humans, the RPE

has been shown be generated from the mid-brain dopamine system. Electroencephalogram

(EEG) studies have also shown that the RPE can be reflected by a EEG waveform occurring in

the frontal-central brain region, between 250 and 400ms after a reward signal is shown. This

RPE-related waveform is called the feedback-related negativity (FRN). Most FRN studies use

N-armed bandit tasks to study the relationship between FRN amplitude and the RPE. In the

N-armed bandit tasks, participants receive the reward immediately after an action is taken.

However, everyday reinforcement learning situations come usually with many non-rewarded

states and actions until a reward is obtained. The first part of this thesis aims to answer the

question whether the FRN still reflects the RPE in complex tasks.

The state prediction error (SPE) measures how much the agent’s expectation on state tran-

sitions differs before and after an observation. Novelty and surprise are two types of SPE

signals that drive learning when the external reward is not yet provided. Novelty measures

how frequently an observation occurs, whereas surprise measures how much expectations are

violated. EEG studies have showed that novelty can be reflected in different EEG components,

such as the N1 and the P300. Novelty can even be observed in human infants when they learn

a novel stimulus. RL algorithms with additional novelty-driven module showed good explo-

ration behaviour in learning bandit tasks and simple Markov decision tasks. Surprise, on the

other hand, is also used as a learning signal in many surprise-based RL models. The mismatch

negativity (MMN) in EEG is generally considered as a neural signature of surprise. However,

how novelty and surprise interact and contribute in learning remained un-addressed. In this

thesis, I studied the neural correlates of novelty and surprise in a sequential decision-making

task, and proposed a model combining both novelty and surprise to explain human learning.
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Chapitre 0 Abstract

I implemented different sequential decision-making tasks to study four RL signals, which are

the eligibility trace, the RPE, novelty and surprise. I showed the evidence of eligibility trace in

human learning using pupil dilation measurement. With EEG recording, I confirmed that the

RPE is reflected in the amplitude of FRN (time window of 280-390ms after the state onset),

for both directly rewarded and non-directly rewarded states. I proposed a new RL model,

called SurNoR, using novelty as the intrinsic reward and surprise as the learning modulator,

to explain human learning where no external reward is provided. The novelty signal is found

to be reflected between 80-130ms after the state onset in EEG waveform. The surprise signal

occurs later than the novelty signal, which is reflected between 150-210ms after the state onset.

By using the sequential decision-making paradigm, this thesis extends the EEG observations

of RPE and SPE signals from simple one-step tasks to complex multi-step decision-making

tasks.

Key words: reinforcement learning, reward prediction error (RPE), state prediction error (SPE),

surprise, novelty, eligibility trace, sequential decision-making, electroencephalogram (EEG),

event-related potentials (ERP)
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Résumé

En apprentissage par renforcement (AR), un agent prend des décisions séquentielles pour

maximiser la récompense qu’il peut obtenir d’un environement. Pendant l’apprentissage, les

résultats actuels et attendus sont comparés pour dire si une décision était bonne ou mauvaise.

La différence entre le résultat actuel et le résultat attendu est l’erreur de prédiction. L’erreur

de prédiction peut être classée en deux types : l’erreur de prédiction de récompense (EPR)

et l’erreur de prédiction d’état (EPE), qui peuvent servir de signaux d’apprentissage dans les

modèles d’apprentissage par renforcement.

L’erreur de prédiction de récompense (EPR), c’est-à-dire la différence entre la récompense

actuelle et la récompense attendue, est l’une des variables cruciales en apprentissage par

renforcement sans modèle. Chez l’humain, il a été montré que l’EPR est générée par le système

de dopamine situé dans le mésencéphale. Des études électroencéphalogramme (EEG) ont

également montrées que l’EPR peut être reflétée par une onde EEG se produisant dans la

région cérébrale frontale-centrale, entre 250 et 400ms après l’affichage d’un signal de récom-

pense. Cette forme d’onde liée à l’EPR est appelée la négativité liée à la rétroaction (NLR). La

plupart des études traitant de la NLR utilisent le problème du bandit manchot pour étudier la

relation entre l’amplitude de la NLR et l’EPR. Dans le problème du bandit manchot, les parti-

cipants recoivent la récompense immédiatement après que l’action a été prise. Cependant,

les situations d’apprentissage par renforcement quotidiennes comportent généralement de

nombreux états et actions non récompensés jusqu’à ce qu’une récompense soit obtenue. La

première partie de cette thèse vise à déterminer si la NLR est toujours reliée à l’EPR dans les

tâches complexes.

L’erreur de prédiction d’état (EPE) mesure de combien diffère l’attente de l’agent sur les

transitions d’état avant et après une observation. La nouveauté et la surprise sont deux types

de signaux EPE qui stimulent l’apprentissage lorsque la récompense externe n’est pas encore

fournie. La nouveauté mesure la fréquence à laquelle une observation se produit, tandis

que la surprise mesure le degré de violation des attentes. Des études EEG ont montrées

que la nouveauté peut se refléter dans différentes composantes EEG, tels que N1 et P300.

La nouveauté peut même être observée chez les enfants lorsqu’ils apprennent un nouveau

stimulus. Les algorithmes AR avec un module supplémentaire basé sur la nouveauté ont

montrés un bon comportement d’exploration dans l’apprentissage du problème du bandit

manchot et des tâches de décision markovien simples. La surprise, d’autre part, est également
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utilisée comme signal d’apprentissage dans de nombreux modèles AR basés sur la surprise.

La négativité de discordance (ND) observée en EEG est généralement considérée comme

une signature neuronale de surprise. Cependant, la façon dont la nouveauté et la surprise

interagissent et contribuent à l’apprentissage est restée sans réponse. Dans cette thèse, j’ai

étudié les corrélats neuronaux de la nouveauté et de la surprise dans une tâche de prise de

décision séquentielle, et j’ai proposé un modèle combinant à la fois la nouveauté et la surprise

pour expliquer l’apprentissage humain.

J’ai mis en œuvre différentes tâches de prise de décision séquentielle pour étudier quatre

signaux AR, qui sont la trace d’éligibilité, l’EPR, la nouveauté et la surprise. J’ai montré les

preuves de traces d’éligibilité dans l’apprentissage humain en utilisant la mesure de la dilata-

tion des pupilles. Avec l’enregistrement EEG, j’ai confirmé que l’EPR se reflète dans l’amplitude

de la NLR (fenêtre temporelle de 280 à 390 ms après le début de l’état), pour les états directe-

ment récompensés et non directement récompensés. J’ai proposé un nouveau modèle AR,

appelé SurNoR, utilisant la nouveauté comme récompense intrinsèque et la surprise comme

modulateur d’apprentissage, pour expliquer l’apprentissage humain où aucune récompense

externe n’est fournie. Le signal de nouveauté se reflète entre 80 et 130 ms après le début

de l’état dans la forme d’onde EEG. Le signal de surprise survient plus tard que le signal de

nouveauté, qui se reflète entre 150 et 210 ms après le début de l’état. En utilisant le paradigme

de prise de décision séquentielle, cette thèse étend les observations EEG des signaux EPR et

EPE de simples tâches en une étape à des tâches complexes en plusieurs étapes.

Mots clefs : apprentissage par renforcement, erreur de prédiction de récompense (EPR), erreur

de prédiction d’état (EPE), suprise, nouveauté, trace d’éligibilité, prise de décision séquentielle,

électroencéphalogramme (EEG), potentiel lié à l’événement (PLE)
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1 Introduction

1.1 Reinforcement Learning Theory

Learning is defined as the ‘modification of a behavioural tendency by experience’ according

to the Merriam Webster dictionary (Webster, 2008). Learning can occur in humans, animals,

machines, and even plants (Karban, 2015). When we think of human and animal learning,

the first idea is that learning occurs from the interactions with the surrounding environment.

Reinforcement learning (RL) describes such learning behaviours. In RL, humans and animals

that interact with environments are usually referred to as agents. The agent aims to obtain

rewards from the environment. Reinforcement learning is different from supervised learning

because there is no label for each action telling whether it is good or not. It is also different

from unsupervised learning because it is driven by the desire to maximise the reward the agent

can obtain from an environment (Klopf, 1972), instead of finding the hidden structure of the

environment. The history of RL can be tracked back to the 19th century and many of the RL

models are inspired by psychology and neuroscience studies. I will describe a brief history of

RL and some classical RL models in this section and RL-related physiological studies in the

next section.

1.1.1 A brief history of RL

The family tree of RL has two main branches. One branch started with the psychology of

animal learning and the other started from computational-based solutions to the RL problems.

The first and major branch of RL started from the idea of ‘trial-and-error learning’. It was

a term used by C. L. Morgan in 1894, a British psychologist, to describe animal behaviours

when they learn from past experience (Woodworth, Barber, & Schlosberg, 1954). Then in

1911, E.L. Thorndike pointed out that trial-and-error learning is essential for animal learning

(Thorndike, 1911). Based on this, Thorndike came up with the ‘Law of Effect’, stating that

behaviours followed by pleasant outcomes tend to be repeated and that behaviours followed

by unpleasant outcomes tend to be avoided. In 1927, Oxford University Press translated
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Pavlov’s famous study of classical conditioning into English (Pavlov, 1927), and used the term

‘reinforcement’ to describe a similar learning behaviour as the ‘Law of Effect’. This might

be the origin of the word ‘reinforcement’ used in the context of ‘reinforcement learning’.

The ‘Law of Effect’ encouraged many researchers to implement trial-and-error learning in

electro-mechanical machines in the 1940s and 1950s (Deutsch, 1954; Minsky, 1954; Ross, 1933;

Shannon, 1952; Turing, 1948; Walter, 1950).

About the same time, the other branch of RL started to grow. This branch has its origin in

the optimal control theory in the mid 1950s. The optimal control theory is used for finding a

control law for a system that optimises an objective function over time. Richard Bellman and

others used two componnets, the state of a dynamical system and a value function, to define

an equation to solve the optimal control problems. This equation is the famous Bellman

Equation used in dynamic programming (Bellman, 1957b). Bellman also introduced the

Markovian Decision Processes (MDPs) as a discrete stochastic version of the optimal control

problem (Bellman, 1957a). It later became an important part of the RL theory. Since the late

1950s, dynamic programming, which is considered the only feasible way to solve stochastic

optimal control problems, was extensively developed (Bryson, 1996 for review).

In the 1960s, a very important sub-branch sprouted on the main branch of animal learning.

The Russian scientist M.L. Tsetlin developed a method for solving the N-armed bandit task

(Tsetlin, 1973). The N-armed bandit task is an analogy to a slot machine with N levers, and

is very widely used in RL experiments nowadays. The problem of N-armed bandit and the

methods for solving it were later extended into the field of economics and game theory.

There is also a third branch on the RL family tree, which is supported by the other two main

branches. This branch consists of temporal-difference learning (TD-learning) methods which

is unique to RL. TD-learning describes learning driven by the difference between temporally

successive evaluations of the same event. For example, an apple has a weight at time t, and

a new weight at time t+1, the difference between the two weights at the two time points

drives TD-learning in the apple weight evaluation. TD-learning is originated from the animal

learning psychology. A. Samuel was the first to implement the TD-learning idea in his checkers

playing patent (Samuel, 1959).

In the modern age of reinforcement learning, H. Klopf brought together the ideas of trial-and-

error learning and TD-learning in 1972 (Klopf, 1972). Later R.S. Sutton developed Klopf’s idea

linking it to animal learning (Sutton, 1978a, 1978c), where he described learning rules driven

by prediction changes in temporally successive events. There was a vast amount of research

and methods coming out in the 1980s using the combined idea of trial-and-error learning and

TD-learning, including the Actor-Critic methods, TD(0) and TD(λ) methods (Barto, Sutton, &

Anderson, 1983; Sutton, 1988; Witten, 1977). In 1989, Chris Watkins published his PhD thesis

about Q-learning (Watkins, 1989), which fully brought together the optimal control and the

TD-learning branch. After this, the family tree of RL grew broadly and lushed in the fields of

neuroscience, machine learning, and artificial intelligence.

2
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After Sutton and Barto published their book ‘Reinforcement Learning: An Introduction (1st

Edition)’ (Sutton & Barto, 1998) in 1998, the interdisciplinary field joining the RL algorithms

and RL in neural system has been developed fruitfully. The relationship between TD-learning

and the dopaminergic neuron activity was found by many researchers (Barto, 1995; Friston,

Tononi, Reeke, Sporns, & Edelman, 1994; Houk, Davis, & Beiser, 1994; Montague, Dayan, &

Sejnowski, 1996; Schultz, Dayan, & Montague, 1997) and encouraged later in depth research

using modern techniques such as EEG and fMRI. The neural correlates of RL signals will be

discussed in detail in the next section.

1.1.2 State-of-the-art RL models

In this section, I will introduce the RL concepts and models that are used in this thesis.

RL focuses on reward-directed (or goal-directed) learning from the agent’s interaction with an

environment. The agent performs actions in the environment and receives outcomes from it.

The outcome can be a reward, a punishment, or neutral. The aim of the agent is to maximise

the reward it can obtain from the environment. However, the action chosen by the agent

does not only affect the immediate reward but also the subsequent rewards, which makes it a

difficult problem to solve for classic machine learning models.

There are six main concepts, or elements, in an RL system. They are the agent, the environment,

the policy, the reward signal, the value function, and the model of the environment. An agent

can be a human, an animal or a computer program that interacts with a given environment.

An environment contains a number of states, which are presented to the agent one at a time.

The agent’s objective is to maximise the total reward it can receive in the long term. After the

agent makes an action, the reward signal given by the environment tells immediately whether

the outcome is good or bad. Different from the reward signal, a value function tells what is

good in the long run. The value of a state tells about total amount of accumulated reward in

long term the agent can expect, if the agent starts from that state. Mathematically, the value

function is defined as:

v(s) = E

[ ∞∑
k=0

γk ·Rt+k+1|St = s

]
(1.1)

where s is the state that the agent is in at time t, Rt is the reward signal that the agent receives

at time t , γ is the discount rate for future reward at present time. If the agent knows the reward

Rt+1 at time t +1, this reward is worth γ0 ·Rt+1 = Rt+1 to the agent. Similarly, the reward Rt+2

at time t +2 is worth γ1 ·Rt+1 to the agent at time t . Usually γ has a value between 0 and 1.

When γ approaches 0, the agent considers future values less important to the current decision.

When γ approaches 1, the agent considers the future value more important to the current

decision.
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Equation 1.1 can also be expressed in the form of state-action value q(s, a) when the agent

takes action a at state s as:

q(s, a) = E

[ ∞∑
k=0

γk ·Rt+k+1|St = s, At = a

]
(1.2)

After evaluating the state-action value q(s, a), the agent needs to make an action to maximise

the expected reward it can get. The agent follows a policy π when it makes an action. A policy

defines the way the agent behaves. For example, the policy can be a lookup table that tells the

agent which action to choose at a given state, or a stochastic function telling the probabilities

of choosing an action. Under a different policy π′, the state value v(s) and state-action value

q(s, a) would be different. Thus, we usually use vπ(s) and qπ(s, a) to represent the values when

the agent uses policy π.

There are two main types of RL models, one is model-free and the other is model-based.

Model-free methods are closely related to the ‘trial-and-error’ learning, which learns the value

functions of the states in an environment. Different from model-free methods, model-based

methods learn a model of the environment. The environment model predicts the environment’s

response to the agent’s action. The environment model contains two parts, the state-transition

and the reward model. In state-transition models, the agent learns transitions between states

via actions. The reward model estimates the expected reward at each state. When taking

an action at a given state, the agent first uses the state-transition to predict which states are

upcoming, and then uses the reward model to tell the expected reward from future states. The

difference between the model-free and model based methods is that the policy of model-free

methods is deduced from the value functions, and the policy of model-based methods is

deduced from the environment model.

Model-free RL models – Sarsa & Q-Learning

The two model-free RL models used in this thesis are SARSA(λ) and Q(λ). The learning signal

in both models is the reward prediction error (RPE), defined as the difference between the

actual reward and the predicted reward. Equation 1.3 shows the RPE computed for SARSA(λ)

and equation 1.4 for Q(λ):

RPE t = r +γQ(st+1, at+1)−Q(s, a) (1.3)

RPE t = r +γ ·maxQ(st+1, a∗)−Q(s, a) (1.4)
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where γ is a discounting rate parameter of future rewards. A positive RPE indicates that the

tendency of selecting action a at state s should be strengthened, whereas a negative RPE

indicates that the tendency should be weakened.

The difference between SARSA(λ) and Q(λ) is that SARSA(λ) computes the RPE after taking

the action at time t + 1 following the current policy (usually called on-policy), while Q(λ)

computes the RPE at time t based on the optimal Q(s′, a′) value at current time t under the

current policy (called off-policy).

The Q-values, Q(s, a), represent an estimate of the expected future reward when starting in

state s, taking action a. This value function is iteratively improved by applying an update after

each step:

Qt+1(s, a) = Qt (s, a)+α ·RPE t ·et (s, a) (1.5)

The quantity e(s, a) is known as a short-term memory (Sutton & Barto, 1998) which implements

a decaying memory trace of past state-action pairs with the following dynamics:

et (s, a) =

{
γλet−1(s, a), if (s, a)not visited

1, if (s, a)visited
(1.6)

e(s, a) marks an event in memory eligible for undergoing learning changes. At each trial, the

eligibility trace for all state-action pairs decay by λγ, where λ is the trace decay parameter.

The Q values calculated in this way are then used to select an action at each state according to

a softmax policy:

P (s, a) =
exp(Qt (s, a)/τ)∑
i exp(Qt (s, i )/τ)

(1.7)

where P (s, a) defines the probability of choosing action a at state s, τ is the temperature

parameter which controls the tendency of exploration and exploitation, and i presents all

possible actions at state s.

These equations define the learning model with up to four free parameters: the learning rate

α, the discount rate γ, the eligibility decay rate λ, and the temperature τ.
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Model-based RL model – Forward-Learner

The model-based RL model used in this thesis is the ‘Forward-Learner’ published by Gläscher

(Gläscher, Daw, Dayan, & O’Doherty, 2010). It uses the experienced state transitions to update

the state transition matrix T (s, a, s′) by:

SPE t = 1−T (s, a, s′) (1.8)

where s′ is the arrival state after taking action a at current state s, and T (s, a, s′) is probability

of this transition. The matrix T is thus a state transition model of the environment. After

observing state s′, the transition matrix T (s, a, s′) is updated by:

T (s, a, s′) = T (s, a, s′)+η ·SPE t (1.9)

where the parameter η is the learning rate. For the states s∗ that are not observed when

transitioning from s to s′ taking action a, the transition probabilities are:

T (s, a, s∗) = T (s, a, s∗) · (1−η) (1.10)

In this model-based model, the state-action value QFW D (s, a) is computed as:

QFW D (s, a) =
∑

s′T (s, a, s′) ·
[

r (s′)+argmax
a′

QFW D (s′, a′)
]

(1.11)

A softmax policy is used for action selection using QFW D (s, a) in Equation 1.7.

1.2 The Neural Correlates of Reinforcement Learning

1.2.1 The Reward Prediction Error

The development of RL theory is closely related to the animal and human learning research.

The relationship between RL theory and animal learning is strengthened after the discovery of

dopaminergic neuron activity was found to be explained by the TD errors. This finding initiated

the Reward Prediction Error Hypothesis (RPEH) of dopamine. This hypothesis proposes that

the phasic activity of dopaminergic neurons code for an error between old and new estimates

of expected future reward. This error is delivered throughout the brain. In 1996, Montague,

Dayan, and Sejnowski published the first study supporting this hypothesis. An experiment ran

by W. Schultz (Schultz et al., 1997) in the 1980s and early 1990s, although published in 1997,

showed clearly how the TD errors (which are considered as RPEs in this thesis) were aligned

with the phasic activity of dopaminergic neurons.

A decade later, Holroyd and Coles (Holroyd & Coles, 2002) published the RL-ERN hypothesis,

stating that an error-related component in EEG is generated in the anterior cingulate cortex

(ACC) via the mesencephalic dopamine system when a negative reinforcement learning
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signal occurs. In this hypothesis, the error related EEG component is called the error-related

negativity (ERN). This component is also called the feedback-related negativity (FRN) and the

feedback-error-related negativity (fERN). I use the term ’FRN’ to refer to the prediction error

related EEG component in this thesis. The FRN is observed in frontal-central electrodes and is

thought to be generated from the ACC when there are phasic changes in dopamine signals.

When a negative prediction error occurs, the phasic decrease in dopamine activity disinhibits

ACC neurons, producing a more negative FRN. When a positive prediction error occurs, the

phasic increase in dopamine activity inhibits ACC neurons, producing a more positive FRN.

Since the phasic activity of dopaminergic neurons are thought to reflect the RPEs, and FRN

amplitudes are thought to reflect the dopamine activity, I proposed that the FRN amplitudes

can reflect RPEs in this thesis.

In FRN studies, researchers mostly use probabilistic learning experiments, which are equiva-

lent to the N-armed bandit tasks as introduced in section 1.1.1. Figure 1.1 shows an example

of the FRN amplitudes when receiving reward with different probabilities (Walsh & Anderson,

2011b). In the study of (Walsh & Anderson, 2011b), there were three stimuli and each stimuli

was associated with different reward probabilities (Pr ew ar d = 0%,33%,66%). The FRN occurs

in the time window from 200 to 400ms after the stimulus onset. Some studies consider the FRN

as the ERP waveform in this time window, others consider FRN as the waveform difference

between rewarded (win) and non-rewarded (loss) conditions. In this thesis, I consider FRN as

the ERP waveforms in the 250-400ms time window. FRN amplitudes differ in four feedback

conditions: improbable loss, probable loss, probable win and improbable win. Using the

RL theory, these four conditions can be converted into four scales of RPEs. Improbable loss

occurs when expected loss is low while the actual loss is high, which produces a high negative

RPE. A probable loss occurs when expected loss is similar to the actual loss, which produces

a low negative RPE. A probable win occurs when expected win is similar to the actual win,

which produces a low positive RPE. An improbable win occurs when expected win is lower

than the actual win, which produces a high positive RPE. By comparing the RPEs in the four

conditions to the FRN amplitudes, we find the similar trend that RPE(improbable loss) < RPE

(probable loss) < RPE (probable win) < RPE(improbable win), and also FRN(improbable loss) <

FRN(probable loss) < FRN(probable win) < FRN(improbable win).

Similar experiments were performed in most FRN studies, see (Walsh & Anderson, 2012) for

a review. The topography of the FRN shows a high activity in the prefrontal cortex. EEG

source localization indicates that the FRN is generated from the ACC (Bellebaum & Daum,

2008; Cohen, Elger, & Ranganath, 2007; Gehring & Willoughby, 2002; Gruendler, Ullsperger, &

Huster, 2011; Hewig, Hecht, et al., 2007; Mathewson, Dywan, Snyder, Tays, & Segalowitz, 2008;

Miltner, Braun, & Coles, 1997; Nieuwenhuis, Slagter, Von Geusau, Heslenfeld, & Holroyd, 2005;

Potts, Martin, Burton, & Montague, 2006; Ruchsow, Grothe, Spitzer, & Kiefer, 2002; Tucker,

Luu, Frishkoff, Quiring, & Poulsen, 2003; Zhou, Yu, & Zhou, 2010), which is compatible with

Holroyd and Coles hypothesis. There are rarely any FRN studies using sequential decision-

making tasks or Markovian Decision Processes (MDPs) tasks. It could be because the N-armed
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bandit task is easy to implement, reward is easy to control, and the RPEs are straightforward

to compute in such tasks. To our knowledge, the only study used a two-step decision-making

task using FRN analysis is by (Walsh & Anderson, 2011a). However, in this task, the authors did

not compared the FRN amplitudes with the RPEs on trial-by-trial basis, but only compared

the correlation between the averaged FRN amplitude with the averaged RPE.

In this thesis, by using sequential decision-making paradigm (Tartaglia, Clarke, & Herzog,

2017) and RL methods to compute RPEs at different states, I confirmed that the relationship

between FRN amplitude and the RPE holds true not only for simple N-armed bandit task, but

also for complex sequential decision-making tasks.

1.2.2 The State Prediction Errors — Surprise and Novelty

Besides the RPE, I also studied two SPE signals, namely surprise and novelty. In the litera-

ture, surprise signals are usually studied using an oddball task. In this task, participants are

presented with a sequence of stimuli in a repeated pattern, such as ‘AAB AAB AAB AAB. . . ’.

After participants get used to the pattern, the sequence is interrupted by an infrequent stimu-

lus and becomes for example ‘AAB AAB AAB AAC AAB. . . ’. The stimulus ‘AAC’ is unexpected

and triggers a surprise signal to participants. The EEG waveform that reflects such surprise

signal is called the Mismatch Negativity (MMN). The MMN was observed in both auditory

oddball tasks (Näätänen, Gaillard, & Mäntysalo, 1978) and visual tasks (Cammann, 1990).

Since the experiments in this thesis are done using visual stimuli, I will only focus on the

visual Mismatch Negativity (vMMN) here. The features of different visual surprise rises vMMN

in different latency and locations. The visual stimulus used to trigger vMMN differ in sizes,

shapes, motions, orientation, and contrasts etc. The latency varies from 75ms to 450ms after

the stimuli onset, and the vMMN can be observed in frontal and occipital electrodes. For a

detailed review of vMMN, see (Pazo-Alvarez, Cadaveira, & Amenedo, 2003).

Another type of oddball task, called the novelty oddball, is used to study brain responses to

novel signals. In the novelty oddball task, three different stimuli are presented to subjects. The

three stimulus are a stimuli occurs with high probability, a stimuli with low probability and an

improbable unexpected ‘novel’ stimuli which is used to rise the response to novelty. The ERP

triggered by this novel stimulus can be observed in frontal electrodes around 300ms after the

stimulus onset. The component is defined as the ‘P3a’ component. After subjects habituate to

the stimuli, the ‘P3a’ amplitude attenuates (Courchesne, Hillyard, & Galambos, 1975; Lynn,

2013; Sokolov, 1990).

The SPE signal, such as surprise and novelty, can be considered to be produced by the belief-

updating process. A belief-updating related ERP component is the N1 component, hypoth-

esised by KJ. Friston in 2018 (Friston, Rosch, Parr, Price, & Bowman, 2018). Friston used a

multi-hierarchy generative model to present the process of belief updating, and simulated the

EEG response in a sentence-reading task. The model learns the associations between words in

a sentence. When a word changes in the sentence, it rises two violations, a local violation (the
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word itself) and a global violation (the meaning of the sentence) in the learning model. The

simulated EEG signal showed two peaks after the word change. One occurs around the N1

latency (100ms after stimulus onset) that reflects the local violation. The other occurs as a late

peak at 300ms after stimulus onset (P300), similar to P3a, that reflects the global violation.

The three ERP component, vMMN, P3a, and N1, related to the surprise and novelty in literature,

provide the guidance to look for bio-markers of state prediction errors in this thesis.

1.3 A Sequential Decision Making Paradigm

The experimental tasks used in this thesis are adapted from the sequential decision making

paradigm proposed by (Tartaglia et al., 2017). In this paradigm, states are represented by

clip-art images, actions are presented by grey disks under each image (Figure 1.2). At the

beginning of each experiment, participants are informed about the goal state image and are

asked to find the goal image for 5 times. For each image, clicking at the same disk leads always

to the same subsequent image, i.e., the state-action transitions are deterministic. In other

words, the state-action transition matrix, which defines the environment, contains only ones

and zeros.

During a trial (Figure 1.3), an image (state) is shown for an interval between 700 to 1700ms

(uniformly random) and then the grey disks appear while the image stays on the screen. Disks

are shown until participants click on one of them (action). There is no time limit for making an

action. After an action, a blank screen is presented with a randomly chosen duration between

700 to 1700ms. Then, the next image is shown and so on.

In this thesis, I designed two types of environmental structures. One is the complex structure

shown in Figure 1.4 and the other is the simple structure shown in Figure 1.5.

The complex environmental structure contains three types of states: (1) a goal state, which is

the immediately rewarded state; (2) several progressing states (state 1, 2, 3, 4 in Figure 1.4A),

which lead participants to the goal state; and (3) several trap states (state 5, 6 in Figure 1.4A).

If participants come to one of the trap states, they need to find the correct action that leads

them back to the first progressing state, which is furthest away from the goal (state 1 in Figure

1.4A). At each non-goal state, there are three types of actions. (1) One type of action brings

participants to the next progressing state, which is closer to the goal (green arrows in Figure

1.4A). (2) One type of action brings participants to one of the trap states (blue arrows in Figure

1.4A), where participants have to find the way to the first progressing state. (3) One type of

action let participants stay at the current state (yellow arrows in Figure 1.4A).

Different from the complex environments, the structure of the simple environment only

allows participants to follow a given path to the rewarded state. The structure of the simple

environment is presented in Figure 1.5. The environment contains a goal state and several

non-goal states. The goal state contains an immediate reward. Each non-goal state contains
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a number of actions that participants can choose. Among these actions, there is only one

action can lead participants to the next state (green arrows in Figure 1.5). Other actions only

let participants stay at the current state (yellow arrows in Figure 1.5).

Before starting the experiment, I showed the participants the goal image that they needed to

find. Then, participants were presented the other non-goal images that they may encounter

the experiment. After seeing the images on the screen, participants clicked the ‘start’ button

to start the experiment. Participants clicked through the environment until they found the

goal state. An episode was finished when participants found the goal state.

1.4 Current Research

Every day learning is far more complex than the N-armed bandit task used in previous RL-EEG

studies. Humans usually need to make a sequence of actions to obtain a reward. For example,

when a person is hungry and wants to eat, he or she first needs to walk to the fridge (first

action), then to open the door of the fridge (second action), take the cold food out (third

action), and to warm it up (fourth action). Only after these actions are taken in a proper

sequence and at the right state, he or she can get the final reward, which is the eatable food.

The question to be answered in this thesis is whether the observations and conclusions drawn

from the simple N-armed bandit tasks can be generalised to complex tasks. Recent researchers

have started to use sequential tasks to study the neural correlates of RL components, such as

the RPE, reward and SPE. Glaescher (2010) used a two-stage decision-making task to dissociate

the RPE from the SPE. However, in Glaescher’s experiment, participants learned the state

transitions and reward mappings in separate stages. Especially in the reward mapping learning

phase, participants did not make any actions to obtain reward but only observed associations

between reward and states. In this design, although participants made sequential decisions to

obtain the reward, they lack the opportunity to learn the environment from scratch. Another

two-step task, introduced by Daw et al (Daw, Gershman, Seymour, Dayan, & Dolan, 2011),

also aimed to distinguish model-based and model-free RL aspects of human RL. In Daw’s task,

one state was presented to participants at a time. Participants made an action at the given

state and were led to the second state. At the second state, participants made an action again

to obtain the reward. The state transitions were stochastic in Daw’s two-stage task. The fMRI

results showed that both model-based and model-free learning signals can be observed from

the striatum and prefrontal cortex.

Both Glaescher and Daw studied the neural sources of RPEs and SPEs using fMRI. However,

studies about temporal resolution of the prediction errors occur are still largely lacking. Sam-

brook (Sambrook, Hardwick, Wills, & Goslin, 2018) adapted Daw’s two-stage task to study the

time window of prediction errors using EEG recording. Participants made one action at the

first state, and then observed the following state and final reward. Although the task contained

two states, the fact that participants made only one action made the task similar to a N-armed

bandit task.
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Previous researches revealed the neural sources of RPEs and SPEs. However, there are two

limitations. The first limitation is that the tasks used in previous researches were too simple,

where participants only made one or two actions to obtain a reward. Whether the RPEs and

SPEs observed can be generalised into complex learning tasks remained unanswered. The

second limitation is that the temporal information of the RL signals were not thoroughly

studied in sequential learning tasks.

To address the two limitations, I implemented a truly sequential decision-making task based

on the paradigm by (Tartaglia et al., 2017). I recorded and analysed the EEG signals when

participants performed the task. With the help of classic RL models and the newly developed

SurNoR model (see Chapter 4 for details), I identified the time windows of the RPE, surprise

and novelty signals in sequential RL tasks.

1.5 Aims of This Thesis

In this thesis, I employed three sequential decision making experiments, aiming to study

four RL signals. The four signals I studied in this thesis are: the eligibility trace, the reward

prediction error (RPE), surprise and novelty.

The first experiment (Chapter 2) aimed to study the evidence of eligibility trace in human

learning. The experiment was in collaboration with Dr. Marco Lehmann in the Lab of Com-

putational Neuroscience. We used an adapted version of Tartaglia’s paradigm (Tartaglia et

al., 2017) and recorded both pupil dilation and EEG during the experiment. The results of

this study showed evidence of the eligibility trace in human behaviours and pupil dilation

(Lehmann et al., 2019).

In the second study (Chapter 3), I designed six simple learning environments and two complex

environments, aiming to study the relationship between the FRN amplitude and the RPE.

Participants explored the environments by making actions at each states, in order to find the

rewarded goal state. The RPEs of non-goal states fluctuated during learning, which made it

difficult to search for corresponding time window using the RPEs of non-goal states. The RPEs

of the goal states decreased monotonically from beginning to end. Thus, I used this monotonic

trend to search for the EEG time window of RPEs at the goal states. The time window I found

was between 250 to 400ms after the state onset in both simple and complex environments.

This time window is very close to the FRN introduced in section 1.2.1. Then I tested if the

mean amplitudes in this time window reflect the RPEs of the non-goal states. I computed the

RPEs of non-goal states using the SARSA(λ) model. The regression between the estimated

RPEs and the mean EEG amplitudes was significant, confirming that the FRN amplitude can

reflect the RPEs in sequential decision-making tasks. This results generalised the RL-ERN

theory ( Holroyd & Coles, 2002, section 1.2.1) from N-armed bandit task to sequential tasks.

The third project (Chapter 4) contained two blocks, aiming to study the time course of surprise

and novelty. In the first block, participants were asked to find the goal state in a complex
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environment. The environment contained several trap states. If fell into the trap states,

participants needed to find the path to exit. The trap states made it difficult for participant to

find the goal. However, I observed that participants can learn the structure of the environment

and avoid trap states very quickly. Even before seeing the goal state, participants were able

to find the correct path to the goal. Participants’ behaviour in the un-rewarded stage can

neither be explained by model-free nor model-based RL methods. Model-free methods cannot

compute the values of states because there were neither reward nor RPE. Thus, a model-free RL

agent only makes random actions before seeing the goal. Model-based methods can only learn

the state transitions but not the reward mapping without a reward (Blodgett, 1929). Similar to

the model-free agent, a model-based agent also makes random actions in this case. I proposed

that the learning is driven by the novelty of the states when reward is absent. To find out

when novelty is processed in the human brain, I compared the ERP between frequently visited

states and rarely visited states. States that were visited more often had low novelty. States

that were visited less often had high novelty. The two ERP curves differed significantly in the

time window from 80 to 130ms after the state onset. I computed the mean amplitudes in the

selected time window, and estimated the novelty using the SurNoR model. The correlations

between the EEG amplitudes and estimated novelty were significant, confirming that the EEG

amplitude in the time window between 80 and 130ms is a potential marker for the novelty

signal. In the second block of the experiment, I swapped the images of two states without

informing participants, aiming to rise surprise signal to participants. By comparing the ERP

between surprised trials and un-surprised trials, I found that the amplitude in the time window

from 150 to 210ms reflected different surprise level. Then I correlated the EEG amplitudes

with the estimated surprise. The correlation is significant, indicating that the time window of

150 to 210ms after the state onset is a potential marker for the surprise signal.

Inspired by the results from the second and third experiments, I also designed another experi-

ment to study the relationship between novelty and reward (Chapter 5). In this experiment,

I introduced an ’infinite’ state, where participants always see new images at this state. By

comparing participants novelty-seeking and reward-seeking behaviours, I want to test which

signal is stronger in driving learning. This experiment is still undergoing.
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Figure 1.1 – Feedback related negativity (FRN) for improbable and probable wins and losses.
Coloured region presents the difference between high probability win/loss and low probability
win/loss EEG waveforms. The figure is adapted from the study in (Walsh & Anderson, 2011b).

Figure 1.2 – Stimulus presentation in the sequential decision making paradigm. RL states are
represented by clip-art images in the centre of the screen. RL actions are represented by grey
disks below the images.
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Figure 1.3 – EEG recording during the experiment. An image (state) is presented on the screen.
After a random interval of 700-1700ms, grey disks appear, on which participants are asked to
click (actions). After an action, a blank screen is shown for a random interval between 700
and 1700ms and then the next state appears. The goal state is a ‘thumb-up’ image in this
example. The green interval indicates the time (0-700ms after the image onset), for which ERP
was analysed.

14



Introduction Chapter 1

Figure 1.4 – (A)The structure of the environment used in the complex experiment. Digits
present the non-goal states, red G presents the goal states. Green arrows present the actions
that lead participants from one state to the next progressing state. Yellow arrows present
actions that let participants stay at the same current state, yellow arrows at state 5, 6 are not
shown because of lacking space. Blue arrows present actions that lead participants to one of
the trap states. Red arrow present the action that lead participants to the goal state. (B) Two
complex environments used in the experiments in Chapter 3.
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Figure 1.5 – (A) The structure of the simple environment. Digits present the non-goal states,
red G presents the goal states. Green arrows present the actions that lead participants from
one state to the next state. Yellow arrows present actions that lead participants stay at the
same current state. Red arrow present the action that lead participants to the goal state. (B) An
example of state-action transitions is shown in (A). A state is represented by an image and an
action is represented by a grey disk. There are three actions at the state ‘cup’, two of them lead
participants to the same state and one leads to a different state. (C) Six simple environments
used in the experiments in Chapter 3.
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2 Eligibility Trace in Sequential
Decision-Making

2.1 Preface

Humans and animals interact with the environment to obtain reward. To obtain the max-

imum amount of reward, they learn from past experience. Reinforcement learning theory

describes such learning situations and provides powerful algorithms to model the learning

process. When agents (humans, animals or machines) are facing a sequence of decisions

before obtaining a reward, a mechanism is needed to map earlier decisions to the final delayed

reward. In other words, an agent needs to memorise previously experienced states and actions

in order to learn the consequences of past actions. The memory is then used for later learning.

RL provides such a memory mechanism, called the eligibility trace, which allows past traces

(i.e., experienced states and actions) to be eligible for future decision-making.

Klopf introduced the idea of eligibility traces to RL models in 1972 (Klopf, 1972). Since then,

computational models with eligibility traces are well developed (Barto & Sutton, 1981a, 1981b;

Barto et al., 1983; Sutton, 1978a, 1978b, 1978c). Physiological experiments also showed

evidence of the eligibility trace in synaptic plasticity during learning (Bittner, Milstein, Grien-

berger, Romani, & Magee, 2017; Fisher et al., 2017; He et al., 2015; Yagishita et al., 2014).

Computational models with eligibility traces outperformed those without in explaining hu-

man learning (Bogacz, McClure, Li, Cohen, & Montague, 2007; Daw et al., 2011; Tartaglia et al.,

2017; Walsh & Anderson, 2011a). However, there is still a lack of direct physiological evidence

of eligibility trace in human sequential decision-making.

In this study, we designed a sequential decision making experiment with pupillometry and

EEG recordings to show direct evidence for the existence of eligibility traces in human learning.

The study is published as ‘Lehmann, M. P., Xu, H. A., Liakoni, V., Herzog, M. H., Gerstner, W., &

Preuschoff, K. (2019). One-shot learning and behavioral eligibility traces in sequential decision

making. eLife, 8, e47463’ (see Appendix 1).
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2.2 Experimental Design

In TD-learning without eligibility trace (TD(0)), only the last state-action pair is reinforced

when the agent obtains a reward after making a sequence of actions. Whereas with eligibility

trace, the whole sequence of state-action pairs before reaching the goal is reinforced. The

eligibility trace parameter λ controls the memory decay rate for the past state-action sequence.

We call the TD-learning models with eligibility trace TD(λ) models. For example, if the

state action sequence is ‘S A1− > S A2− > S A3− > Goal ′, by using a TD(0) model, only the

‘S A3−>Goal ′ transition is reinforced. If we use a TD(λ) model, all the transitions of ‘S A1−>
S A2−> S A3−>Goal ′ are reinforced to different degrees controlled by the parameter λ.

Based on the difference between TD(0) and TD(λ), we designed an experiment to test if human

participants use TD(0) or TD(λ) in sequential decision-making. A special design was used here.

In the first episode, no matter which actions the participants took, they were always guided

through the state sequence ‘S->D2->D1->Goal’ (Figure 2.1A). We assumed that participants

keep a memory of the experienced state sequence, and tested to which extend the memory

traced back. According to TD(0), participants only reinforced her last state-action pair ‘D1-

>Goal’. According to TD(λ), participants also reinforce the previous state-action pairs such

as ‘D2->D1’. We divided participants into two groups in the second episode. The first group

(Figure 2.1 B1) was used to test evidence for TD(0) model. If a participant chose action ‘b’ (as

the example shown in Figure 1B1) at state D1, which was the same action he/she took in the

first episode (Figure 2.1A), we can confirm that the transition from state D1 to the goal was

reinforced, as predicted by the TD(0) model. The second group (Figure 2.1 B2) was used to test

if participants behaviour can be explained by a TD(λ) model. If a participant chose action ‘a’

(as the example in Figure 2.1 B2) at state D2, which was the same action as in the first episode

(Figure 2.1A), we can confirm that the transition from state D2 to D1 was also reinforced. The

behaviour cannot be explained by the TD(0).

2.3 Results

The results are presented in the published manuscript ‘Lehmann, M. P., Xu, H. A., Liakoni, V.,

Herzog, M. H., Gerstner, W., & Preuschoff, K. (2019). One-shot learning and behavioral eligibility

traces in sequential decision making. eLife, 8, e47463’ (see Appendix 1).

2.3.1 Behavioural results

Three conditions were used in the experiment (Figure 2.2A). In the spatial location condition,

states were presented by rectangles on different locations of the screen. In the audio condition,

states were presented by short sound clip. In the clip-art condition, states were presented by

clip-art images in the centre of the screen. We defined the action that participant took from

state D1 to the goal as action ‘b’, and the action that participant took from state D2 to state D1

as action ‘a’.
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Behavioural performance of action bias is shown in Figure 2.2B. When participants started

from state D1 in the second episode (Figure 2.1 B1), we found that participants were more

likely to repeat the same action (action ‘b’) they took in the first episode (Figure 2.2 B1). The

bias towards action ‘b’ confirmed that the transition ‘D1->Goal’ was reinforced as predicted by

TD(0). When participants started from state D1 in the second episode (Figure 2.1 B2), we found

that participants were more likely to repeat the same action (action ‘a’) as they took in the first

episode (Figure 2.2 B2). The action selection bias towards action ‘a’ cannot be explained by

TD(0) models, because the transition ‘D2->D1’ was not reinforced in TD(0) models. TD(λ)

explained the action selection bias because with the eligibility trace, the transition ‘D2->D1’

was reinforced.

2.3.2 Pupil dilation results

In the first episode, when participant saw state D1 (the state before goal state), no reward was

obtained yet. In the second episode, participant had already seen the reward (goal state) at

the end of the first episode. By comparing the pupil response of state D1 before and after

seeing the reward, we can identify the effect of reward. Figure 2.3A shows that after seeing

the reward, the pupil response to state D1 was later and the amplitude was higher. We then

tested if the pupil response to state D2 (‘D2->D1->Goal’) is similar to the response to state D1.

Figure 2.3B shows that indeed the pupil response to state D2 was later in time and higher in

amplitude in the second episode than in the first episode. The statistical t-test between pupil

response in the first and second episode at state D2 was significant, confirming the existence

of an eligibility trace in human sequential decision-making.

2.3.3 Model fitting

We chose three types of models to fit human behaviours, which are four TD(λ) models, two

model-based RL models and two TD(0) models (Figure 2.4). A biased random model was used

for baseline comparison. Detailed implementation of all the models tested in Figure 2.4 is

described the manuscript (Lehmann et al., 2019).

The second to fourth column in Figure 2.4 shows the model fitting result measured by the

Akaike Information Criterion (AIC) for each experimental condition. Lower AIC value indicated

better model fitting performance. wAIC in the figure presents the normalised Akaike weights

(Gernand & Fenske, 2009), telling the probability of current model being the best model.

Higher values of wAIC indicate the corresponded model explained human behaviours the

best. wAIC value smaller than 0.01 are not shown in the figure. A Wilcoxon rank-sum test

was used to compare the AIC of models. k pairs of individual ranks were used to compare

models and to compute the p-values. p(a) presented p-value when comparing each TD(λ)

model with the Hybrid model (best performed model without eligibility trace). p(b) presented

the p-value when comparing Q-0 model with Q-λ model. p(c) presented the p-value when

comparing SARSA-0 model with SARSA-λmodel. p(d) presented the p-value when comparing
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the biased random model with the Forward Learner model. In the last column, the models

were compared aggregating all three conditions using the Wilcoxon rank-sum test. The result

showed that TD(λ) models, which were the models with eligibility trace, explained human

behaviour better than models without eligibility trace.

2.4 Discussion

In this study, we employed a special experimental design to test if humans use the eligibility

trace mechanism in learning a sequential task. Participants explored an environment and

obtained a reward at the goal state in the first episode. We tested if participants memorised

their past actions at two states (state D1 and D2). According to TD(0) models, which do not

utilise an eligibility trace, only the last state-action pair before the goal is reinforced. To the

contrary, TD(λ) models predict that not only the last state-action pair before the goal, but also

previous state-action pairs, are reinforced. The behaviour, pupil dilation and model fitting

results support the hypothesis that humans use eligibility trace when learning a long state-

action sequence with delayed reward. Our results confirm the existence of eligibility trace in

human learning, which agrees with previous studies (Daw et al., 2011; Gläscher et al., 2010; Niv,

Edlund, Dayan, & O’Doherty, 2012; O’Doherty, Cockburn, & Pauli, 2017; Pessiglione, Seymour,

Flandin, Dolan, & Frith, 2006; Walsh & Anderson, 2011a) and also extends the conclusion to

sequential decision-making paradigm.
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Figure 2.1 – (A) The structure of the learning environment in the first episode. Participants
started from state S and chose one from the two actions (‘a’ or ‘b’). No matter which action they
chose, state D2 was presented after taking the action. Participants chose one of the two actions
again at state D2. No matter which action they chose, state D1 was presented after the action
was taken. Again, they chose from action ‘a’ or ‘b’ at state D1 and the goal (G) was presented
after D1. For example, the action sequence taken by a participant in this figure is ‘b-a-b’
(underlined). However, no matter which action was taken at each state, the state presentation
sequence was always ‘S-D2-D1-G’ to participants in the first episode. (B) Participants were
divided equally into two groups, one group experienced their second episode as shown in
(B1), the other group experienced their second episode as shown in (B2). (B1) Half of the
participants started from state X in the second episode. No matter which action (‘a’ or ‘b’) they
chose, state D1 was presented after X. We tested if participants still chose action ‘b’ at D1 (as
in the first episode) to obtain the goal in this design. (B2) Half of the participants started from
state Y in the second episode. No matter which action they chose, state D2 was presented
after Y. We tested if participants still chose action ’a’ at D2 (as in the first episode) to go to
state D1. (C) The example of the experimental stimuli in clip-art condition. Starting state S
in the first episode was presented by a basketball image. After the image was shown, a fixed
point was presented meaning participants needed to choose an action. After the action ‘b’
was taken, state D2 (a coffee image) was shown. The first episode ended when the goal image
was shown. Then the second episode started depends on the two conditions in (B1) and
(B2). In the example here, the second episode is in condition (B2). The figure is adapted from
(Lehmann et al., 2019).
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Figure 2.2 – (A) The experiment was ran in three different conditions: spatial location condition
(states were presented by rectangles in different locations), audio condition (states were
presented by different sounds) and clip-art image condition (states were presented by different
clip-art image in the middle of the screen). (B1) Averaged participants’ action selection bias
in the second episode corresponding to condition in Figure 1B1. Action ‘b’ was the action
chosen by participants at state D1 to go to the goal state. (B2) Averaged participants’ action
selection bias in the second episode corresponding to condition in Figure 1B2. Action ‘a’ was
the action chosen by participants at state D2 to go to state D1. The figure is adapted from
(Lehmann et al., 2019).

22



Eligibility Trace in Sequential Decision-Making Chapter 2

Figure 2.3 – Pupil dilation in different conditions in the first two episodes. Black curve: pupil
response in the first episode. Red curve: pupil response in the second episode. Thin lines
indicate the pupil signal ± SEM. Green Interval marks the time course where the two curves
differed significantly (p < 0.05). (A) Comparison of pupil response at state D1. Pupil response
to D1 was later with higher amplitude in episode 2 (red curve) than in episode 1(black curve).
(B) Comparison of pupil response at state D2. Pupil response to D2 was later with higher
amplitude in episode 2 (red curve) than in episode 1(black curve). Significance was reached at a
time tmi n , which depends on the condition and the state: spatial D1: tmi n = 730ms(22,131,85);
spatial D2: tmi n = 1030ms(22,137,130); sound D1: tmi n = 1470ms(15,34,19); sound D2: tmi n =
1280ms(15,35,33); clip-art D1: tmi n = 970ms(12,39,19); clip-art D2: tmi n = 980ms(12,45,41).
(C) Participant-based comparison between pupil response to state D1 in episode 1 (black
dots) and episode 2 (red dots). Each grey line presents one participant. The pupil response
differences between the two episodes are significant in all three conditions. P-values are
presented in the figure. The figure is adapted from (Lehmann et al., 2019).
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Figure 2.4 – Comparison between TD(λ), TD(0) and model-based models when fitting be-
havioural data. Four TD(λ) models were used to fit behavioural data, which were Q-λ, Re-
inforce, 3-step-Q and SARSA-λ. Two model-based model were used to fit behavioural data,
which were Hybrid and Forward Learner (Gläscher, Daw, Dayan, & O’Doherty, 2010). Two
TD(0) models were used, which were Q-0 and SARSA-0. A biased random model was used as
the null-model, i.e. the baseline for comparing model performance. Values in each column
are explained in the main text. The figure is adapted from (Lehmann et al., 2019).
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3 Neural Correlates of the Reward Pre-
diction Error

3.1 Preface

During learning or decision-making, human can adjust their behaviours based on delayed and

sparse feedback given by the environment. The feedback can be either reward or punishment.

For example in maze running tasks, a player will not choose the path if he or she finds that

the road in front is blocked. However, once a player finds the exit of the maze, he or she is

very likely to take the same path to the exit if asked to explore the maze again. In this scenario,

the blocked road and the exit are both reward signals given by the environment to the player,

while the former can be considered as a negative reward and the latter as a positive reward.

Reinforcement learning (RL) theory is well suited in solving this learning scenario. In this

chapter, I will focus on model-free learning in RL. Holroyd and Coles came up with the RL-ERN

hypothesis in 2002 (Holroyd & Coles, 2002), stating that the amplitude of an EEG component,

called the Feedback-Related Negativity (FRN), reflects the RPEs. The hypothesis was later

confirmed by many other researches (see (Walsh & Anderson, 2012) for a review). However,

most of the learning tasks in these studies are modified versions of the N-armed bandit task.

In the N-armed bandit task, participants do not need to make sequential decisions but only

one decision to obtain the reward. The simple task cannot represent the learning situations

in daily life. Thus, I used a truly sequential task to test if the signal in reward-based learning,

such as the RPEs, can be reflected by the FRN amplitude.

3.2 Results

The results are presented in the manuscript to be submitted “EEG signatures of the Reward-

Prediction Error at non-rewarded states. He A. Xu, Marco P. Lehmann, Wulfram Gerstner, and

Michael H. Herzog” (see Appendix 2).

In this study, I designed two sequential decision making experiments based on the paradigm

proposed in (Tartaglia et al., 2017). The first experiment uses 2 complex sequential learning
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environments (Figure 1.4) to test if the FRN amplitude reflects the RPEs in non-directly

rewarded states (non-goal states). The second experiment uses 6 simple environments (Figure

1.5) to test if the FRN amplitude reflects the RPEs in directly rewarded states (goal states).

When participants saw the rewarded states (goal state) for the 1st, 3rd and 5th times, the

corresponding RPEs decreased. By comparing the Event Related Potentials (ERPs) of the three

conditions, we can find the potential time window where the RPEs are reflected. The result

shows that the ERP amplitudes in the time window between 280 and 390ms after the state

onset reflect the RPE changing trend (Figure 3.3, 280-360ms for the complex environments,

280-390ms for the simple environments). This time window is in the FRN time range. We

then estimated the RPEs of each state visit using the SARSA(λ) model, and analysed the linear

regression between the estimated RPE and the mean FRN amplitudes in this window. The

participant-by-participant based linear regression (Figure 3.4 and 3.5) confirmed that the FRN

amplitudes reflect the RPEs of both non-goal states (p = 0.02, t(11) = 2.5, sd = 6.1) and goal

states (p = 0.03, t (13) = 2.3, sd = 2.7).

The sequential tasks also provided an opportunity to investigate how brain reacted to directly

rewarded and non-directly rewarded stimuli. To do this, I divided all the trials to two groups

in each experiment: the REWARD group and the Non-REWARD group. The REWARD group

contained all the trials when participants found the goal states. The Non-REWARD group

contained all the trials when participants visited the non-goal states.

First, I compared the ERPs between the REWARD and Non-REWARD groups and found in

both experiments there were two time windows that showed the significant difference (Figure

3.6A, B). The EEG source localisation was performed using the standardised low resolution

brain electromagnetic tomography (sLoreta) (Pascual-Marqui et al., 2002). The two groups of

EEG data (REWARD/ Non-REWARD) were converted into 3D-MNI space for all blocks in both

complex and simple experiments. sLoreta estimates the current source density distribution

for trials of EEG data across all data points on a dense grid of 6239 voxels at 5 mm spatial

resolution.

I compared the current source densities for each observer’s ERPs averaged in the selected time

windows shown in Figure 3.6. Statistical analysis was applied between groups within each

experiment using the implemented statistical nonparametric mapping tool using corrected

p-value < 0.05 for significance.

In the late time window (500-570ms) of the complex experiment, I found medial frontal gyrus

(BA10, X = -10, Y = 55, Z = -5), the anterior cingulate cortex (BA32, X =-10, Y = 33, Z = -7) and

the cuneus (occipital lobe, BA18, X=-10, Y = -96, Z = 15) activated more for REWARD condition

than for Non-REWARD condition (Figure 3.6C, t (10) = 2.76, p = 0.02).

In the late time window (421-559ms) in the simple experiment, I found that the lingual gyrus

(occipital lobe, BA18, X = -10, Y = -91, Z = -20), the precuneus (parietal lobe, BA7, X = -10, Y -50,

Z = 50), the medial frontal gyrus (BA10, X = -10, Y = 46, Z = 14) and the anterior cingulate cortex
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(BA32, X = -10, Y = 45, Z = 5) were highly activated for the REWARD condition (Figure 3.6D). The

current source densities were high in the REWARD condition and low in the Non-REWARD

condition (t(12) = 4.32, p < 0.001), indicating that these sources were highly activated on

rewarding feedback.

I also compared the current source densities of the REWARD condition and each of the Non-

REWARD conditions in the early windows of both experiments, no significant difference was

found between conditions.

3.3 Discussion

Decision masking is a complex process involving the evaluation of the reward, the RPE, and

potentially other values. In model-free reinforcement learning, the RPE is the most important

variable. In N-armed bandit tasks, the FRN is positively correlated with the RPE (Holroyd &

Coles, 2002). In this chapter we wanted to check whether a similar correlation is also true in

more interesting situations where decision making is sequential and reward is not delivered

immediately. Classic model-free reinforcement learning models propose that the RPE plays

an essential role also at states that are not directly rewarded. Hence, we asked the question

whether there is evidence for RPEs in EEG signals at non-rewarded states. To address this

question, we used a previously developed sequential decision making paradigm, where a goal

is found only after a sequence of actions (Clarke et al., 2015; Tartaglia et al., 2017).

We first used two complex environments which contained trap states and loops to test if the

FRN-ERP relationship proposed by Holroyd and Coles still holds true. The FRN amplitude

reflected the RPEs of the non-goal states in a time window of 280 - 360ms after the state onset.

Since the goal state occurred rarely - only 120 times when summed over all participants and

epochs in the complex environments, the correlation between FRN amplitudes and RPEs

at the goal states was not significant. Thus, we used six simple linear environments with

1-dimensional arrangement of states to test if the FRN amplitudes reflect the RPEs of the goal

states. Indeed, in the time window of 280-390ms after the state onset the correlation was

significant. Both time windows are very close to the FRN window.

Contrary to most studies in reinforcement learning, we used a deep sequential decision making

task, where only one of many states was rewarded. Sambrook et al., (Sambrook et al., 2018)

used a two-step task. They found that the RPEs of the intermediate state was also reflected

in the EEG around 200-400ms. In an fMRI study, Glaescher, Daw and Dayan (Gläscher et al.,

2010) used a 2-step design and found that that the sources of RPE are in the Ventral Striatum,

which is line with the proposal by Holroyd and Coles (Holroyd & Coles, 2002) that the FRN

sources of the RPE are in the ACC. In contrast to such a 2-step design, some of our participants

spent more than 100 steps in loops of the environment before they saw the first goal image.

We also found that the prefrontal cortex (PFC), the anterior cingulate (ACC) and the primary

visual cortex showed higher activity when participants received the rewarding stimulus than
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when they received the non-rewarding stimulus. The previous two regions (the PFC and the

ACC) are usually observed in fMRI and EEG studies as the brain regions related with reward

processing (Badgaiyan & Posner, 1998; Bellebaum & Daum, 2008; Cohen et al., 2007; Doña-

mayor, Schoenfeld, & Münte, 2012; Gehring & Willoughby, 2002; Gruendler et al., 2011; Haruno

& Kawato, 2006; McClure, Berns, & Montague, 2003; Nieuwenhuis et al., 2005; O’Doherty,

Dayan, Friston, Critchley, & Dolan, 2003; Tucker et al., 2003). Nevertheless, the time window

where we found brain activities differing in rewarding and non-rewarding signals is relatively

late (later than 400ms after the state onset). Regarding the visual processing time, which takes

usually 80ms after the stimuli onset, the visual cortex activity is unlikely due to the visual

signal processing. We propose that this high activity in the primary visual cortex is due to the

top-down control from the frontal cortex to the visual cortex during reward processing. When

comparing the time window between the two environments, we found that the high-activity

time window in complex environment is later than in the simple environment. We suggest

that that in the complex environment, participants need to apply higher cognitive load to

solve the task, which makes the top-down control arriving later than that in the simple task.

However, this hypothesis needs to be tested with tasks of different complexity. If for the same

environmental structure, the visual cortex shows higher activity for the rewarding stimuli

in the later window in the more complex task, we could say that indeed this activity is due

to the top-down control. Our hypothesis is also supported by other studies. The primary

visual cortex is reported as a part of the reward processing network in animals and humans

(Anderson, 2017; Arsenault, Nelissen, Jarraya, & Vanduffel, 2013; Roelfsema & Ooyen, 2005;

Rombouts, Bohte, Martinez-Trujillo, & Roelfsema, 2015; Shuler & Bear, 2006).

There are some caveats. Our results, as all results in the field, are based on correlations, which

limit conclusions to some extent. For example, humans may compute RPEs but do not use

them for learning. Or RPE may be used as a confidence measure rather than as an action

choice variable. Second, we computed RPE with SARSA. We do not however claim that humans

use a SARSA like mechanism because many other algorithms, including unknown ones, may

deliver similar results. Third, our results show evidence that humans make use of model free

RL components. However, this does mean that humans do not use model based learning,

which they most likely do. We currently explore model-based exploration in very similar

environments.

Taken together, our results suggest that the FRN reflects the RPE (or related measures) in deep,

sequential decision making paradigms in both rewarded and non-rewarded states.
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Figure 3.1 – (A) Sequential Decision Making Paradigm. An image (state) is presented on the
screen. After a random interval of 700-1700ms, grey disks appear, on which participants are
asked to click (actions). After an action, a blank screen is shown for a random interval between
700 and 1700ms and then the next state appears. The goal state is a ‘thumb-up’ image in this
example. The green interval indicates the time (0-700ms after the image onset), for which
ERP was analysed. (B) Structure of the complex environment. Non-goal states are indicated
by numbers while the goal state is presented by the red G. ‘s’ indicates ‘states’, ‘a’ indicates
‘actions’. For example, ‘7s3a’ means that the environment has 7 states (including the goal state)
and each state comes with three actions. Arrows present the outcomes of the actions. There
were three groups of states: (i) the goal state (red G), (ii) progressing states (states 1-4) and (iii)
trap states (states 5-6). In order to find the goal state as fast as possible, participants needed
to avoid the trap states. For each non-goal state, there was only one action (green arrows),
which led participants to the next state; one other action (yellow arrows) led participants
back to the current state. Actions that led participants to states 5-6 are shown in blue (see
methods for details). Performance was determined as the number of actions participants
needed to find the goal state. Performance is shown on the right as a function of the number
of episodes finished. Points connected by lines indicate the means and bars indicate the
standard error. (C) Structure of the simple environment. There were only two types of actions
at each non-goal states: one action led participants to the next state (green arrows), all other
actions let participant stay at the current state (yellow arrows). The task is much easier because
participants either stayed or moved towards the goal states. Performance is shown on the
right. 29
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Figure 3.2 – Behavioural performance (data from Figure 3.1B, C) re-scaled to the shortest path
in each episode. The y-axis presents performance, which is calculated as the ratio between
the number of actions participants took to finish an episode and the minimum number of
actions needed. A y-value of 1 indicates that the participants used the shortest path. (A) In the
complex environment with 11 states, the first episode started in state 6 and the second episode
always started in state 9; in the environment with 7 states, the first episode always started
in state 6 and the second episode in state 4 (detailed environment structure see Figure 1.4).
(B) In the simple environment with eight states, the second episode always started in state
1, for the environment with 4 actions and in state 1 for the one with three actions (detailed
environment structure see Figure 1.5). Please note the difference in the y-axis scales of (A) and
(B).
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Figure 3.3 – ERPs for the 1st, 3rd and 5th goal visit. 0 on the x-axis indicates the image onset.
Negative values are plotted up by convention. Green lines indicate significant differences
between the ERPs of the 1st, 3rd, and 5th visit to the goal with a monotonic trend of the
RPEs. (A) Complex environments. ERPs were significantly different between 280-360ms
(F (2,33) = 4.84, p = 0.014). (B) Simple environments. ERPs were significantly different between
280-390ms (F (2,39) = 5.39, p = 0.008).
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Figure 3.4 – Linear regressions between the RPEs and the mean ERP amplitudes for each
participant at the non-goal states in the complex experiments. X-axis presents the estimated
RPE from SARSA(λ) model, y-axis presents the mean amplitude of the ERP in selected time
window. (A) The regression of each participants. Each dot represents one trial when the
participant visited the non-goal states. (B) The averaged regression between the RPEs and ERP
amplitudes for all participants. The regression coefficients are significantly different from zero
(p = 0.02, t (11) = 2.5, sd = 6.1,mean coefficient = 3.2). Each grey line presents the regression of
one participant (purple lines in A).
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Figure 3.5 – Linear regressions between the RPEs and the mean ERP amplitudes for each
participant at the goal states in the simple experiments. X-axis presents the estimated RPE
from SARSA(λ) model, y-axis presents the mean amplitude of the ERP in selected time window.
(A) The regression of each participants. Each dot represents one trial when the participant
visited the goal state. (B) The averaged regression between the RPEs and ERP amplitudes for all
participants. The regression coefficients are significantly different from zero (p = 0.03, t (13) =
2.3, sd = 2.7,mean coefficient = 1.7). Each grey line presents the regression of one participant
(green lines in A).
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Figure 3.6 – (A) In the complex experiment, the ERPs of REWARD and Non-REWARD conditions
differ significantly in an early window at 261-291ms (t (24) = 2.84, p = 0.009) and a late window
at 500-570ms (t(24) = 2.15, p = 0.04). (B) In the simple experiment, the ERPs of REWARD
and Non-REWARD conditions differ significantly in an early window at 185-236ms (t(26) =
2.29, p = 0.03) and a late window at 421-559ms (t(26) = 4.04, p < 0.001). (C) In the window
500-570ms after feedback onset in the complex experiment, Middle Frontal Gyrus (BA10)
and Cuneus (BA18) are more activated for REWARD condition compared to Non-REWARD
condition. (D) In the window 421-559ms after state onset in the simple experiment, Middle
Frontal Gyrus (BA10), Precuneus (BA7) and Cuneus (BA18) are more activated for REWARD
condition compared to Non-REWARD condition.
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4 Neural Correlates of the State Predic-
tion Error

4.1 Preface

Model-based RL models upadate the environment model using the state prediction error

(SPE). In this chapter, I will focus on two types of SPE signals, which are novelty and surprise.

Novelty and surprise are different (Barto, Mirolli, & Baldassarre, 2013). For example, when you

enter a train in a foreign country, it is likely that all passengers are novel to you, but this is not

surprising. However, when you see Roger Federer on the same train you may be very surprised

even though Federer is not novel to you. Previous studies showed that, humans, even in the

infancy age are able to explore in the environment driven by the novelty of events (Reynolds,

2015). Novelty-seeking behaviour has been interpreted in the theory of reinforcement learning

as steps towards building a model of the world (Sutton & Barto, 2018). Surprise, on the other

hand, is triggered when the agent finds an observation not matching the prediction of its

expectation. Agents, such as humans, can adjust their environment model based on the

surprise (Behrens, Woolrich, Walton, & Rushworth, 2007; Holland, 1997; Krugel, Biele, Mohr,

Li, & Heekeren, 2009; Nassar et al., 2012; Pearce & Hall, 1980; Wilson, Boumphrey, & Pearce,

1992). Surprise is usually quantified by two different approaches. The first approach models

surprise as prediction errors, such as reward prediction or risk prediction errors (Hayden,

Heilbronner, Pearson, & Platt, 2011; Pearce & Hall, 1980; Preuschoff & Bossaerts, 2007; Roesch,

Esber, Li, Daw, & Schoenbaum, 2012). The reward prediction error was discussed in the

previous chapter (Chapter 3) as a component of model-free RL models. The other approach

models surprises as the Bayesian updating of beliefs about current environment model (Adams

& MacKay, 2007; Angela & Dayan, 2005; Behrens et al., 2007; Kolossa, Fingscheidt, Wessel, &

Kopp, 2013; Kolossa, Kopp, & Fingscheidt, 2015; Mathys, Daunizeau, Friston, & Stephan, 2011;

Meyniel, Maheu, & Dehaene, 2016). Here I estimated surprise using the second approach.

In this chapter, I designed a sequential decision making task to study surprise and novelty

signals in human RL. The experiment contained two blocks. The structure of the two blocks

are shown in Figure 4.1. The purpose of designing block 1 was to study how human learn

a complex task using the novelty signal. The purpose of block 2 was to trigger surprise and
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study how humans adapted to the changes in the environment. I used a newly developed

RL model, called the SurNoR model (SUprise-NOvelty-Reward), to estimate the surprise and

novelty. With the help of the model, I found the corresponding EEG time windows of surprise

and novelty signal.

4.2 Results

The results are presented in the manuscript in preparation ’Model-Building by Exploration:

Surprise and Novelty in Reward-based Learning. He A. Xu, Marco P. Lehmann, Alireza Modir-

shanechi, Wulfram Gerstner, and Michael H. Herzog’ (see Appendix 3).

4.2.1 Novelty and Surprise Estimation using SurNoR Model

SurNoR stands for SURprise-NOvelty-Reward. SurNoR learns a model of the environment

using the SMiLe rule (Faraji, Preuschoff, & Gerstner, 2018), uses the novelty signal as an

internal reward to explore, and uses the external reward signal to exploit the environment.

The structure of the SurNoR model is shown in Figure 4.3. The model consists of three phases.

The first phase is the Novelty Estimation phase. When the agent visits state St and obtains

reward Rt at time t , it first computes the novelty of the state as:

N t (s) = −log (
C t

s +1

t +|S| ) (4.1)

|S| is the total number of states in the environment (i.e. 11 for this experiment), C t
s is the

count of how many times state s is encountered up to time t . Equation 4.1 computes the

logarithm of the empirical frequency of encountering state s. In the SurNoR model, novelty

is used as an internal reward for exploration. Figure 4.4 shows the estimated novelty of each

state over time steps and the averaged novelty of each state in the 1st episode of the 1st block

at one time step.

In the second phase, the novelty of state s (Nt ) together with St and Rt are passed to a

model-based module and a model-free module. The model-based module learns the state-

action transitions and reward distribution of the environment and updates the state-action

transitions using the SMiLe rule (Faraji et al., 2018). The SMiLe rule computes the surprise

of each st ate −acti on → next st ate transition. Figure 4.5 shows the estimated surprise of

the state transitions in the 1st episode of the 2nd block. Surprise can affect the learning

speed in the model-based module: the higher the surprise, the faster the agent learns; the

lower the surprise, the slower the agent learns. The model-free module learns the state-value

functions and reward functions of the environment, and updates the state-value functions

using the Q-learning (Watkins, 1989). We propose that since humans use both model-based

and model-free models to learn (Daw et al., 2011; Gläscher et al., 2010), the surprise should

also modulate the learning rate in the model-free module. The surprise-modulated parameter
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γt is transmitted from the model-based module to the model-free module and modulates the

learning rate of the Q-learning model:

αt =α+γt∆α (4.2)

Note that in both model-based and model-free modules, the novelty is considered as an inter-

nal reward in addition to the external reward Rt given by the environment. After processing the

information of St , Rt , and Nt , the model-based module produces an estimated state-action

value Q t
MB telling the preference of taking which action at state St . The model-free module

also produces an estimated Q t
MF . Q t

MB and Q t
MF are the inputs for the third phase Policy to

determine the final action.

The third phase, which is the Policy phase, takes into account both Q t
MB and Q t

MF for action

selection. The final state-action value Q t
sunor is computed as a weighted sum:

Q t
sunor =ωMB ×Q t

MB +ωMF ×Q t
MF (4.3)

where ωMB = 1−ωMF .

We used 3-fold cross validation to fit the SurNoR model to participants behavioural data. Figure

4.6 shows that the SurNoR model outperforms the other models. The model comparison

criteria used here the model posterior probability (Stephan, Tittgemeyer, Knösche, Moran, &

Friston, 2009), showing how much evidence that the model explains human behaviour. The

model implementation and fitting details are provided in the Appendix 3. Here we only discuss

parameters that explains participants learning, such as the model-free learning rate (αt ) and

the weight of model-free Q-values (ωMF ) as shown in Figure 4.7.

Estimated learning rate αt . As equation 4.2 shows, the learning rate αt of the Q-learning

model is composed of two components: a constant rate α and a surprise-modulated rate ∆α.

Since the surprise varies with the time step t , the overall learning rate αt also changes. The

best fit value of the constant learning rate is α = 0.000±0.005, which is very close to 0. The

best fit surprise-modulated ∆α is 0.65±0.01. These results indicate that when surprise is low,

the model-free learning rate is close to 0, meaning participants update little on their learned

knowledge. When surprise is high, the model-free learning rate is higher and participants

update the learned knowledge more.

Estimated model-free learning weightωMF . Figure 4.7 shows that in the 1st episode of both

blocks, the weight of model-free learning ˆωMF is lower than 0.5, indicating that it is the

model-based learning module dominates in action selection. In the 2nd to 5th episodes of

both blocks, ˆωMF is close to 1.0 (0.95±0.03) meaning that the model-free module dominates

in action selection. The difference in the parameters shows that participants rely more on

model-based learning before obtaining the reward, which leads to exploration behaviour.

After obtaining the reward, participants rely more on model-free learning, which leads to

exploitation behaviour.
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4.2.2 Neural Correlates of the SPE

In the 1st episode of the 1st block, participants took on average 117 actions to find the goal

state (mean = 117.0, std = 54.2, se = 15.6). Performance was strongly improved in episode 2

compared to episode 1 and quickly reached optimal performance (Figure 4.2A). The learning

curve in the 1st episode of the 1st block (Figure 4.2B) showed that optimal actions were taken

at the progressing states (state 1-7) but not at the trap states (state 8-10). The closer the

progressing state is to the goal, the faster the optimal action was found.

After the 5th episode of the 1st block, image 3 and image 7 were swapped, participants

started the 2nd block. The performance in the 1st episode of the 2nd block was significantly

improved compared to the 1st episode of the 1st block (t (11) = 2.55, p = 0.02, Figure 4.2A), i.e.,

participants needed less actions to find the goal image (Figure 4.2A) in the 1st episode of the

2nd block than in the 1st episode of the 1st block.

Marker of novelty

At the beginning of the 1st episode of the 1st block, participants do not have any model of

the external world. They make actions randomly when seeing a non-goal state for the first

time, hence they end up in a trap state with a probability equal to 0.5 (Figure 4.1, blue arrows).

Every time when they come out of the trap state, they start from state 1 and continued again

to look for the goal state. During the 1st episode, the trap states are the most frequently visited

states and the states close to the goal states are least frequently visited. Based on the number

of visits to the states, we grouped the states into two conditions: High-Novelty condition and

Low-Novelty condition. The High-Novelty condition contains the states that were the least

visited, which are states 5, 6, 7 in Figure 4.1A. The Low-Novelty condition contains the states

that were the most visited, which are states 8, 9, 10 in Figure 4.1A.

To search for the EEG time window where novelty is reflected, we averaged the ERPs of

the states with high novelty values (states 5, 6, 7, High-Novelty condition) and the ones

with low novelty values (states 8, 9, 10, Low-Novelty condition) in the 1st episode of the 1st

block. Figure 4.4A shows the ERPs are significantly different in the two conditions in a time

interval from 80 to 110ms after the state onset (p = 0.01, t (16) = −2.13, sd = 1.28). The average

ERPs in two conditions removed physiological and instrumental noise and improved the

signal-to-noise ratio. However, it also removed the participant-specific information. We

used a sliding window method to search for potential time window of novelty on a trial-

by-trial and participant-by-participant basis. Linear regression on a on a trial-by-trial and

participant-by-participant basis between the mean amplitudes in the interval of 80-130ms

after the state onset and the estimated Novelty from the computational model is significant

(p = 0.02, t (10) = 2.68, sd = 0.46,mean slope = 0.37). In summary, our results demonstrate that

N1 component (80-130ms) of EEG is a potential marker for novelty, tested both by using

on-averaged ERPs comparison and trial-by-trial analysis.
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Marker of surprise

The SurNoR model partitions state transitions into 3 groups based on their effects on learning:

(1) The ones that are experienced for the 1st time (mostly in the 1st episode of the 1st block),

(2) The ones that are already experienced once and have not been change since then (i.e. the

learned ones), and

(3) The ones corresponding to the transitions from or to the swapped states (mostly in the 2nd

episode of the 2nd block).

The 2nd group is considered as un-surprising transitions, while the 1st and the 3rd groups

contain the surprising transitions - mild surprise for 1st group and large surprise for the 3rd

one. Therefore, we can group all trials to two surprise conditions: surprised condition and

un-surprised condition. By comparing the ERPs averaged in both conditions, we found that

the time interval from 150 to 300ms after the state onset was a potential interval that reflects

the magnitude of surprise. We then extracted the mean amplitudes in the interval of interest

and regressed the amplitudes with estimated surprise from the SurNoR model on a trial-by-

trial and participant-by-participant basis for all trials in the 1st episodes of both blocks. The

regression between mean amplitudes in the time interval 150-300ms and estimated surprise

was not significant (p = 0.86, t (18) = −0.17, sd = 2.61).

However, to see whether the bio-marker of surprise is hidden in the interval, we used a sliding

window of 50ms (10ms per step) to test the regression between the mean amplitudes in the

sliding window and the surprise computed by the SurNoR model. The ensemble window

was determined using the earliest time point of the first sliding window and the latest time

point of the last sliding window, whose mean amplitudes correlated significantly with surprise.

We found that the regression is significant between surprise and the mean amplitude in the

interval of 150-210ms after the state onset (p = 0.03, t(10) = −2.50, sd = 0.30,mean slope =

−0.23).

The results indicate that the interval from 150 to 210ms after the state onset is a potential

bio-marker for surprise.

4.3 Discussion

When the external reward is sparse and delayed, surprise and novelty can be considered as

internal feedback for learning. In this study we built a learning model (SurNoR) to solve the

learning situation where surprise, novelty, reward are all involved in learning . The SurNoR

model outperformed the other models in explaining participants behaviours. One of the

important factor that makes SurNoR different from other models is that SurNoR considers

novelty as an intrinsic reward. Previous studies (Beaufour, Le Bihan, Hamon, & Thiébot, 2001;

Bevins et al., 2002; Bódi et al., 2009; Bunzeck, Dayan, Dolan, & Duzel, 2010) have shown that
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the dopamine level affects both novelty and reward processing. When a state of high reward

appears, the dopamine level increases. Similarly, when a state of high novelty appears, the

dopamine level increases. These studies provide physiological evidence for the SurNoR model.

Furthermore, we found that the novelty signal is reflected in EEG recording around 80-130ms

after the state onset, and that the surprise signal is reflected around 150-210ms after the

state onset. In the SurNoR model, the novelty of a state is defined as the global probability

of seeing that state, and the surprise of a state-action transition is defined as the changes in

the local transition probability (details see Appendix 3). In corresponding to the EEG result,

the global signal (novelty) occurs earlier than the local signal (surprise). This finding is in line

with previous findings. In (Maheu, Dehaene, & Meyniel, 2019), although the study used MEG

recording in an oddball task, the authors showed that the brain activity around 60-130ms

is sensitive to global changes in the stimuli. In (Meyniel et al., 2016), the authors built a

Bayesian inference model to explain physiological data from previous researchers. Meyniel’s

results showed that the P300 component in EEG is a bio-marker that reflects local transition

probability changes. Here in our study, we confirmed the previous findings in Maheu’s and

Meyniel’s work, and generalise the conclusions to a truly sequential decision making task.

However, if we observe the ERP curves of surprising trials and un-surprising trials, we can see

the two curves also differ around 300ms after the state onset 4.8. We also tested the linear

regression between surprise and the mean ERP amplitude in the time window between 300ms

and 400ms, but no significance was shown. There could be three reasons to explain this

results. First, based on our SurNoR model, the surprise has three levels. We only compared the

highest surprising trials and lowest surprising trials in 4.8, so it is possible that the 300-400ms

time window only reflect the extreme surprise cases. Second, it could be the surprise esti-

mated using our SurNoR model only explained partially the surprise-generating mechanism.

There could be other surprise measurement that explains better the curve difference in the

300-400ms time window. Third, other than simple linear regression, there could be other

relationships between the ERP amplitudes and the estimated surprise, for example the second

order correlation. Unfortunately we did not test the higher order correlation between the two

signals. The three reasons to explain the results in the time window of 300-400ms could lead

the future research directions.
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Figure 4.1 – The environmental structure used in the SPE experiment. Non-goal states are
presented by numbers; the goal state is presented as the red G; trap states are highlighted by
dashed rectangles. Actions are presented by arrows. Green arrows show the actions that bring
participants closer to the goal state. Yellow arrows show actions that let participants stay at
the current state. Blue arrows show the actions that bring participants to the trap states. There
are 11 states in the environment, including (1) the goal state (red G), (2) seven progressing
states (images 1, 2, 3, 4, 5, 6, 7), and (3) three trap states (images 8, 9, 10). Participants choose
out of 4 possible actions: one action (green arrow) brings them to the next progressing state,
two actions (blue arrow) bring them to one of the trap states, one action (yellow arrow) let
them stay at the current state. In Block-1, participants performed 5 episodes. After 5 episodes,
Block-2 started where image 3 and image 7 were swapped but the actions remained the same
as before.

41



Chapter 4 Neural Correlates of the State Prediction Error

Figure 4.2 – (A) Participants’ performance in the first (solid line) and second (dashed line)
block of the experiment. The x-axis shows the number of episodes. The y-axis shows the
number of actions participants needed to find the goal. Performance is measured by the
number of actions taken to finish each episode. (B) Learning curves in the first episode in
the first block (before swapping the images). Each blue point of the learning curve represents
one visit to a state. Chance level (dashed red line) of choosing the best action is 1/4 (green
arrows in Figure 4.1). The learning curve is averaged over all participants. Fewer visits to a
state (fewer blue points) means participants learned the correct action faster.
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Figure 4.3 – The structure of the SurNoR model. At time t , the agent receives reward Rt at state
St . Then the SuNoR model estimates the novelty of state St at time t based on equation 4.1.
The tuple (St ,Rt , Nt ) is then passed separately to both the model-based module (implemented
using the SMiLe model) and the model-free module (implemented using the Q-learning
model). γt is the learning rate used in the SMiLe mode (equation ??), which is passed to the
Q-learning model and modulates the learning rate in the Q-learning model. After updating
the SMiLe model and the Q-learning model, both models provides their own estimation of the
Q-values (Q t

MB and Q t
MF ). The Q-values provide information on which action is preferred

to be chosen in the next time step t +1. Both Q-values are passed into the policy module for
action selection. In the policy module, Q t

MB and Q t
MF are weighted using equation 4.3, and

a final action At+1 is chosen based on the weighted sum.
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Figure 4.4 – An example of the estimated novelty of each state using the SurNoR model. (A)
Novelty time-series during the 1st episode of the 1st block: Data is for a single subject. (B)
Novelty heat-map at the end of the 1st episode of the 1st block (marked with dashed line in
(A)). The values are averaged over all subjects.
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Figure 4.5 – An example of estimated surprise of each state-action transition using the SurNoR
model in the 1st episode of the 2nd block. (A) Surprise heat-map averaged over all participants
in the 1st episode of the 2nd block. (B) Environment used in the 2nd block, yellow-marked
states are the swapped states that trigger the highest surprise.
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Figure 4.6 – Comparison between the fitting results for the different models in both blocks. The
model performance is measured by the model posterior probability using uniform priors. The
SurNoR model outperformed the other models. MBN(Perf.): Model-Based model with novelty
estimation, perfect integration was used to update the model. MBN(Leaky): Model-Based
model with novelty estimation, leaky integration was used to update the model. MBN+S:
Model-Based model with novelty and surprise estimation, surprise was used to update the
model. MF+Q0: Model-Free model, Q-learning model was used. MFN : Model-Free model
with novelty estimation. MFN+S: Model-Free model with novelty estimation, the learning
rate of the model-free model was modulated by surprise. Hybrid+N : Hybrid model using
both model-based, model-free models and novelty estimation. Random Choice: A model that
makes actions randomly.
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Figure 4.7 – Best fitting parameter value and its confidence interval of model-free learning rate,
suprise-modulated learning rate and the weights of model-free Q-values of the SurNoR model.

47



Chapter 4 Neural Correlates of the State Prediction Error

Figure 4.8 – EEG time windows of novelty and surprise. Uper Left ERPs compared between
High-Novelty condition and Low-Novelty condition in the 1st episode of the 1st block. Blue
internal marks the time window in which the novelty is reflected by the ERP amplitude. Uper
Right Linear regression between the novelty and ERP amplitude in the blue interval, on
participant-by-participant basis. Each grey line presents the regression of one participant.
The blue line is the averaged linear regression of all participants. Lower Left ERPs compared
between surprising and un-surprising trials in the first episodes of the 2nd blocks. Orange
interval marks the time window in which the surprise is reflected by the ERP amplitude. Lower
Right Linear regression between the surprise and ERP amplitude in the orange interval. Each
grey line presents the regression of one participant. The orange line is the averaged linear
regression of all participants.
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5 Curiosity or Reward?

5.1 Preface

As shown in Chapter 3 and 4, both reward and novelty can drive learning. Here in this chapter,

I investigated whether reward or novelty, is stronger.

I designed an environment with a special ’infinite’ state (Figure 5.1). In this environment,

there are eleven states including ten non-goal states and one goal state. Participants can

choose from three actions at each non-goal state. Among the ten non-goal states, there are

six progressing states (states 2, 3, 4, 5, 6, 7) and two trap states (states 9, 10) similar to the

environments used in previous chapters. A new type of state, which is called the ’infinite’

state (state 8), is added (state 8 in Figure 5.1). When participants enter state 5 for the first

time, no matter which action they chose, they will be led to state 8 (red arrows from state 5 to

state 8 in Figure 5.1 and 5.2). Among the three actions of state 8, the left two actions always

lead participants to state 8 presented with different images (yellow arrows in Figure 5.2). The

rightmost action always leads participants back to state 5 (red arrows in Figure 5.2). There

are in total of 50 different images for state 8. Every time when participants visit state 8, a new

image is presented. Hence, each of the 50 image is relatively new to participants compared to

the other images. My hypothesis is that, if novelty dominates learning, participants prefer to

stay in state 8 searching for new images during the whole environment; if reward dominates

learning, participants would avoid going to state 8 and go for the goal state after seeing the

goal once.

To test whether novelty or reward dominates learning, I first ran an experiment with 23

participants using the new environment in Figure 5.1. In this experiment, participants were

told that there was only one goal. Participants were asked to find the goal for 5 times within 30

minutes.

Then, I ran a second experiment with 9 new participants using the same environment. How-

ever, this time I wanted to test if the magnitude of the reward can affect participants’ preference

for reward and novelty. Participants were told that there were three different goal states, re-
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warded by 10CHF, 15CHF and 20CHF. Participants are paid according to which goal state

they find. As in the first experiment, participants were asked to find the goal state for 5 times

within 30 minutes. What participants did not know is that there was only one goal state,

meaning that for the 5 episodes, they can only find the same goal for 5 times. The probability

of presenting which goal state was determined by a random number generator before they

start the experiment. The probability of seeing the 10CHF as goal is 60%, 15CHF for 30% and

20CHF for 10%.

Here I only present the preliminary results of this study. Further analysis needs to be done and

models to be built.

5.2 Results

In the first experiment, participants were told that there is only one goal in the environment.

Figure 5.3A shows that participants visited each non-goal states, especially the ’infinite state’

(state 8) many times in the first episode before they found the goal state. This behaviour

indicates that participants explored the environment in the first episode. Then the number

of visits to each state reduced in the second episode, indicating that participants explored

less than in the first episode. Figure 5.3B shows the learning curves at each state across each

visit from episode 1 to episode 3. For some states (state 5,8,9,10), the number of visits was too

long to be plotted. Thus I only plot the first 25 visits for these states. The correct action is the

action that leads participants to the next progressing state. The learning curve of state 5 in

episode 1 to 3 shows that participants tend not to chose the action, that lead them to the next

progressing state (state 6) but rather go to the trap state or state 8.

In the second experiment, I manipulated the magnitude of the reward to test if participants are

more eager to look for reward or novelty when there are multiple rewards in the environment.

Results (Figure 5.4A) show that the number of visit to state 8 from episode 1 to episode 3

does not decrease as in the first experiment (Figure 5.3A). This result indicates that after

knowing there are multiple rewards in the environment, participants were more eager to

explore. Learning curve at state 8 (Figure 5.4B) shows that participants tended to stay at state

8 to search for reward. Moreover, if we compare the number of visits to state 8 in the three

different reward condition (Figure 5.5A), we find that the exploration behaviour is the most

prominent when participants found the least amount of reward (10CHF). The learning curve

at state 8 (Figure 5.5B) also shows that participants who obtained the reward of 10CHF tend to

stay more at state 8 and look for new rewards.

5.3 Discussion

If participants are driven by novelty, they would prefer to stay longer at the ’infinite’ state (state

8) and look for new images no matter what reward they can obtain. However, if participants

are driven by reward, they would spend less time in seeing new images at state 8 after seeing a
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high reward; and they would spend more time at state 8 looking for new rewards after they

see a low reward. The result of the first experiment (Figure 5.3A) shows that participants

have reduced the number of visits to the ’infinite’ state in the second episode, indicating

that they reduced novelty-seeking but increased reward-seeking behaviours. However, when

participants are told about the existence of multiple rewards in the second experiment, the

novelty-seeking behaviour is not reduced after the first episode Figure 5.5A).

The preliminary results show that reward, especially multiple rewards, can motivate novelty-

seeking in learning. Combined with our novelty study in Chapter 4, in which novelty is

considered as an intrinsic reward, we can form a closed loop for the relationship between

reward and novelty. The existence of reward motivates the novelty-seeking behaviour, which

aims to obtain the reward. In the study of (Marvin & Shohamy, 2016), the researchers propose

that curiosity (seeking for novelty) can be the motivation to obtain reward. However, no

studies have shown how the magnitude of reward affects novelty-seeking behaviours and to

which extend. New experiments is being carried on to answer this question.
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Figure 5.1 – Environment structure. Non-goal states are presented by digits, the goal state is
presented by the red G. There are three types of non-goal states: (i) six progressing states, which
are the states 2-7; (ii) two trap states, which are the states 9 and 10; (iii) one infinite state which
is state 8. Every time when participants visit state 8, a new image is presented. There are in
total 50 images presenting state 8. At each non-goal state except state 5 and 8, there are three
actions. One action leads participants to the next progressing state (green arrows), one action
leads participants to one of the trap states (blue arrows), one action leads participants to stay
at the current state (yellow arrows). At state 5, one action leads participants to state 8 (red
arrow), one action leads participants to state 6 (green arrow) and one action leads participants
to one of the trap state (blue arrow). At state 8, one action leads participants to state 5 (red
arrow) and the two others lead participants to new images (yellow arrow).
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Figure 5.2 – In this example, state 5 is presented by a bulb image. The first time when par-
ticipants visit state 5, no matter which action they chose, they are led to state 8 (red arrow).
One of the other two actions at state 5 leads participants to the next progressing state, and the
other leads participants to one of the trap states. When participants visit state 8, two actions
let them stay at state 8 while the state 8 is now presented by a different image. The third action
(rightmost action) always leads participants back to state 5.
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Figure 5.3 – (A) Averaged number of visit to each state for all participants in episodes 1 to 3
in the first experiment, when participants know there is only one goal state. (B) The learning
curve at each state in episode 1 to 3. Learning curve is plotted as the action selection accuracy
at each visit to a state, averaged over all participants. The action that leads participants to the
next progressing state is considered as the correct action, thus the chance level of choosing the
correct action is 1/3. The correct action at state 5 is considered as the action leading to state 6.
The correct action at state 8 is considered as the action to state 5. Each blue dot presents one
visit to the state. For lacking of space reason, only the first 25 visits to a state are plotted here.
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Figure 5.4 – (A) The averaged number of visit to each state across all participants in episode 1
to 3 in the second experiment, when participants know there are three goal states to find. (B)
The learning curve at each state in episode 1 to 3. Learning curve is measured by the action
selection accuracy averaged over all participants. The action that leads participants to the
next progressing state is considered as the correct action, thus the chance level of choosing
the correct action is 1/3. The correct action at state 5 is considered as the action to state 6. The
correct action at state 8 is considered as the action to state 5. Each blue dot presents one visit
to the state. For lacking of space reason, only the first 25 visits to a state are plotted here.
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Chapter 5 Curiosity or Reward?

Figure 5.5 – (A) The number of visits to state 8 (infinite state) in each payment condition for
episode 1s to 3. (B) The learning curve at state 8 in the three payment conditions. Learning
curve is measured by the action selection accuracy averaged over all participants. The correct
action at state 8 is considered as the action to state 5.
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Humans and animals make decisions all the time in order to fulfil their living needs in their

living environment. Machines and computer algorithms make decisions, in order to achieve

the goals defined in an artificial environment by the programmer or designer. Reinforcement

learning (RL) theory hosts a variety of solutions of decision making situations. There are

two main types of RL models, model-free models and model-based models. In this thesis, I

studied the physiological evidences of four important RL components: the eligibility trace,

RPE, surprise and novelty.

In the first part (Chapter 2 and 3), I focused on model-free learning. Holroyd and Coles

proposed a RL-ERN theory in 2002 to explain the effect of reward prediction on an EEG

component (Holroyd & Coles, 2002), called the Feedback Related Negativity (FRN). The

FRN occurs in the frontal-central electrodes between 250-400ms after the feedback onset.

According to the RL-ERN theory, dopaminergic neurons produces the RPE and broadcast

it to different brain regions. The ACC receives the broadcast RPE, generates the FRN, and

plans for the next action. Many researches confirmed the RL-ERN theory by showing that the

amplitude of the FRN reflects the RPE in one-step decision making tasks (N-armed bandit

tasks). However, whether the FRN amplitudes reflects RPEs in multi-step decision making

tasks was never addressed.

To study the relationship between the FRN and the RPE in sequential decision making tasks,

we need to answer two questions. First, how to estimate the RPEs at each state (including

non-rewarded and rewarded states) in a sequential task? Second, is the FRN-RPE relationship

the same for both non-rewarded and rewarded states? In Chapter 2, we answered the first

question by testing different RL models in a sequential decision making paradigm (Tartaglia

et al., 2017). With this paradigm, we were able to produce longer decision making sequence

than the N-armed bandit tasks used in previous researches. We found that models with the

implementation of the eligibility trace, such as TD(λ), SARSA(λ) and Q(λ), explained human

behaviours better than the models without eligibility trace. Furthermore, the pupil dilation

results showed physiological evidence of the eligibility trace in human learning. These results

confirm that the eligibility trace is an essential component in human sequential decision
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making. The results of this study contribute to the discussion of the eligibility trace on a

synaptic level (Bittner et al., 2017; Fisher et al., 2017; Gerstner, Lehmann, Liakoni, Corneil, &

Brea, 2018; He et al., 2015; Yagishita et al., 2014).

Using the RL models with eligibility trace, we were able to estimate the RPE more accurately in

a sequential task. In chapter 3, we used two sequential decision making experiments to test

the FRN-RPE correlation in non-rewarded and rewarded states. We first used the decreasing

RPE trend at the rewarded state to locate the RPE-related FRN window. Then we tested the

regressions between the FRN amplitudes and RPEs on a participant-by-participant basis. The

results of this study confirm that the amplitude of the FRN component reflects the RPEs

for both non-rewarded and rewarded states. Our study also provides evidence that humans

compute RPEs even at the non-directly rewarded states. Although recent studies (Daw et al.,

2011; Gläscher et al., 2010; Sambrook et al., 2018) have used two-step decision making tasks

to show that humans use both model-based and model-free models, our study revealed that

humans are able to compute the RPEs even when they need to make sequences varying from

10 to 100 steps.

The study of neural correlates of the RPE extends the RL-ERN theory from simple one-step

decision making tasks (such as N-armed bandit task) to complex multi-step tasks. In previous

FRN studies, researchers used variations of the N-armed bandit tasks and reported different

cognitive signals that affect FRN. For example, the FRN amplitude was reported to reflect

the reward probability (Eppinger, Mock, & Kray, 2009; Hajcak, Holroyd, Moser, & Simons,

2005; Hewig et al., 2006; Potts et al., 2006; Potts, Martin, Kamp, & Donchin, 2011), the reward

magnitude (Bellebaum, Polezzi, & Daum, 2010; Bunzeck et al., 2010; Goyer, Woldorff, & Huettel,

2008; Hajcak, Moser, Holroyd, & Simons, 2006; Holroyd, Larsen, & Cohen, 2004), predictive

cues (Baker & Holroyd, 2008; Dunning & Hajcak, 2007; Eppinger et al., 2009; Nieuwenhuis et al.,

2002), experienced rewarding stimuli (Cohen & Ranganath, 2007; van der Helden, Boksem, &

Blom, 2009; Yasuda, Sato, Miyawaki, Kumano, & Kuboki, 2004), etc. All of these aspects can be

described as changes in the reward prediction error. In 2011, Walsh and Anderson published

the first paper, to our knowledge, studying the relationship between FRN amplitude and the

RPE in a two-step decision-making task. They confirmed that the FRN amplitudes reflect the

RPEs in the two-step task, on the averaged analysis but not on trial-by-trial basis. Besides, as

Walsh and Anderson (2012) pointed out in their review paper, it is difficult to scale participant’s

perceived reward across different studies, and even within the same study. Here by using a

sequential task, we were able to scale the reward of each state using the state value function,

because the state value function itself is computed as the scaled future reward (equation 1.1).

In conclusion, our sequential FRN-RPE study provided two advantages over previous research:

the first is to integrate and extend previous findings to confirm that the FRN amplitude reflects

the RPE in both simple and complex tasks on a trial-by-trial basis; the second is to provide a

powerful method to scale participant’s perceived reward adaptively.

The inverse solution of the ERP waveform in rewarded states and non-rewarded states showed

the brain regions involved in reward processing. The regions we found in this study are the
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prefrontal cortex and the anterior cingulate cortex, which is in line with previous findings

(Bellebaum & Daum, 2008; Walsh & Anderson, 2011b). We also found that some regions in

the primary visual cortex are activated when receiving a reward stimuli. Previous studies

(Anderson, 2017; Arsenault et al., 2013; Roelfsema & Ooyen, 2005; Rombouts et al., 2015;

Shuler & Bear, 2006) have shown that the visual system is part of the value-driven attention

network, and the neurons in the occipital cortex have selective plasticity for rewarding stimuli.

The study of (Anderson, 2017) suggested that the early visual cortex were highly activated

for rewarding stimuli because features of rewarding stimuli ARE stored in V1. However, this

hypothesis was not confirmed by our experiment. We show that the early visual cortex is

activated more than 400ms after the feedback onset, which is far beyond visual processing

(Thorpe, Fize, & Marlot, 1996). We tested the linear regression between the state values and

RPEs with the ERP amplitudes in selected time window and found no significance. The result

indicates that the RPE/Value are not computed in the visual system but rather transferred

to it. Thus, this activation could be created because of top-down feedback from the reward

processing system. However, this hypothesis needs to be further tested. One possibility is

to design several tasks using the same environmental structure. If the primary visual cortex

activity is due to the top-down control, the time window showing such activity will be later for

more complex tasks.

In the second part of the thesis (Chapter 3,4,5), I studied the components of model-based

learning. The model-based model learns the state-transitions and reward function. When the

model-based model takes an action at a state, it observes the next state. If the observed state

is different from what is expected, a state prediction error (SPE) occurs. The model updates

the learned state-transitions using the SPE.

In chapter 4, I studied two types of SPE signals, which are surprise and novelty. In this SPE

study, I designed a 2-block sequential decision making experiment. The environment contains

several trap states, which participants need to learn to avoid. We found that participants spent

far more steps in the 1st episode than in the later episodes, which means that participants

explored and learned the environment well in the 1st episode and exploited reward in the later

episodes. We built a computational model, called SurNoR, to explain participants behaviours.

We propose that participant’s exploration behaviour is driven by novelty, meaning that they

seek for novel states, and try to avoid un-novel states. In such a manner, participants are able

to avoid the trap states, which they have visited frequently. In the 2nd block of the experi-

ment, 2 images are swapped without informing participants. When participants observed

the unexpected "state-action-next state" transition, a large surprise signal was triggered. The

learning rate of the SurNoR model was modulated by the magnitude of surprise. When there

is a high surprise, the model learns faster to be able to adapt to the environment. Compared

to when there is no surprise, the model does not need to update too much because everything

was learned before. Thus the model can learn the environment in an adaptive manner. Com-

paring with models without novelty-seeking mechanism and surprise-modulated learning,

the SurNoR model performed the best in explaining human behaviour. This result indicates

that both novelty-seeking and surprise-modulated learning are essential in learning complex
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environments.

The SurNoR model is a hybrid model that contains both model-free learning and model-

based learning modules. Previous behavioural experiments have shown that humans use

both model-free and model-based learning. fMRI and EEG studies showed evidences of the

RPE signals in the brain (Badgaiyan & Posner, 1998; Bellebaum & Daum, 2008; Cohen et al.,

2007; Doñamayor et al., 2012; Gehring & Willoughby, 2002; Gruendler et al., 2011; Haruno &

Kawato, 2006; McClure et al., 2003; Nieuwenhuis et al., 2005; O’Doherty et al., 2003; Tucker

et al., 2003) and the SPE (Fabiani & Friedman, 1995; Gläscher et al., 2010; Opitz, Mecklinger,

Friederici, & von Cramon, 1999) signals in the brain. However, the unanswered question

is how model-free and model based learning can be integrated in one framework and to

determine under which conditions either one prevails. Gläscher and Daw (Gläscher et al.,

2010) proposed a hybrid model combining a straightforward model-based learner (Forward-

Learner) and a Q(0)-learner into one model. The trade-off between the two learners was

determined by a free parameter changes over time (Camerer & Hua Ho, 1999). But Gläscher’s

model is fairly simple and only computes the SPE as state-action-state transition difference

before and after an observation (see Chapter 1.1.2 for details). It does not have the ability to

navigate through complex environments because it does not have the mechanism to avoid

the ’trap’ states. Besides, Gläscher’s model does not have an adaptive learning rate, which

means that the model learns environmental changes slowly. Another hybrid model proposed

by Lee and O’Doherty (Lee, Shimojo, & O’Doherty, 2014) is called the arbitration model.

The arbitration model contains three layers of computation. The first layer is composed of

model-based/model-free models to estimate the SPEs and RPEs. The second layer computes

the reliabilities of each model based on the prediction error. The lower the prediction error,

the higher reliability. For example, if the SPE is closer to 0 than the RPE, the model-based

model is more reliable. The third layer balances the weight of model-based/model-free models

based on the two estimated reliabilities. In this model, the model-based/model-free balance

is controlled by their prediction errors but not a free parameter. However, it still faces the

issue of not being able to avoid ’trap’ states in our environment because the SPEs of the ’trap’

states decrease fast towards 0, making the arbitration model a model-based model. Without

a intrinsic desire of leaving the ’trap’ state, such as novelty, the arbitration model will likely

stay in the ’trap’ states forever. Compare with previously proposed hybrid RL models, our

SurNoR model is able to learn complex environments using novelty as intrinsic motivation,

and to adapt fast to environmental changes. Furthermore, the SurNoR model can balance the

exploration/exploitation behaviours by changing the weights of the model-based/model-free

learning module. The SurNoR parameters indicates that participants rely on model-based

learning before they find the external reward, which leads to the exploration behaviour. After

obtaining the external reward, participants switch to model-free learning, which leads to the

exploitation behaviour.

With the SurNoR model, we can estimate the novelty signal for each state visit, and the surprise

signal for each state transition. By regressing the estimated novelty and surprise signal with

recorded EEG amplitudes, we found that the novelty is reflected in the time window between
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80-130ms after the state onset, and the surprise is reflected in the time window between

150-210ms after the state onset. The novelty of a state is defined as the empirical probability

of seeing the state in the SurNoR model, and is considered as a global inference signal over

the state distribution of the environment. According to Dehaene, Meyniel, Wacongne, Wang

and Pallier (2015), when human observe a sequence, the mental process can be described in

different abstraction levels. The most basic level is to count the item frequency no matter in

which order it is (Armstrong, Frost, & Christiansen, 2017; Garrido, Kilner, Stephan, & Friston,

2009; Grill-Spector, Henson, & Martin, 2006; Näätänen, Paavilainen, Rinne, & Alho, 2007;

Santolin & Saffran, 2018). This item frequency level corresponds to the novelty signal in our

SurNoR model. Maheu et al. (2019) found that in a sequence observation task, the frequency

of items is reflected in an early post-stimulus time window around 60-130ms, which is in

line with our findings. Different from the basic level where the item frequency is computed,

the higher level in Dehaene’s theory is to estimate the transition probabilities between items,

where the order of the item sequence matters. This transition probability level corresponds to

the surprise signal in our case. Many studies have observed that human learn the transition

probability between events or items, and use it to make decisions (Domenech & Dreher, 2010;

Higashi, Minami, & Nakauchi, 2017; Maheu et al., 2019; Meyniel & Dehaene, 2017; Meyniel,

Schlunegger, & Dehaene, 2015; Mittag, Takegata, & Winkler, 2016). Maheu et al (2019) reported

that the mid-latency brain waves (160-320ms in their study) reflect the transition probability

changes in frontal and central brain regions in MEG recordings. Similarly, in Meyniel et al.

(2016), the violation of expectations, i.e., the changes in the learned transition probability,

is reflected by the P300 EEG component, which is close to the surprise-related time window

found in our study. The novelty- and surprise-corresponded time window found in our study

is in line with previous studies and extend the observation from simple observation task to

complex decision making tasks.

In the SurNoR model we considered novelty as an intrinsic reward to motivate learning, it

is important to know how strong it reacts to an extrinsic reward. In chapter 5, I designed an

environment with an ’infinite’ state, aiming to test whether human participants are driven

more by the intrinsic or the extrinsic reward. Preliminary results show that when multiple

rewards exist in an environment, novelty-seeking behaviour is elicited. Previous studies have

shown similar results. In a study of Marvin and Shohamy (2016), curiosity (novelty in our

case) was observed to be a motivation to obtain rewards, and the positive information, such as

gaining novelty and reward, can enhance the formation of long-term memory. Physiological

evidences from animals and humans show that the novelty-seeking behaviour is affected by

the dopamine level (Beaufour et al., 2001; Bevins et al., 2002; Bódi et al., 2009), which could be

an explanation on why reward and novelty works not in competition but in cooperation. Since

our studying is still undergoing, further work needs to be done to elucidate the relationship

between novelty and reward.

In this thesis, from Chapter 2 to Chapter 4, I studied three different RL component which

are the eligibility trace, the RPE and the SPE. In the EEG study of the RPE and the SPE, I

found that the three prediction error signals (RPE, novelty and surprise) are distributed in
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different time windows. Novelty occurs in the earliest time window (80-130ms), followed by

surprise (150-210ms) and RPE comes the latest (280-380ms). The order of the three signals

gives us a hint about the information process and cognitive load required for each signal.

Novelty is a signal relatively easy to compute compared to the other two, which allows it to be

processed early and fast. Surprise, on the other hand, is computed by comparing the learned

and observed transitions, which requires more cognitive load than computing novelty. The

RPE is computed as the difference between expected reward and actual reward. The expected

reward at a state is considered as the sum of the reward offered by the environment at this

state and the discounted future rewards from this state. Thus, in the computation of RPE,

memory retrieval is needed for estimating the reward. This memory retrieval process makes

the RPE computation longer and requires more cognitive load than the other two signals.

According to previous studies, dopaminergic neuron activity affects not only reward process-

ing, but also novelty processing (Beaufour et al., 2001; Bevins et al., 2002; Bódi et al., 2009).

These results support our SurNoR model of treating novelty as intrinsic reward. Unfortunately,

in our SPE experiment design, novelty is closely associated with reward, which means the

states with high reward values also have high novelty. We provide a potential solution to

dissociate novelty and reward in order to study the two signals separately in the experiment

with ’infinite’ state. Our EEG result shows that even though both novelty and reward are

affected by dopamine, human brain processes the two signals separately. However, it remains

unknown how the two signals are transmitted in the brain.

In this thesis, we used and tested many classic RL models such as the model-free models

SARSA, Q-learning, the model-based model Forward-Learner, and the newly proposed hybrid

model SurNoR, etc. However, as George Box said "all models are wrong, but some are useful",

the RL models we used to explain human behaviours in this thesis could be wrong, but they

can give us information on the possible mechanisms humans use in learning. Humans may

compute the RPEs as the SARSA model does, they may compute novelty and surprise as

the SurNoR does, they may also use some unknown reinforcing signals to achieve the same

outcome. Algorithms that are not used in this thesis, and algorithms that are not developed

yet may produce similar results and explain behaviours and EEG waveform better. The current

and future study of reinforcing signals, such as the RPE, novelty, surprise and others, can

help us understanding better the learning mechanism, and thus to help solving problems in

education, self-development, social interaction and machine learning.
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Abstract In many daily tasks, we make multiple decisions before reaching a goal. In order to

learn such sequences of decisions, a mechanism to link earlier actions to later reward is necessary.

Reinforcement learning (RL) theory suggests two classes of algorithms solving this credit

assignment problem: In classic temporal-difference learning, earlier actions receive reward

information only after multiple repetitions of the task, whereas models with eligibility traces

reinforce entire sequences of actions from a single experience (one-shot). Here, we show one-shot

learning of sequences. We developed a novel paradigm to directly observe which actions and

states along a multi-step sequence are reinforced after a single reward. By focusing our analysis on

those states for which RL with and without eligibility trace make qualitatively distinct predictions,

we find direct behavioral (choice probability) and physiological (pupil dilation) signatures of

reinforcement learning with eligibility trace across multiple sensory modalities.

Introduction
In games, such as chess or backgammon, the players have to perform a sequence of many actions

before a reward is received (win, loss). Likewise in many sports, such as tennis, a sequence of muscle

movements is performed until, for example, a successful hit is executed. In both examples, it is

impossible to immediately evaluate the goodness of a single action. Hence the question arises: How

do humans learn sequences of actions from delayed reward?

Reinforcement learning (RL) models (Sutton and Barto, 2018) have been successfully used to

describe reward-based learning in humans (Pessiglione et al., 2006; Gläscher et al., 2010;

Daw et al., 2011; Niv et al., 2012; O’Doherty et al., 2017; Tartaglia et al., 2017). In RL, an action

(e.g. moving a token or swinging the arm) leads from an old state (e.g. configuration of the board,

or position of the body) to a new one. Here, we grouped RL theories into two different classes. The

first class, containing classic Temporal-Difference algorithms (such as TD-0 Sutton, 1988) cannot

support one-shot learning of long sequences, because multiple repetitions of the task are needed

before reward information arrives at states far away from the goal. Instead, one-shot learning

requires algorithms that keep a memory of past states and actions making them eligible for later,

that is delayed reinforcement. Such a memory is a key feature of the second class of RL theories –

called RL with eligibility trace –, which includes algorithms with explicit eligibility traces (Sut-

ton, 1988; Watkins, 1989; Williams, 1992; Peng and Williams, 1996; Singh and Sutton, 1996)
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and related reinforcement learning models (Watkins, 1989; Moore and Atkeson, 1993;

Blundell et al., 2016; Mnih et al., 2016; Sutton and Barto, 2018).

Eligibility traces are well-established in computational models (Sutton and Barto, 2018), and sup-

ported by synaptic plasticity experiments (Yagishita et al., 2014; He et al., 2015; Bittner et al.,

2017; Fisher et al., 2017; Gerstner et al., 2018). However, it is unclear whether humans show one-

shot learning, and a direct test of predictions that are manifestly different between the classes of RL

models with and without eligibility trace has never been performed. Multi-step sequence learning

with delayed feedback (Gläscher et al., 2010; Daw et al., 2011; Walsh and Anderson, 2011;

Tartaglia et al., 2017) offers a way to directly compare the two, because the two classes of RL mod-

els make qualitatively different predictions. Our question can therefore be reformulated more pre-

cisely: Is there evidence for RL with eligibility trace in the form of one-shot learning? In other words,

are actions and states more than one step away from the goal, reinforced after a single rewarded

experience? And if eligibility traces play a role, how many states and actions are reinforced by a sin-

gle reward?

To answer these questions, we designed a novel sequential learning task to directly observe

which actions and states of a multi-step sequence are reinforced. We exploit that after a single

reward, models of learning without eligibility traces (our null hypothesis) and with eligibility traces

(alternative hypothesis) make qualitatively distinct predictions about changes in action-selection bias

and in state evaluation (Figure 1). This qualitative difference in the second episode (i.e. after a single

reward) allows us to draw conclusions about the presence or absence of eligibility traces indepen-

dently of specific model fitting procedures and independently of the choice of physiological corre-

lates, be it EEG, fMRI, or pupil responses. We therefore refer to these qualitative differences as

’direct’ evidence.

We measure changes in action-selection bias from behavior and changes in state evaluation from

a physiological signal, namely the pupil dilation. Pupil responses have been previously linked to deci-

sion making, and in particular to variables that reflect changes in state value such as expected

reward, reward prediction error, surprise, and risk (O’Doherty et al., 2003; Jepma and Nieuwen-

huis, 2011; Otero et al., 2011; Preuschoff et al., 2011). By focusing our analysis on those states for

which the two hypotheses make distinct predictions after a single reward (’one-shot’), we find direct

behavioral and physiological signatures of reinforcement learning with eligibility trace. The observed

one-shot learning sheds light on a long-standing question in human reinforcement learning

(Bogacz et al., 2007; Daw et al., 2011; Walsh and Anderson, 2011; Walsh and Anderson, 2012;

Weinberg et al., 2012; Tartaglia et al., 2017).

Results
Since we were interested in one-shot learning, we needed an experimental multi-step action para-

digm that allowed a comparison of behavioral and physiological measures between episode 1

(before any reward) and episode 2 (after a single reward). Our learning environment had six states

plus a goal G (Figures 1 and 2) identified by clip-art images shown on a computer screen in front of

the participants. It was designed such that participants were likely to encounter in episode 2 the

same states D1 (one step away from the goal) and/or D2 (two steps away) as in episode 1 (Figure 1

(a)). In each state, participants chose one out of two actions, ’a’ or ’b’, and explored the environment

until they discovered the goal G (the image of a reward) which terminated the episode. The partici-

pants were instructed to complete as many episodes as possible within a limited time of 12 min

(Materials and methods).

The first set of predictions applied to the state D1 which served as a control if participants were

able to learn, and assign value to, states or actions. Both classes of algorithms, with or without eligi-

bility trace, predicted that effects of learning after the first reward should be reflected in the action

choice probability during a subsequent visit of state D1 (Figure 1 (b)). For estimated effect size, see

subsection Q-lambda model predictions in ’Methods. Furthermore, any physiological variable that

correlates with variables of reinforcement learning theories, such as action value Q, state value V , or

TD-error, should increase at the second encounter of D1. To assess this effect of learning, we mea-

sured the pupil dilation, a known physiological marker for learning-related signals (O’Doherty et al.,

2003; Jepma and Nieuwenhuis, 2011; Otero et al., 2011; Preuschoff et al., 2011). The advantage

of our hypothesis-driven approach was that we did not need to make assumptions about the
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neurophysiological mechanisms causing pupil changes. Comparing the pupil dilation at state D1 in

episode 1 to episode 2 (Figure 1(b), null hypothesis and alternative), provided a baseline for the

putative effect.

Our second set of predictions concerned state D2. RL without eligibility trace (null hypothesis)

such as TD-0, predicted that the action choice probability at D2 during episode 2 should be at 50

percent, since information about the reward at the goal state G cannot ‘travel’ two steps. However,

the class of RL with eligibility trace (alternative hypothesis) predicted an increase in the probability

of choosing the correct action, that is the one leading toward the goal (For estimated effect size,

see subsection Q-lambda model predictions in Methods). The two hypotheses also made different

predictions about the pupil response to the onset of state D2. Under the null hypothesis, the evalua-

tion of the state D2 could not change after a single reward. In contrast, learning with eligibility trace

predicted a change in state evaluation, presumably reflected in pupil dilation (Figure 1(b)).
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Figure 1. Experimental design and hypothesis. (a) Typical state-action sequences of the first two episodes. At each state, participants execute one of

two actions, ’a’ or ’b’, leading to the next state. Here, the participant discovered the goal state after randomly choosing three actions: ’b’ in state S

(Start), ’a’ in D2 (two actions from the goal), and ’b’ in D1 (one action from the goal). Episode 1 terminated at the rewarding goal state. Episode 2

started in a new state, Y. Note that D2 and D1 already occurred in episode 1. In this example, the participant repeated the actions which led to the

goal in episode 1 (’a’ at D2 and ’b’ at D1). (b) Reinforcement learning models make predictions about such behavioral biases, and about learned

properties (such as action value Q, state value V or TD-errors, denoted as x) presumably observable as changes in a physiological measure (e.g. pupil

dilation). Null Hypothesis: In RL without eligibility traces, only the state-action pair immediately preceding a reward is reinforced, leading to a bias at

state D1, but not at D2 (50%-line). Similarly, the state value of D2 does not change and therefore the physiological response at the D2 in episode 2

(solid red line) should not differ from episode 1 (dashed black line). Alternative Hypothesis: RL with eligibility traces reinforces decisions further back in

the state-action history. These models predict a behavioral bias at D1 and D2, and a learning-related physiological response at the onset of these

states after a single reward. The effects may be smaller at state D2 because of decay factors in models with eligibility traces.
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Figure 2. A single delayed reward reinforces state-action associations. (a) Structure of the environment: six states, two actions, rewarded goal G.

Transitions (arrows) were predefined, but actions were attributed to transitions during the experiment. Unbeknownst to the participants, the first actions

always led through the sequence S (Start), D2 (two steps before goal), D1 (one step before goal) to G (Goal). Here, the participant chose actions ’b’, ’a’,

’b’ (underlined boldface). (b) Half of the experiments, started episode 2 in X, always leading to D1, where we tested if the action rewarded in episode 1

was repeated. (c) In the other half of experiments, we tested the decision bias in episode 2 at D2 (’a’ in this example) by starting from Y. (d) The same

structure was implemented in three conditions. In the spatial condition (22 participants, top row in Figures (d), (e) and (f)), each state is identified by a

fixed location (randomized across participants) of a checkerboard, flashed for a 100 ms on the screen. Participants only see one checkerboard at a time;

the red arrows and state identifiers S, D2, D1, G are added to the figure to illustrate a first episode. In the sound condition (15 participants, middle

row), states are represented by unique short sounds. In the clip-art condition (12 participants, bottom row), a unique image is used for each state. (e)

Action selection bias in state D1, in episode 2, averaged across all participants. (f) In all three conditions the action choices at D2 were significantly

different from chance level (dashed horizontal line) and biased toward the actions that have led to reward in episode 1. Error bars: SEM, �p<0:05,
���p<0:001. For clarity, actions are labeled ’a’ and ’b’ in (e) and (f), consistent with panels (a) - (c), even though actual choices of participants varied.
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Participants could freely choose actions, but in order to maximize encounters with states D1 and

D2, we assigned actions to state transitions ’on the fly’. In the first episode, all participants started in

state S (Figure 1 (a) and 2(a)) and chose either action ’a’ or ’b’. Independently of their choice and

unbeknownst to the participants, the first action brought them always to state D2, two steps away

from the goal. Similarly, in D2, participants could freely choose an action but always transitioned to

D1, and with their third action, to G. These initial actions determined the assignment of state-action

pairs to state transitions for all remaining episodes in this environment. For example, if, during the

first episode, a participant had chosen action ’a’ in state D2 to initiate the transition to D1, then

action ’a’ brought this participant in all future encounters of D2 to D1, whereas action ’b’ brought

her from D2 to Z (Figure 2). In episode 2, half of the participants started from state Y. Their first

action always brought them to D2, which they had already seen once during the first episode. The

other half of the participants started in state X and their first action brought them to D1 (Figure 2

(b)). Participants who started episode 2 in state X started episode 3 in state Y and vice versa. In epi-

sodes 4 to 7, the starting states were randomly chosen from {S, D2, X, Y, Z}. After seven episodes,

we considered the task as solved, and the same procedure started again in a new environment (see

Materials and methods for the special cases of repeated action sequences). This task design allowed

us to study human learning in specific and controlled state sequences, without interfering with the

participant’s free choices.

Behavioral evidence for one-shot learning
As expected, we found that the action taken in state D1 that led to the rewarding state G was rein-

forced after episode 1. Reinforcement was visible as an action bias toward the correct action when

D1 was seen again in episode 2 (Figure 2 (e)). This action bias is predicted by many different RL

algorithms including the early theories of Rescorla and Wagner (1972).

Importantly, we also found a strong action bias in state D2 in episode 2: participants repeated

the correct action (the one leading toward the goal) in 85% of the cases. This strong bias is signifi-

cantly different from chance level 50% (p<0.001; Figure 2 (f)), and indicates that participants learned

to assign a positive value to the correct state-action pair after a single exposure to state D2 and a

single reward at the end of episode 1. In other words, we found evidence for one-shot learning in a

state two steps away from goal in a multi-step decision task.

This is compatible with our alternative hypothesis, that is the broad class of RL ’with eligibility

trace’, (Sutton, 1988; Watkins, 1989; Williams, 1992; Moore and Atkeson, 1993; Peng and Wil-

liams, 1996; Singh and Sutton, 1996; Mnih et al., 2016; Blundell et al., 2016; Sutton and Barto,

2018) that keep explicit or implicit memories of past state-action pairs (see Discussion). However, it

is not compatible with the null hypothesis, that is RL ’without eligibility trace’. In both classes of algo-

rithms, action biases or values that reflect the expected future reward are assigned to states. In RL

’without eligibility trace’, however, value information collected in a single action step is shared only

between neighboring states (for example between states G and D1), whereas in RL ’with eligibility

trace’ value information can reach state D2 after a single episode. Importantly, the above argument

is both fundamental and qualitative in the sense that it does not rely on any specific choice of param-

eters or implementation details of an algorithm. Our finding can be interpreted as a signature of a

behavioral eligibility trace in human multi-step decision making and complements the well-estab-

lished synaptic eligibility traces observed in animal models (Yagishita et al., 2014; He et al., 2015;

Bittner et al., 2017; Fisher et al., 2017; Gerstner et al., 2018).

We wondered whether the observed one-shot learning in our multi-step decision task depended

on the choice of stimuli. If clip-art images helped participants to construct an imaginary story (e.g.

with the method of loci; Yates, 1966) in order to rapidly memorize state-action associations, the

effect should disappear with other stimuli. We tested participants in environments where states were

defined by acoustic stimuli (2nd experiment: sound condition) or by the spatial location of a black-

and-white rectangular grid on the grey screen (3rd experiment: spatialcondition; see Figure 2 and

Materials and methods). Across all conditions, results were qualitatively similar (Figure 2 (f)): not

only the action directly leading to the goal (i.e. the action in D1) but also the correct action in state

D2 were chosen in episode 2 with a probability significantly different from random choice. This

behavior is consistent with the class of RL with eligibility trace, and excludes all algorithms in the

class of RL without eligibility trace.
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Even though results are consistent across different stimuli, we cannot exclude that participants

simply memorize state-action associations independently of the rewards. To exclude a reward-inde-

pendent memorization strategy, we performed a control experiment in which we tested the action-

bias at state D2 (see Figure 3) in the absence of a reward. In a design similar to the clip-art condition

(Figure 1 (a)), the participants freely chose actions that moved them through a defined, non-

rewarded, sequence of states (namely S-D2-D1-N-Y-D2, see Figure 3 (b) during the first episode. By

design of the control experiment, participants reach the state D2 twice before they encounter any

reward. Upon their second visit of state D2, we measured whether participants repeated the same

action as during their first visit. Such a repetition bias could be explained if participants tried to

memorize and repeat state-action associations even in the absence of a reward between the two vis-

its. In the control experiment we observed a weak non-significant (p=0.45) action-repetition bias of

only 56% (Figure 3 (c) in contrast to the main experiment (with a reward between the first and sec-

ond encounter of state D2) where we observed a repetition bias of 85%. These results indicate that

earlier rewards influence the action choice when a state is encountered a second time.

Reinforcement learning with eligibility trace is reflected in pupil dilation
We then investigated the time-series of the pupil diameter. Both, the null and the alternative hypoth-

esis predict a change in the evaluation of state D1, when comparing the second with the first

encounter. Therefore, if the pupil dilation indeed serves as a proxy for a learning-related state evalu-

ation (be it Q-value, V-value, or TD-error); we should observe a difference between the pupil

response to the onset of state D1 before (episode 1) and after (episode 2) a single reward.
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Figure 3. Control experiment without reward. (a) Sequence of the first six state-action pairs in the first control experiment. The state D2 is visited twice

and the number of states between the two visits is the same as in the main experiment. The original goal state has been replaced by a non-rewarded

state N. The control experiment focuses on the behavior during the second visit of state D2, further state-action pairs are not relevant for this analysis.

(b) The structure of the environment has been kept as close as possible to the main experiment (Figure 2 (a)). (c) Ten participants performed a total of

32 repetitions of this control experiment. Participants show an average action-repetition bias of 56%. This bias is not significantly different from the 50%

chance level (p ¼ 0:45) and much weaker than the 85% observed in the main experiment (Figure 2 (f)).
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We extracted (Materials and methods) the time-series of the pupil diameter, focused on the inter-

val [0s, 3s] after the onset of states D2 or D1, and averaged the data across participants and environ-

ments (Figure 4, black traces). We observed a significant change in the pupil dilatory response to

stimulus D1 between episode 1 (black curve) and episode 2 (red curve). The difference was com-

puted per time point (paired samples t-test); significance levels were adjusted to control for false dis-

covery rate (FDR, Benjamini and Hochberg, 1995) which is a conservative measure given the

temporal correlations of the pupillometric signal. This result suggests that participants change the

evaluation of D1 after a single reward and that this change is reflected in pupil dilation.

Importantly, the pupil dilatory response to the state D2 was also significantly stronger in episode

2 than in episode 1. Therefore, if pupil diameter is correlated with the state value V , the action value

Q, the TD-error, or a combination thereof, then the class of RL without eligibility trace must be

excluded as an explanation of the pupil response (i.e. we can reject the null hypothesis in Figure 1).

However, before drawing such a conclusion we controlled for correlations of pupil response with

other parameters of the experiment. First, for visual stimuli, pupil responses changed with stimulus

luminance. The rapid initial contraction of the pupil observed in the clip-art condition (bottom row in
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Figure 4. Pupil dilation reflects one-shot learning. (a) Pupil responses to state D1 are larger during episode 2 (red curve) than during episode 1 (black).

(b) Pupil responses to state D2 are larger during episode 2 (red curve) than during episode 1 (black). Top row: spatial, middle row: sound, bottom row:

clip-art condition. Pupil diameter averaged across all participants in units of standard deviation (z-score, see Materials and methods), aligned at

stimulus onset and plotted as a function of time since stimulus onset. Thin lines indicate the pupil signal ± SEM. Green lines indicate the time interval

during which the two curves differ significantly (p<FDRa ¼ 0:05). Significance was reached at a time tmin, which depends on the condition and the state:

spatial D1:tmin ¼ 730ms (22, 131, 85); spatial D2: tmin ¼ 1030ms (22, 137,130) sound D1: tmin ¼ 1470ms (15, 34, 19); sound D2: tmin ¼ 1280ms (15, 35, 33);

clip-art D1: tmin ¼ 970ms (12, 39, 19); clip-art D2: tmin ¼ 980ms (12, 45, 41); (Numbers in brackets: number of participants, number of pupil traces in

episode 1 or 2, respectively). (c) Participant-specific mean pupil dilation at state D2 (averaged over the interval (1000 ms, 2500 ms)) before (black dot)

and after (red dot) the first reward. Grey lines connect values of the same participant. Differences between episodes are significant (paired t-test,

p-values indicated in the Figure).
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Figure 4) was a response to the 300 ms display of the images. In the spatial condition, this initial

transient was absent, but the difference in state D2 between episode 1 and episode 2 were equally

significant. For the sound condition, in which stimuli were longer on average

(Materials and methods), the significant separation of the curves occurred slightly later than in the

other two conditions. A paired t-test of differences showed that, across all three conditions, pupil

dilation changes significantly between episodes 1 and 2 (Figure 4(c); paired t-test, p<0.001 for the

spatial condition, p<0.01 for the two others). Since in all three conditions luminance is identical in

episodes 1 and 2, luminance cannot explain the observed differences.

Second, we checked whether the differences in the pupil traces could be explained by the novelty

of a state during episode 1, or familiarity with the state in episode 2 (Otero et al., 2011), rather

than by reward-based learning. In a further control experiment, a different set of participants saw a

sequence of states, replayed from the main experiment. In order to ensure that participants were

focusing on the state sequence and engaged in the task, they had to push a button in each state

(freely choosing either ’a’ or ’b’), and count the number of states from start to goal. Stimuli, timing

and data analysis were the same as in the main experiment. The strong difference after 1000ms in

state D2, that we observed in Figure 4 (b), was absent in the control experiment (Figure 5) indicat-

ing that the significant differences in pupil dilation in response to state D2 cannot be explained by

novelty or familiarity alone. The findings in the control experiment also exclude other interpretations

of correlations of pupil diameter such as memory formation in the absence of reward.

In summary, across three different stimulus modalities, the single reward received at the end of

the first episode strongly influenced the pupil responses to the same stimuli later in episode 2.

Importantly, this effect was observed not only in state D1 (one step before the goal) but also in state

D2 (two steps before the goal). Furthermore, a mere engagement in button presses while observing

a sequence of stimuli, as in the control experiment, did not evoke the same pupil responses as the

main task. Together these results suggested that the single reward at the end of the first episode

triggered increases in pupil diameter during later encounters of the same state. The increases

observed in state D1 are consistent with an interpretation that pupil diameter reflects state value V ,

action value Q, or TD error - but do not inform us whether Q-value, V-value, or TD-error are esti-

mated by the brain using RL with or without eligibility trace. However, the fact that very similar

changes are also observed in state D2 excludes the possibility that the learning-related contribution

to the pupil diameter can be predicted by RL without eligibility trace.

While our experiment was not designed to identify whether the pupil response reflects TD-errors

or state values, we tried to address this question based on a model-driven analysis of the pupil

traces. First, we extracted all pupil responses after the onset of non-goal states and calculated the

TD-error (according to the best-fitting model, Q-l, see next section) of the corresponding state tran-

sition. We found that the pupil dilation was much larger after transitions with high TD-error com-

pared to transitions with zero TD-error (Figure 6 (a) and Materials and methods). Importantly, these

temporal profiles of the pupil responses to states with high TD-error had striking similarities across

the three experimental conditions, whereas the mean response time course was different across the

three conditions (Figure 6 (c). This suggests that the underlying physiological process causing the

TD-error-driven component in the pupil responses was invariant to stimulation details. Second, a sta-

tistical analysis including data with low, medium, and high TD-error confirmed the correlation of

pupil dilation with TD error (see subsection regression analysis in methods). Third, a further qualita-

tive analysis revealed that TD-error, rather than value itself, was a factor modulating pupil dilation

(Figure 6 (b).

Estimation of the time scale of the behavioral eligibility trace using
reinforcement learning models
Given the behavioral and physiological evidence for RL with eligibility trace, we wondered whether

our findings are consistent with earlier studies (Bogacz et al., 2007; Daw et al., 2011;

Tartaglia et al., 2017) where several variants of reinforcement learning algorithms were fitted to the

experimental data. We considered algorithms with and (for comparison) without eligibility trace. Eli-

gibility traces enðs; aÞ can be modeled as a memory of past state-action pairs ðs; aÞ in an episode. At

the beginning of each episode all twelve eligibility trace values (two actions for each of the six deci-

sion states) were set to enðs; aÞ ¼ 0. At each discrete time step n, the eligibility of the current state-
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action pair was set to 1, while that of all others decayed by a factor gl according to Singh and

Sutton (1996)

enðs;aÞ ¼
1 if s¼ sn; a¼ an

glen�1ðs;aÞ otherwise:

�

(1)

The parameter g 2 ð0;1Þ exponentially discounts a distal reward, as commonly described in neuro-

economics (Glimcher and Fehr, 2013) and machine learning (Sutton and Barto, 2018); the parame-

ter l2 ½0;1� is called the decay factor of the eligibility trace. The limit case l¼ 0 is interpreted as no

memory and represents an instance of RL without eligibility trace. Even though the two parameters

g and l appear as a product in Equation 1 so that the decay of the eligibility trace depends on

both, they have different effects in spreading the reward information from one state to the next (cf.

Equation 3 in Materials and methods). After many trials, the V-values of states, or Q-values of

actions, approach final values which only depend on g, but not on l. Given a parameter g>0, the

choice of l determines how far value information spreads in a single trial. Note that for l¼ 0 (RL

without eligibility trace); Equation 1 assigns an eligibility en ¼ 1 to state D1 in the first episode at the

moment of the transition to the goal (while the eligibility at state D2 is 0). These values of eligibility
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Figure 5. Pupil dilation during the second control experiment. In the second control experiment, different participants passively observed state

sequences which were recorded during the main experiment. Data analysis was the same as for the main experiment. (a) Pupil time course after state

onset (t ¼ 0) of state D1 (before goal). (b) State D2 (two before goal). Black traces show the pupil dilation during episode one, red traces during

episode two. At state D1 in the clip-art condition, the pupil time course shows a separation similar to the one observed in the main experiment. This

suggest that participants may recognize the clip-art image that appears just before the final image. Importantly in state D2, the pupil time course

during episode 2 is qualitatively different from the one in the main experiment (Figure 4).
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traces lead to a spread of reward information from the goal to state D1, but not to D2, at the end of

the first episode in models without eligibilty trace (cf. Equation 3 and subsection Q-l model predic-

tions in methods), hence the qualitative argument for episodes 1 and 2 as sketched in Figure 1.

We considered eight common algorithms to explain the behavioral data: Four algorithms

belonged to the class of RL with eligibility traces. The first two, SARSA-l and Q-l (see

Materials and methods, Equation 3) implement a memory of past state-action pairs by an eligibility

trace as defined in Equation 1; as a member of the Policy-Gradient family, we implemented a variant

of Reinforce (Williams, 1992; Sutton and Barto, 2018), which memorizes all state-action pairs of an

episode. A fourth algorithm with eligibility trace is the 3-step Q-learning algorithm (Watkins, 1989;

Mnih et al., 2016; Sutton and Barto, 2018), which keeps memory of past states and actions over

three steps (see Discussion and Materials and methods). From the model-based family of RL, we

chose the Forward Learner (Gläscher et al., 2010), which memorizes not state-action pairs, but

learns a state-action-next-state model, and uses it for offline updates of action-values. The Hybrid

Learner (Gläscher et al., 2010) combines the Forward Learner with SARSA-0. As a control, we chose
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Figure 6. Reward prediction error (RPE) at non-goal states modulates pupil dilation. Pupil traces (in units of standard deviation) from all states except G

were aligned at state onset (t ¼ 0ms) and the mean pupil response �t was subtracted (see Materials and methods). (a) The deviation from the mean is

shown for states where the model predicts RPE ¼ 0 (black, dashed) and for states where the model predicts RPE � 80
th percentile (solid, blue). Shaded

areas: ± SEM. Thus the pupil dilation reflects the RPE predicted by a reinforcement learning model that spreads value information to nonrewarded

states via eligibility traces. (b) To qualitatively distinguish pupil correlations with RPE from correlations with state values VðsÞ, we started from the

following observation: the model predicts that RPE decreases over the course of learning (due to convergence), while the state values VðsÞ increase

(due to spread of value information). We wanted to observe this qualitative difference in the pupil dilations of subsequent visits of the same state. We

selected pairs of visits n and nþ 1 for which the RPE decreased while VðsÞ increased and extracted the pupil measurements of the two visits (again,

mean �t is subtracted). The dashed, black curves show the average pupil trace during the nth visit of a state. The solid black curves correspond to the

next visit (nþ 1) of the same state. In the spatial condition, the two curves significantly (p<FDRa ¼ 0:05) separate at t>1s (indicated by the green line). All

three conditions show the same trend (with strong significance in the spatial condition), compatible with a positive correlation of pupil response with

RPE, but not with state value VðsÞ. (c) The mean pupil dilation �t is different in each condition, whereas the learning related deviations from the mean

(in (a) and (b)) have similar shapes.
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two algorithms belonging to the class of RL without eligibility traces (thus modeling the null hypoth-

esis): SARSA-0 and Q-0.

We found that the four RL algorithms with eligibility trace explained human behavior better than

the Hybrid Learner, which was the top-scoring among all other RL algorithms. Cross-validation con-

firmed that our ranking based on the Akaike Information Criterion (AIC, Akaike, 1974; see

Materials and methods) was robust. According to the Wilcoxon rank-sum test, the probability that

the Hybrid Learner ranks better than one of the three RL algorithms with explicit eligibility traces

was below 14% in each of the conditions and below 0.1% for the aggregated data (p<0:001, Table 1

and Materials and methods). The models Q-l and SARSA-l with eligbility trace performed each sig-

nificantly better than the corresponding models Q-0 and SARSA-0 without eligbility trace.

Since the ranks of the four RL algorithms with eligibility traces were not significantly different, we

focused on one of these, viz. Q-l. We wondered whether the parameter l that characterizes the

decay of the eligibility trace in Equation 1 could be linked to a time scale. To answer this question,

we proceeded in two steps. First, we analyzed the human behavior in discrete time steps corre-

sponding to state transitions. We found that the best fitting values (maximum likelihood, see

Materials and methods) of the eligibility trace parameter l were 0.81 in the clip-art, 0.96 in the

sound, and 0.69 in the spatial condition (see Figure 7). These values are all significantly larger than

zero (p<0.001) indicating the presence of an eligibility trace consistent with our findings in the previ-

ous subsections.

In a second step, we modeled the same action sequence in continuous time, taking into account

the measured inter-stimulus interval (ISI) which was the sum of the reaction time plus a random delay

of 2.5 to 4 seconds after the push-buttons was pressed. The reaction times were similar in the spa-

tial- and clip-art condition, and slightly longer in the sound condition with the following 10%, 50%

Table 1. Models with eligibility trace explain behavior significantly better than alternative models.

Four reinforcement learning models with eligibility trace (Q-l, REINFORCE, SARSA-l, 3-step-Q); two model-based algorithms (Hybrid,

Forward Learner), two RL models without eligibility trace (Q-0, SARSA-0), and a null-model (Biased Random, Materials and methods)

were fitted to the human behavior, separately for each experimental condition (spatial, sound, clip-art). Models with eligibility trace

ranked higher than those without (lower Akaike Information Criterion, AIC, evaluated on all participants performing the condition).

wAIC indicates the normalized Akaike weights (Burnham and Anderson, 2004), values < 0.01 are not added to the table. Note that

only models with eligibility trace have wAIC>0:01. The ranking is stable as indicated by the sum of k rankings (column rank sum) on

test data, in k-fold crossvalidation (Materials and methods). P-values refer to the following comparisons: P(a): Each model in the with

eligibility trace group was compared with the best model without eligibility trace (Hybrid in all conditions); models for which the com-

parison is significant are shown in bold. P(b): Q-0 compared with Q-l. P(c): SARSA-0 compared with SARSA-l. P(d): Biased Random

compared with the second last model, which is Forward Learner in the clip-art condition and SARSA-0 in the two others. In the Aggre-

gated column, we compared the same pairs of models, taking into account all ranks across the three conditions. All algorithms with eli-

gibility trace explain the human behavior better (p(e)<.001) than algorithms without eligibility trace. Differences among the four

models with eligibility trace are not significant. In each comparison, k pairs of individual ranks are used to compare pairs of models

and obtain the indicated p-values (Wilcoxon rank-sum test, Materials and methods).

Condition Spatial Sound Clip-art Aggregated

Model AIC Rank Sum
(k = 11)

AIC Rank Sum
(k = 7)

AIC Rank Sum
(k = 7) all ranks

With elig tr.

Q-l 6470:2
pðaÞ¼:003
wAIC¼1:00

24 1489:1
pðaÞ¼:015
wAIC¼0:23

20 1234:8
pðaÞ¼:062
wAIC¼0:27

20 64pðeÞ<:001

Reinforce 6508:7pðaÞ¼:016 35 1486:8
pðaÞ¼:015
wAIC¼0:74

10 1239:2
pðaÞ¼:109
wAIC¼0:03

22 67pðeÞ<:001

3-step-Q 6488:8pðaÞ¼:013 33 1494:3
pðaÞ¼:046
wAIC¼0:02

26 1236:6
pðaÞ¼:015
wAIC¼0:11

16 71pðeÞ<:001

SARSA-l 6502:4pðaÞ¼:003 36 1495:2
pðaÞ¼:040
wAIC¼0:01

30 1233:2
pðaÞ¼:015
wAIC¼0:59

16 82pðeÞ<:001

Model based
Hybrid 6536:6 61 1498:3 43 1271:3 33 137

pðeÞ<:001

Forward Learner 6637:5 79 1500:6 41 1316:3 48 168

Without elig tr.
Q-0 6604:0pðbÞ¼:003 60 1518:6pðbÞ¼:046 39 1292:0pðbÞ¼:015 51 150

pðbÞ<:001

SARSA-0 6643:3pðcÞ¼:001 68 1520:2pðcÞ¼:093 43 1289:5pðcÞ¼:015 46 157
pðcÞ<:001

Biased Random 7868:3pðdÞ¼:001 99 1866:1pðdÞ¼:015 63 1761:1pðdÞ¼:015 63 225
pðdÞ<:001
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and 90% percentiles: spatial: [0.40, 1.19, 2.73], clip-art: [0.50, 1.11, 2.57], sound: [0.67, 1.45, 3.78]

seconds. In this continuous-time version of the eligibility trace model, both the discount factor g and

the decay factor l were integrated into a single time constant t that describes the decay of the

memory of past state-action associations in continuous time. We found maximum likelihood values

for t around 10s (Figure 7), corresponding to 2 to 3 inter-stimulus intervals. This implies that an

action taken 10s before a reward was reinforced and associated with the state in which it was taken

– even if one or several decisions happened in between (see Discussion).

Thus eligibility traces, that is memories of past state-action pairs, decay over about 10s and can

be linked to a reward occurring during that time span.

Discussion
Eligibility traces provide a mechanism for learning temporally extended action sequences from a sin-

gle reward (one-shot). While one-shot learning is a well-known phenomenon for tasks such as image

recognition (Standing, 1973; Brady et al., 2008) and one-step decision making (Duncan and Shoh-

amy, 2016; Greve et al., 2017; Rouhani et al., 2018) it has so far not been linked to Reinforcement

Learning (RL) with eligibility traces in multi-step decision making.

In this study, we asked whether humans use eligibility traces when learning long sequences from

delayed feedback. We formulated mutually exclusive hypotheses, which predict directly observable

changes in behavior and in physiological measures when learning with or without eligibility traces.

Using a novel paradigm, we could reject the null hypothesis of learning without eligibility trace in

favor of the alternative hypothesis of learning with eligibility trace.

Our multi-step decision task shares aspects with earlier work in the neurosciences

(Pessiglione et al., 2006; Gläscher et al., 2010; Daw et al., 2011; Walsh and Anderson, 2011;

Niv et al., 2012; O’Doherty et al., 2017), but overcomes their limitations (i) by using a recurrent

graph structure of the environment that enables relatively long episodes (Tartaglia et al., 2017),

and (ii) by implementing an ’on-the-fly’ assignment rule for state-action transitions during the first

episodes. This novel design allows the study of human learning in specific and controlled conditions,

without interfering with the participant’s free choices.

A difficulty in the study of eligibility traces, is that in the relatively simple tasks typically used in

animal (Pan et al., 2005) or human (Bogacz et al., 2007; Gureckis and Love, 2009; Daw et al.,
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Figure 7. Eligibility for reinforcement decays with a time-scale t in the order of 10 s. The behavioral data of each experimental condition constrain the

free parameters of the model Q-l to the ranges indicated by the blue histograms (see methods) (a) Distribution over the eligibility trace parameter l in

Equation 1 (discrete time steps). Vertical black lines indicate the values that best explain the data (maximum likelihood, see Materials and methods). All

values are significantly different from zero. (b) Modeling eligibility in continuous time with a time-dependent decay (Materials and methods,

Equation 5), instead of a discrete per-step decay. The behavioral data constrains the time-scale parameter t to around 10 s. Values in the column All

are obtained by fitting l and t to the aggregated data of all conditions.

Lehmann et al. eLife 2019;8:e47463. DOI: https://doi.org/10.7554/eLife.47463 12 of 25

Research article Neuroscience

85



2011; Walsh and Anderson, 2011; Weinberg et al., 2012; Tartaglia et al., 2017) studies, the two

hypotheses make qualitatively different predictions only during the first episodes: At the end of the

first episode, algorithms in the class of RL without eligibility trace update only the value of state D1

(but not of D2, see Figure 1, Null hypothesis). Then, this value of D1 will drive learning at state D2

when the participants move from D2 to D1 during episode 2. In contrast, algorithms in the class of

RL with eligibility trace, update D2 already during episode one. Therefore, only during episode 2,

the behavioral data permits a clean, qualitative dissociation between the two classes. On the other

hand, the fact that for most episodes, the differences are not qualitative, is the reason why eligibility

trace contributions have typically been statistically inferred from many trials through model selection

(Pan et al., 2005; Bogacz et al., 2007; Gureckis and Love, 2009; Daw et al., 2011; Walsh and

Anderson, 2011; Tartaglia et al., 2017). Here, by a specific task design and a focus on episodes 1

and 2, we provided directly observable, qualitative, evidence for learning with eligibility traces from

behavior and pupil data without the need of model selection.

In the quantitative analysis, RL models with eligibility trace explained the behavioral data signifi-

cantly better than the best tested RL models without. There are, however, in the reinforcement

learning literature, several alternative algorithms that would also account for one-shot learning but

do not rely on the explicit eligibility traces formulated in Equation 1. First, n-step reinforcement

learning algorithms (Watkins, 1989; Mnih et al., 2016; Sutton and Barto, 2018) compare the value

of a state not with that of its direct neighbor but of neighbors that are n steps away. These algo-

rithms are closely related to eligibility traces and in certain cases even mathematically equivalent

(Sutton and Barto, 2018). Second, reinforcement learning algorithm with storage of past sequences

(Moore and Atkeson, 1993; Blundell et al., 2016; Mnih et al., 2016) enable the offline replay of

the first episode so as to update values of states far away from the goal. While these approaches are

formally different from eligibility traces, they nevertheless implement the idea of eligibility traces as

memory of past state-action pairs (Crow, 1968; Frémaux and Gerstner, 2015), albeit in a different

algorithmic framework. For example, prioritized sweeping with small backups (Seijen and Sutton,

2013) is an offline algorithm that is, if applied to our deterministic environment after the end of the

first episode, equivalent to both episodic control (Brea, 2017) and an eligibility trace. Interestingly,

the two model-based algorithms (Forward Learner and Hybrid) would in principle be able to explain

one-shot learning since reward information is spread, after the first episode, throughout the model,

via offline Q-value updates. Nevertheless, when behavioral data from our experiments were fitted

across all seven episodes, the two model-based algorithms performed significantly worse than the

RL models with explicit eligibility traces. Since our experimental design does not allow us to distin-

guish between these different algorithmic implementations of closely related ideas, we put them all

in the class of RL with eligibility traces.

Importantly, RL algorithms with explicit eligibility traces (Sutton, 1988; Williams, 1992;

Peng and Williams, 1996; Izhikevich, 2007; Frémaux and Gerstner, 2015) can be mapped to

known synaptic and circuit mechanisms (Yagishita et al., 2014; He et al., 2015; Bittner et al.,

2017; Fisher et al., 2017; Gerstner et al., 2018). A time scale of the eligibility trace of about 10s in

our experiments is in the range of, but a bit longer than those observed for dopamine modulated

plasticity in the striatum (Yagishita et al., 2014), serotonin and norepinephrine modulated plasticity

in the cortex (He et al., 2015), or complex-spike plasticity in hippocampus (Bittner et al., 2017), but

shorter than the time scales of minutes reported in hippocampus (Brzosko et al., 2017). The basic

idea for the relation of eligibility traces as in Equation 1 to experiments on synaptic plasticity is that

choosing action a in state s leads to co-activation of neurons and leaves a trace at the synapses con-

necting those neurons. A later phasic neuromodulator signal will transform the trace into a change

of the synapses so that taking action a in state s becomes more likely in the future (Crow, 1968; Izhi-

kevich, 2007; Sutton and Barto, 2018; Gerstner et al., 2018). Neuromodulator signals could

include dopamine (Schultz, 2015), but reward-related signals could also be conveyed, together with

novelty or attention-related signals, by other modulators (Frémaux and Gerstner, 2015).

Since in our paradigm the inter-stimulus interval (ISI) was not systematically varied, we cannot dis-

tinguish between an eligibility trace with purely time-dependent, exponential decay, and one that

decays discretely, triggered by events such as states or actions. Future research needs to show

whether the decay is event-triggered or defined by molecular characteristics, independent of the

experimental paradigm.
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Our finding that changes of pupil dilation correlate with reward-driven variables of reinforcement

learning (such as value or TD error) goes beyond the changes linked to state recognition reported

earlier (Otero et al., 2011; Kucewicz et al., 2018). Also, since non-luminance related pupil diameter

is influenced by the neuromodulator norepinephrine (Joshi et al., 2016) while reward-based learning

is associated with the neuromodulator dopamine (Schultz, 2015), our findings suggest that the

roles, and regions of influence, of neuromodulators could be mixed (Frémaux and Gerstner, 2015;

Berke, 2018) and less well segregated than suggested by earlier theories.

From the qualitative analysis of the pupillometric data of the main experiment (Figure 5),

together with those of the control experiment (Figure 5), we concluded that changes in pupil dila-

tion reflected a learned, reward-related property of the state. In the context of decision making and

learning, pupil dilation is most frequently associated with violation of an expectation in the form of a

reward prediction error or stimulus prediction error as in an oddball-task (Nieuwenhuis et al.,

2011). However, our experimental paradigm was not designed to decide whether pupil diameter

correlates stronger with state values or TD-errors. Nevertheless, a more systematic analysis (see

Materials and methods and Figure 6) suggests that correlation of pupil dilation with TD-errors is

stronger than correlation with state values.

Conclusion
Eligibility traces are a fundamental factor underlying the human capability of quick learning and

adaptation. They implement a memory of past state-action associations and are a crucial element to

efficiently solve the credit assignment problem in complex tasks (Izhikevich, 2007; Sutton and

Barto, 2018; Gerstner et al., 2018). The present study provides both qualitative and quantitative

evidence for one-shot sequence-learning with eligibility traces. The correlation of the pupillometric

signals with an RL algorithm with eligibility traces suggests that humans not only exploit memories

of past state-action pairs in behavior but also assign reward-related values to these memories. The

consistency and similarity of our findings across three experimental conditions suggests that the

underlying cognitive, or neuromodulatory, processes are independent of the stimulus modality. It is

an interesting question for future research to actually identify the neural implementation of these

memory traces.

Materials and methods

Experimental conditions
We implemented three different experimental conditions based on the same Markov Decision Pro-

cess (MDP) of Figure 2(a). The conditions only differed in the way the states were presented to the

participants. Furthermore, in order to collect enough samples from early trials, where the learning

effects are strongest, participants did not perform one long experiment. Instead, after completing

seven episodes in the same environment, the experiment paused for 45 s while participants were

instructed to close and relax their eyes. Then the experiment restarted with a new environment: the

transition graph was reset, a different, unused, stimulus was assigned to each state, and the partici-

pant had to explore and learn the new environment. We instructed the participants to reach the

goal state as often as possible within a limited time (12 min in the sound and clip-art condition, 20

min in the spatial condition). On average, they completed 48.1 episodes (6.9 environments) in the

spatial condition , 19.4 episodes (2.7 environments) in the sound condition and 25.1 episodes (3.6

environments) in the clip-art condition.

In the spatial condition, each state was defined by the location (on an invisible circle) on the

screen of a 100 � 260 pixels checkerboard image, flashed for 100 ms, Figure 2(d). The goal state

was represented by the same rectangular checkerboard, but rotated by 90˚. The checkerboard had

the same average luminance as the grey background screen. In each new environment, the states

were randomly assigned to locations and the checkerboards were rotated (states: 260 � 100 pixels

checkerboard, goal: 100 � 260).

In the sound condition, each state was represented by a unique acoustic stimulus (tones and natu-

ral sounds) of 300 ms to 600 ms duration. New, randomly chosen, stimuli were used in each environ-

ment. At the goal state an applause was played. An experimental advantage of the sound condition
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is that a change in the pupil dilation cannot stem from a luminance change but must be due to a

task-specific condition.

In the clip-art condition, each state was represented by a unique 100 � 100 pixel clip-art image

that appeared for 300 ms in the center of the screen. For each environment, a new set of images

was used, except for the goal state which was always the same (a person holding a trophy) in all

experiments.

The screen resolution was 1920 � 1080 pixels. In all three conditions, the background screen was

grey with a fixation cross in the center of the screen. It was rotated from + to � to signal to the par-

ticipants when to enter their decision by pressing one of two push-buttons (one in the left and the

other in the right hand). No lower or upper bound was imposed on the reaction time. The next state

appeared after a random delay of 2.5s to 4s after the push-buttons was pressed. Prior to the actual

learning task, they performed a few trials to check they all understood the instructions. While the

participants performed the sound- and clip-art conditions, we recorded the pupil diameter using an

SMI iViewX high speed video-based eye tracker (recorded at 500 Hz, down-sampled to 100 Hz for

the analysis by averaging over five samples). From participants performing the spatial condition, we

recorded the pupil diameter using a 60 Hz Tobii Pro tracker. An eye tracker calibration protocol was

run for each participant. All experiments were implemented using the Psychophysics Toolbox

(Brainard, 1997).

The number of participants performing the task was: sound: 15; clip-art: 12; spatial: 22 partici-

pants; Control sound: 9; Control clip-art: 10; Control spatial: 12. The participants were recruited

from the EPFL students pool. They had normal or corrected-to-normal vision. Experiments were con-

ducted in accordance with the Helsinki declaration and approved by the ethics commission of the

Canton de Vaud (164/14 Titre: Aspects fondamentaux de la reconnaissance des objets : protocole

général). All participants were informed about the general purpose of the experiment and provided

written, informed consent. They were told that they could quit the experiment at any time they wish.

Pupil data processing
Our data processing pipeline followed recommendations described in Mathôt et al. (2017). Eye

blinks (including 100 ms before, and 150 ms after) were removed and short blocks without data (up

to 500 ms) were linearly interpolated. In all experiments, participants were looking at a fixation cross

which reduces artifactual pupil-size changes (Mathôt et al., 2017). For each environment, the time-

series of the pupil diameter during the seven episodes was extracted and then normalized to zero-

mean, unit variance. This step renders the measurements comparable across participants and envi-

ronments. We then extracted the pupil recordings at each state from 200 ms before to 3000 ms after

each state onset and applied subtractive baseline correction where the baseline was taken as the

mean in the interval (�100ms, þ100ms]. Taking the þ100ms into account does not interfere with

event-specific effects because they develop only later (>220 ms according to Mathôt et al., 2017);

but a symmetric baseline reduces small biases when different traces have different slopes around

t = 0 ms. We considered event-locked pupil responses with z-values outside ±3 as outliers and

excluded them from the main analysis. We also excluded pupil traces with less than 50% eye-tracker

data within the time window of interest, because very short data fragments do not provide informa-

tion about the characteristic time course of the pupil trace after stimulus onset. As a control, Figure 8

shows that the conclusions of our study are not affected if we drop the two conditions and include

all data.

Action assignment in the Markov Decision Process
Actions in the graph of Figure 2 were assigned to transitions during the first few actions as

explained in the main text. However, our learning experiment would become corrupted if partici-

pants would discover that in the first episode any three actions lead to the goal. First, such knowl-

edge would bypass the need to actually learn state-action associations, and second, the knowledge

of ‘distance-to-goal’ implicitly provides reward information even before seeing the goal state. We

avoided the learning of the latent structure by two manipulations: First, if in episode 1 of a new envi-

ronment a participant repeated the exact same action sequence as in the previous environment, or if

they tried trivial action sequences (a-a-a or b-b-b); the assignment of the third action led from state

D1 to Z, rather than to the Goal. This was the case in about 1/3 of the first episodes (spatial: 48/173,
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sound: 20/53 clip-art: 23/49). The manipulation further implied that participants had to make deci-

sions against their potential left/right bias. Second, an additional state H (not shown in Figure 2)

was added in episode 1 in some environments (spatial: 23/173, sound: 6/53 clip-art: 8/49). Partici-

pants then started from H (always leading to S) and the path length to goal was four steps. Inter-

views after the experiment showed that no participant became aware of the experimental

manipulation and, importantly, they did not notice that they could reach the goal with a random

action sequence in episode 1.

Reinforcement Learning models
For the RL algorithm Q� l (see Algorithm 1); four quantities are important: the reward r; the value

Qðs; aÞ of a state-action association such as taking action ’b’ in state D2; the value VðsÞ of the state

itself, defined as the larger of the two Q-values in that state, that is VðsÞ ¼ max~aQðs; ~aÞ; and the TD-

error (also called Reward Prediction Error or RPE) calculated at the end of the nth action after the

transition from state sn to snþ1

RPEðn! nþ 1Þ ¼ rnþ1þg � Vðsnþ1Þ�Qðsn;anÞ

(2)

Here, g is the discount factor and VðsÞ is the estimate of the discounted future reward that can

maximally be collected when starting from state s. Note that RPE is different from reward. In our

environment a reward occurs only at the transition from state D1 to state G whereas reward predic-

tion errors occur in episodes 2–7 also several steps before the reward location is reached.

The table of values Qðs; aÞ is initialized at the beginning of an experiment and then updated by

combining the RPE and the eligibility traces enðs; aÞ defined in the main text (Equation 1);

Qðs;aÞ Qðs;aÞþa �RPEðnÞ � enðs;aÞ ; (3)

where a is the learning rate. Note that all Q-values are updated, but changes in Qðsn;anÞ are propor-

tional to the eligibility of the state-action pair enðs;aÞ. In the literature the table Qðs;aÞ is often initial-

ized with zero, but since some participants pressed the left (or right) button more often than the

other one, we identified for each participant the preferred action apref and initialized Qðs;apref Þ with a

small bias b, adapted to the data.
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Figure 8. Results including low-quality pupil traces. We repeated the pupil data analysis at the crucial state D2including all data (including traces with

less than 50% of data within the 3s window and with z-values outside ±3). Gray curves in the background show all recorded pupil traces. The

highlighted blue curves show a few, randomly selected, low-quality pupil traces. Including these traces does not affect the result.

Lehmann et al. eLife 2019;8:e47463. DOI: https://doi.org/10.7554/eLife.47463 16 of 25

Research article Neuroscience

89



Action selection exploits the Q-values of Equation 3 using a softmax criterion with temperature

T:

pðs;aÞ ¼
expðQðs;aÞ=TÞ

P

~a expðQðs;~aÞ=TÞ
(4)

As an alternative to the eligibility trace defined in Equation 1, where the eligibility decays at each

discrete time-step, we also modeled a decay in continuous time, defined as

etðs;aÞ ¼ exp �
t�Bðs;aÞ

t

� �

if t>Bðs;aÞ (5)

and zero otherwise. Here, t is the time stamp of the current discrete step, and Bðs;aÞ is the time

stamp of the last time a state-action pair ðs;aÞ has been selected. The discount factor g in Equation 2

is kept, while in Equation 5 a potential discounting is absorbed into the single parameter t.

Our implementation of Reinforce followed the pseudo-code of REINFORCE: Monte-Carlo Policy-

Gradient Control (without baseline) (Sutton and Barto, 2018), Chapter 13.3) which updates the

action-selection probabilities at the end of each episode. This requires the algorithm to keep a (non-

decaying) memory of the complete state-action history of each episode. We refer to Peng and Wil-

liams (1996), Gläscher et al. (2010) and Sutton and Barto (2018) for the pseudo-code and in-

depth discussions of all algorithms.

Parameter fit and model selection
The main goal of this study was to test the null-hypothesis ’RL without eligibility traces’ from the

behavioral responses at states D1 and D2 (Figure 2(e) and (f)). By the design of the experiment, we

collected relatively many data points from the early phase of learning, but only relatively few epi-

sodes in total. This contrasts with other RL studies, where participants typically perform longer

experiments with hundreds of trials. As a result, the behavioral data we collected from each single

participant is not sufficient to reliably extract the values of the model-parameters on a participant-

by-participant basis. To find the most likely values of model parameters, we therefore pooled the

behavioral recordings of all participants into one data set D.

Each learning model m is characterized by a set of parameters �m ¼ ð�m
1
; �m

2
; :::Þ. For example, our

implementation of the Q-l algorithm has five free parameters: the eligibility trace decay l; the learn-

ing rate a; the discount rate g; the softmax temperature T; and the bias b for the preferred action.

For each model m, we were interested in the posterior distribution Pð�mjDÞ over the free parameters

�m, conditioned on the behavioral data of all participants D. This distribution was approximated by

sampling using the Metropolis-Hastings Markov Chain Monte Carlo (MCMC) algorithm (Hast-

ings, 1970). For sampling, MCMC requires a function f ð�m;DÞ which is proportional to Pð�mjDÞ.

Choosing a uniform prior Pð�mÞ ¼ const, and exploiting that PðDÞ is independent of �m, we can

directly use the model likelihood PðDj�mÞ:

Pð�mjDÞ ¼
PðDj�mÞPð�mÞ

PðDÞ
/ PðDj�mÞ :¼ f ð�m;DÞ: (6)

We calculated the likelihood PðDj�mÞ of the data as the joint probability of all action selection

probabilities obtained by evaluating the model (Equations 1, 2, 3, and 4 in the case of QðlÞ) given a

parameter sample �m. The log likelihood (LL) of the data under the model is

LLðDj�mÞ ¼
X

N

p¼1

X

Ep

j¼1

X

Tj

t¼1

logðpðatjst ;�
mÞÞ ; (7)

where the sum is taken over all participants p, all environments j, and all actions at a participant has

taken in the environment j.

For each model, we collected 100
0
000 parameter samples (burn-in: 1500; keeping only every 10

th

sample; 50 random start positions; proposal density: Gaussian with s ¼ 0:004 for temperature T and

bias b, and s ¼ 0:008 for all other parameters). From the samples we chose the �̂m which maximizes

the log likelihood (LL), calculated the AICm and ranked the models accordingly. The AICm of each

model is shown in Table 1, alongside with the Akaike weights wAICm. The latter can be interpreted
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as the probability that the model m is the best model for the data (Burnham and Anderson, 2004).

Note that the parameter vector �̂m could be found by a hill-climbing algorithm toward the optimum,

but such an algorithm does not give any indication about the uncertainty. Here, we obtained an

approximate conditional posterior distribution pð�mi jD; �̂
m
j 6¼iÞ for each component i of the parameter

vector �m (cf. Figure 9). We estimated this posterior for a given parameter i by selecting only the 1%

of all samples falling into a small neighborhood: �̂mj � �mj � �j � �̂mj þ �mj ; i 6¼ j. We determined �mj such

that along each dimension j, the same percentage of samples was kept (about 22%) and the overall

number of samples was 1000.

One problem using the AIC for model selection stems from the fact that there are considerable

behavioral differences across participants and the AIC model selection might change for a different

set of participants. This is why we validated the model ranking using k-fold cross-validation. The

same procedure as before (fitting, then ranking according to AIC) was repeated K times, but now

we used only a subset of participants (training set) to fit �̂mk and then calculated the LLmk and the

AICm
k on the remaining participants (test set). We created the K folds such that each participant

appears in exactly one test set and in K � 1 training sets. Also, we kept these splits fixed across

models, and evaluated each model on the same split into training and test set. In each fold k, the

models were sorted with respect to AICm
k , yielding K lists of ranks. In order to evaluate whether the

difference between two models is significant, we compared their ranking in each fold (Wilcoxon

rank-sum test on K matched pairs, p-values shown in Table 1). The cross-validation results were sum-

marized by summing the K ranks (Table 1). The best rank sum a model could obtain is K, and is

obtained if it achieved the first rank in each of the K folds.
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Figure 9. Fitting results: behavioral data constrained the free parameters of Q-l. (a) For each experimental condition a distribution over the five free

parameters is estimated by sampling. The blue histograms show the approximate conditional posterior for each parameter (see

Materials and methods). Vertical black lines indicate the values of the five-parameter sample that best explains the data (maximum likelihood, ML). The

bottom row (All) shows the distribution over l when fitted to the aggregated data of all conditions, with other parameters fixed to the indicated value

(mean over the three conditions). (b) Estimation of a time dependent decay (t instead of l) as defined in Equation 5.

Lehmann et al. eLife 2019;8:e47463. DOI: https://doi.org/10.7554/eLife.47463 18 of 25

Research article Neuroscience

91



Q� l model predictions

Algorithm 1 Q-l (and related models):
For SARSA-l we replace the expression max~a Qðsnþ1; ~aÞ in line 9 by Qðsnþ1; anþ1Þ where anþ1 is the action taken in the
next state snþ1. For Q-0 and SARSA-0 we set l to zero.

1: Algorithm Parameters: learning rate a 2 ð0; 1�, discount factor g 2 ½0; 1�, eligibility trace decay factor l 2 ½0; 1�,
temperature T 2 ð0;¥Þ of softmax policy p, bias b 2 ½0; 1� for preferred action apref 2 A.

2: Initialize Qðs; aÞ ¼ 0 and eðs; aÞ ¼ 0 for all s 2 S; a 2 A

For preferred action apref 2 A set Qðs; apref Þ ¼ b

3: for each episode do

4: Initialize state sn 2 S

5: Initialize step n ¼ 1

6: while sn is not terminal do

7: Choose action an 2 A from sn with softmax policy p derived from Q

8: Take action an, and observe rnþ1 2 R and snþ1 2 S

9: RPEðn! nþ 1Þ  rnþ1 þ gmax~aQðsnþ1; ~aÞ � Qðsn; anÞ

10: enðsn; anÞ  1

11: for all s 2 S; a 2 A do

12: Qðs; aÞ  Qðs; aÞ þ aRPEðn! nþ 1Þenðs; aÞ

13: enþ1ðs; aÞ  glenðs; aÞ

14 n nþ 1

The Q-l model (see Algorithm 1), and related models like ARSA-l, have previously been used to

explain human data. We used those published results, in particular the parameter values from

Gläscher et al. (2010), Daw et al. (2011) and Tartaglia et al. (2017), to estimate the effect size, as

well as the reliability of the result. The published parameter values have a high variance: they differ

across participants and across tasks. We therefore simulated different agents, each with its own

parameters, sampled independently from a uniform distribution in the following ranges:

a 2 ð0:1; 0:5�, l 2 ½0:5; 1�, g 2 ½0:5; 1�, T 2 ½0:125; 1� (corresponding to an inverse temperature

1=T 2 ½1; 8�), and b ¼ 0. We then simulated episodes 1 and 2 of the experiment, applied the Q� l

model to calculate the action-selection bias (Equation 4) when the agents visit states D1, D2 and

also S (see Figure 10(c) during episode 2, and sampled a binary decision (action ’a’ or action ’b’)

according to the model’s bias. In the same way as in the main behavioral experiment, each agent

repeated the experiment four times and we estimated the empirical action-selection bias as the

mean of the (simulated) behavioral data over all repetitions of all agents. This mean value depends

on the actual realizations of the random variables and its uncertainty is higher when fewer samples

are available. We therefore repeated the simulation of N ¼ 10 agents 1000 times and plotted the

distribution of the empirical means in Figure 10(d). The same procedure was repeated for N ¼ 20

agents, showing a smaller standard deviation. The simulations showed a relatively large (simulated)

effect size at states D1 and D2. Furthermore, as expected, the action bias decays as a function of the

delay between the action and the final reward in episode 1. We then compared the Q� l model

with a member of the class of RL without eligibility trace. When the parameter l, which controls the

decay of the eligibility trace, is set to 0, Q� l turns into Q� 0 (Q-Learning without eligibility trace

and we can use it to compare the two classes of RL without changing other parameters. Thus, we

repeated the simulation for this case (l ¼ 0, N ¼ 20) which shows the model predictions under our

null hypothesis. Figure 10(d) shows the qualitative difference between the two classes of RL.

Regression analysis
The reward prediction error (RPE, Equation 2) used for a comparison with pupil data was obtained

by applying the algorithm Q-l with the optimal (maximum likelihood) parameters. We chose Q-l for

regression because, first, it explained the behavior best across the three conditions and, second, it

evaluates the outcome of an action at the onset of the next state (rather than at the selection of the

next action as in SARSA-l) which enabled us to compare the model with the pupil traces triggered

at the onset of the next state.
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In a first, qualitative, analysis, we split data of all state transitions of all articipants into two

groups: all the state transitions where the model predicts an RPE of zero and the twenty percent of

state transitions where the model predicts the largest RPE (Figure 6(a). We found that the pupil

responses looked very different in the two groups, across all three modalities.

In a second, rigorous, statistical analysis, we tested whether pupil responses were correlated with

the RPE across all RPE values, not just those in the two groups with zero and very high RPE. In our

experiment, only state G was rewarded; at nongoal states, the RPE depended solely on learned Q-

values (rnþ1 ¼ 0 in Equation 2). Note that at the first state of each episode the RPE is not defined.

We distinguished these three cases in the regression analysis by defining two events ’Start’ and

’Goal’, as well as a parametric modulation by the reward prediction error at intermediate states.

From Figure 5, we expected significant modulations in the time window t 2 ð500ms; 2500msÞ after

stimulus onset. We mapped t to t0 ¼ ðt � 1500msÞ=1000ms and used orthogonal Legendre polynomials

Pkðt
0Þ up to order k ¼ 5 (Figure 11) as basis functions on the interval �1 � t0 � 1. We use the indices

p for participant and n for the nth state-on event. With a noise term � and �t for the overall mean

pupil dilation at t, the regression model for the pupil measurements y is

yp;nþ1;t ¼ �t þ
X

5

k¼0

RPEpðn! nþ 1Þ�Pkðt
0Þ�bk þ �p;nþ1;t ; (8)

where the participant-independent parameters bk were fitted to the experimental data (one inde-

pendent analysis for each experimental condition). The models for ‘tart state’ and ‘oal state’ are

analogous and obtained by replacing the real valued RPEp;n by a 0/1 indicator for the respective

events. By this design, we obtained three uncorrelated regressors with six parameters each.

Using the regression analysis sketched here, we quantified the qualitative observations suggested

by (Figure 6) and found a significant parametric modulation of the pupil dilation by reward predic-

tion errors at non-goal states (Figure 11). The extracted modulation profile reached a maximum at

around 1–1.5 s ( 1300 ms in the clip-art, 1100 ms in the sound and 1400 ms in the spatial condition);

with a strong mean effect size (b0 in Figure 11) of 0.48 (p<0:001), 0.41 (p ¼ 0:008) and 0.35 (p<0:001),

respectively.

We interpret the pupil traces at the start and the end of each episode (Figure 11) as markers for

additional cognitive processes beyond reinforcement learning which could include correlations with

cognitive load (Beatty, 1982; Kahneman and Beatty, 1966), recognition memory (Otero et al.,
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Figure 10. Simulated experiment. ( Q-l model). (a) and (b): Task structure (same as in Figure 2). Simulated agents performed episodes 1 and 2 and we

recorded the decisions at states D1 and D2 in episode 2. (c): Additionally, we also simulated the model’s behavior at state S, by extending the structure

of the (simulated) experiment with a new state R, leading to S. (d): We calculated the action-selection bias at states D1, D2 and S during episode 2 from

the behavior of N ¼ 10 (blue) and N ¼ 20 (green) simulated agents. The effect size (observed during episode 2 and visualized in panel (d)) decreases

when (in episode 1) the delay between taking the action and receiving the reward increases. It is thereby smallest at state S. When setting the model’s

eligibility trace parameter l to 0(red, no ET), the effect at state D1 is not affected (see Equation 1) while at D2 and S the behavior was not reinforced.

Horizontal dashed line: chance level 50%. Errorbars: standard deviation of the simulated effect when estimating 1000 times the mean bias from N ¼ 10

and N ¼ 20 simulated agents with individually sampled model parameters.
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2011), attentional effort (Alnæs et al., 2014), exploration (Jepma and Nieuwenhuis, 2011), and

encoding of memories (Kucewicz et al., 2018).
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Preuschoff K, ’t Hart BM, Einhäuser W. 2011. Pupil dilation signals surprise: evidence for noradrenaline’s Role in
Decision Making. Frontiers in Neuroscience 5:1–12. DOI: https://doi.org/10.3389/fnins.2011.00115, PMID: 21
994487

Rescorla RA, Wagner AR. 1972. A theory of Pavlovian conditioning: variations in the effectiveness of
reinforcement and nonreinforcement. In: Classical Conditioning II: Current Research and Theory. Appleton
Century Crofts.

Rouhani N, Norman KA, Niv Y. 2018. Dissociable effects of surprising rewards on learning and memory. Journal
of Experimental Psychology: Learning, Memory, and Cognition 44:1430–1443. DOI: https://doi.org/10.1037/
xlm0000518

Schultz W. 2015. Neuronal reward and decision signals: from theories to data. Physiological Reviews 95:853–951.
DOI: https://doi.org/10.1152/physrev.00023.2014, PMID: 26109341

Seijen HV, Sutton R. 2013. Planning by prioritized sweeping with small backups. Proceedings of the 30th
International Conference on Machine Learning.

Singh SP, Sutton RS. 1996. Reinforcement learning with replacing eligibility traces. Machine Learning 22:123–
158. DOI: https://doi.org/10.1007/BF00114726

Standing L. 1973. Learning 10,000 pictures. Quarterly Journal of Experimental Psychology 25:207–222.
DOI: https://doi.org/10.1080/14640747308400340, PMID: 4515818

Lehmann et al. eLife 2019;8:e47463. DOI: https://doi.org/10.7554/eLife.47463 24 of 25

Research article Neuroscience

97



Sutton RS. 1988. Learning to predict by the methods of temporal differences. Machine Learning 3:9–44.
DOI: https://doi.org/10.1007/BF00115009

Sutton RS, Barto AG. 2018. Reinforcement Learning: An Introduction. Cambridge, MA: MIT Press.
Tartaglia EM, Clarke AM, Herzog MH. 2017. What to choose next? A paradigm for testing human sequential
decision making. Frontiers in Psychology 8:1–11. DOI: https://doi.org/10.3389/fpsyg.2017.00312, PMID: 2
8326050

Walsh MM, Anderson JR. 2011. Learning from delayed feedback: neural responses in temporal credit
assignment. Cognitive, Affective, & Behavioral Neuroscience 11:131–143. DOI: https://doi.org/10.3758/s13415-
011-0027-0, PMID: 21416212

Walsh MM, Anderson JR. 2012. Learning from experience: event-related potential correlates of reward
processing, neural adaptation, and behavioral choice. Neuroscience & Biobehavioral Reviews 36:1870–1884.
DOI: https://doi.org/10.1016/j.neubiorev.2012.05.008, PMID: 22683741

Watkins C. 1989. Learning from delayed rewards. Cambridge University.
Weinberg A, Luhmann CC, Bress JN, Hajcak G. 2012. Better late than never? the effect of feedback delay on
ERP indices of reward processing. Cognitive, Affective, & Behavioral Neuroscience 12:671–677. DOI: https://
doi.org/10.3758/s13415-012-0104-z, PMID: 22752976

Williams RJ. 1992. Simple statistical gradient-following algorithms for connectionist reinforcement learning.
Machine Learning 8:229–256. DOI: https://doi.org/10.1007/BF00992696

Yagishita S, Hayashi-Takagi A, Ellis-Davies GC, Urakubo H, Ishii S, Kasai H. 2014. A critical time window for
dopamine actions on the structural plasticity of dendritic spines. Science 345:1616–1620. DOI: https://doi.org/
10.1126/science.1255514, PMID: 25258080

Yates FA. 1966. Art of Memory. Routledge and Kegan Paul.

Lehmann et al. eLife 2019;8:e47463. DOI: https://doi.org/10.7554/eLife.47463 25 of 25

Research article Neuroscience

98



1 
 

EEG signatures of the Reward-Prediction Error at non-rewarded states 

He A. Xu, Marco P. Lehmann, Wulfram Gerstner, and Michael H. Herzog  

Ecole Polytechnique Fédérale de Lausanne, Brain-Mind Institute, 1015 Lausanne EPFL 

 

Abstract 

The reward prediction error (RPE), i.e., the difference between the actual and the expected 

reward, is one of the crucial variables in model-free reinforcement learning. In humans, RPE has 

been shown in one-step decision tasks to be correlated with the feedback-related negativity 

(FRN), a frontal-central EEG signal  (Holroyd & Coles, 2002). Previous FRN studies used N-armed 

bandit tasks where participants receive reward immediately after an action, contrary to 

everyday tasks where many actions are needed before a reward occurs. Here, we employed a 

sequential decision-making paradigm and show that FRN amplitudes reflect the RPE also at 

non-rewarded states. In our task, participants had to make many decisions until a goal was 

found. Each decision led to an action that brought the participant from one discrete state, 

characterized by an image, to another state, characterized by a different image. Based on the 

predicted qualitative signature of the RPE at the goal state, we extracted the EEG signal in the 

time window of 280-400ms after state onset. We then fitted the behavioural data of the 

participants with the reinforcement learning model SARSA().  We found that the RPE predicted 

by the model correlated significantly with the FRN for non-rewarded states. Hence, the FRN 

reflects the RPE not just in rewarded states, but also at non-rewarded states far from the goal. 

 

1. Introduction 

In chess, a series of moves has to be made until a sparse reward (win, loss, draw) is issued, 

which makes it difficult to immediately evaluate the value of a single move. Reinforcement 

learning (RL) deals with such types of situations. In a typical RL situation, an agent moves 

through an environment, which has several states. Some states come with rewards, others do 

not. At each state s, the agent makes an action a, which brings the agent from the state s to 

another state s’. The goal of the agent is to move through the environment to maximise the 

total reward. 

A particular successful class of RL models are model-free models, i.e., the agent does not learn 

an explicit map of the environment but rather chooses the action at each state based on so-

called Q-values, which summarize how successful these actions were in the past (Sutton & 

Barto, 1998). In model-free RL models, one of the most crucial components is the reward 
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prediction error (RPE), which is the difference between the actual reward and the expected 

reward. If the actual reward is higher than the expected reward, a positive reward prediction 

error occurs, indicating that the decision has led to a more rewarding state than expected. By 

contrast, if the actual reward is lower than the expectation, a negative reward prediction error 

is produced, which indicates that the past decision was a ‘bad’ decision. 

Many studies have shown evidence for model free RL models in animals  (Montague, 1996; 

Schultz, Dayan, & Montague, 1997) and humans. Neurophysiological studies found markers for 

the RPE in brain areas such as the anterior cingulate (Bellebaum & Daum, 2008; Gehring & 

Willoughby, 2002; Gruendler, Ullsperger, & Huster, 2011; Tucker, Luu, Frishkoff, Quiring, & 

Poulsen, 2003), the posterior cingulate (Badgaiyan & Posner, 1998; Cohen & Ranganath, 2007; 

Doñamayor, Marco-Pallarés, Heldmann, Schoenfeld, & Münte, 2011; Nieuwenhuis, Slagter, von 

Geusau, Heslenfeld, & Holroyd, 2005), the ventral segmental area, the ventral stratum (Haruno 

& Kawato, 2006; McClure, Berns, & Montague, 2003; O’Doherty, Dayan, Friston, Critchley, & 

Dolan, 2003) and the basal ganglia (Carlson, Foti, Mujica-Parodi, Harmon-Jones, & Hajcak, 2011; 

Cohen, Cavanagh, & Slagter, 2011; Martin, Potts, Burton, & Montague, 2009).  

EEG studies have shown that the amplitude of a frontal-central component, called the 

feedback-related negativity (FRN), correlates well with the RPE (Miltner et al. 1997; Gehring & 

Willoughby 2002; Holroyd & Coles 2002). The FRN occurs between 200ms and 400ms after 

stimulus presentation. In all these EEG studies, participants were tested in N-armed bandit 

tasks, where the reward is delivered immediately after an action. These tasks are similar to slot 

machines in a casino. There is one starting state with N possible actions that lead or do not lead 

to a reward, and end the game. Hence, reward (or no reward) is obtained after each single 

action. The expected reward for an action can simply be estimated as the average over the past 

rewards for that action. However, as mentioned above, in everyday reinforcement learning 

situations, there is a sequence of several non-rewarded states until a reward is found. Hence, 

an obvious question is whether RPEs at non-rewarded state are reflected by similar 

electrophysiological signatures. Here, we tested human participants in a deep sequential 

decision making task. In this paradigm, states are represented by images on a computer screen 

and actions are represented by grey disks at the bottom of the screen (Figure 1A; Tartaglia et al. 

2017). We recorded 128-channel EEG to test whether we find FRN like signals for rewarded and 

non-rewarded states.  
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Figure 1 (A). Sequential Decision Making Paradigm. An image (state) is presented on the screen. After 
a random interval of 700-1700ms, grey disks appear, on which participants are asked to click (actions). 
After an action, a blank screen is shown for a random interval between 700 and 1700ms and then the 
next state appears. The goal state is a ‘thumb-up’ image in this example. The green interval indicates the 
time (0-700ms after the image onset), for which ERP was analysed. (B). Structure of the complex 
environment. Non-goal states are indicated by numbers while the goal state is presented by the red G. 
‘s’ indicates ‘states’, ‘a’ indicates ‘actions’. For example, ‘7s3a’ means that the environment has 7 states 
(including the goal state) and each state comes with three actions. Arrows present the outcomes of the 
actions. There were three groups of states: (i) the goal state (red G), (ii) progressing states (states 1-4) 
and (iii) trap states (states 5-6). In order to find the goal state as fast as possible, participants needed to 
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avoid the trap states. For each non-goal state, there was only one action (green arrows), which led 
participants to the next state; one other action (yellow arrows) led participants back to the current 
state. Actions that led participants to states 5-6 are shown in blue (see methods for details). 
Performance was determined as the number of actions participants needed to find the goal state. 
Performance is shown on the right as a function of the number of episodes finished. Points connected 
by lines indicate the means and bars indicate the standard error. (C). Structure of the simple 
environment. There were only two types of actions at each non-goal states: one action led participants 
to the next state (green arrows), all other actions let participant stay at the current state (yellow 
arrows). The task is much easier because participants either stayed or moved towards the goal states. 
Performance is shown on the right. 

2. General Materials and Methods 

2.1 Experimental set up 

Stimuli were generated using the Psychophysics Toolbox (ver 3, Brainard 1997) for Matlab 

R2011b (Windows OS) and presented on a Phillips 201B4 monitor (screen resolution of 1,980 × 

1080 pixels and a refresh rate of 100 Hz). 

2.2 Participants 

14 paid participant took part in the first experiment with two complex environments (Figure 

1B). Two participants quit during the experiment. Hence, we analysed data for 12 participants 

(5 females, aged 20-26 years, mean = 22.8, sd = 1.7). Another 14 paid participants took part in 

the second experiment with six simple environments (Figure 1C, 7 females, aged 20–25 years, 

mean = 22.5, sd = 1.6). All participants were right-handed, and as determined by self-report, 

naïve to the purpose of the experiments. 

All participants had normal or corrected-to-normal visual acuity. All participants gave informed 

consent in accordance with the protocol 384/2011 “Commission cantonale d’éthique de la 

recherche sur l’être humain”.  

2.3 Experiments 

2.3.1 Stimuli and general procedure 

In the first experiment, we used two complex environments (Figure 1B). In the second 

experiment we employed six simple environments (Figure 1C). Participants were presented a 

clip art image and a number of grey disks below the image (Figure 1A). Clicking on one of the 

disks (action) led to a subsequent image. Participants clicked through the images until they 

found the goal image, which ended an episode. Before the experiment, we showed participants 

the goal image and told them that this was the goal image. In the complex environment, 

participants started an episode at a randomly chosen non-goal image. In the simple 

environment, participants always started an episode with the same image (state 1 in Figure 1C). 
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For each image, clicking at the same disk led always to the same subsequent image, i.e., the 

transitions were deterministic. In other words, the state-action transition matrix, which defines 

the environment, contains only ones and zeroes.  

During a trial (Figure 1A), an image was shown during an interval of 700 to 1700ms (uniform 

random) and then the grey disks appeared while the image stayed on the screen. Disks were 

shown until participants clicked on one of them (action). There was no time limit for making an 

action. After an action, a blank screen was presented with a duration of 700 to 1700ms 

randomly chosen. Then, the next image was shown and so on. EEG was recorded during the 

entire experiment but we analysed only the interval between 200ms before to 700ms after the 

onset of the image. The 200ms before the state onset were used for EEG baseline correction. 

The 700ms after the state onset (green interval in Figure 1A) were used for the analysis of the 

Event-Related Potentials (ERP).  

The two complex environments and the six simple environments all differed in the number of 

states and actions (Figure 1B, 1C). Participants performed 5 episodes with each environment. 

For each new environment, a new set of images was used. The order of the environments was 

the same for all participants. After each environment, participants could have a 3-minute break 

before they started the next block.   

2.3.2 Complex Environments 

The structure of the complex environments (Figure 1B) contained short and long loops. There 

was always a unique shortest path from every non-goal state to the goal state. There were 

three types of states: (i) the goal state, (ii) states that were on the shortest path to the goal 

state (progressing states), (iii) states that were farthest away from the goal state (trap states).   

From each progressing state, exactly one action led participants to the next progressing state 

and exactly one action led participants stay at the same state. The other actions led them to a 

trap state. For each trap state, there was only one action that brought participants back to state 

1 (the first progressing state in Figure 1B). All the other actions led participants stay within the 

group of trap states (stayed at the current trap state or went to another trap state). Two 

environments were tested. The first environment contained 7 states and 3 actions for each 

state (one goal state, two trap states and four progressing states; among the three actions, one 

let participants stay at the same state, one led participants to the next progressing state and 

one led participants to a trap state). The second environment contained 11 states and 4 actions 

for each state (one goal state, three trap states and seven progressing states; among the four 

actions, one let participants stay at the same state, one led participants to the next progressing 

state and each of the remaining two led participants to a trap state).  
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2.3.3 The Simple Environment  

The structure of the simple environments is shown in Figure 1C. For all environments, there was 

only one shortest path from a non-goal state to the goal state. For each state, only one action 

led participants to the next state, while all other actions led back to the current state. Hence, 

participants could only move forward to the goal or stay at a state. We used 6 environments: 5 

states-2 actions (5s2a), 5 states-4 actions (5s4a), 8 states-3 actions (8s3a), 8 states-4 actions 

(8s4a), 8 states-5 actions (8s5a), 8 states-6 actions (8s6a). The goal state was included in the 

count of the number of states. 

2.4 EEG recording and pre-processing 

EEG signals were recorded using BioSemi equipment with 128 electrodes at a 2048Hz sampling 

rate. Data were band pass filtered from 0.1Hz to 40Hz and down sampled to 256Hz. Common 

average referencing was applied for re-referencing. Bad channels were visually inspected and 

interpolated using the EEGLAB toolbox (Delorme & Makeig, 2004). Eye movements and 

electromyography (EMG) artefacts were removed by using independent component analysis 

(ICA). Trials in which the change in voltage at any channel exceeded 35 µV per sampling point 

were discarded. For each trial, an epoch was extracted from 200ms before to 700ms after the 

state onset. The interval from 200ms to 0ms before the state onset was used for baseline 

correction. Prefrontal Event-Related Potentials (ERPs) were computed by averaging the EEG 

data (green interval in Figure 1A) of selected prefrontal electrodes (Fz, F1, F2, AFz, FCz) for ERP 

analysis.  

2.5  Data analysis 

2.5.1 Computing the RPE from behavioural data 

In order to obtain an estimate of the RPE in each state (image), we fitted the SARSA(𝜆) 

algorithm (Sutton & Barto, 1998) to the human behavioural data (see Suppl. Materials 2) using 

the methods of Lehmann et al. (Lehmann et al., 2017). 

2.5.2 Determination of the time course of the RPE using goal states  

In each environment, participants performed a total of 5 episodes. The very first time the 

participants found the goal image, the expected reward was low while the actual reward was 

high. Therefore a high positive RPE occurred. We suppose that in the next episode, participants 

had a higher reward expectation when reaching the goal image, so the RPE is smaller at the 

second encounter. Hence, the RPE for the goal state decreases as the goal is visited more often. 

This qualitative observation is independent of model assumptions and is true for both SARSA 

and Q-learning whatever the choice of the eligibility parameter 𝜆 (see Suppl. Materials 2). 
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We used this rationale to find the time interval for the RPE. To this end, we determined ERPs 

from prefrontal electrodes when participants found the goal image the first, third, and fifth 

time. We averaged the ERP amplitudes in a sliding time window of 50ms (shifted in 10ms-steps) 

and searched for a rank order of ERP amplitudes with either (i) ERP (first visit) > ERP (third 

visit) > ERP (fifth visit) or (ii) ERP (first visit) < ERP (third visit) < ERP (fifth visit). We considered 

both options since we were looking for a qualitative correlation, i.e., we did not want to exclude 

the possibility that the correlation had a negative sign.  The continuous segment that started at 

the earliest time point of the first sliding window fulfilling the above condition and ended at the 

latest time point of the last sliding window fulfilling the above condition was defined as the 

interval of interest.  

There are many model-free reinforcement learning algorithms (Beeler, Daw, Frazier, & Zhuang, 

2010; Daw, Gershman, Seymour, Dayan, & Dolan, 2011; Daw, Niv, & Dayan, 2005; Gershman & 

Daw, 2017; Glaescher, Daw, Dayan, & O’Doherty, 2010; Lehmann et al., 2017; Niv et al., 2015; 

Niv, Edlund, Dayan, & O’Doherty, 2012; O’Doherty, Cockburn, & Pauli, 2017; O’Doherty et al., 

2003; Pessiglione, Seymour, Flandin, Dolan, & Frith, 2006). Within this family of reinforcement 

learning algorithms, we chose SARSA with an eligibility trace λ because this algorithm explained 

behavioural data well in earlier experiments (Gershman & Daw, 2017; O’Doherty et al., 2003).  

We used a probabilistic fitting algorithm (Lehmann et al., 2017) to extract possible 

combinations of parameters that explained the observed behaviour (Suppl. Materials 2).  For 

each environment, we then fitted the behaviour of all participants with a single SARSA model 

with a set of parameters reflecting the mean values of the parameter distributions.  

 

2.5.3 Trial-by-trial analysis of the RPE for non-goal & goal states 

Within the time interval of interest extracted using the methods of the preceding subsection, 

we evaluated correlations between EEG amplitudes and RPEs at non-goal and goal states. To 

this end, we predicted the RPEs for each trial and each participant using the parameter set of 

the SARSA(λ) model  fitted on the behavioural data (see Suppl. Materials 2) and, then, 

correlated the RPEs with the ERPs from the prefrontal electrodes.  

 

3. Results 

For the complex environments, participants needed between 19 to 213 actions to find the goal 

state the first time (Figure 1B; mean = 44.5, std = 36.6, se= 10.1 for the environment with 7 

states; mean = 117.0, std = 54.2, se = 15.6 for environment with 11 states). In the simple 

experiment, participants needed between 7 and 31 actions before they reached the goal state 

for the first time (Figure 1C).  
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The time participants spent during the first episode increased with the number of states and 

number of available actions for all environments and was longest for the environment with 11 

states (mean = 117.0, std = 54.2) and shortest for environment with 5 states (5s2a, mean = 8.1, 

std = 1.1). Importantly, most participants found a much shorter path in subsequent episodes in 

all environments (Figure 1B) indicating that they understood the aim of the task. In some cases, 

participants took the shortest path straight to goal already in the second episode (Figure 2A).  

In simple environments, participants did not always use the shortest path to goal (Figure 2B), 

which does not affect our analysis because we only focused on the goal state in these 

environments.  

 

 

Figure 2. Behavioural performance (data from Fig. 1B, C) rescaled to the shortest path in each 
episode. The y-axis presents performance, which is calculated as the ratio between the number 
of actions participants took to finish an episode and the minimum number of actions needed. A 
y-value of 1 indicates that the participants used the shortest path. (A) In the complex 
environment with 11 states, the first episode started in state 6 and the second episode always 
started in state 9; in the environment with 7 states, the first episode always started in state 6 
and the second episode in state 4 (detailed environment structure see Suppl. Materials 3). (B) 
In the simple environment with eight states, the second episode always started in state 1, for 
the environment with 4 actions and in state 1 for the one with three actions (detailed 
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environment structure see Suppl. Materials 3). Please note the difference in the y-axis scales of 
(A) and (B). 

For the analysis, we used only the RPEs, but not participant or environment (see Suppl. 

Materials 1), as the predictor variables, and computed linear regressions between the RPEs and 

ERP amplitudes for each participant. 

 

 

 

Figure 3. ERPs for the 1st, 3rd and 5th goal visit. 0 on the x-axis indicates the image onset. Negative values 
are plotted up by convention. Green lines indicate significant differences between the ERPs of the 1st, 
3rd, and 5th visit to the goal with a monotonic trend of the RPEs. (A) Complex environments. ERPs were 
significantly different between 280-360ms (F(2,33) = 4.84, p = 0.014). (B) Simple environments. ERPs 
were significantly different between 280-390ms (F(2,39) = 5.39, p=0.008).  
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3.1 Experiment 1: EEG vs. RPE at the non-goal states 

In order to study whether FRN amplitudes reflect the RPEs at non-goal states, we used the 

complex environments, which contained many states ‘far away’ from the goal. We searched for 

periods where ERP amplitudes at the goal state decreased or increased monotonically as a 

function of episode number. We found a significant monotonic trend in the time window of 

280-360ms after the onset of the goal image (Figure 3A, F(2,33) = 4.84, p = 0.014). This time 

window, extracted by a model-independent qualitative argument, is the one that we take as 

our interval of interest in the following. 

The main focus of this experiment was on the non-goal states. We initialized all Q-values at 0 in 

model fitting (details in Supp. Materials 2). Thus, the RPEs of non-goal states were also all 0s in 

the first episode. Since 0-values do not provide any useful information for the regression 

between ERP amplitudes and RPEs we discarded all non-goal trials in the first episode. In the 

second and subsequent episodes, Figure 2A shows that most participants used a near-shortest 

path, meaning that they most often chose the best action at each non-goal state. In this case, 

the RPE estimations using SARSA and Q-learning are equivalent (see Suppl. Materials 2).  

We tested linear regressions between the RPEs (predicted by SARSA(𝜆))and ERP amplitudes in 

the time window of 280-360ms for all non-goal state trials in episode 2 to 5 on a participant-by-

participant basis. A t-test on the linear regression coefficients was significant indicating that the 

RPEs predicted the ERPs of the non-goal states (Figure 4B, p = 0.02, t(11) = 2.5, sd = 6.1, mean 

coefficient = 3.2).   

In the same time window, we also tested linear regressions between the RPEs and ERP 

amplitudes for all goal state trials on a participant-by-participant basis. A t-test on the 

regression coefficients was close to significant (Figure 4A, p = 0.09, t(11) = 1.8, sd = 5.9, mean 

coefficient = 3.2). The lack of significance is likely due to a lack of power because in the complex 

environments goal images occur very rarely. Each participant found the goal image 5 times in a 

given environment, thus there was a total of only 120 encounters of the goal (12 participants, 2 

environments) in the complex environments.   

3.2. Experiment 2: EEG vs. RPE at the goal state  

Since, in experiment 1, the small number of goal encounters indicated only a weak trend (p= 

0.08) when comparing the FRN and the RPE for the goal image, we used six simpler 

environments to test more systematically the regression between the FRN amplitudes and the 

RPEs at the goal images. Again, participants found the goal 5 times in each environment, which 

added up to a total of 420 encounters of the goal in this second experiment. The simple 

environment consisted of a one-dimensional string of states, with the goal state at the end. 

Since backward movements were impossible in the simple environment, the goal state was the 
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most important state when learning the environment. We wanted to test if the RPEs at the goal 

state were reflected by the FRN amplitudes similar to what had been observed in N-armed 

bandit tasks (review, see Walsh & Anderson, 2012). Using the same methods as in experiment 

1, we found a time window from 280-390ms in which the ERP amplitudes decreased 

monotonically (Figure 3B, F(2,39) = 5.39, p=0.008). This window was very close to the window 

of 280-360ms we found in experiment 1. The small shift of the windows between experiment 1 

and experiment 2, may be due to the lower cognitive load of the simple environments 

compared to complex ones. Similar shifts have been observed when comparing different N-

armed bandit tasks (Hajcak, Holroyd, Moser, & Simons, 2005; Hajcak, Moser, Holroyd, & 

Simons, 2007; Holroyd, Krigolson, Baker, Lee, & Gibson, 2009; Kreussel et al., 2012; Walsh & 

Anderson, 2011). 

Next, we tested, on a participant-by-participant basis, whether the ERP amplitudes in this time 

window correlated with the RPEs of the goal state. A t-test on the linear regression coefficients 

between the RPEs and the ERPs of the goal images was significant (Figure 4C, p = 0.03, t(13) = 

2.3, sd = 2.7, mean coefficients = 1.7), indicating that the RPEs had an effect on the ERPs 

between 280-390ms, as expected from the analogy to N-armed bandit tasks. 
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Figure 4. Linear regressions of the RPEs and the mean ERP amplitudes for individual participants (grey 
lines).  Coloured lines present the averaged regression line. (A) Regressions at non-goal states in 
experiment 1. (B) Regressions at goal states in experiment 1. (C) Regressions at goal states in experiment 
2.  

 

4. Discussion 

Decision masking is a complex process involving the evaluation of the reward, the RPE, and 

potentially other values. In model-free reinforcement learning, the RPE is the most important 

variable.  In N-armed bandit tasks, the FRN is positively correlated with the RPE  (Holroyd & 

Coles, 2002b). In this paper we wanted to check whether a similar correlation is also true in  

more interesting situations where decision making is sequential and reward is not delivered 

immediately. Classic model-free reinforcement learning models propose that the RPE plays an 

essential role also at states that are not directly rewarded. Hence, we asked the question 

whether there is evidence for RPEs in EEG signals at non-rewarded states. To address this 

question, we used a previously developed sequential decision making paradigm, where a goal is 

found only after a sequence of actions (Clarke et al., 2015; Tartaglia et al., 2017).  

We first used two complex environments which contained trap states and loops to test if the 

FRN-ERP relationship proposed by Holroyd and Coles ( 2002b) still holds true. The FRN 
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amplitude reflected the RPEs of the non-goal states in a time window of 280- 360ms after the 

state onset. Since the goal state occurred rarely - only 120 times when summed over all 

participants and epochs in the complex environments, the correlation between FRN amplitudes 

and RPEs at the goal states was not significant. Thus, we used six simple linear environments 

with 1-dimensional arrangement of states to test if the FRN amplitudes reflect the RPEs of the 

goal states. Indeed, in the time window of 280-390ms after the state onset the correlation was 

significant. Both time windows are very close to the FRN window.  

Walsh and Anderson (2011) found that FRN amplitudes changed according to winning 

conditions in an N-arm bandit task, and that amplitudes scales with RPEs. The larger the RPE, 

the more positive the amplitude. Eppinger (2009) showed that FRN amplitudes diminished as a 

positive reward was given more times. We found that a similar trend is present also for non-

goal states. 

Contrary to most studies in reinforcement learning, we used a deep sequential decision making 

task, where only one of many states was rewarded. Sambrook et al., (2018) used a two-step 

task. They found that the RPEs of the intermediate state was also reflected in the EEG around 

200-400ms. In an fMRI study, Glaescher, Daw and Dayan (2010) used a 2-step design and found 

that that the sources of RPE are in the Ventral Striatum, which is line with the proposal by 

Holroyd and Coles (2002) that the FRN sources of the RPE are in the ACC. In contrast to such a 

2-step design, some of our participants spent more than 100 steps in loops of the environment 

before they saw the first goal image.   

There are some caveats. Our results, as all results in the field, are based on correlations, which 

limit conclusions to some extent. For example, humans may compute RPEs but do not use them 

for learning. Or RPE may be used as a confidence measure rather than as an action choice 

variable. Second, we computed RPE with SARSA. We do not however claim that humans use a 

SARSA like mechanism because many other algorithms, including unknown ones, may deliver 

similar results. Third, our results show evidence that humans make use of model free RL 

components. However, this does mean that humans do not use model based learning, which 

they most likely do.  We currently explore model-based exploration in very similar 

environments. 

Taken together, our results suggest that the FRN reflects the RPE (or related measures) in deep, 

sequential decision making paradigms in both rewarded and non-rewarded states.  
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Supplementary Materials 

1. Linear-mixed Model Details 

Since each participant made the same actions multiple times, these responses are not 

independent from each other. Thus we used a linear mixed model (Pinheiro & Bates, 2000) to 

account for repeated measures. To fit the linear mixed model, we used the amplitudes of the 

ERPs as the response variable and the RPEs as the predictor variable for the fixed effect. In 

order to ascertain that the relationship between the RPEs and the ERP amplitudes are not 

caused by possible individual differences, we added a random effect for “participants” to 

characterize variations due to individual differences and another random effect for 

“participants * environments” to account for possible interactions between the factors 

“participants” and “environment”. We tested 3 linear mixed models: (1) a model without 

random effects; (2) a model with “participants” as a random effect; (3) a model with 

“participants * environment” as a random effect. We used the log-likelihood ratio test (Pinheiro 

& Bates, 2000) to tell whether a model is significantly better than another one.  

The analysis of the behavioural data showed that adding two random effects, ‘participant’ and 

‘environment’, did not significantly improve the model fit (Table 1).  

 

Experiment 1 

Fixed effect Random 

effect 

 Log likelihood LRT DF p-value 

RPEs  -6484.3  2220  

RPEs Participants -6442.9   82.8 2220 1 

RPEs Participants * 

blocks 

-6483.3 2 2220 1 

Experiment 2 

Fixed effect Random 

effect 

 Log likelihood LRT DF p-value 

RPEs  -9237.8    3586  

RPEs Participants -9170.6 134.4 3586 1 

RPEs Participants * 

environments 

-9236.5 2.6 3586 1 

LRT = Log likelihood ratio 
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DF = Degree of freedom 

Participants*blocks: potential interactions between the factor “participants” and the factor “blocks” 

2. SARSA(λ) Model Detail 

The learning signal in SARSA(𝜆) is the reward prediction error (RPE), defined as the difference 

between the actual reward and the predicted reward (Equation 1). 

Equation 1 

𝑅𝑃𝐸𝑡 = 𝑟 +  𝛾𝑄(𝑠𝑡+1, 𝑎𝑡+1) − 𝑄(𝑠𝑡, 𝑎𝑡) 

where 𝛾 is a discount  parameter to determine the value of future rewards. The actual reward is 

denoted by r. The predicted reward is the difference between the action value 𝑄(𝑠𝑡, 𝑎𝑡) in state 

𝑠𝑡 and the discounted action value 𝛾𝑄(𝑠𝑡+1, 𝑎𝑡+1) in state 𝑠𝑡+1. Positive RPE indicate that the 

tendency of selecting action 𝑎 at state 𝑠 should be strengthened, negative RPE indicate that the 

tendency should be weakened.  

The Q-values, Q(s, a), represent an estimate of the expected future reward when starting in 

state s, taking action a. This value function is iteratively improved for all state-action pairs by 

applying an update after each step: 

Equation 2 

𝑄𝑡+1(𝑠, 𝑎) = 𝑄𝑡(𝑠, 𝑎) + 𝛼 × 𝑅𝑃𝐸𝑡 × 𝑒𝑡(𝑠, 𝑎) 

The quantity 𝑒𝑡(𝑠, 𝑎)  is known as an eligibility trace (Sutton & Barto, 1998) and implements a 

decaying short-term memory trace of past state-action pairs with the following dynamics: 

Equation 3 

𝑒𝑡(𝑠, 𝑎) = {
𝛾𝜆𝑒𝑡−1(𝑠, 𝑎)                𝑖𝑓 (𝑠, 𝑎) 𝑛𝑜𝑡 𝑣𝑖𝑠𝑖𝑡𝑒𝑑𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

   1                                      𝑖𝑓 (𝑠, 𝑎) 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡
 

The value 𝑒𝑡(𝑠, 𝑎) marks an event in memory eligible for undergoing learning. At each trial, the 

eligibility traces for all state-action pairs decay by 𝛾𝜆, where λ is the trace decay parameter. 

The Q values are then used to select an action at each state according to a softmax policy: 

Equation 4 

𝑃(𝑠, 𝑎) =
exp (𝑄𝑡(𝑠, 𝑎)/𝜏)

∑ exp (𝑄𝑡(𝑠, 𝑖)/𝜏)𝑖
 

where 𝑃(𝑠, 𝑎) defines the probability of choosing action 𝑎 at state 𝑠, 𝜏 is the temperature 

parameter which controls the tendency of exploration and exploitation, 𝑖 presents all possible 

actions at state 𝑠.  
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The above equations define a learning model with four free parameters: the learning rate 𝛼, the 

discount rate 𝛾, the eligibility decay rate 𝜆 and the temperature 𝜏. 

Different choices of parameters yield different action selection probabilities (Equation 4). We 

are interested in those values that are in best agreement (in a maximum likelihood sense) with 

the behavioural data. Specifically, following Lehmann et al. (2019) we fit the free parameters 

using the Metropolis-Hastings Markov Chain Monte Carlo (MCMC). This method has the 

advantage of giving us not just the most likely values but actually a distribution over the 

parameters (Supplementary Figure 1).  

Q-values of all non-goal states were initialized to 0 at the beginning of each block.  

To predict the PRE in a given block of experiments, we used the mean values resulting from 

fitting the behavioural parameters. 
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Supplementary Figure 1 Parameter fitting results for both experiments. . Each row presents the fitting 
results for one environment. Each column presents the estimated distribution for each parameter in the 
SARSA(λ) model estimated by the MCMC method. The vertical lines are the mean values that were used 
for the calculation of the RPE. (A) Parameter fitting for experiment 1. (B) Parameter fitting for 
experiment 2.  

SARSA computes the Q-value as the value of the actual action selected in the next state, while 

Q-learning computes the Q-value as the value of the optimal action planned in the next state. 

To test if the two algorithms give similar estimation, we computed the correlation between the 

RPEs estimated by SARSA and Q-learning. The correlations is significant for the non-goal states 

in the complex environment (r = 0.62, p < 0.001), and is also significant for the goal states in the 

simple environment (r = 0.65, p < 0.001). The result confirms that the two algorithms give 

similar estimation on the RPEs. 
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3. Environment structure used in Experiment 1 and 2 

Complex environments  

 

Simple environments  
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1 Introduction

Humans make efforts to receive rewards such as money or praise of parents and peers. But even
in the absence of any rewards, children and adults may want to explore a novel toy or a novel
city. These exploratory actions driven by novelty seeking behavior are useful to ‘understand’ the
environment and have been interpreted in the theory of reinforcement learning as steps towards
building a model of the world [1]. World models in reinforcement learning summarize implicit
knowledge such as ‘if I open the door to the kitchen, I expect to see a fridge’. However, since the
world is much more complex than any model of it, there will occasionally be a mismatch between
the expectation arising from the model and the actual observation, e.g., the location of the fridge
is empty because it needs repairing. Such mismatches generate the feeling of surprise - and are
the basis of jokes [2]. In this study we ask whether moments of reward, novelty, and surprise are
correlated with the event-related potential (ERP) in the EEG. And if so, whether all three have
the same EEG signature or not.

In reward-based experimental paradigms, the theory of reinforcement learning successfully predicts
behavior as well as brain signals [3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. In reward-free situations, exploratory
human behavior can be explained by the natural desire to seek novel events [13, 14, 15, 16, 17,
18, 19]. Novelty plays the role of a motivational signal [20, 21] and acts as an intrinsic reward for
reinforcement learning [22, 23, 24].

Surprise is fundamentally different from novelty: for example, an image that we see for the first
time can be novel but not surprising whereas an image that we see for the tenth time can be
surprising but not novel. Surprise signals manifesting themselves physiologically in pupil dilation
and the EEG [25, 26, 27, 28, 29, 30] are triggered by the violation of an expectation generated
by the brain’s model of the world. Whereas a reward prediction error is a mismatch between
expected reward and actual reward, surprise is a mismatch between an expected observation and
actual observation – even in a reward-free environment.

Behavioral experiments [31, 32, 33] and theories [34, 35] suggest that surprise helps humans to
adapt quickly to changes in the environment. Similar to the reward prediction error, surprise is
believed to modulate synaptic plasticity [36, 37, 38], potentially through the release of specific
neurotransmitters such as acetylcholine and norepinephrine.

While there is some agreement that novelty and surprise are two separate notions [2, 39], it is
debated how these two notions can be formally defined and distinguished from each other theoret-
ically or in behavioral tasks [20, 15, 39]. Here, we adapt a sequential decision making paradigm
[40] so as to separate contributions of surprise, novelty, and reward to human behavioral choices.
We use a model-based reinforcement learning approach in a novel computational model which uses
surprise to modulate learning of the model of the environment, and novelty for exploration in the
absence of external rewards. We show that the three different notions (i.e. surprise, novelty, and
reward) manifest themselves on different time-scales in the ERP.
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2 Results

In order to distinguish between signatures of novelty, surprise, and reward, we designed a behavioral
experiment in an artificial environment consisting of 11 states and 4 possible actions at each state
(Fig. 3). States were presented by images on a computer screen and actions were presented by
four grey disks below the image. Before the experiment, participants were told that they were
supposed to find the shortest path to a given goal image. In each state, participants chose an
action (by clicking on one of the grey disks) which brought them to the next image and then chose
the next action. The episode ended when the goal image was found. Unknown to the participants,
the states can be classified into three types: progressing states (states 1-7 in Fig. 3), trap states
(state 8-10 in Fig. 3), and a goal state (red G in Fig. 3). Progressing states are “good” states that
potentially bring participants closer to the goal whereas trap states are “bad” states (“go back to
start”) that are off the direct path to the goal. At each state, one of the 4 possible actions (green
arrow in Fig. 3) brought them to the next progressing state, two actions (blue arrow in Fig. 3)
brought them to one of the trap states, and one action (yellow arrow in Fig. 3) made them stay
at the current state.

The experiment was organized in two blocks of 5 episodes each. During the 1st episode of the 1st
block, participants explored the environment until they found the goal. They then continued for
another 4 episodes in the same environment. Thereafter two states (state 3 and 7 in Fig. 3) were
swapped, without announcing it to participants, and participants continued for another 5 episodes
with the novel layout of the environment (2nd block, Fig. 3). EEG was recorded during the entire
experiment, but we only analysed the period shown in Fig. 4 (green interval).

2.1 Computational algorithm and Behavioral Analysis

To navigate in such a complex environment, we assume that subjects build an internal estimation
(’world-model’) of the lay-out of the environment, i.e. the probabilities of transitions from a given
state to another state when performing a given action. In our algorithm, action selection combines
aspects of novelty-seeking, so as to explore the environment, with model-based reinforcement
learning, so as to exploit known good actions.

The novelty of a state is subject-specific and decreases, in our algorithm, with the number of times
the participant has encountered this state in the recent past; see Supplementary Materials. At the
beginning of the first epoch in block 1, all states have identical novelty. Because participants often
fall into one of the trap states, their novelty decreases rapidly (Fig. 1B.) Because participants rarely
visit a state close to the goal during the first episode, the novelty of those states increases over
time (Fig. 1B) so that, before the end of the first episode, the novelty is highest for states in the
proximity of the goal (Fig. 1C). This observation suggests that seeking novel states will effectively
take a subject closer to the goal - even before the subject knows where the goal is located.

In our algorithm, learning the world-model, i.e., the lay-out of the environment, is controlled
by surprise. Surprise is subject-specific [34, 35] and measures how “unexpected” the next image
(state st+1) is given that the subject chooses action a in the previous state st. Whether an event is
surprising or not depends on the belief of the subject (his current world-model) which summarizes
the knowledge extracted from his previous experiences in this environment; see Supplementary
Materials. Our surprise measure indicates that swapping states 3 and 7 before the start of the
second block leads to highly surprising events when participants encounter state 3 or 7 in the first
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epoch of the second block or when they transit from state 3 to state 7 to another state (new Fig2).

We employed surprise-based learning for building the world-model and our novelty-seeking strategy
for exploration in a reward-based learning. Since our approach combines ’Surprise’, ’Novelty’, and
’Reward’ we refer to it as SurNoR-learning. We wanted to check whether the SurNoR-algorithm
(Supplementary Materials, Algo1) is capable of explaining human behavioral choices in our experi-
ment. We therefore fitted the parameters of the algorithm to the behavioral data of all 12 subjects
using an empirical Bayesian approach with 3-fold cross-validation, see Supplementary Materials.
We found that the SurNoR-algorithm predicted the correct action in the first episode of the first
block with an accuracy of 42 ±4% across the more than 1500 action choices made by the 12 par-
ticipants. This fraction is significantly higher than a model based on random action choices (that
would predict 25% because there are four different actions) or a model-free reinforcement learning
model without a novelty preference (i.e., with all state-values initialized at zero).

Similarly, in the first episode of block 2 when participants were lost because of the swapping
between states 3 and 7, the SurNoR-algorithm with novelty seeking was predicting 48±10% of the
actions of the 12 participants, again a value significantly above chance. In the remaining episodes
2-5 of the two blocks, the SurNoR-algorithm predicted 87 ± 16% of the action choices. Most of
these actions moved participants closer to the goal.

In the SurNoR-algorithm, unsurprising events do not lead to a change of the world-model, whereas
surprising events induce large improvements in the world-model, and hence in the action prefer-
ence To quantify the importance of surprise for adaptation of the world model, we compared the
SurNoR-algorithm with two alternative approaches. The first approach (’perfect integrator’) uses
optimal Bayesian integration under the assumption of stationary statistics. The second approach
(’leaky integrator’) is a heuristic modification of the perfect integrator so as to allow for changes
in the environment. A Bayesian model selection approach [41] (see Supplementary Materials) in-
dicates that the SurNoR-algorithm outperforms the alternatives (i.e. leaky and perfect integrator)
with an Exceedance Probability = 0.96. See Supplementary Materials for more details. Hence,
the results of the statistical model selection show that the notions of both novelty and surprise are
necessary to explain human behavior in our reward-based learning task.

2.2 N1 is a potential bio-marker for Novelty

At the beginning of the 1st episode of the 1st block, participants do not have any model of the
external world. They made actions randomly when seeing a non-goal state for the first time, hence
they ended up in a trap state with a probability equal to 0.5. Every time when they came out of
the trap state, they started from state 1 and continued again to look for the goal state. During
the first episode, the trap states are the most frequently visited states and the states close to the
goal states are least frequently visited.

To search for the EEG time window where Novelty is reflected, we averaged the ERPs of the
states with high novelty values (state 5, 6, 7,high-novelty condition) and the ones with low
novelty values (state 8, 9, 10, low-novelty condition) in the 1st episode of the 1st block. Fig. 5
shows the ERPs are significantly different in the two conditions in a time interval from 80 to
110ms after the state onset (p = 0.01, t(16) = −2.13, sd = 1.28). The average ERPs in two
conditions removed physiological and instrumental noise and improved the signal-to-noise ratio.
However, it also removed the participant-specific information. We used a sliding window method to
search for potential time course of Novelty on a trial-by-trial and participant-by-participant basis
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(Details in Method). Linear regression on a on a trial-by-trial and participant-by-participant basis
between the mean amplitudes in the interval of 80-130ms after the state onset and the estimated
Novelty from the computational model (see subsection 2.1) is significant (p = 0.02, t(10) = 2.68,
sd = 0.46, mean slope = 0.37). In summary, our results demonstrate that N1 component of EEG
is a potential bio-marker for novelty, tested both by using on-averaged ERPs comparison and
trial-by-trial analysis.

2.3 Biomarker for Surprise

According to our computational model fitted to the behavioral data, subjects learned the tran-
sitions in almost one shot, e.g. see Fig. 1.C. Therefore, we can partition transitions to 3 groups
based on their effects on learning: (1) The ones that are experienced for the 1st time (mostly in
the 1st episode of the 1st block), (2) The ones that are already experienced once and have not
been change since then (i.e. the learned ones), and (3) The ones corresponding to the transitions
from or to the swapped states (mostly in the 2nd episode of the 2nd block). The 2nd group are
considered as un-surprising transitions, while the 1st and the 3rd groups contain the surprising
transitions - mild surprise for 1st group and huge surprise for the 3rd one. Therefore, we can group
whole trials to two sets of surprising and un-surprising. Therefore, we can group all the trials in
the first episode of both blocks into two conditions: Surprising and un-surprising conditions.
By comparing the ERPs averaged in each group, we found that the time interval from 150 to
300ms after the state onset was a potential interval that reflects the magnitude of surprise.

We then extracted the mean amplitudes in the interval of interest and regressed the amplitudes
with estimated surprise (computed by our computational model) on a trial-by-trial and participant-
by-participant basis for all trials in the 1st episodes of both blocks. The regression between mean
amplitudes in the time interval 150-300ms and estimated surprise was not significant (p = 0.86,
t(18) = −0.17, sd = 2.61). However, to see whether the bio-marker of surprise could be hidden
inside this interval, we used a sliding window of 50ms (10ms per step) to test the regression
between the mean amplitudes in the sliding window and the surprise computed by our model.
The ensemble window was determined using the earliest time point of the first sliding window,
whose mean amplitudes correlated significantly with surprise, and the latest time point of the last
sliding window, whose mean amplitudes correlated significantly with surprise. We found that the
regression is significant between surprise and the mean amplitude in the interval of 150-210ms after
the state onset (p = 0.003, t(10) = −3.83, sd = 0.21, mean slope = −0.25). The results indicate
that the interval from 150 to 210ms after the state onset is a potential bio-marker for surprise.

However, to see whether the bio-marker of surprise could be hidden inside this interval, we used
the sliding window to search for the potential time course of Surprise on a trial-by-trial and
participant-by-participant basis (Details in Method). We found that the regression is significant
between surprise and the mean amplitude in the interval of 150-210ms after the state onset (p
= 0.003, t(10) = −3.83, sd = 0.21, mean slope = −0.25). The results indicate that the interval
from 150 to 210ms after the state onset is a potential bio-marker for surprise.

2.4 Reward presented in late P3 component

To investigate where in the EEG an indicator of the external reward is presented, we compared
the averaged ERPs of the goal states and a non-goal state (state 1) in both blocks. We selected
state 1 as the control state because the transitions to and from state 1 were not disrupted in either
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blocks. The ERP comparison (Fig. 5) shows that in the interval between 400 and 450ms after the
state onset the curves differed significantly (p = 0.01, t(10) = −2.9, sd = 2.14).
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3 Discussion

When the external reward is sparse and delayed, surprise and novelty can be considered as internal
feedback for learning. In this study we built a learning model (SurNoR) to solve the learning situa-
tion where surprise, novelty, reward are all involved in learning . The SurNoR model outperformed
the other models in explaining participants behaviours. One of the important factor that makes
SurNoR different from other models is that SurNoR considers novelty as an intrinsic reward. Pre-
vious studies [42, 43, 44, 45] have shown that the dopamine level affects both novelty and reward
processing. When a state of high reward appears, the dopamine level increases. Similarly, when
a state of high novelty appears, the dopamine level increases. These studies provide physiological
evidence for the SurNoR model.

Furthermore, we found that the novelty signal is reflected in EEG recording around 80-130ms after
the state onset, and that the surprise signal is reflected around 150-210ms after the state onset.
In the SurNoR model, the novelty of a state is defined as the global probability of seeing that
state, and the surprise of a state-action transition is defined as the changes in the local transition
probability (details see Appendix). In corresponding to the EEG result, the global signal (novelty)
occurs earlier than the local signal (surprise). This finding is in line with previous findings. In [29],
although the study used MEG recording in an oddball task, the authors showed that the brain
activity around 60-130ms is sensitive to global changes in the stimuli. In [28], the authors built a
Bayesian inference model to explain physiological data from previous researchers. Meyniel’s results
showed that the P300 component in EEG is a bio-marker that reflects local transition probability
changes. Here in our study, we confirmed the previous findings in Maheu’s and Meyniel’s work,
and generalise the conclusions to a truly sequential decision making task.
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4 Methods

4.1 Computational Model and Behavioral Data Analysis

See supplementary materials for the details of the computational model and corresponding pseudo
codes as well fitting procedures.

4.2 EEG Analysis

4.2.1 Experiment set up

Experiments were conducted on a Phillips 201B4 monitor, running at a screen resolution of 1980×
1080 pixels and a refresh rate of 100 Hz, using a 2.8 GHz Intel Pentium 4 processor workstation
running Windows 7. Experiments were scripted in Matlab R 7.11 using custom software and
extensions from the Psychophysics Toolbox for Windows XP ([46]).

4.2.2 Participants

14 paid participants joined the experiment. Two participants quit the experiment, hence, we
analysed data for 12 participants (5 females, aged 20-26 years, mean = 22.8, sd = 1.7). All
participants were right-handed and näıve to the purpose of the experiment. All participants
had normal or corrected-to-normal visual acuity. All participants provided written consent. The
experiment was approved by the local ethics committee.

4.2.3 Stimuli and general procedure

Before starting the experiment, we showed the participants the goal image that they were required
to find. Next, participants were presented, in random order, the other images that they may
encounter during the experiment. After seeing the images presented on the screen, participants
clicked the ‘start’ button to start the experiment proper. At each trial, participants were presented
an image (state) and four grey disks below the image (Fig. 4). Clicking on one of the disks (action)
led participants to a subsequent image. Participants clicked through the environment until they
found the goal state. An episode was finished when participants found the goal state and thereafter
the next episode started.

4.2.4 EEG recording and processing

EEG signals were recorded using BioSemi equipment with 128 electrodes at a 2048Hz sampling rate.
Recorded data were band pass filtered from 0.1Hz to 40Hz and down sampled to 256Hz. Common
average referencing was applied for re-referencing. “Bad” channels were visually inspected and
interpolated using the EEGLAB toolbox ([47]). Eye movements and electromyography (EMG)
artefacts were removed by using independent component analysis (ICA). Trials in which the change
in voltage at any channel exceeded 35 µV per sampling point were discarded. For each trial, a time
window was extracted from 200ms before to 700ms after the image onset. The baseline activity
was remove by subtracting the mean calculated over the interval from 200ms to 0ms before the
image onset. Prefrontal Event-Related Potentials (ERPs) were computed by averaging the EEG
data of selected prefrontal electrodes (Fz, F1, F2, AFz, FCz) for Event-Related Potential (ERP)
analysis. Data was analyzed during the time window from 0 to 700ms after image onset (green
interval in Figure 1A).
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4.2.5 EEG time course search for novelty and surprise

• Group analysis
To find the time course where the novelty signal is reflected in EEG, we compared the aver-
aged ERPs of least frequently visited states (states with high novelty) and most frequently
visited states (states with low novelty) in the first episode of the first block. The least fre-
quently visited states in the first episode of the first block were states 5,6,7 (high-novelty
condition). The most frequently visited states in the first episode of the first block were
states 8,9,10 (low-novelty condition). We averaged the ERPs of the selected states in
each condition for each participant. Fig. 5 showed the averaged the ERPs in each condition
over all participants. To search for the time course where the two conditions were signifi-
cantly different, we applied t-test on each time point of the ERPs from 0 to 700ms after the
state onset. Each time point on the ERP presents 1/256 = 3.9ms and there were in total
179 points compared.
The same procedure were applied for the surprise vs. non-surprise conditioned ERPs, and
for the reward vs. non-reward conditioned ERPs.

• Participant-based analysis
In the group analysis, ERPs of all participants were averaged together to find the novelty-
related time course. The average across participants removed physiological and instrumental
noise and improved the signal-to-noise ratio. However, it also removed the participant-
specific information. We wanted to test if the ERP amplitudes in this time course can
reflect novelty in a participant-by-participant basis. To do this, we used a model-based EEG
analysis to identify the bio-markers of novelty and surprise signals. The term ’model-based’
here is different from ’model-based models’ in reinforcement learning. The model-based EEG
analysis uses the signals predicted by a known model (novelty and surprise signals from the
SUNOR model in our study), and searches for the EEG components that can reflect those
signals.

To find the EEG time course that can reflect novelty signal in a participant-by-participant
basis, we analysed the EEG amplitudes in an interval from 50ms to 150ms after the state
onset. We chose this interval because it covered the time course where the high-novelty con-
dition ERP differed significantly from the low-novelty condition ERP. Inside this interval, we
used a sliding time window with the width 50ms from the leftmost time point of the inter-
val, and moved 10ms at each step until the window reached the rightmost time point of the
interval (detailed window configuration, see Supplementary Materials). There were in total
6 windows of 50ms tested. At each 50ms window, we averaged the mean amplitude of the
ERP at each trial for each participant. Then we correlated the mean amplitudes with the es-
timated novelty signals over all trials in the first episode of the first block for each participant.

After testing all the sliding windows within the selected interval, we combined the small
windows into a big window if the correlations were significant in two consecutive windows.
The combined big window started from the leftmost time point of the earlier window and
ended at the rightmost point of the later window. Then we used the mean amplitude in the
combined big window to correlate with the estimated novelty signals in the first episode of
the first block for each participant.
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The same procedure was applied for the surprise signal analysis. The selected time interval
was from 150ms to 300ms after the state onset, and 10 sliding windows with 50ms width and
10ms step were applied for the analysis.
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5 Supplementary Materials

5.1 Surprise-Novelty-Reward (SurNoR) algorithm

The SurNoR algorithm combines surprise signals with novelty and reward so as to explore and
learn the environment, and exploit rewards. A simple block diagram of the algorithm is shown in
??, and its pseudocode is shown in Algorithm 1. As it is shown in ??, SurNoR algorithm has two
branches of model-based and model-free which are interacting with each other. Given an agent’s
perception of novelty as internal reward and its estimation of external reward in the environment,
the output of each branch is a value corresponding to a pair of state and action. Then, actions
are made by a policy using a convex combination of these two values, so called hybrid policy -
see [4, 5] for similar approaches. In this section, we describe our algorithm SurNoR with details,
explain how each branch computes the value of pairs of states and actions, and how the policy is
shaped as a result.

Formalization of the environment. The state and the action at time t are random variables
St and At which take values in the finite sets S and A, respectively. In the particular case of our
experiment, we have S = {1, ..., 11} and A = {1, ..., 4}. From a Bayesian perspective, we consider
the transition probability matrix as another random variable Θ, i.e.

P(St+1 = s′|St = s, At = a,Θ = θ) = θs,a(s
′). (1)

Since our environment is deterministic, except for the switch of two states before the start of the
second block, the transition probabilities are

θs,a(s
′) = δ(s′, T (s, a)), (2)

where T (s, a) denotes the target state of the transition from state s given action a, and the
Kronecker δ is defined as δ(x, x′) = 1 if x = x′ and zero otherwise. The target state depends on
the block number. Note that T (s, a) is unknown to the participants and to SurNoR as well.

Definition of novelty. While the participant moves in the environment, the count C
(t)
s = |{t′ :

1 ≤ t′ ≤ t and st′ = s}| indicates how often state s has been encountered up to time t. We assume

that at each time t participants are able to estimate the empirical frequency p
(t)
N (s) of encountering

state s ∈ S, formally defined as

p
(t)
N (s) =

C
(t)
s + 1

t+ |S| ,
(3)

where |S| is number of states (i.e. 11 for our experiment). The empirical frequency in Eq. 3 is
equal to the expected probability of observing state s given s1:t under the assumption of a uniform
prior over states.

The novelty of the state s at time t is defined as the negative logarithm of the empirical frequency

N (t)(s) = −log(p
(t)
N (s)). (4)

In our algorithm, novelty acts as an exploration bonus (see subsection ‘Formalizing model-based
Q-values’). The main difference between previously proposed measures of exploration bonus [22,
23, 24, 48, 49] and our approach is that we define our bonus on to states rather than pairs of states
and actions which is more consistent with the beahvior of subjects in our experiment.
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5.1.1 SurNoR model-based branch

World Model. Participants know that there are 11 states and four possible actions in each state,
but are not aware of the actual transition probability matrix. In particular, they do not know
whether the environment is deterministic or stochastic. A subject’s model of the world is therefore
summarized as an approximation q of the posterior distribution of the transition probability matrix,

q(t)(θ) ≈ P(Θ = θ|S1:t = s1:t, A1:t−1 = a1:t−1). (5)

In the following, we call q the belief of the subject. We assume that a participant estimates the
transition probabilities by a weighted average

θ̂(t) = Eq(t) [Θ], (6)

where the weighting factor is given by the belief q(t).

Since participants do not know the generative model of the environment, exact Bayesian inference
is not possible. Rather than making explicit assumptions about the generative model as a starting
point for exact Bayesian inference, we work with a general distribution q(t) which is updated by
an appropriate learning algorithm after each observation.

Beliefs as Dirichlet distributions. We assume that the transition probabilities from different
pairs of states and actions are independent of each other, i.e.

q(t)(θ) =
∏

s∈S,a∈A
q(t)(θs,a), (7)

where θs,a is defined as in Eq. 1. As a natural1 choice for a probability distribution over transition

probabilities, we consider the belief q(t)(θs,a) to be a Dirichlet distribution with parameter α
(t)
s,a as

q(t)(θs,a) = Dir(θs,a;α
(t)
s,a). (8)

As a result, at each time t, the belief of subjects about their environment can be summarized in
the set α(t) = {α(t)

s,a,∀(s, a) ∈ S ×A}. We consider the parameter of the prior belief q(1) (i.e. α(1))
to be the same for all transitions as

α(1) = {α(1)
s,a(s

′) = ε, ∀(s, s′, a) ∈ S × S ×A} (9)

where ε > 0 is a free-parameter of the model. With this choice of prior, θ̂
(1)
s,a (i.e. estimation of the

transition probabilities from the pair of state s and action a) is a uniform distribution over states.
Furthermore, the free parameter ε expresses how deterministic the transitions are from the point
of view of a participant, i.e. smaller values of ε indicate a more deterministic interpretation of the
environment.

Using Dirichlet distribution for the belief q(t) and Eq. 6, a subject’s estimation of the transition
probabilities is found by

θ̂(t)s,a(s
′) =

α
(t)
s,a(s′)∑

s̃′∈S α
(t)
s,a(s̃′)

. (10)

1If transition probabilities are stationary and have a uniform prior, exact Bayesian inference yields a Dirichlet
distribution.
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Definition of surprise. We work with the “Generative Model” surprise SGM [35]. Consider the
transition (St = s, At = a) → (St+1 = s′). The Generative Model surprise corresponding to this
transition is [35]

S
(t+1)
GM =

θ̂
(1)
s,a(s′)

θ̂
(t)
s,a(s′)

. (11)

Due to the particular form of the prior q(1) that we chose, θ̂
(1)
s,a(s′) is constant. As a result, S

(t+1)
GM

is proportional to the inverse of the probability of the mentioned transition θ̂
(t)
s,a(s′). Note that

in the particular case of our work, the Shannon surprise [50] is just the shifted logarithm of the
“Generative Model” surprise, and hence the surprise modulation in SurNoR can be re-written
solely in terms of Shannon surprise.

Surprise modulated update of the belief. Learning the world-model is equivalent to updating
the parameters of the Dirichlet distribution after each transition. Consider the transition (St =

s, At = a)→ (St+1 = s′) with a surprise equal to S
(t+1)
GM . The surprise modulated learning rate [35]

is defined as

γ(S
(t+1)
GM ,m) =

mS
(t+1)
GM

1 +mS
(t+1)
GM

, (12)

where m > 0 is a positive free parameter. Note that γ is a sigmoidal function of surprise with
values in the range 0 ≤ γ ≤ 1. The parameter m controls the sharpness of the transition.

With this modulated learning rate, the change in a participant’s belief is given by an update of
the Dirichlet parameters α

(t+1)
s̃,ã (s̃′) for all (s̃, s̃′, ã) ∈ S × S ×A [35]

α
(t+1)
s̃,ã (s̃′) =





(1− γt+1)α
(t)
s̃,ã(s̃

′) + γt+1α
(1)(s̃′) + δ(s′, s̃′) if s̃ = s, ã = a

α
(t)
s̃,ã(s̃

′) otherwise
, (13)

where γt+1 = γ(S
(t+1)
CC ,m). The update rule expresses the new belief as a mix between two possibil-

ities, represented by the current parameters α
(t)
s̃,ã(s̃

′) and the prior α(1)(s̃′), weighted with 1− γt+1

and γt+1, respectively. In the case of a large surprise, the value of γt+1 is close to one and the
current parameters are forgotten. The update makes a step based on the currently observed tran-
sition, expressed by the Kronecker-δ in the first line. The parameters of transitions from the pairs
of the states and actions different form the current one (i.e. s and a) are not changed (second line).
The update rule Eq. 13 has been called Variational Surprise Minimizing Learning (VarSMiLe) in
[35].

Formalizing model-based Q-values. The world model of the participants is summarized by
their beliefs q(t)(θ) about the transition matrix of the environment. For the model-based branch:

Generative-Model-Surprise SGM is used to modulate the learning rate for the update of the world
model. Since the world model is summarized by parameters of Dirichlet distributions, the surprise
enters into the update equation Eq. 13 of the Dirichlet parameters α

(t+1)
s̃,ã (s̃′). With these Dirichlet

parameters, participants estimate the transition probabilities θ̂
(t)
s,a(s′) at time t; cf. Eq. 6.

Novelty N (t)(s) of state s at time t (cf. Eq. 4) is used to guide exploration. Analogous to TD-
learning where information of a reward at state s′ is propagated by the Bellman equation to states
s 6= s′, we use a Bellman equation to propagate the novelty of state s′ to other states s 6= s′.
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More specifically, for the model-based branch, we assign to each state-action pair a novelty-based
value Q

(t)
MB,N(s, a) which is an estimation of the accumulated future discounted novelty that can

be gained by taking action a in state s. The Bellman equation is

Q
(t)
MB,N(s, a) =

∑

s′∈S
θ̂(t)s,a(s

′)
(
N (t)(s′) + λN max

a′∈A
Q

(t)
MB,N(s′, a′)

)
, (14)

where θ̂
(t)
s,a(s′) are the estimated transition probabilities and λN ∈ [0, 1] is a discount factor for

novelty. The Bellman equation assigns a value to the action a in state s as long as a novel state is
likely to be reached within the next few steps - even if the immediately neighboring states are not
novel. The discount rate λN controls the time horizon of ‘future novelty’. For λN → 0 only the
novelty of the immediately following state matters; for λN → 1 the time horizon becomes infinitely
long.

Rewards R(s) of states s ∈ S guide behavior during exploitation. In the theory of reinforcement

learning, reward information is summarized in values Q
(t)
MB,R(s, a) that are estimations of the

accumulated future discounted reward that can be collected when starting at state s with action
a. The Q-values are given by by the Bellman equation

Q
(t)
MB,R(s, a) =

∑

s′∈S
θ̂(t)s,a(s

′)
(
R(s′) + λR max

a′∈A
Q

(t)
MB,R(s′, a′)

)
, (15)

where λR ∈ [0, 1] is the discount factor for reward, which is not necessarily equal to the discount
factor for novelty λN . Note that in our environment R(s) = 0 at all states except at the goal.
Since the scale of the reward is arbitrary we set R(s) = δ(s, sGoal).

Total model-based Q-value is a linear combination of the Q-values for novelty Q
(t)
MB,N(s, a) and

reward Q
(t)
MB,N(s, a) as

Q
(t)
MB(s, a) = βRQ

(t)
MB,R(s, a) + βNQ

(t)
MB,N(s, a), (16)

where βR ≥ 0 and βN ≥ 0 are inverse temperature controlling exploitation and exploration,
respectively - see subsection ‘Hybrid Policy’ for details.

In our model, βR is fixed for all episodes, but βN depends on whether subjects are in the exploration
phase or the exploitation phase. This dependency was simplified as follows: Since novelty is the
main drive in the 1st episode of the 1st block, we keep βN fixed at a value βN1 throughout this
episode. However, at the end of the 1st episode of the 1st block, subjcets find the goal, and hence
there is no need for exploration, so we set βN = 0 for remaining episodes of the 1st block. Since
surprise increases rapidly after the first action of the second episode (which starts in state 3, now
located one step before the goal), subjects find out the goal is lost; therefore we set βN = βN2 for
the 1st episode of the 2nd block, and with the same arguments as for the 1st block, zero for the
remaining episodes. Our statistical analysis shows that βN1 and βN2 are very close to each other.

Computing model-based Q-value. Since solving the non-linear sets of equations 15 and 14 for
computing two separate sets of Q-values (i.e. Q

(t)
MB,N(s, a) and Q

(t)
MB,R(s, a) for all (s̃, ã) ∈ S ×A)

is extremely computationally costly, we use a variant of the Prioritized Sweeping algorithm [51, 1]
for computing model-based Q-values. The pseudocode of the new algorithm is shown in Algorithm
2. There is a free parameter TPS ∈ N for this algorithm.
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The idea of the algorithm, for example for updating Q
(t)
MB,R(s, a), is to define a set of |S| new

variables U
(t)
R (s), and rewrite Eq. 15 as

Q
(t)
MB,R(s, a) =

∑

s′∈S
θ̂(t)s,a(s

′)
(
R(s′) + λRU

(t)
R (s′)

)

U
(t)
R (s′) = max

a′∈A
Q

(t)
MB,R(s′, a′).

(17)

Then at each time-step, the intuitive explanation of the algorithm is to update Q
(t)
MB,R(s, a) using

the old values of U
(t)
R (s) by the 1st equation, and update the values U

(t)
R (s) for a finite number

(TPS) of the most “effective” states using new values of Q
(t)
MB,R(s, a) by the 2nd equation. For

details, see Algorithm 2.

5.1.2 SurNoR model-free branch

Formalizing model-free Q-values. Similar to what we did for the model-based branch, we
define Q

(t)
MF,R(s, a) and Q

(t)
MF,N(s, a) as values of pairs of states and actions corresponding to external

reward and novelty (internal reward), respectively. The main variation of the model-free Q-values
from the model-based Q-values is in using TD-learning for their computation, in which the model
of the world is not directly used - see the part “Computing model-free Q-values” for details.

Similar to total model-based Q-values, we define total model-free Q-values as

Q
(t)
MF (s, a) = βRQ

(t)
MF,R(s, a) + βNQ

(t)
MF,N(s, a), (18)

where βR ≥ 0 and βN ≥ 0 are has the same value as the ones used in Eq. 16.

Reward and novelty prediction error. A crucial signal in model-free reinforcement learning
is the reward prediction error, defined as the difference between the expected “reward” of a pair
of state and action and its real “reward” [1]. Since we defined two separate sets of Q-values,
one for the external reward and one for novelty (internal reward), we hence define two separate
corresponding prediction errors.

Consider the transition (St = s, At = a) → (St+1 = s′), the reward prediction error at time t + 1
is defined as

RPEt+1 = R(s′) + λR max
a′∈A

Q
(t)
MF,R(s′, a′)−Q(t)

MF,R(s, a), (19)

and similarly, the novelty prediction error at time t+ 1 is defined as

NPEt+1 = N(s′) + λN max
a′∈A

Q
(t)
MF,N(s′, a′)−Q(t)

MF,N(s, a), (20)

where λR and λN are the same discount factors as the ones used in the model-based branch.

Eligibility Trace. To keep track of the previously chosen pairs of states and actions, and to
include them in the update rule, we use eligibility trace [1, ?]. To have the most general setting,

we define two separate eligibility traces, one for the external reward e
(t)
R (s, a) and one for novelty

(internal reward) e
(t)
N (s, a) for all pairs of states and actions (s, a). The eligibility traces are

initialized by zero, i.e. e
(1)
R (s, a) = e

(1)
N (s, a) = 0 ∀(s, a) ∈ S × A. Now, consider the transition
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(St = s, At = a)→ (St+1 = s′), eligibility traces are update as

e
(t+1)
R (s′′, a′′) =





1 if s′′ = s, a′′ = a

λRµRe
(t)
R (s′′, a′′) if o.w.

e
(t+1)
N (s′′, a′′) =





1 if s′′ = s, a′′ = a

λNµNe
(t)
N (s′′, a′′) if o.w. ,

(21)

where λR and λN are the discount factors defined above, and µN ∈ [0, 1] and µR ∈ [0, 1] are free
parameters expressing how fast eligibility traces decay in time.

Surprise modulation of model-free learning rate. Usual TD learning algorithms use a
constant learning rate for updating Q-values [1]. However, the model-free branch of our SurNoR
algorithm modulates its learning rate with surprise computed by the model-based branch. This
novel interaction between model-based and model-free modules have not been explored by previous
hybrid models in neuroscience, e.g. [4, 5].

We define the surprise modulated model-free learning rate ρt as

ρt = ρb + γ(S
(t)
GM ,m)δρ, (22)

where γ(S
(t)
GM ,m) is the surprise modulated learning rate of the model-based branch defined in

Eq. 12, ρb ∈ [0, 1] is the baseline learning rate (when there is no surprise, i.e. S
(t)
GM = 0), and δρ ∈

[0, 1− ρb] is the maximum possible variation of the learning rate due to the surprise modulation.

As a result, the learning ρt is between ρb (when S
(t)
GM = 0) and ρb + δρ (when S

(t)
GM →∞).

Computing model-free Q-value. The model-free Q-values for external reward are initialized
by zero as Q

(1)
MF,R(s, a) = 0. The reason is to only have novelty as the exploration drive during the

1st episode of the 1st block. We also analyzed the alternative algorithm which uses the optimistic
initialization for Q

(1)
MF,R(s, a) (instead of novelty) for exploration [1] - see section “Alternative

Algorithms” for details. However, to consider the most general case, we initialize the model-free
Q-values for novelty with a free parameter QN0 ≥ 0 as Q

(1)
MF,N(s, a) = QN0.

Then, at each time step t + 1, the model-free Q-values are updated with a simple TD-learning
algorithm as

Q
(t+1)
MF,R(s, a) = Q

(t)
MF,R(s, a) + ρt+1e

(t+1)
R (s, a)RPEt+1

Q
(t+1)
MF,N(s, a) = Q

(t)
MF,N(s, a) + ρt+1e

(t+1)
N (s, a)NPEt+1.

(23)

for all (s, a) ∈ S ×A.

5.1.3 Hybrid policy

The policy for action selection is based on a convex combination of Q-values, similar to what is
proposed by [4, 5]. Let us define the softmax function σ(x(a)) = exp(x(a))/

∑4
a′=1 exp(x(a′)). The

action a is chosen in state s with probability

π(At = a|St = s) = σ
(
ωQ

(t)
MF (s, a) + (1− ω)Q

(t)
MB(s, a)

)
, (24)

where ω ∈ [0, 1] is a free parameter balancing between the effect of the model-based and the
model-free branches. When ω = 1, the policy is purely model-free (except for the effect of surprise
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modulation on TD-learning learning rate), and when ω = 0, the policy is purely model-based.
The reverse temperatures βR and βN , used in equations 16 and 18, control the sharpness of policy
(the greater the inverse temperature the sharper the policy) and balance the exploration against
exploitation.

As it was shown by [4], ω does not need to be fixed over time. Therefore, specific to our experiment,
we consider ω to be piecewise constant in time: 1. ω = ω11 for the 1st episode of the 1st block,
when subjects are in the pure exploration phase, 2. ω = ω12 for the 1st episode of the 2nd block,
when the goal is lost, and 3. ω = ω0 for the rest of the experiments (i.e. episodes 2 to 5 for both
blocks), when subjects are in the exploitation phase.

5.1.4 Summary of free parameters

SurNoR has 16 free parameters, summarized as

η = {ε,m, λR, λN , βR, βN1, βN2, TPS, µR, µN , QN0, ρb, δρ, ω0, ω11, ω12}. (25)

ε is used for initialization of the belief in Eq. 9. m is used for modulation of learning rate in
Eq. 12. λR and λN are discount factors using in definitions and updates of Q-values. βR, βN1, and
βN2 are used for balancing novelty against external reward in equations 16 and 18 and controlling
the sharpness of the hybrid policy in Eq. 24. TPS is used for Prioritized Sweeping in Algorithm
2. µR and µN are used for controling the decay of eligibility traces in Eq. 21. QN0 is used for
initialization of QMF,N . ρb and δρ are used for baseline TD-learning learning rate and its surprise
modulation in Eq. 22. ω0, ω11, and ω12 are used for balancing model-free against model-based in
the hybrid policy of Eq. 24.

5.2 Alternative algorithms

To statistically test the effect of surprise and novelty, we implemented 8 alternative algorithms
explained as follows. Their key features are summarized in Table 1.

Model-based alternatives. Three out of 8 algorithms are purely model-based. In the same
fashion as SurNoR, they all use novelty as an intrinsic motivation for exploration, but their ap-
proaches for learning the world model are different, and not necessarily surprise-modulated. These
three algorithms are as follows.

(i) “Perf+N”: ‘Perf.’ is an abbreviation for ‘Perfect Integration’, and ‘N’ is supposed to express
that this algorithm uses novelty. Instead of a surprise-modulated learning rule, Perf+N uses perfect
integration for learning the world model. This means that the main difference to the model-based
branch of SurNoR algorithm is the update equation for the Dirichlet parameters (in Eq. 13) which
is now

α
(t+1)
s̃,ã (s̃′) =





α
(t)
s̃,ã(s̃

′) + δ(s′, s̃′) if s̃ = s, ã = a

α
(t)
s̃,ã(s̃

′) otherwise
, (26)

which basically is identical to considering m = 0 in SurNoR, i.e. independent of surprise value
we have γt = 0. Perf+N is equivalent to doing the exact Bayesian inference with the assumption
that the underlying transition probabilities are fixed in time. This algorithm has 7 free parameters
{ε, λR, λN , TPS, βR, βN1, βN2}, and can be considered as a model nested in SurNoR by assuming
m = µR = µN = QN0 = ρb = δρ = ω11 = ω12 = ω0 = 0.
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Algorithm 1 Pseudocode for SurNoR

1: Specify S and A
2: Specify Episode and Block
3: Specify free parameters η = {ε,m, λR, λN , βR, βN1, βN2, TPS, µR, µN , QN0, ρb, δρ, ω0, ω11, ω12}
4: if Episode = 1 and Block = 1 then
5: ω = ω11 and βN = βN1

6: if Episode = 1 and Block = 2 then
7: ω = ω12 and βN = βN2

8: if Episode 6= 1 then
9: ω = ω0 and βN = 0

10: Initialize e
(1)
R (s, a) = e

(1)
N (s, a) = 0, ∀(s, a) ∈ S ×A.

11: if Episode = 1 and Block = 1 then
12: Initialize C

(1)
s = 0, U

(1)
R (s) = 0, U

(1)
N (s) = log(|A|)

1−λ , ∀s ∈ S.

13: Initialize Q
(1)
MB,R(s, a) = 0, Q

(1)
MB,N(s, a) = U

(1)
N (s), ∀(s, a) ∈ S ×A.

14: Initialize Q
(1)
MF,R(s, a) = 0, Q

(1)
MF,N(s, a) = QN0, ∀(s, a) ∈ S ×A.

15: Initialize α
(1)
s,a(s′) = ε, ∀(s, s′, a) ∈ S × S ×A.

16: else
17: Initialize C

(1)
s , U

(1)
R (s), U

(1)
N (s), Q

(1)
MB,R(s, a), Q

(1)
MB,N(s, a), Q

(1)
MF,R(s, a), Q

(1)
MF,N(s, a) and

α
(1)
s,a(s′) with their latest values in the previous Episode.

18: Initialize state S1 = s1, update counts C
(1)
s ← C

(1)
s + δ(s, s1), and put t← 1

19: while st 6= sGoal do
20: Compute Q

(t)
MF (s, a) = βRQ

(t)
MF,R(s, a) + βNQ

(t)
MF,N(s, a).

21: Compute Q
(t)
MB(s, a) = βRQ

(t)
MB,R(s, a) + βNQ

(t)
MB,N(s, a).

22: Sample at from π(At = a|St = s) = σ
(
ωQ

(t)
MF (s, a) + (1− ω)Q

(t)
MB(s, a)

)

23: Observe St+1 = st+1.

24: Compute RPEt+1 = R(st+1) + λR maxa′∈AQ
(t)
MF,R(st+1, a

′)−Q(t)
MF,R(st, at)

25: Compute NPEt+1 = N (t)(st + 1) + λN maxa′∈AQ
(t)
MF,R(st+1, a

′)−Q(t)
MF,R(st, at)

26: Update counts C
(t+1)
s = C

(t)
s + δ(s, st+1) and novelty N (t+1)(s) = log t+|S|

C
(t+1)
s +1

.

27: Compute S(t+1) =
θ̂
(1)
st,at (st+1)

θ̂
(t)
st,at (st+1)

, γt+1 = mS(t+1)

1+mS(t+1) , and ρt+1 = ρb + γt+1δρ.

28: Update e
(t+1)
N (st, at) = 1, and e

(t+1)
N (s, a) = λNµNe

(t)
N (s, a) ∀s 6= st, a 6= at.

29: Update e
(t+1)
R (st, at) = 1, and e

(t+1)
R (s, a) = λRµRe

(t)
R (s, a) ∀s 6= st, a 6= at.

30: Update Q
(t+1)
MF,R(s, a) = Q

(t)
MF,R(s, a) + ρt+1e

(t+1)
R (s, a)RPEt+1

31: Update Q
(t+1)
MF,N(s, a) = Q

(t)
MF,N(s, a) + ρt+1e

(t+1)
N (s, a)NPEt+1.

32: Update α
(t+1)
st,at (s) = (1−γt+1)α

(t)
st,at(s)+γt+1ε+δ(st+1, s), and α

(t+1)
s,a = α

(t+1)
s,a ∀s 6= st, a 6= at.

33: Update θ̂(t+1) as θ̂
(t+1)
s,a (s′) =

α
(t+1)
s,a (s′)

∑
s̃′∈S α

(t+1)
s,a (s̃′)

.

34: Update Q
(t+1)
MB,N(s, a) and U

(t+1)
N (s) using Alg. 2 and N (t+1)(s) as rewards.

35: if Episode = 1 and Block = 1 and st 6= sGoal then
36: Update Q

(t+1)
MB,R(s, a) = U

(t+1)
R (s) = 0.

37: else
38: Update Q

(t+1)
MB,R(s, a) and U

(t+1)
R (s) using Alg. 2 and R(s) = δ(s, sGoal) as rewards.

39: t← t+ 1.
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Algorithm 2 Pseudocode for the modified version of Prioritized Sweeping Algorithm of [51, 1]
for one time-step at time t+ 1

1: Free parameters: λ (i.e. λR for reward and λN for novelty) and TPS.

2: Input: S, A, θ̂(t+1), Q(t) (i.e. Q
(t)
MB,R for reward and Q

(t)
MB,N for novelty), U (t) (i.e. U

(t)
R for

reward and U
(t)
N for novelty), and Reward (i.e. R for reward and N (t+1) for novelty)

3: for (s, a) ∈ S ×A do

4: Q(t+1)(s, a) =
∑

s′∈S θ̂
(t+1)
s,a (s′)

(
Reward(s′) + λU (t)(s′)

)

5: for s ∈ S do
6: U (t+1)(s) = U (t)(s)
7: Prior(s) = |U (t+1)(s)−maxa∈AQ(t+1)(s, a)|
8: for TPS iterations do
9: s′ = arg maxs∈SPrior(s)
10: ∆V = maxa∈AQ(t+1)(s′, a)− U (t+1)(s′)
11: U (t+1)(s′) = maxa∈AQ(t+1)(s′, a)
12: for (s, a) ∈ S ×A do

13: Q(t+1)(s, a)← Q(t+1)(s, a) + λθ̂
(t+1)
s,a (s′)∆V

14: for s ∈ S do
15: Prior(s) = |U (t+1)(s)−maxa∈AQ(t+1)(s, a)|

(ii) “Leak+N”: ‘Leak.’ is an abbreviation for ‘Leaky Integration’, and ‘N’ is supposed to express
that this algorithm uses novelty. Leak+N is similar to Perf+N, but it uses leaky integration for
the update equation for the Dirichlet parameters (in Eq. 13) which is now

α
(t+1)
s̃,ã (s̃′) =





κLeakα
(t)
s̃,ã(s̃

′) + δ(s′, s̃′) if s̃ = s, ã = a

α
(t)
s̃,ã(s̃

′) otherwise
, (27)

where κLeak ∈ [0, 1] is a constant free parameter. Such a learning rule has been used previ-
ously to model human behavior [28, 30, 29, 52]. Overall, Leak+N has 8 free parameters as
{ε, κLeak, λR, λN , TPS, βR, βN1, βN2}. It cannot be considered fully as a model nested in SurNoR,
but it is equivalent to SurNoR by using Eq. 27 instead of Eq. 13 for updating the belief, and by
assuming m = µR = µN = QN0 = ρb = δρ = ω11 = ω12 = ω0 = 0.

(iii) “SMB+N”: ‘SMB’ is an abbreviation for ‘Surprise-modulated Model Based’, and ‘N’ is sup-
posed to express that this algorithm uses novelty. This algorithm is a reduced version of SurNoR
with µR = µN = QN0 = ρb = δρ = ω11 = ω12 = ω0 = 0, which is equivalent to the model-based
branch of SurNoR. It has 8 free parameters as {ε,m, λR, λN , TPS, βR, βN1, βN2}.
Model-free alternatives. Three out of 8 algorithms are purely model-free, explained as follows.

(iv) “MF+Q0”: ‘MF’ is an abbreviation for ‘Model-Free’, and ‘Q0’ is supposed to express that this
algorithm uses optimistic initialization for exploration (instead of novelty). MF+Q0 is equivalent
to what is usually called Q(λ) [1], with λ = µR in our notation. It can be seen a modified

version of SurNoR with initializing Q
(0)
MF,R = QR0 (where QR0 is a free parameter) and assuming

m = λN = βN1 = βN2 = TPS = µN = QN0 = δρ = 0 and ω11 = ω12 = ω0 = ε = 1. It has overall 5
free parameters as {λR, QR0, ρb, βR, µR}.
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Algorithm Model-based Model-free Novelty Surprise Free-Param.

i Perf+N Y N Y N 7

ii Leak+N Y N Y N 8

iii MBS+N Y N Y Y 8

iv MF+Q0 N Y N N 5

v MF+N N Y Y N 9

vi MF+NS N Y Y Y 12

vii Hyb+N Y Y Y N 15

iix Random
Choice

N N N N 0

Table 1: Summary of the key features of alternative models.Y: Contains; N: Does not contain.

(v) “MF+N”: ‘MF’ is an abbreviation for ‘Model-Free’, and ‘N’ is supposed to express that this
algorithm uses novelty. MF+N is a reduced version of SurNoR with assuming m = TPS = δρ = 0
and ω11 = ω12 = ω0 = ε = 1, which is equivalent to the model-free branch of SurNoR without any
surprise modulation. It has overall 9 free parameters as {λR, λN , βR, βN1, βN2, µR, µN , QN0, ρb}.
(vi) “MF+NS”: ‘MF’ is an abbreviation for ‘Model-Free’, and ‘NS’ is supposed to express that this
algorithm uses both novelty and surprise. In fact, the model-based branch of SurNoR is used in
MF+NS, but only for computing surprise and modulating the learning rate of TD-learner and not
for the hybrid policy. MF+NS can be seen as a reduced version of SurNoR with assuming TPS = 0
and ω11 = ω12 = ω0 = 1, which is equivalent to the model-free branch of SurNoR but with surprise
modulation. It has 12 free parameters as {ε,m, λR, λN , βR, βN1, βN2, µR, µN , QN0, ρb, δρ}.
Hybrid alternative.

(vii) “Hyb+N”: ‘Hyb.’ is an abbreviation for ‘Hybrid’ meaning both model-based and model-free
branches of SurNoR are used for the policy, and ‘N’ is supposed to express that this algorithm
uses novelty. Therefore, the main difference between this algorithm and SurNoR is in using Eq. 27
instead of Eq. 13 for updating the belief (introducing the new free parameter κLeak ∈ [0, 1]), and by
assuming δρ = m = 0, i.e. there is no modulation of the learning rate for TD-learner. Similar to
Leak+N, Hyb+N is not fully nested in SurNoR, because of its particular shape of the update rule.
It has overall 15 free parameters as {ε, κLeak, λR, λN , βR, βN1, βN2, TPS, µR, µN , QN0, ρb, ω11, ω12, ω0}.
Null alternative.

(iix) “Random Choice”: According to this algorithm, subjects choose actions with uniform dis-
tribution, i.e. each action is selected with a probability equal to 1

|A| = 0.25. We used this model
to analyze particularly the effect of our novelty-seeking exploration in the 1st episode of the 1st
block. This algorithm does not have any free parameter.
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5.3 Fitting to human behavior

Setup for statistical inference Let us show the behavioral data of subject i with Di, and the
whole set of behavioral data with D = {Di, 1 ≤ i ≤ 12}. Note that Di consists of the sequences of
the states and actions for all episodes of both blocks corresponding to subject i. As discussed in the
previous subsection, we compare different computational models, indexed with j where 1 ≤ j ≤ 9,
i.e. SurNoR plus 8 alternative algorithms. Let us also denote the computational model j withMj

and its corresponding parameter set with ηj. Our whole analysis is based on a Bayesian model
selection approach [41] and is based on computing each model log-evidence given behavioral data
as

log P(Di|Mj) = log

∫
P(Di|Mj, ηj)P(ηj|Mj)dηj, (28)

where P(Di|Mj, ηj) is the likelihood function, and P(ηj|Mj) is the prior distribution over param-
eter set. To estimate model log-evidence, we need to have the prior P(ηj|Mj). By fitting models
to behavioral data, we mean finding P(ηj|Mj) with a Cross-validated empirical Bayesian approach
explained in the next part.

Cross-Validated Empirical Bayes: We considered the prior distribution as a delta distribu-
tion P(ηj|Mj) = δ(ηj − η∗j ), which is identical to assuming that the parameter of the model is
fixed. An empirical Bayesian approach [53] to estimate η∗j is to maximize log P(D|Mj, η

∗
j ) =∑12

i=1 log P(Di|Mj, η
∗
j ) over η∗j - which is basically equivalent to finding the maximum likelihood

estimation over D. The result of such an approach is to have the total log-evidence equal to
maximum log-likelihood. However, to avoid over-fitting (i.e. over-estimating log-evidence), we
combined the idea of empirical Bayes with 3-fold cross-validation, similar to the approach of [?]:
(i) We divided data to 3 folds, each of which consists of four subjects, (ii) To compute the log-
evidence for subject i, we estimated the parameter η∗j by maximizing the likelihood function of
the folds which do not include subject i. The maximization process were done using coordinate
ascent (using grid search for each coordinate). For each model and fold, we ran the maximization
algorithm from 50 different random initial points until full convergence.

Bayesian model selection (BMS) and accuracy rate: Using the computed log-evidences for
each subject, we used the Bayesian Model Selection (BMS) approach proposed by [41] to compare
different models. The idea of BMS is to: (i) Assume that the model j is selected for each subject
with a probability PMj

, (ii) Estimate the expected posterior probability P̂Mj
= E[PMj

|D] as well
as the model exceedance probability φMj

= P({PMj
> PMi

,∀i 6= j}|D) using log-evidences. [41]
uses a variational approach for estimating these statistics of interests.

We used the functions developed by [41] for BMS in MATLAB toolbox SPM12, and computed
model posterior and exceedance probabilities for each of our 9 models. Results are reported.

Having our models fitted to the behavioral data, we can compute each subject’s policy at a given
time t (given the sequences of states and actions for that subject until time t). Given the policy,
we can predict the subject’s next action, and then compute the accuracy rate of our predictions.
Results for such an analysis for SurNoR (i.e. the best model) is shown in Fig. 2 in the main text.

5.4 EEG Sliding Window Analysis

Sliding window for novelty analysis: The comparison between low-novelty and high-
novelty conditioned ERPs showed that in the time window from 80 to 110ms after the state
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onset, the ERP amplitudes of the two conditions differed significantly. We chose the time interval
from 50 to 150ms after the state onset as the search area for participant-based analysis. We used
a sliding window of 50ms width and 10ms step inside the chosen interval. There were in total 6
sliding windows, which were 50-100ms, 60-110ms, 70-120ms, 80-130ms, 90-140ms and 100-150ms
after the state onset. We used the mean amplitudes of each sliding window to correlate with the
estimated novelty for each participant in the first episode of the first block. The 80-130ms time
window showed a significant result. Thus we considered the time course from 80 to 130ms after
the state onset as a bio-marker for the novelty signal.

Sliding window for surprise analysis: Similar to the analysis done with novelty bio-marker
analysis. We choose the time interval from 150 to 300ms as the interval of interest for participant-
based surprise analysis. There were in total 10 sliding windows, which were 150-200ms, 160-210ms,
170-220ms, 180-230ms, 190-240ms, 200-250ms, 210-260ms, 220-270ms, 230-280ms and 290-300ms
after the state onset. The mean amplitudes in only two windows, 150-200ms and 160-210ms,
showed significant correlations on participant-by-participant basis. Thus we combined the two
windows as 150-210ms, and used it for participant-based analysis. We considered this time course
as a bio-marker for the surprise signal.
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A B C

Figure 1: A. Novelty time-series during the 1st episode of the 1st block: Data is for a single subject.
B. Novelty heatmap at the end of the 1st episode of the 1st block: The values are averaged over
all subjects. C. Time-series for surprise and mean square error of model-estimation: Data is for a
single subject.
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Figure 2: Average (over subject) accuracy rate of predicting actions for each episode of each block.
The accuracy is corresponding to the model with highest posterior probability, see Supplementary
Materials. The error bars stands for the mean errors. The dash-line is corresponding to the
accuracy rate of the random choice (null) model, i.e. 25%.
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Figure 3: Structure of the learning environment used in the experiment. Upper Panel : Envi-
ronment used in block 1. There are 11 states and 4 actions for each state. States 1-7 are the
progressing states, states 8-10 are the trap states, goal state is presented by the red G. At each
progressing state, there are one action that leads participants to the next progressing state (green
arrow), two actions lead participants to one of the trap states (blue arrow), and one action let par-
ticipant stay at current state (yellow arrow). At each trap state, there are three actions that lead
participant to one of the trap states (blue arrow), and one action (green arrow) leads participants
to the beginning of the progressing state (state 1). Action arrows are not fully drawn for the trap
state because of limited space. Lower Panel : Environment used in block 2. The image presenting
state 3 and state 7 are swapped in block 2. Other transitions stays the same.
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Figure 4: After an image (state) was presented, participants needed to wait for 700-1700ms,
randomly chosen, until grey disks were presented at the bottom of the image. After clicking on
one disk (action), a blank screen was shown for 700 to 1700ms, randomly chosen, and then the
next image appeared. The environment was deterministic, e.g., clicking on the left disk in the
house image always brought the participant to the coffee cup. The goal image is a ‘thumb-up’
image in this example. Different observers saw different images. Green intervals indicate the time
window for which EEG was analysed.
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Figure 5: Left Panel : ERP comparisons to search for the time courses of Novelty, Surprise and
Reward response. Colored region presents the time course where the mean amplitudes in the
interval reflects the corresponding signals. Right Panel : Participant-based linear regressions (grey
lines) and averaged linear regression (colored lines) between mean amplitude in the interval of
interest and novelty (upper plot) and surprise (lower plot).
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