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Abstract
Objective. A major challenge in neuroprosthetics is the restoration of sensory-motor hand
functions in upper-limb amputees. Neuroprostheses based on the direct re-connection of the
peripheral nerves may be an interesting approach for re-establishing the natural and effective
bidirectional control of hand prostheses. Recent results have shown that transverse intrafascicular
multi-channel electrodes (TIMEs) can restore natural and sophisticated sensory feedback.
However, the potential of using TIME-recorded motor intraneural signals to decode grasping tasks
has not as yet been explored. Approach. In this study, we show that several hand-movement
intentions can be decoded from intraneural signals recorded using four TIMEs implanted in the
median and ulnar nerves of an upper limb amputee. Experimental sessions were performed over a
week, from day 16 to day 23 after the surgical operation. Intraneural activity was recorded during
several hand motor tasks imagined by the subject and processed offline.Main results. We obtained
a very high decoding accuracy considering 11 class states (up to 83%). These results confirm that
neural signals recorded by multi-channel intraneural electrodes can be used to decode several
movement intentions with high accuracy. Moreover, we were able to use same TIME channels for
decoding over one week within the first month, even if the stability has to be confirmed during
long-term experiments. Significance. Therefore, TIMEs could be used in the future to achieve a
complete bidirectional approach exploiting neural pathways, to make a more natural and intuitive
new generation of hand prostheses that have a closer resemblance to a healthy hand.

1. Introduction

The loss of a hand drastically changes the quality
of the patient’s life [1]. Simple daily activities sud-
denly become very complicated to perform. Restor-
ing lost functions in subjects after hand amputation
is a major challenge in neuroprosthetic applications
[2]. Although important progress has recently been
made, current solutions for the bidirectional control
of hand prostheses still have important limitations,
thus reducing the overall usability of a dexterous

hand prosthesis. These prostheses are controlled by
processing electromyographic (EMG) signals recor-
ded from the muscles of the subject in the residual
limb or elsewhere (see below). Surface EMG acquis-
ition does not require surgery, so it is often used in
upper-limb prosthetic control [3] with high degree
of accuracy if a biomimetic control system is imple-
mented [4]. However, even though it is easy to set
up, surface EMG control has shown limited usabil-
ity in practice, because the performance, in the case
of a large number of degrees of freedom, significantly

© 2020 The Author(s). Published by IOP Publishing Ltd

https://doi.org/10.1088/1741-2552/ab8277
https://crossmark.crossref.org/dialog/?doi=10.1088/1741-2552/ab8277&domain=pdf&date_stamp=2020-04-23
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-5108-7746
https://orcid.org/0000-0002-2637-8007
https://orcid.org/0000-0003-0971-8783
https://orcid.org/0000-0003-4396-8217
mailto:silvestro.micera@santannapisa.it [@epfl.ch]
https://doi.org/10.1088/1741-2552/ab8277


J. Neural Eng. 17 (2020) 026034 M Cracchiolo et al

decreases when external factors are introduced, such
as changes in electrode position or in environmental
conditions [5].

Improvements can be achieved by using more
advanced control strategies [6] or extracting the
sources of neural information through EMG decon-
volution with advanced multi-channel EMG systems
[7, 8]. To overcome the limits of the superficial tech-
nology and to improve the man-machine interfaces,
more invasive approaches have been explored in the
last decades [9–11]. A valid alternative to surface
EMG is the Implantable Myoelectric Sensor (IMES)
system [12], implanted in the residual muscles, able
to record intramuscular EMG signals from both sur-
face and deep muscles and transmit data wirelessly
[13]. The first clinical trial with IMES was suc-
cessfully conducted in a subject with below-elbow
amputation [13].

For higher level amputations, Targeted Muscle
Reinnervation (TMR) [14, 15] might be a suitable
surgery technique to enable prosthesis control using
EMG signals. Once the residual nerve is reinnervated
to another muscle, it works as a biological amplifier
providing appropriate EMG signals for motor com-
mands. Selective nerve transfer obtained with TMR
surgery allows to increase the number of EMG sites,
thus leading to a prosthetic control more intuitive
than in the case of the naturally innervated muscles
[16]. However, prosthetic control remains challen-
ging in the case of above-elbow amputation, even
after TMR [17]. Therefore, a recent study combined
TMR with the use of IMES in patients with above-
elbow amputation [18]. These long-term implants
provided promising results in terms of the robotic
arms control over period of 2.5 years.

Following a different approach, increasing efforts
have beenmade to develop and use invasive interfaces
implanted on peripheral nerves to record signals for
motor control. Indeed, neural interfaces showed to
provide afferent sensations and provide sensory feed-
back [10, 19–25], but also allow electroneurographic
(ENG) signals related to hand motor commands to
be recorded from the residual nerves of the patients
and decoded to control artificial limbs [26–30]. As
sensory axons outnumber motor axons by a ratio
of at least 9:1 in innervating human arms [31], dif-
ficulties in interacting with motor fibers are evid-
ent. Intraneural or intrafascicular neural interfaces
represent an attractive solution for neuroprosthetic
hand in terms of recording capability and selectivity
since they could provide amore selective contact with
motor fibers than non-invasive approaches. Directly
recording from different efferent units and fascicles
potentially enables a large set of motor commands to
be identified [32], thus improving decoding perform-
ance. Among the intrafascicular interfaces used in this
field, Utah slanted electrode array (USEA) [33] has
been tested in animals and humans, providing very

high selectivity and high invasiveness [34]. In subjects
with upper limb amputation, USEAs were implanted
in the median and ulnar nerves to control the virtual
prosthetic hand with up to five independent degrees
of freedom [28].

Recently, the same group demonstrated the
advantage to combine neural andmyographic record-
ings as inputs for a modified Kalman filter to estimate
motor intention in two transradial amputee subjects
[35]. The authors provided a real-time portable hand
prosthesis working with 6◦ of freedom.

A simpler design of interfaces, Longitudinal Intra-
fascicular electrodes (LIFEs), have been used to dir-
ectly control grip strength and limb position in
human [19]. Later, a slightly modified version called
thin-film LIFE (tfLIFE) was developed, using multi-
channel contacts [36]. Recordings were decoded and
successfully classified three hand movements plus
rest, reaching an accuracy of around 85% [27, 37].
Data were processed with wavelet denoising and spike
sorting approaches described in [38].

As with the tfLIFEs, also transversal intra-
fascicular multi-channel electrodes (TIME) have
multiple independent active sites but the implanta-
tion is perpendicular to the nerve fibers [39]. Biocom-
patibility and selectivity were shown to be better than
in LIFE [36] and, recently, TIMEs have been shown
to be able to provide a rich and useful sensory feed-
back in case of trans-radial amputation [23, 24, 40,
41]. However, while some studies showed the capab-
ilities of TIME for recording afferent neural signals
in animals [42], the potential for efferent record-
ing to decode motor intention have not yet been
explored.

So far, recordings from intra-neural interfaces
were treated with spike sorting algorithms. In works
with USEA, spikes were extracted by applying an
adaptive threshold based on the root-mean-square of
the signal [28]. Recordings from tf-LIFEs were treated
with a wavelet denoising technique to improve data
quality before extracting spikes [38], or with a novel
approach for spikes identification based on the com-
putation of the energy of the signal with a moving
average approach [43].

Here, we investigated the possibility of recording
neural signals from TIMEs to decode ten different
movement intentions plus rest from the recorded sig-
nals in a subject with upper limb amputation.Wepro-
posed a procedure to exploit the potentials offered by
the large number of contact sites available in a mul-
tiple TIMEs implants, using automatic channel selec-
tion. We developed a new framework relying on the
compound activity of ENG signals to determine the
subject’smotor intention.Neuralmotor decoding can
provide an intuitive motor control and, if combined
with neural sensory feedback, it can open new possib-
ilities in neuroprosthetics leading to a complete and
natural control of the artificial hand.
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Figure 1. Overview of the experimental design. (1) The subject sat in front of a custom-made GUI indicating grip instruction
(type and speed were indicated). (2) The subject imagined performing the requested grip with the phantom hand following the
speed indicator showed on the screen. (3) The Grapevine System (Ripple, LLC) was used to record the electroneurographic
signals (ENG) during the tasks from four TIMEs (56 active sites) implanted in median and ulnar nerves. (4) The raw neural
activity from all the 56 channels was collected and stored for each session. (5) ENGs were filtered to obtain Binned-RMS-ENGs
and the Principal Component (PC) were extracted to reduce dimensionality based on principal component analysis (see figure 2
for details). (6) A classifier was implemented to decode motor commands from the recorded neural activity.

2. Materials andmethods

2.1. Subject recruitment and surgery
The subject was a 48-year-old female with right-
handed transradial amputation (distal third of the left
forearm). The amputation occurred 23 years before
the enrolment. Four Transverse Intrafascicular Mul-
tichannel Electrodes (TIMEs) [39], with 14 active
sites each, were implanted, two in the median and
two in the ulnar nerve of the subject on June 24th,
2016 (figure 1). TIMEs were explanted on December
17th, 2016. Ethical approval was obtained by the Insti-
tutional Ethics Committees of Policlinic A. Gemelli
at the Catholic University (Rome), where the sur-
gery was performed. The protocol was also approved
by the Italian Ministry of Health. Informed consent
was signed. The clinical trial’s registration number is
NCT02848846.

During general anesthesia, through a 15 cm-long
skin incision on the left arm, the median and ulnar
nerves were exposed to implant a proximal and a
distal TIME in each nerve. All the four TIMEs were
implanted above the elbow. Four small skin incisions
were placed laterally and medially to the main sur-
gical cut. The cable segments were placed in sub-
cutaneous pockets, externalized and secured with
sutures and subcutaneous strain release loops, to be
available for the transcutaneous connection with a
neural recorder. Each single TIME was implanted
transversally within the nerve fascicles. Microsutures

secured the nerve implant. This implantation proced-
ure lasted 8 h. After 180 d, the TIMEs were removed
in accordance with the protocol and the obtained per-
missions.

2.2 Experimental protocol and hand-related task
The patient was enrolled in a six-month clinical trial
(see details in [24]). During the first week, the patient
rested to recovery after the implant surgery. The third
week after implant, we started the recording exper-
iments over a period of one week (from day 16 to
day 23). Experiments (one session per day) were per-
formed for two consecutive days (day 16 and day 17)
and then every three days (day 20 and day 23). The last
day, two sessions were recorded (one in the morning
and one in the afternoon).

The subject was asked to perform finger flex-
ions/grasps with the phantom hand reproducing the
movement shown on the screen. The type and the
timing of the task (start time, hand speed, rest time
and end time)were specified using a real-time custom
interface designed in LabView (National Instruments,
Inc) positioned in front of the patient. The required
movements and a sequence of pictures explaining the
tasks are respectively shown in figure 1. The subject
was also asked to reproduce the movement simultan-
eously with the healthy hand (right one) to constantly
check the subject’s attention.We defined five different
grasping movements: Tridigital Pinch (Tr), Thumb
opposition (Th), Power grasp (Pw), Ulnar finger
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movement (Ul), and Finger abduction and adduc-
tion (Fab/Fad). Each grip was repeated 10 times. The
patient had to move her phantom hand for each trial
as required; one trial lasts 2 s and was followed by
3 s of rest (no movement). The total movement con-
sists of 1 s for the movement (Phase 1—flexion) and
1 s for coming back to the rest position (Phase 2—
extension). Here we reported recordings in 5 sessions,
from days 16, 17, 20, 23 after implantation (two ses-
sions on day 23).

2.3. Neural recorder and intrafascicular electrodes
The neural recorder was the Grapevine Neural Inter-
face System (Ripple, LLC), which is a commercial
device that can be used for the recording of neuro-
physiological data through up to 512 high-impedance
microelectrodes, divided into four ports with 128
channels each. In the configuration adopted in this
study, twoGrapevineMicro Front-Endswere connec-
ted to a single port via a double front-end cable. Each
front-end (up to 32 channels) was connected to two
TIMEs. Each TIME includes 14 capacitively coupled
active recording sites and 2 non-capacitively coupled
reference electrodes. Therefore, 4 TIME devices were
recorded simultaneously and digitally sampled at
30 kHz.

2.4. Electroneurographic recordings analysis
Collected electroneurographic (ENG) data were ana-
lysed in MATLAB (R2017a, The MathWorks, Inc.).
Raw ENG data from 56 active sites were pre-
processed with a band-pass filter between 300 and
3000 Hz (4th order Butterworth filter) and down-
sampled at 10 kHz. Then, we computed the binned-
RMS (root mean square) for each channel as fol-
lowed. A band pass 2nd order Butterworth filter
between 2 and 100 Hz was applied to the square
of the signal. The signal was binned into 25 mil-
lisecond windows (corresponding to 250 samples)
and the root of the mean value was computed.
We finally obtained a binned-RMS-ENG sampled at
40 Hz (figure 2(a)). Figure 2(a) shows the recor-
ded electroneurografic signals before and after sig-
nal pre-processing for three different channels. In fig-
ure S1(a) (stacks.iop.org/JNE/17/026034/mmedia),
a representative example of the pre-processed sig-
nal and the related binned-RMS-ENG signal from
the first session are reported. The mean signal-
to-noise ratio (SNR) across all active sites was
computed for each TIME for all the five sessions
on both the pre-processed ENG and the binned-
RMS-ENG (figure S1(b)). SNRdB is defined as in
equation (1) [44]:

SNRdB = 10 log10

(
f(xtask)

f(xbaseline)

)2

with f(x)

=

√∑L
i=1 xi

2

Nsamples
(1)

where task refers to the movement and baseline is a
signal of the same duration in absence of movement
one second before the beginning of the task.

For comparison purposes we further computed
the firing rate of the raw ENG collected with TIMEs
as proposed in [28]. After data pre-processing, spike-
events were extracted with a negative threshold equal
to 3.5 times the RMS of the whole signal. Then, event-
count was binned at 30 Hz to obtain the firing rate.

2.5. Electromyographic signals recordings
During the experiment, four surface elec-
tromyographic (EMG) signals were acquired at 2 kHz
through Grapevine System (Ripple, LLC) from the
residual muscles of the subject’s forearm. In partic-
ular, two solid hydrogel interfaces (Kendall ARBO,
Ag/AgCl) picked up signals from the dorsal (digit
extensor extrinsic muscle—EMG1, EMG2) and two
from the ventral (digit flexor extrinsic muscle—
EMG3, EMG4) side of the forearm. The differential
bio-potential recordings were first filtered in hard-
ware through a low-pass filter with a 500 Hz cut-off
and then amplified by a factor 5000. Signals were
digitally filtered with a 4th order pass-band (15–
375 Hz) Butterworth IIR filter, and a notch filter was
applied at 50, 100 and 150 Hz to remove the power
line interference. The fourth EMG (EMG4) signal
was discarded because the acquisition was not syn-
chronous with the others by mistake. Offline, EMG
signal was high-pass filtered at 3 Hz (4th order But-
terworth), rectified and then a low pass filter at 60 Hz
was applied (4th order Butterworth) to obtain the
EMG envelope (figure S2(a)).

2.6. Channel selection for dimensionality
reduction
We proposed an automated channel selection based
on principal component analysis (PCA), which max-
imizes features separability using signal variance
(figure 2(b)), as follows. First, Principal component
analysis was performed on the processed neural sig-
nals (the binned-RMS-ENGs, 56 recordings). Then,
we computed the number of Principal components
(PCs) needed to explain at least the 99.75% of the
total variance for each session. In figure 2(b), we
reported the number of PCs across days, which var-
ies from 4 to 10, increasing across sessions, except for
the last one. For this reason, we limited our analysis to
the first ten components. To reduce the dimensional-
ity of the inputs, we computed the linear correlation
between the binned-RMS-ENGs and each principal
component (figure 2(c)). For each PC, channel were
sorted in a descending way based on the correlation
coefficient (figure 2(d)).

Finally, the first two channels with the highest cor-
relation coefficient with the first ten principal com-
ponents were selected and used as input features for
the decoding algorithm. The inset in figure 2(d) refers
to day 16. Note that the final list is composed of 14
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Figure 2. Signal processing and dimensionality reduction (a) Schematic pipeline of the algorithm used for motor decoding from
raw data to channel selection. Here, 56 neural recordings were collected from 4 TIMEs and pre-processed to obtain downsampled
signals. Principal component analysis (PCA) was performed on the binned Root Mean Square ENG (binned-RMS-ENG). (b)
Number of principal components per session to explain more than 99.75% of the total variance. (c) Correlation matrix between
principal components (PCs) and all the 56 channels for day 16. (d) Sorted correlation matrix between principal components and
all the 56 channels for day 16. Channels are sorted in descending order based on the correlation coefficient computed for each PC.
The zoomed red box indicates the first two channels most closely correlated with the first 10 PCs.

channels instead of 20 as some channels occurred
more than once.

Furthermore, we computed an alternative chan-
nel selection following what proposed in [28]. Briefly,
we computed the correlation between the neural
signal and the movement cue position (a semi-
sinusoidal function) and we selected the channels
with a correlation at least 0.5 between neural signals
and the hand kinematics signals [28].

2.7. Neural decoding algorithm
The selected channels were used as input features
the decoding algorithm. For all the trials, each bin
of the the first 200 milliseconds after the external
trigger (corresponding to 8 bins) were individually
labelled and associated to a specificmovement. A sup-
port vector machine (SVM) classification algorithm
with a quadratic kernel trained using the one-vs-one

strategy to decode movements. A five-fold random
cross-validation procedure was carried out to evalu-
ate parameters and to ensure the unbiased correctness
of the classification performance. We defined overall
classification accuracy as the mean value of the per-
centage of correct predictions per class, which corres-
ponds to the mean value of the diagonal in the confu-
sion matrix.

Three classification strategies were considered: a
support vector machine (SVM), k-nearest neighbors
algorithm (KNN—11 neighbors), and linear discrim-
inant analysis (LDA). We computed the performance
for different number of channels (sorted as described
above) for these three classifiers (figure S3(a)). By
increasing the number of inputs, the performance
improved as expected for all the three different classi-
fication strategies. Both for SVM and KNN, the clas-
sifier reaches a performance saturation point in and
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Figure 3.Median and Ulnar action potential for classification. (a) Mediated waveforms related to a single movement in four
representative channels, one from each TIME (channel M1 and channel M2 from the ones implanted in the median nerve;
channel U1 and channel U2 from the ones implanted in the ulnar nerve). Larger lines show the mean, smaller lines the
mean± SEM (10 repetitions per movements). Movements were synchronized with the time cue and correspond to five class
movements. Each signal was normalized to its maximum value and averaged over all trials (10 repetitions each) for the five
movements. (b) The distribution of single values of the binned-RMS-ENG for each trial during different movements extracted
from two representative median and ulnar active sites (larger markers represent the mean value; smaller markers represent the
single trial). This representation demonstrates the possibility of clustering movements and the grey line represents a possible
attempt to divide the space and discriminates among representative tasks.

does not benefit by increasing the number of inputs.
However, SVM can reach higher performance with a
lower number of inputs. Thus, SVM was chosen for
our purposes instead of the other two proposed. We
repeated this analysis for each session, using the first
14 channels selected with PCA-based method (see
2.6). Figure S3(b) shows accuracy across sessions for
the three different classifiers after channel selection.

3. Results

We investigated the possibility of decoding hand
motor intentions from peripheral nerve recordings
from transverse intraneural interfaces (TIMEs) in a
subject with upper limb amputation. Neural record-
ings were collected simultaneously in multiple exper-
imental sessions over time to evaluate the stability of
the neural interface and the decoding procedure pro-
posed.

3.1. Possible EMG contamination on the neural
signal
Before proceding with neural decoding, we checked
any possible contaminations of the muscular activity

that could have affected neural signals. Correlation
was computed across sessions between the envelope
of each electromyiographic signal (EMG1, EMG2,
EMG3) and the neural signal after processing, both
the binned-RMS-ENG and the Firing rate. Although
correlation with EMG was significant (p < 0.05)
for most of the channels, the fraction of variance
explained was very low (mean R2 was lower than 0.08,
figures S2(b) and (c)). This confirms that the EMG
signal had a very low effect on the neural signal.

3.2. Neural decoding approach
The computation of the binned-RMS-ENG enabled
to improve substantially the quality of the signal (fig-
ure S1) as shown by the mean SNR and the standard
deviation for each TIME across sessions for the raw
and the binned-RMS ENG (figure S1(b)).

Figure 3(a) shows the evolution of one represent-
ative channel from each implanted TIME (Channel
1 and 2 Median, Channel 1 and 2 Ulnar) over the
first second of the trials for the different tasks (phase
I of the movement). Figure 3(b) shows the distri-
bution of single values of the binned-RMS-ENG for

6
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Figure 4. Performance across days for the 11-class SVM classifier with PCA-based channel selection (agonist movements,
antagonist movements and rest position). (a) Distribution of channels for each multi-electrode device (median—M1, M2;
ulnar—U1, U2) of the 14 channels across sessions selected with PCA-based strategy. (b) Comparison of the accuracy for each of
the five sessions considering PCA-based channel selection repeated for each session (dark blue line) and using the same channels
selected during the first session (light dashed blue line). (c) Confusion matrix from day 16 (first session�accuracy 79%). (d) and
(e) Confusion matrixes in day 23 (fifth session) with day by day channel selection (D, accuracy 83%) or using the channel set
selected during the first session (E, accuracy 80%).

each trial during different movements extracted from
two representative median and ulnar active sites. The
results show the importance of using multi-channel
recording for decoding. The procedure is illustrated
in a qualitative way in figure 3(b). In fact, we showed,
as an example, that ulnar finger movements and fin-
ger abduction can be discriminated from power grip
movements, using the channels shown in the left
panel. On the contrary, tripod and thumb move-
ments can be discriminated using the channels shown
in the right panel.

3.3. PCA channel selection strategies results
After ENG signals were preprocessed, Principal Com-
ponent Analysis was performed as explained in the
Methods section. Following the PCA-based channel

selection strategy applied to the binned-RMS-ENG,
the final list for the first recording session was com-
posed of 14 channels. Then, we kept the same num-
ber of channels for the following sessions to facilitate
comparison. As shown in figure 4(a), at least one act-
ive site for all the four implanted TIMEs was selec-
ted for each experimental session. This shows that
each implantedmulti-electrode device carries specific
movement-related information, even if signals from
adjacent active sites could be redundant.

We applied the same strategy to the firing rate
signals. Interestingly, in this case we needed a lar-
ger number of Principal Components to explain the
99.75% of the total variance (figure S4(a)). In the
case of PCA-base channel selection, we selected a
fixed number of channels for the decoding. Hence, we

7
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computed the final list of 14 channels for each session.
The distribution of these 14 channels per TIME across
days is reported in figure S4(b).

3.4. Decoding of complex movements from
PCA-selected compound ENGs
First, we preliminary tested our decoding proced-
ure across sessions by considering only two motor
tasks: power close and open, plus the rest state and
different tasks belonging to the same category, i.e.
three different closing movements: tri-digital pinch,
thumb opposition and ulnar fingermovement, which
require different activations of the median and the
ulnar nerves (figure S5).

Once the ability to decode tasks for differ-
ent coarse movements was demonstrated, we tested
whether the procedure was sufficiently accurate, we
classified all the tasks performed during the experi-
ments: we considered the phase I (flexion/abduction)
and phase II (extension/adduction) for each of the
five movements and the resting position as separate
classes (figure 4).

TIME channels were selected based on PCA (see
Methods), and the selection was performed inde-
pendently for each of the five sessions. We obtained
a high performance (above 77%, see dark blue mark-
ers in figure 4(b)), which is significantly better than
chance (upper-tail one-sided χ2 test of observed fre-
quency vs chance frequency for f= 10, p= 0.01).

We then investigated to what extent the quality
of the performance depended on the fact that PCA-
based channels selection was performed independ-
ently for each session. Indeed, selecting the channel
every day would be very complicated in real-life
applications, for which the optimal design would
be to select the channels only once during a dedic-
ated post-implant session and use the same set in
all the following sessions. To assess the stability of
the performance in this case, we evaluated classific-
ation performance for every session using the chan-
nels selected during the first day (light blue markers
in figure 4(b)). We found that overall accuracy was
more than 71%. The performance was still high even
without the customized channel selection strategy
and there was no statistical difference between the
two cases (p = 0.0749 one-tailed Wilcoxon signed-
rank test). This suggests that in a real-life situation
channel selection would not need to be performed
every day.

Confusion matrix examples are drawn to assess
the reliability and the efficiency of the proposed clas-
sifier in different cases. Details of the decoding per-
formance demonstrate the low variability across days
and the limited number of false positives: figure 4(c)
reports the performance from day 16 (first session,
accuracy 79%), and figures 4(d) and (e) show res-
ults for day 23 (fifth session) with day by day chan-
nel selection (accuracy 83%) or using the channel set
selected during the first session (accuracy 80%).

These results showed that SVMwas able to distin-
guish and correctly classify fine movements in both
flexion and extension phases with high performance.
In addition, the accuracy level was high in all the con-
sidered cases even if the set of channels was determ-
ined during the first session and then used for all
remaining sessions, thus making this approach easy
to implement in real life applications.

3.5. Comparison with alternative decoding
approaches
Finally, to assess the goodness of our new
approach, we compared the performance of differ-
ent approaches to classify 11 movements using TIME
neural signals. In particular, we compared the accur-
acy obtained using the binned-RMS-ENG or the
firing rate signal as input for the classifier after 14
channels were selected with PCA-based strategy.

For each case, we considered the possibility to
keep using the channels selected during the first ses-
sion. Results across days are reported in figure 5(a).
Considering the 14 channels selected day by day, the
accuracy using the binned-RMS-ENGs (dark blue
markers) was higher than the accuracy obtained with
the firing rate (dark red markers) (p ≪ 0.001, one-
tailed Wilcoxon signed-rank test).

As in figure 4(b), also for the firing rate we con-
sidered the possibility to re-use the channels selected
during the first session, but this lead to lower per-
formance (p < 0.01, one-tailedWilcoxon signed-rank
test).

The same comparison was performed with
correlation-based channel selection (figure 5(b)).
Note that this method is complementary to the PCA-
based one: in this case, the threshold for including
a single channel is fixed and the total number of
channels selected can change. Results showed that
there was no substantial difference between using the
binned-RMS-ENG and the Firing Rate (dark blue vs
dark red markers, p = 0.1716 one-tailed Wilcoxon
signed-rank test), nor between selecting the chan-
nels day by day and using channels selected on the
first session (p = 0.7384 for binned-RMS-ENG and
p= 0.2494 for firing rate one-tailedWilcoxon signed-
rank test).

This stability in part depends on the fact
that, many channels were used (data reported in
figure 5(c)). In particular, almost all available chan-
nels were selected based on the correlation coefficient:
51.6/56 channels for the binned-RMS-ENG, 31.8/56
channels for the firing rate. This also suggests that the
binned-RMS-ENG is more correlated with the cue.

4. Discussion

We demonstrated the possibility of recording human
neural signals using intrafascicular electrodes (TIME)
for hand control purposes and we proposed a new
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Figure 5. Comparison of the 11-class SVM classifier performance with different strategies. (a) Accuracy results across sessions
obtained selecting 14 channels with PCA-based strategy using different features as input for the SVM-classifiers: (1) the
binned-RMS-ENG signal from channels selected day by day (dark blue line); (2) the binned-RMS-ENG signal from channels
selected during the first session (light dashed blued line); (3) the Firing Rate signal from channels selected day by day (dark red
line); (4) the Firing Rate signal from channels selected during the first session (light dashed red line); (b) same as in panel A, with
correlation-based strategy. (c) Number of channels per session selected with correlation-based strategy to compute accuracy in
panel B, showing correlation coefficient >0.5.

approach to select the most informative neural chan-
nels and to decode hand grasp intention in a subject
with amputation. In previous studies, the biocompat-
ibility and longevity of intrafascicular electrodes was
demonstrated in animal models [45] and preliminar-
ily confirmed in human experiments with long-term
stimulation for sensory feedback [24].Here, we recor-
ded neural activities among five sessions over the first
month after implantation (from day 16 to day 23),
indicating the potential of using TIMEs for chronic
neural recording purposes.

The analysis of neural signal consisted of three
steps: (1) feature extraction from the down-sampled
raw signal by computing a compound activity, the
binned-RMS-ENG for each channel (56 active sites);
(2) Principal component analysis to reduce the
amount of data to elaborate online by selecting the
most informative channels; (3) the implementation
of the SVM classifier and evaluation performance
across days for 11 classes of movements. Overall, we
proposed a robust framework to decode hand grasps
from intraneural recordings, which provided higher
classification performance than other strategies here
reported and discussed.

We explored the feasibility of using TIMEs to
record neural activity related to hand movements

using new decoding algorithms with high stability
and reliability. We tested three main hypotheses: (1)
the possibility of extracting complex motor informa-
tion from compound signals; (2) the capabilities of
multiple implanted TIMEs to decode motor inten-
tions decoding performance; (3) the stability over a
week of the proposed approach.

In previous work, different kinds of neural inter-
faces implanted in the case of trans-radial ampu-
tation have been used, such as tfLIFE (each with
eight recording/stimulating channels) [37] and a 100-
channel Utah slanted electrode array (USEA) [28]. In
Rossini et al (2010) [37], four tfLIFEs were implanted
but only three actions (power grip; pinch grip; flex-
ion of the little finger) were decoded with a >85%
real-time correct classification. As in our work, they
used SVM as a classifier, but it was trained on wave-
forms of identified spikes after wavelet de-noising. In
contrast, Wendelken et al [28] decoded the intended
finger and wrist positions with a modified Kalman
filter in real-time using the neuronal firing patterns
as inputs. Interestingly, the Kalman filter allowed to
continuously decode a movement based on 5 [28]
or 6-DOF [35] (degrees of freedom), where DOF is
defined as the motion of a digit or the wrist in a
single linear or rotational axis in either direction, in
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contrast with pattern recognition and classification-
based approaches, able to detect a limited number of
classes, based on the implemented training.

Thus, we proposed the root mean square (RMS)
as the signal feature for an SVMdecoder. RMS repres-
ents a compound multiunit activity signal and is an
advantageous method because it considers the whole
neural activation without computing spike sorting
or using advanced techniques, which require a large
computational cost. This approach can be compatible
with online applications for closed-loop prosthesis
control.

We showed that the recordings acquired from a
multi-electrode device implanted in the median (M1,
M2) and ulnar (U1, U2) nerves (proximal and distal
TIMEs for each nerve) can provide distinct informa-
tion, as shown in figures 3(a) and (b). Here, four rep-
resentative channels, one for each implanted TIME,
showed a task-specific modulation of the RMS dur-
ing different tasks (figure 3(a)). As RMS patterns are
related to the movements, values can be separated if
we consider two different active sites, one from the
median nerve and the other from the ulnar nerve,
during the same tasks, as in figure 3(b). However,
only the combination of multiple active sites allows
for the control of several dexterous movements, such
as thumb flexion and ulnar fingers extension.

As we are working with multi-channel interfaces,
the core of the proposed algorithm is the selection
of the active sites as inputs for the classifier. While
in Rossini et al [37] the ENG channels were selec-
ted based on the best signal-to-noise ratio,Wendelken
et al [28] proposed an algorithm that automatically
selected only those channels with a high correlation
between the firing rate and the training movement
cue position. Here, we used a different approach,
based on the principal component analysis of all the
recordings, to reduce dimensionality without losing
information. However, we reported more traditional
methods [28] for comparison. There are 56 active sites
from four different TIMEs, two placed in the median
nerve and two in the ulnar nerve of the amputee arm
(see Methods). Considering that the ratio between
motor and sensory fibers is very low [31], we assumed
that some active sites could be useless for our decod-
ing purposes duringmotor tasks. This hypothesis was
corroborated by the fact that during the movements,
we needed at most the first ten principal components
to explain 99.75% of the total variance of the data-
set. Thus, we extracted the first two channels most
closely correlated with the first ten principal compon-
ents. This strategy of selecting channels automatically
enables only active sites to be considered, which carry
activity related to hand movements, and to discard
active sites not relevant for motor decoding purposes.

Interestingly, PCA selected at least one channel
from each TIME, which confirms the importance of
the use of multiple electrodes from different nerves
for motor decoding.

It is important to note that due to narrow move-
ments of the electrodes and other causes related to the
change in the environment of the nerve the informa-
tion carried in each active site is a priori not the same
on different days. However, although PCA extracted
different channels as inputs for the decoding part, we
demonstrated that the active sites chosen on the first
day could be also used for the following sessions. This
is interesting, as active sites that have been damaged
could be easily replacedwith other active sites because
of their redundancy.

The comparison between the decoding perform-
ance of binned-RMS-ENG and firing rate highlighted
several differences. First, when the same number of
channels is selected, the performance of the former is
only slightly above the one of the latter (figures 5(a)
and S6). Second, binned-RMS-ENG is more robust
to channel selection, as the decrease associated to
using the same channel set across sessions was less
than the one of firing rate (figure 5(a)). However,
when considering correlation-based channel selec-
tion, binned-RMS-ENG displayed strong correlation
with behavior inmuchmore channels than firing rate
(figure 5(c)) hence leading to an overall higher decod-
ing (figure 5(b)). Finally, comparing the two channel
selection strategies here discussed, accuracy is better
in the case of the selection based on correlation, as
displayed in figures 5(a) and (b) for both the binned-
RMS-ENG and the firing rate. However, it should be
noted that this strategy requires at least more than
twice the number of channels used in the case of
PCA (figure 5(c)). This would lead to an increased
computational cost, harder to implement in online
contexts.

Although it provides promising results, this study
has limitations that should be addressed in future
work. First, we should confirm our results with more
trans-radial amputees and during the real-time con-
trol of hand prostheses.

Another very important aspect to investigate is
the long-term usability and robustness of these res-
ults since our recording sessions were performed
during the third week after the implantation (as
we later focused only on sensory feedback). There-
fore, we should perform longer-duration tests to
verify whether PNS neural signals can be recorded
several months after the implantation and whether
the use of channels selected a few weeks after
the implantation can be used over months with
no significant degradation of the decoding abilit-
ies. Until then, the long-term longevity remains an
open question that we need to address in the near
future.

5. Conclusions

This work provides interesting insights into the pos-
sibility of controlling a robotic hand prosthesis,
by decoding neural signals recorded by implanted
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TIMEs in the median and ulnar nerves. The feasib-
ility of a multi-class decoding was investigated, and
we demonstrated the robustness and efficacy of the
methods proposed. In addition, the position of the
implant (above the elbow, see figure 1) allows us to
envisage the application of this prosthesis design for
trans-humeral amputation, using the residual nerves
function as found for trans-radial cases. In fact,
notwithstanding research promising results in cases
with trans-humeral amputations [18], their possib-
ility to control several hand functions is still limited
even when Targeted Muscle Reinnervation and pat-
tern recognition are exploited for EMG-based control
[46].

As anticipated, the approach presented in this
manuscript could be used as a decoder part of a
closed-loop neuroprosthesis, which could potentially
provide both the natural sensory feedback and nat-
ural motor control. However, several challenges must
be addressed to achieve this goal, such as the devel-
opment of approaches to also record neural signals
during peripheral stimulation (i.e. artefact removal).
Finally, new algorithms should be developed to
extract force and velocity information from TIME-
recorded neural signals [29].

We proposed a framework to decodemotor inten-
tion in the case of people with upper limb amputa-
tion. However, our approach relies on very general
assumptions and could thus be effectively applied to
decode behavioral variables of interests in a broad
range of brain computer interfaces [47].
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