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ABSTRACT:	The	hexanuclear	[Na12Fe6(tris-cyclo-salo-
phen)2(THF)14],	 1-THF,	 and	 the	 trinuclear	
[Na6Fe3(tris-cyclo-salophen)(py)9],	 1-py,	 Fe(II)	 clus-
ters	can	be	easily	assembled	in	one-step	from	the	lig-
and-based	 reduction	 of	 the	 [FeII(salophen)(THF)]	
complex.	These	complexes	consist	of	triangular	cores	
where	three	Fe(II)	ions	are	held	together,	within	range	
of	bonding	interaction,	by	the	hexa-amide,	hexa-phe-
nolate	 macrocyclic	 ligand	 tris-cyclo-salophen12-.	 The	
tris-cyclo-salophen12-	 ligand	 is	 perfectly	 suited	 for	
binding	three	Fe(II)	centers	at	short	distances	allow-
ing	 for	 strong	magnetic	 coupling	between	 the	Fe(II)	
centers.	The	macrocyclic	ligand	is	generated	by	the	re-
ductive	coupling	of	the	imino	groups	of	three	salophen	
ligands	resulting	in	three	new	C–C	bonds.	The	six	elec-
trons	stored	in	the	ligand	become	available	for	the	re-
duction	of	carbon	dioxide	with	selective	formation	of	
carbonate.		

Polynuclear	metal	 complexes	 have	 attracted	 intense	
interest	 because	 they	 can	 mediate	 multielectron	
transfer	 and	 facilitate	 the	 binding	 and	 activation	 of	
small	 molecules	 via	 multi-metallic	 cooperativity.1	
Moreover,	 polynuclear	 clusters	 can	 be	 used	 to	 pro-
mote	strong	magnetic	coupling	between	metal	ions	re-
sulting	in	fascinating	magnetic	properties.2	However,	
the	 synthesis	of	well-defined	polynuclear	 complexes	
remains	a	challenge	and	usually	relies	on	the	random	

self-assembly	 of	 mononuclear	 units.	 Alternatively,	
synthetically	demanding	pre-designed	 ligands	which	
are	capable	of	bringing	several	metal	centers	in	close	
proximity	can	be	used.1e,	2a,	3	Redox-active	ligands	are	
increasingly	used	in	combination	with	d-	and	f-block	
metal	 ions	 to	promote	multielectron	 transfer.4	 Inter-
estingly,	the	use	of	tetradentate	Schiff	bases	as	redox-
active	ligands	in	d-5	and	f-block6	chemistry	was	shown	
to	promote	the	formation	of	intermolecular	C-C	bonds	
resulting	in	the	assembly	of	dinuclear	complexes	with	
short	metal-metal	interactions.	However,	the	possibil-
ity	of	accessing	complexes	of	higher	nuclearity	using	
this	route	has	been	hardly	explored.7		
Here	we	show	that	the	reduction	of	an	easily	prepared	
mononuclear	 Fe(II)	 Schiff	 base	 complex8	 provides	 a	
facile	route	to	the	synthesis	of	trinuclear	Fe(II)	com-
plexes	featuring	short	Fe-Fe	separations.	The	reported	
complexes	 provide	 a	 rare	 example2a,	 9	 of	 trinuclear	
clusters	 featuring	 close	 Fe-Fe	 interactions	 that	 pro-
duce	a	high	spin	state	persistent	at	room	temperature.	
Moreover,	they	can	store,	in	three	C-C	bonds,	six	elec-
trons	that	become	available	to	mediate	the	reductive	
disproportionation	of	CO2	to	CO32-	and	CO.	
	



 

	
Scheme	1.	Reduction	of	[Fe(salophen)]	to	yield	1-
THF	and	1-py.	 

The	reduction	of	[Fe(salophen)(THF)]	with	two	equiv-
alents	of	 sodium	metal	 in	THF	at	 room	temperature	
(Scheme	1)	affords	an	orange	solid	that	could	be	re-
crystallized	both	 from	THF	and	pyridine,	 upon	 slow	
dissolution,	to	yield	crystals	of	the	hexanuclear	heter-
ometallic	 compound	 [Na12Fe6(tris-cyclo-salo-
phen)2(THF)14],	1-THF	(Figure	S6),	in	84	%	yield	and	
the	 trinuclear	 complex	 	 [Na6Fe3(tris-cyclo-salo-
phen)(py)9],	1-py	in	72	%	yield.	
	

	
Scheme	2.	Structure	of	the	tris-cyclo-salophen		

After	slow	dissolution	of	the	orange	powder	formed	in	
the	reduction	of	[Fe(salophen)(THF)],	the	isolated	1-
THF	and	1-py	turned	out	to	be	highly	soluble	in	pyri-
dine	or	THF.	However,	no	signal	could	be	detected	in	
the	1H	NMR	spectrum	in	THF-d8	or	in	py-d5,	from	-40	
°C	 to	 room	 temperature,	 probably	 as	 a	 result	 of	 the	
high	magnetic	moment	 of	 the	 complex,	 (χMT	 =	 14.6	
emu	K/mol,	 µeff	 =	 10.80	µB	 for	1-py	 and	 χMT	=	15.7		
emu	K/mol,	µeff	=	11.20	µB	for	1-THF	as	measured	by	
Evan’s	method10	at	298	K).	
Complex	1-THF	crystallizes	in	the	P21/c	space	group	
with	half	a	molecule	per	asymmetric	unit	while	1-py	
crystallizes	in	the	P1	space	group	with	one	molecule	
per	asymmetric	unit.	The	overall	 structure	of	1-THF	
(see	Supporting	information,	Figure	S6)	is	comprised	
of	 two	 identical	 trinuclear	 [Na6Fe3(tris-cyclo-salo-
phen)(THF)7]	moieties	which	are	held	together	by	two	
sodium–aryloxide	bonds.	The	structure	of	each	trinu-
clear	 moiety	 is	 very	 similar	 to	 the	 structure	 of	 the	

trinuclear	complex	1-py.	 (Figure	1	and	2)	The	trinu-
clear	moiety	in	1-THF	and	1-py	consists	of	a	triangu-
lar	core	of	Fe(II)	ions	held	together	by	the	hexa-amide,	
hexa-phenolate	 macrocyclic	 ligand	 tris-cyclo-salo-
phen12-	(Scheme	2).	The	macrocyclic	ligand	tris-cyclo-
salophen12-	is	generated	by	 the	 reductive	coupling	of	
the	imino	groups	of	three	distinct	salophen	ligands	re-
sulting	in	three	new	C–C	bonds	(average	C-C	distance:	
1.564(6)	Ab 	for	1-THF	and	1.567(5)	Ab 	for	1-py).	Six	in-
ner	 sphere	 sodium	 counterions	 bind	 each	 trimeric	
unit	in	both	structures.	
In	the	trinuclear	complex	1-py	(Figure	1)	each	Fe(II)	
ion	presents	a	unique	coordination	environment	(two	
iron	ions	present	a	distorted	square	pyramidal	geom-
etry	and	one	iron	ion	present	a	distorted	square	pla-
nar	geometry).	The	values	of	the	Fe-N	bond	distances	
range	from	2.289(3)	Ab 	to	1.961(3)	Ab 	and	the	values	of	
the	Fe-O	distance	range	from	1.944(3)	to	2.131(3)	Ab 	
(2.05(6)	Ab 	 average)	with	 the	 longer	distances	 found	
for	 an	 aryloxide	 binding	 two	 sodium	 cations.	 These	
values	are	in	the	range	of	those	reported	for	Fe(II)	am-
ido9	 and	 phenolate11	 complexes.	 The	 C-N	 bond	 dis-
tances	in	1-py	(1.450(5)-1.474(5)	Ab )	are	significantly	
longer	 compared	 to	 those	 reported	 for	 the	 [Fe(salo-
phen)(EtOH)]	complex	(1.299(4)	Ab )	which	clearly	in-
dicates	imine	reduction.12	The	values	of	the	Fe-Fe	dis-
tances	 range	 from	 2.4405(7)	 Ab ,	 2.5054(9)	 Ab 	 and	
2.7942(7)	Ab )	with	a	longer	Fe(3)-Fe(1)	distance,	indic-
ative	of	a	weaker	bonding	interaction.	These	values	re-
main	within	range	of	bonding	interactions1h,	9,	13	and	
are	similar	to	the	Fe(II)-Fe(II)	distances	found	in	tri-
nuclear	complexes	showing	magnetic	coupling	arising	
from	direct	orbital	overlap.9,	14,	15	
Two	distinct	coordination	environments	are	found	in	
the	trinuclear	moiety	of	1-THF	(Figure	2)	for	the	Fe(II)	
ions	with	Fe-N	and	Fe-O	bond	distances	comparable	to	
those	found	in	1-py	(see	Supporting	information).	The	
values	of	the	Fe-Fe	bond	distances	in	1-THF	(2.403(1)	
Ab ,	2.438(1)	Ab ,	and	2.703(1)	Ab )	are	shorter	than	those	
found	in	1-py	and	are	within	range	of	bonding	inter-
actions.9,	13	
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Figure	1.	Molecular	crystal	structure	of	1-py.	The	three	
C-C	bonds	formed	by	reduction	of	salophen2-	are	shown	
in	 yellow.	 Hydrogen	 atoms,	 sodium	 cations	 and	 Na-
bound	pyridine	molecules	have	been	omitted	for	clarity.		

The	structures	of	1-THF	and	1-py	show	that	the	re-
duction	of	the	[Fe(salophen)(THF)]	complex	does	not	
lead	to	the	reduction	of	the	metal	center,	but	affords		
in	one	simple	step	a	sophisticated	macrocyclic	ligand	
that	 holds	 together	 within	 bonding	 distance	 three	
Fe(II)	centers.	

	

	

Figure	 2.	View	 of	 the	 trinuclear	 core	 in	 the	molecular	
crystal	structures	of	1-THF	(left)	and	1-py	(right)	with	
Fe-Fe	distances	 in	Å	(bold),	Fe-Fe-Fe	angles	 in	degrees	
(normal)	(50%	probability	ellipsoids).	

The	presence	of	potential	magnetic	Fe-Fe	interactions	
was	investigated	by	measuring	variable	temperature	
(5-300	K)	magnetic	susceptibility	data	for	1-THF	and	
1-py	under	an	applied	magnetic	field	of	1	T.	The	val-
ues	of	χMT	remain	relatively	constant	in	the	tempera-
ture	range	60-300	K	(Figure	3)	while	they	drop	rap-
idly	for	both	complexes	below	60	K	to	reach	a	value	of	
about	10	emu	K/mol	at	5	K	probably	due	to	Zeeman	
effect	and	zero	field	splitting.	

	

	

Figure	 3.	 χMT	 vs.	 T	 graphic	 for	1-THF	 (blue)	 and	1-py	
(red)	(103	Oe,	300-5	K)	

The	values	of	χMT	and	µeff	found	for	1-THF	(χMT	=	19.4	
emuK/mol	and	µeff	=	12.45	µB	at	300	K)	and	1-py	(χMT	
=	 17.7	 emuK/mol	 and	 µeff	 =	 11.90	 µB	 at	 300	K)	 are	
much	higher	than	the	expected	value	for	three	non-in-
teracting	Fe	(II)	(χMT	=	9	emuK/mol	and	µeff	=	8.50	µB)	
with	g	=	2.	This	suggests	the	presence	of	a	strong	fer-
romagnetic	interaction	between	the	Fe	centers	in	the	
core	which	is	maintained	at	room	temperature.	These	
values	are	only	slightly	lower	than	the	21	emuK/mol	
expected	for	a	system	with	S	=	6	ground	state	(g	=	2).	
Only	one	example	of	a	trinuclear	Fe(II)	cluster	with	a	
stable	high	spin	state	(S	=	6)	at	room	temperature	was	
previously	reported.9	The	previously	reported	trian-
gular	 system	 supported	 by	 an	 hexamido	 ligand	
showed	 Fe(II)-Fe(II)	 distances	 comparable	 to	 com-
plexes	1-THF	and	1-py	and	a	similar	weak-field	envi-
ronment.	 A	 high-spin	 state	was	 previously	 reported	
for	weak-field	tri-	and	hexa-nuclear	iron	clusters.	This	
was	 interpreted	 in	 terms	of	weak	Fe-Fe	 interactions	
that	result	in	three	or	six	atom	clusters	behaving	as	a	
large	single	spin	2a,	16	9,	17	approximating	that	of	a	sin-
gle	metal	 ion.18	A	similar	type	of	direct	magnetic	ex-
change	 is	 likely	 to	 be	 at	 the	 origin	 of	 the	 high-spin	
state	in	1-THF	and	1-py.		

One	of	 the	most	 attractive	properties	of	metal	 com-
plexes	 supported	 by	 non-innocent	 ligands	 is	 their	
ability	 to	 store	 electrons.	However,	 the	 storage	 of	 a	
large	number	of	electrons	remains	a	key	challenge	in	
the	field.4c,	4d	Notably,	we	recently	demonstrated	that	
the	electrons	stored	in	C-C	bonds,	which	are	formed	
from	the	reduction	of	Schiff	base	complexes	of	cobalt,	
can	become	available	for	reduction	of	CO2.	However,	
the	reaction	proceeds	with	the	addition	of	CO2	to	the	
ligand	framework.7	
In	contrast,	1-py	can	transfer	six	electrons	stored	in	
three	C-C	bonds	of	the	tris-cyclo-salophen12-	ligand	to	
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carbon	dioxide	to	yield	carbonate	whilst	restoring	the	
original	[Fe(salophen)(THF)]	complex.		
	

	
Scheme	3.	Reaction	of	1-py	with	CO2.	

The	 trimer	1-py	reacts	 at	 room	 temperature	with	6	
equiv.	of	13CO2	to	yield	the	[Fe(salophen)]	complex,	as	
identified	by	1H	NMR	spectroscopy	(see	supporting	in-
formation)	and	the	concomitant	formation	of	an	insol-
uble	 product	 (Scheme	3).	 The	 quantitative	 13C	NMR	
spectrum	of	the	residue	dissolved		in	D2O	(pD	=	13.4)	
showed	 a	 signal	 at	 168	 ppm	 assigned19	 to	 CO32-		
formed	in	100	%	conversion	(see	SI).	The	quantitative	
formation	of	carbonate	indicates	that	the	complex	1-
py	promotes	the	reductive	disproportionation	of	CO2	
to	carbonate	and	CO.	The	signal	of	13CO	could	not	be	
detected	in	the	used	reaction	conditions.		
The	reduction	of	the	[Fe(salophen)(THF)]	to	yield	the	
trimer	 1-py	 can	 also	 be	 effected	 electrochemically	
rendering	 this	 system	 well	 poised	 for	 the	 develop-
ment	of	electrocatalysts.	
In	conclusion,	we	have	presented	a	novel	and	conven-
ient	 one	 step	 route	 for	 the	 assembly	 of	 three	 Fe(II)	
centers	in	a	trinuclear	cluster.	In	this	approach	the	re-
duction	of	 a	mononuclear	 Fe(II)	 complex	 of	 a	 tetra-
dentate	Schiff	base	leads	to	the	formation	of	a	macro-
cyclic	dodecadentate	ligand	perfectly	suited	for	bind-
ing	three	Fe(II)	centers	at	short	distances	allowing	for	
strong	magnetic	coupling.	Moreover,	six	electrons	are	
stored	in	the	ligand	and	these	electrons	become	avail-
able	for	the	reduction	of	carbon	dioxide	with	selective	
formation	of	carbonate.	The	facile	synthetic	route	pre-
sented,	together	with	the	vast	library	of	Schiff	base	lig-
ands	available	in	the	literature,	will	provide	easy	ac-
cess	to	trinuclear	iron	complexes	with	different	mag-
netic	 properties	 and	 high	 reactivity	 towards	 small	
molecules.	
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