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Abstract — An accurate knowledge of the sound field distribution inside a room is required to identify and opti-
mally locate corrective measures for room acoustics. However, the spatial recovery of the sound field would
result in an impractically high number of microphones in the room. Fortunately, at low frequencies, the possi-
bility to rely on a sparse description of sound fields can help reduce the total number of measurement points
without affecting the accuracy of the reconstruction. In this paper, the use of Greedy algorithm and Global
curve-fitting techniques are proposed, in order to first recover the modal parameters of the room, and then
to reconstruct the entire enclosed sound field at low frequencies, using a reasonably low set of measurements.
First, numerical investigations are conducted on a non-rectangular room configuration, with different acoustic
properties, in order to analyze various aspects of the reconstruction frameworks such as accuracy and robust-
ness. The model is then validated with an experimental study in an actual reverberation chamber. The study
yields promising results in which the enclosed sound field can be faithfully reconstructed using a practically fea-

sible number of microphones, even in complex-shaped and damped rooms.
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1 Introduction

In room acoustics, sound field reconstruction generally
consists of retrieving the entire enclosed sound field by per-
forming a limited number of measurements. While the
interpolations of the room impulse responses (RIRs) are
commonly used for the purpose of auralization and sound
reproduction, at low frequencies, a precise knowledge of
its frequency domain equivalent — the room frequency
responses (RFRs) — can provide useful information on the
spatial distribution of sound pressure caused by the reso-
nances of the room (room modes) [1]. In the low-frequency
range, room modes highly affect the sound field in the room,
yielding irregularities in both the spatial and frequency
domains which give rise to coloration as well as masking
effects and eventually alter the listening experience. An
accurate depiction of the spatial sound field in a room can
provide important information for applying ad hoc treat-
ments for room mode correction [2]. It has been shown that,
at low frequencies, a knowledge on the modal properties
and sound pressure distribution in the room helps improv-
ing the design of different passive corrective measures
[3-5]. This becomes even more crucial in case of active
strategies for room modes correction [6-8] where control set-
tings could be adjusted based on the knowledge of the
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resulting sound pressure distribution. This highlights the
need of a practical method to accurately reconstruct the
sound field in the room at low frequencies.

Each RFR reveals the acoustic transfer from a given
source to a given receiver in the room, in the frequency
domain. Such RFRs embed the main properties of room
modes, namely the resonance frequencies and modal decay
times as well as the mode shapes of the room. To retrieve
these information for a fixed source position, multiple mea-
surements should be performed at different locations in the
room and a reconstruction framework is required to recover
the entire spatial information of the aforementioned quanti-
ties. The most intriguing question is how to faithfully recon-
struct the spatial sound field in a room using the least
number of measurements possible.

A regular space and time sampling of the RFRs gener-
ally results in an impractically dense microphones grid. It
has been shown that, under the frame of the Plenacoustic
function in free field [9], the inherent sparsity of the
space—time representation of the governing function allows
a more effective sampling approach of the sound field. Sev-
eral studies have also addressed the different sparse proper-
ties of enclosed sound fields. In a room with closed
boundaries, the sound field is fully dependent on the physics
of the room, including its geometries and acoustic proper-
ties. Furthermore, at low frequencies, the wave equation
is governed by a discrete number of eigenmodes which gives
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rise to additional sparse approximation. In [10], the spatial
RFRs in a rectangular room can be interpolated on a line
based on the fact that these transfer functions share the
same common poles, with the only difference being their
amplitudes (also known as residues) [11, 12]. Mignot et al.
[13] retrieved the low frequency RIRs in a rectangular room
using a finite number of measurement points, by exploiting
a low rank approximation using matching pursuit. In [14], a
more conventional Compressed Sensing technique using a
sensing matrix has been used in combination with plane
waves expansion techniques to tackle the block-sparse prop-
erties of the acoustic field in a rectangular room.

In this paper, we focus on these inherent sparse proper-
ties in room acoustics at low frequencies using approxima-
tion techniques such as matching pursuit and global
curve-fitting to obtain the low-frequency information of a
non-rectangular room under an extensive point of view,
where the spatial distribution of sound pressure in a large
volume inside the room can be reconstructed and analyzed
using a practically small number of microphones. In prac-
tice, not every room can be considered as a rectangular
room, especially in the case of a conventional listening room
or private cinema. Non-rectangular rooms certainly possess
a more complex distribution of eigenmodes frequency-wise,
and the mode shapes are also harder to predict. This prac-
tical challenge is the main motivation to investigate here a
model of a non-rectangular reverberation chamber. A first
numerical study of this facility is then followed by the
experimental validation inside the actual reverberation
chamber.

The analysis of the reconstruction results emphasizes on
the frequency and spatial aspects of the responses in the
room. As can be seen in [15-17], recent techniques for room
modes equalization require an accurate knowledge of the
sound field. For instance, an active electroacoustic absorber
system [17], aiming at equalizing and flattening the fre-
quency response of a room at low frequencies, requires an
accurate model of the room to optimize the active acoustic
impedance. In former studies, the actual efficiency of these
low-frequency absorbers has been validated with a limited
number of measurements inside the room, especially
addressing the performance in terms of modal decay times
reduction. With the possible help of the reconstruction
framework proposed in this paper, the performance of the
absorbers can be assessed space-wise. In addition, the
framework can also provide precious information on how
to adapt the acoustic impedance to be assigned at the dia-
phragm of the active electroacoustic absorbers. This moti-
vates investigating how to minimize the number of
measurement points for such a reconstruction framework
as not only that it allows the reconstruction of the sound
field within a specific bandwidth with limited equipment
but also saves processing time that will eventually allow
potential real time and online active-control strategies.

The outline of the paper is as follows. Section 2 first
introduces a sparse representation of room acoustics at
low frequencies. The reconstruction method, which is
composed of two steps, is then introduced in Section 3.
The first part of the method consists of the modal identifi-

cation of the room in which two different approaches,
respectively in the time and frequency domains, are sug-
gested. The second part aims at recovering mode shape
functions through plane wave approximation techniques.
Following the descriptions of the reconstruction mecha-
nism, Section 4 is dedicated to the validation of the method
using both numerical models and experimental measure-
ments in the actual reverberation chamber at EPFL
(non-rectangular room) to emphasize the robustness of
the algorithm. Several discussions are raised concerning
the accuracy of the sound field spatial recovery as well as
the requirements for a faithful reconstruction. Concluding
remarks are finally presented in Section 5.

2 Sparsity in room acoustics

The main motivation of this study is to propose a sim-
ple, yet practical, experimental framework allowing a thor-
ough characterization of the room behavior in the low
frequency domain. Regardless of the method used to reduce
the amount of measurement points, such a framework
should rely on a sparse representation of the wave equation
in a room at low frequencies. These could be exact sparsity
that inherently emerges from the physics of the room or
approximate sparsity which requires an approximation
framework to reduce the degrees of freedom in the wave
equation. In this section, several sparse aspects of room
acoustics at low frequencies can be investigated using the
modal decomposition form of the wave equation and the
mode shape approximation theorem. The objective is to
obtain a governing equation of the spatial distribution of
sound pressure in a room where the number of variables
is well defined and quantifiable. This could serve as the
target for the reconstruction framework that follows in
Section 3.

2.1 Modal decomposition

At low frequencies, where wavelengths are of the same
order of magnitudes as the room dimensions, room walls
are mostly reflective which give rise to standing waves phe-
nomenon. This creates the so called room modes that occur
at discrete resonance frequencies where most of the acoustic
energy is concentrated [18]. There exists a formulation of
room modes at low frequencies that presents an inherent
sparsity, corresponding to a limited number of discrete res-
onance frequencies bounded by the Schroeder cutoff fre-
quency [1]. In this sparse representation, the solutions of
the wave equation can be decomposed as a discrete sum
of damped harmonic eigenmodes:

p(t,X) = 4,0,(X)g, (), (1)

where @, are the space-dependent mode shape functions
(eigenfunctions of the Helmholtz equation) for each mode
n of the room, X is the position in the room, g,(t) is the
harmonic time-dependent decaying function and A, is
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the corresponding complex expansion coefficient of mode
n. Each eigenmode of a room is uniquely represented by
a complex wavenumber k, = (w, + j0,)/cy (eigenvalues
of the Helmholtz equation), where ¢, is the sound celerity
in the air, @, is the modal angular frequency and 9,, > 0 is
the corresponding damping factor [18]. The harmonic
decaying function g,(t) can be fully expressed as:

g, (t) _ ejky,cot — ej((/)n+jr5n)t —_ ejw,,tef(int_ (2)

It is worth noticing that while X is a variable in equation
(1) as the location of the point/microphone of interest,
the location of the source and its properties are not explic-
itly written here. This information is however accounted for
in the complex coefficients 4,,, and will be made implicit in
the following derivations. This is motivated by the fact
that, in the case investigated here, only a single fixed source
will be considered, and hence the location of the source is
not a variable.

2.2 Mode shape approximation

The previous derivation introduced a structured spar-
sity originated from the limited discrete modal decomposi-
tion of the wave equation at low frequencies. For a room
with ideally rigid walls, @, is a space dependent function
that corresponds to the exact solution of the Helmholtz
equation [1]:

AD, + k2D, = 0. (3)

It has been shown in [19] that these mode shape functions
can be further approximated with spherical harmonics and
spherical Bessel functions. Accordingly, any mode shape
function can be approximated by a finite sum of plane waves
sharing the same wavenumber |k, |, pointing in various direc-
tions. Each individual mode shape can then be formulated
using the R-th order approximation:

R - -
D,(X) ~ § B, et (4)
r=1

within which EW. are the 3D wavevectors sharing the same

wavenumber ||k,,||, = |k.|. Note that, in opposition to
the exact sparsity in the previous section, this is an
approximate sparsity. This decomposition not only pro-
vides an approximation for each of the mode shape, but
also allows a closed-form interpretation of the mode shape
function regardless of the type of the modes in the room.
Assuming now that we restrict this representation below a
given upper frequency limit, a finite number R of
wavevectors would be enough to closely approximate
every mode shape function within this frequency range.
Using equations (2) and (4), equation (1) could be
expanded as:

p(tv)?) = Z Cn‘rejw,,tefé,,teﬂ-c‘,,,,»)?’ (5)

where C,, = A, B,, with r < R. Hence, through a series
of derivations, the expression in equation (1) can be

Figure 1. Examples of room modes in a non-rectangular room.

interpreted as the discrete sum of space-time damped
harmonics with the expansion coefficients C,,. This
expansion form directly links the acoustic response of
the receiver to its location.

3 Reconstruction framework

The role of the reconstruction framework is to identify
and estimate the values of the unknown parameters of
equation (5) from a limited set of measurements. The pro-
posed algorithm addresses the general case of a non-rectan-
gular room, the modal behavior of which is less predictable
than in a shoe-box room. Figure 1 shows the geometry of
the studied room with two simulated room modes. Inside
the room, a number of M microphones are randomly placed
at different locations to acquire the RIR measurements.
Depending on the frequency range of interest, these mea-
surements could be filtered as well as downsampled to
reduce computational cost. Calling N, the length of the time
vector of each microphone measurement, the (N, x M)
matrix S of signals is defined as the input of the framework.
The output of the reconstruction framework, in short,
should be all the unknowns present in equation (5), exclud-
ing the predefined parameters, namely, the number of
modes N and the list of wavevectors k,, for each mode
shape approximation. The outputs, hence, include the
angular frequency w, and the exponential damping factor
0, for each eigenmode, as well as the N x R expansion coef-
ficients C,,. Once all these values are determined, it is pos-
sible to interpolate the responses at any position X,y in the
room by simply plugging it into equation (5).

The detailed framework can be divided into two steps.
The first one is called modal identification, aiming at esti-
mating the modal wavenumbers &, for the N room modes.
Once identified, the second step intends to approximate
the expansion coefficients C,, for a set of predefined
wavevectors k,, through projection.

3.1 Modal identification

Two alternative approaches are introduced here, process-
ing the input signals either in the time or in the frequency
domain. The first approach is the simultaneous orthogonal
matching pursuit (SOMP) method [20] for damped sinusoids
[21]. This method is based on a greedy algorithm approach to
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recursively estimate each modal parameter of the room from
the matrix of input time signals. The second method is based
on the rational fraction polynomials (RFP) global curve
fitting method [22] which, contrarily to the iterative SOMP,
simultaneously estimates the modal parameters of the room
from a set of input RFRs of the room.

3.1.1 Time domain approach

This method has been successfully used in [13] to locally
interpolate the RIRs in a rectangular room at low frequen-
cies. From a pre-defined set of damped sinusoids, this
method finds the ones that are highly correlated with the
matrix of input signals using a low-rank approximation
approach. To begin, two sets of @ and 6 with w,, < ®
< Wpmax aNd Opin < 0 < Opay, are formed. The range of vari-
ation of the sets are roughly estimated based on available
knowledge on the room. Combining every pair of entries of
the two sets together will produce an overly redundant set
of complex components (jo, — J,) in which ¢ € [1, O] with
@ as the total number of possible combinations. Each entry
of this set is then used to form a time vector of length N, of
time-decaying damped sinusoid 0, = ¢/*'e~%'. Using the
normalized vectors 0, = 0,/]|0,|, as column vectors will
produce an (N, x Q) array ©.

The algorithm performs an iterative matching proce-
dure. Every loop indexed i starts with an (N, x M) residue
matrix R; which is the result of the previous loop. At the first
loop, R, is set to be equal to the predefined signal matrix S.
Through the searching procedure, a damped sinusoid with
the highest correlation to the residue matrix (representing
a pair of w, and J,) is chosen. The new residue matrix
R, for the following loop can then be formed by extracting
the contribution of this chosen sinusoid from R;. The algo-
rithm at a generic #-th iteration is detailed below:

e Process the (Q x M) correlation matrix Z; = [@7R,|.
Each row q of E; is composed of the M correlation val-
ues between the ¢-th normalized damped sinusoid and
each of the M measurements.

¢ By summing the energy of this set of values, process

the evaluation correlation value ¢, between the gth

dampedMsinusoid aznd the entire set of measurements:

04 = et (Eitgm) -

Out of the @ available ¢,, choose the maximum one,

which points to the pole with the highest correlation

to the measurements.

e As a result, the identified index (namely, ¢;) yields

the chosen modal wavenumber of this loop: k; =

(0q,+ jdq,)/ co-

After a modal wavenumber is found, following the

orthogonalization and projection of SOMP in refer-

ence [20], the residue matrix for the next loop can be
interpreted as R,.; = R; — P,R; in which P; is the
projection onto the chosen damped sinusoidal.

e Repeat with i =i+ 1 until i = N.

At the end of the procedure, a group of complex
wavenumbers corresponding to the eigenmodes of the room
is determined.

3.1.2 Frequency domain approach

As room modes are mostly visible in the RFRs, it seems
pragmatical to investigate a frequency-domain approach for
room modes identification. One particular example is the
global curve-fitting method in the frequency domain using
the RFP form [22]. This has been used in [23] to estimate
the modal parameters by curve fitting the RFR measure-
ments. Curve-fitting methods are usually processed locally,
initiating on a single function at a time. The method in [22],
however, performs curve-fitting procedures on multiple fre-
quency response functions at different locations simultane-
ously to identify the model of the system. The method
assumes the linearity of the RFRs and that they can be for-
mulated as a ratio of two polynomials. These RFRs share
the same denominator whose poles contain information on
the modal angular frequencies (w,) and damping (,) of
the room. The method then performs a concurrently
curve-fitting on the set of measured RFRs (see Appendix)
to acquire the modal parameters of the room within a given
bandwidth.

3.2 Projection onto spherical sampled wavevectors

Up to now, only the eigenfrequency parameters of the
room modes, namely, w, and J, given in equation (5) have
been identified. The remaining parameters to be determined
are the expansion coefficients C,,, for which the following
algorithm is used:

e The first step is the separation of the current known
and unknown parameters. Note that the time-varying
terms in equation (1) have been identified in the for-
mer algorithm, and can be discarded from now on.
Using a matrical form accordingly to the measure-
ment matrix S gives: ST =W¥(G with G as the
(N x N,) matrix where each of its row is a modal
damped sinusoidal g,(t) = ¢“ e~ = ¢!, Further-
more, ¥ is the (M x N) space-dependent matrix of
modes with the inclusion of the expansion coefficients
A, that appear in equation (1):

lP[mJt] = Anq)n (/\_;m)v (6)

with X,,’s the M position vectors for the location of
the input measurements of S.

If N, > N (which usually is the case), the system of
equation (6) is over-determined with (M x N)
unknown and (M x N;) equations. Hence, it is possi-
ble to estimate the (M x N) matrix of ¥ by comput-
ing the least-squares estimation.

¥~ S'G" (GG (7)

Based on the expression in equation (5), ¥ can be fur-

ther expanded using plane waves expansion.

— First, the list of component wavevectors needs to be
defined. For each mode shape function, a set of R
wavevectors k,, is created whose norm and direc-
tions match a uniform sampling over a sphere with
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radius |,/ cy|. Spherical sampling (proposed in [24])
is chosen in this case because the room is non-
rectangular and hence there is no preferred basis
for the formation of mode shape functions.

— Each column ¥, of the matrix ¥ can be treated
individually as they are associated with different
modes. Calling p, the (M x R) matrix of the plane
wave, harmonics for mode n in which p,, 1 =
kX each column vector ¥, can be individually
characterized as:

¥, = p,Cu, (8)

with C, the (R x 1) vector consisting of the R expan-
sion coefficients C, , of mode n. First, assuming that
R < M, taking p, as the basis, y, can be projected
onto this basis to derive the coefficient vector C,
using least-square projection:

C, ~ (p7p,) " o', (9)

As mentioned above, this derivation is only available when
the number of sampled plane waves is lower than the
number of microphones. As can be seen in [19, 25, 26],
the convergence of the plane wave approximation is highly
dependent on the number of plane waves available, espe-
cially in 3D. Hence, in the case where the number of mea-
surement points is fairly low, restricting R < M could
affect the reconstruction of mode shape functions. One
possibility would be to allow R > M and derive the coeffi-
cient vector using a least norm optimization:

C, ~ o (p,p") ", (10)

Further studies need to be done to verify the limitations of
this solution as well as the optimal choice for R. In our
case, for a low number of microphones, several trials have
shown that choosing R > M can estimate the mode shape
better and increase the overall correlation. Regardless of
the method used, in practice, the applicability of this step
can always be cross-checked using a number of evaluation
microphones.

Repeating the technique on each mode n < N will return
the set of expansion coefficients C,, required for the
reconstruction.

4 Reconstruction results

In this section, the results of the sound field reconstruc-
tion framework are analyzed using both numerical and
experimental data. In the numerical simulations, a FEM
model of a non-rectangular room is built for initial analysis.
This first numerical study allows the assessment of multiple
aspects of the reconstruction framework. It provides access
to a very fine distribution of microphone placements, and
the input data, such as wall impedance, can be changed
straightforwardly. Furthermore, the FEM simulation not
only provides the input but also can be used as the

Figure 2. Geometry of the FEM model. The black dots
represent the measurement points that are spread randomly in
the room.

ground-truth reference for cross-checking the reconstruction
results. In the second step, measurements are performed in
the actual reverberation chamber at Ecole Polytechnique
Fédérale de Lausanne (EPFL), with the same geometry
as the one considered in the simulations, to confirm the
validity and robustness of the framework.

4.1 Numerical simulation

The FEM model consists of a non-rectangular room
with maximum height of 4.6 m, maximum width of 9.8 m
and maximum length of 6.6 m that replicates the actual
reverberation chamber at EPFL. The damping of the walls
are initially considered very low, with a uniform absorption
coefficient of o = 0.01, approaching that of the actual rever-
beration chamber. The source is chosen to be a monopole
point source and is put in proximity to one corner of the
room in order to excite all the modes of the room. The mea-
surement points are spread randomly in the room (refer to
Fig. 2). This placement of microphones although possibly
not the most ideal placement strategy for a given geometry,
is guaranteed to capture enough information about the
sound field and its modal properties assuming there is no
readily available knowledge about the room.

4.2 Modal identification

In this section, the modal identification is performed
using two different methods, namely SOMP and RFP,
and their results are compared with each other. However,
instead of directly comparing the retrieved modal properties
w, and 0,, the focus has been put on two other useful prop-
erties in modal analysis: the eigenfrequency (f,) and the
modal decay time (MTg,) which is defined as [27, 28]:

31In(10
MTg, = % (11)
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Figure 3. Modal decay times for the eigenfrequencies of the non-rectangular reverberant room as estimated by the SOMP and RFP

methods, in comparison with the FEM analysis (reference).

These two properties reflect the modal properties of the
room and are directly linked to w, and J,. Using the same
number of microphones, the modal decay times estimated
from SOMP and RFP methods for the first 12 modes of
the room are compared with those computed from the base-
line FEM analysis considered as the ground-truth (see
Fig. 3). After a few initial tests, it is observed that both
methods performed equally well in identifying the frequency
f» (in Hz) for each of the modes of the room. As the values
of f, obtained using the two methods do not present much
differences, the comparison is illustrated here only in terms
of the modal decay times to compare their performance
with respect to modal damping estimation. Using the
numerical results from the FEM analysis as the reference,
it can be seen in Figure 3 that both the RFP and SOMP
methods are capable of identifying the room’s eigenmodes,
except that SOMP, on average, may underestimate the
damping for the mode at 40.5 Hz, which will be discussed
at a later stage.

Generally, it can be observed that the RFP method
performs slightly better than SOMP. However, there are
significant differences between the two methods regarding
robustness. Although both methods require a manual input
regarding the total number of modes in a limited band-
width, they process this information differently. For the
global curve fitting using RFP, if the total number of modes
within a frequency range is not accurately known, it
requires a considerable amount of trials and errors to even-
tually come up with a coherent curve-fitting result. Further-
more, as can be seen in the later stage, without a meticulous
consistency check, the interpolation results from RFP can
end up with a higher amount of errors. This vulnerability,
for most cases, does not exist for SOMP. This is due to
the fact that the modal parameters are found in RFP simul-
taneously whereas in SOMP they are found iteratively
using a residual manner: the room modes that have the
highest contributions to the collected signals are estimated
first, followed by the ones with less. This gives SOMP an
advantage for the reconstruction procedure as the results
do not deviate much from reality even when underestimat-
ing or overestimating the number of modes within the
frequency range of interest. The number that users enter

can only alter how many times the algorithm is repeated
but should not affect the result of each individual loop.

In this particular case, the underestimated damping by
SOMP that sometimes occurs at 40.5 Hz also comes from
the fact that this algorithm processes residues at each com-
puting step. The modes that are found at the later itera-
tions of the algorithm are prone to higher errors and also,
its correlation with the measurements is likely to be less
than the ones that come before in the algorithm. When
there are two modes that are very close together such as
the particular cases at 40.5 Hz and 40.9 Hz respectively,
depending on the set of input measurements, one of them
may be found at the very far end of the algorithm compared
to the other. Since one mode has been found earlier in the
process, and its contribution to the residual has been
extracted before, the error that occurs at the others would
have minimal effects to the overall reconstruction result in
the next stage. The same situation also occurs when users
overestimate the number of modes. Then, around the final
loops, the algorithm will certainly find some frequencies
that do not correspond to any mode. As long as the overes-
timation is not too far from reality, this error in SOMP
would have negligible effects on the reconstruction results
in the next stage because the contributions of the few mis-
matched modes are generally significantly small compared
to the correct ones.

Although being less robust, the RFP curve fitting
method does have a clear advantage over the SOMP
method regarding computational cost. SOMP not only per-
forms an iterative mode finding process that requires a reg-
ular refreshing of the residual matrix but also does so using
multiple costly matrix operations. The RFP method devel-
oped in [29] on the other hand, does not perform an itera-
tive process and has taken into account several
computational simplifications. For instance, on a conven-
tional work station with 32GB RAM and four cores CPU
of 3.4GHZ, in order to perform the results in Figure 3 using
25 microphones, the SOMP method usually would usually
take 4-7 min to finish while the RFP would finish in
5-10 s. This significant difference will further increase if
the number of input measurements or the number of modes
increases.
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Figure 4. Reconstruction of the RFR at a point inside the room using SOMP and RFP in comparison with the FEM ground truth
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Figure 5. Comparison between the RFRs interpolated with RFP (top) and with SOMP (bottom), when underestimating the number
of modes, at a given virtual microphone position. The black curve represents the reference given by FEM simulation.

Overall, it can be seen that SOMP is a robust method
that works best in cases where not much information about
the room is available or where a blind estimation is
required. RFP, on the other hand, requires more a priori
information about the modes in the room to produce a
coherent result. However, RFP generally takes much less
processing time than SOMP and hence can potentially be
beneficial in certain application such as online estimation
or real-time sound field control. In terms of accuracy, it
should be noted that under sufficient conditions, both
methods are capable of producing a good estimation of
the modal information of the room.

4.3 Local interpolation

From the outcomes of the algorithm, it is now possible
to process and interpolate the responses at any point inside
the geometry. The RFRs correspond to the transmissions
between the source volume flow rate (in m’/s) and the
sound pressure (in Pa) acquired at the measurement points.
One example can be seen in Figure 4 for an arbitrary point
far from the walls but also not too close to the center of the

room. The interpolation was processed using both the
SOMP and RFP method with the same set of 25 micro-
phone positions in the room. It can be seen that both meth-
ods can produce an accurate interpolation of the response at
this particular point.

To illustrate the difference between RFP and SOMP,
one example of interpolation is plotted in Figure 5 where
the total number of modes were underestimated. As an iter-
ative process, SOMP would still give a good estimation of
all the modes except the ones it does not find whereas
RFP would add some modes that are not from the real sys-
tem and hence will lead to higher errors. However, testing a
few different trials for RFP can solve this problem and
hence this method should not be overlooked as its computa-
tion time is short and can therefore be advantageous in
many situations.

It must be noted, however, that the high level of accu-
racy seen in Figure 4 from both method is not yet guaran-
teed for every interpolated point in the room, and the
error might be higher depending on the position of the point
as well as on the precision of the modal identification
results. This, once again, highlights the need for a spatial
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Figure 6. Sound field reconstruction (bottom) at different frequencies for a rectangular area inside the room in comparison with the

referencing sound fields from numerical simulation (top).

representation of the sound field to confirm the global
validity of the algorithm.

4.4 Sound field reconstruction

In this section, the interpolation process is extended to a
large number of points inside the room to acquire a series of
processed time responses of the room. The RFRs of the
room can then be produced through the Fourier transform
of these time responses. These resulting RFRs will allow the
reconstruction of the spatial response of the room at any
given frequency of interest.

It is known that, for a room with non-ideally rigid
boundaries (x > 0), the Helmholtz equation is less valid
close to the room walls [1]. Hence, the initial sound field
reconstruction is performed for a shoe-box volume inside
the room with each face being at least 1m away from the
walls of the room. It is then possible to compare these
results with frequency domain simulations, obtained using
an FEM software, considered as the ground truth. Figure 6
shows three examples of the sound field reconstruction
using 25 microphones, compared to such reference, at three
different frequencies at very high spatial resolution. It can
be observed that the reconstruction of the sound field yields
qualitatively highly accurate results. The existence of the
mode shapes is also clearly observed in all three examples.
This proves that the spherical sampling technique for wave
vectors is a powerful tool for rooms with complex geome-
tries. Furthermore, this high level of accuracy is maintained
in every direction of the 3D depiction since the input mea-
surement points are spread randomly in the room. A few
initial trials using a regular grid of microphones have not
achieved such global precision in the results. This, once
again, emphasizes the advantage of the much-recommended

randomness that is used in common sparse and low-rank
approximation frameworks. It is worth noticing that
although there can be small differences when comparing
the local sound pressure point by point, the general shapes
as well as the separation between areas of high and low
sound pressure are nevertheless precisely depicted. Further-
more the reconstruction of sound pressure field is accurate
not just at the eigenfrequencies (45.25 Hz and 55.08 Hz)
but also for frequencies in between two consecutive modes
(e.g., at 38 Hz).

The normalized Pearson correlation coefficient for the
amplitude of the frequency responses, calculated as below:

COR, = 1000815/ 1)
151151

can be used to evaluate the overall accuracy of the recon-
structed frequency response Sy with respect to the refer-
ence response S;. Processing this coefficient to the
regular grid of 11 x 11 x 11 points that samples the inner
rectangular volume, yields an average correlation of 99.3%
with a standard deviation of 0.8%. It is worth noting that
CORy, is a good indication of the overall fitting of the
reconstructed signals in a bandwidth, but does not pro-
vide accurate clues for interpreting the precision fre-
quency-wise. A global error evaluation will be
introduced further in the section to address this subject.

So far, the analysis has shown good results for the sound
field reconstruction of a lightly damped room with
o = 0.01. In order to further assess its robustness in more
conventional situations with acoustic treatments, the algo-
rithm is tested with various room absorption condition. To
verify this, a uniform absorption coefficient « is considered
for the room walls, and set first at 0.1 and then increased
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to 0.3 to better represent a case of a damped room. Using
the same number of microphones, the reconstruction of
the sound field for these cases is performed as in the preced-
ing case. Figure 7 shows the comparison of the reconstruc-
tion at the same room mode (but slightly different
eigenfrequencies due to the resulting change of modal
damping) between different values of wall absorption. The
reconstruction results for these cases still present a good
agreement with the reference ones. Not only that the frame-
work captures correctly the reduction in terms of energy in
the room but it also succeeds in rendering the smoothing
effect of the spatial distribution as the room becomes more

damped. Figure 8 shows a global comparison of the dimen-
sionless normalized errors defined as:

i SU) =50
=" Tow

Af

; (13)

which quantifies the error of the reconstruction result at
each frequency, normalized by [S(f)df/Af to discard
the dependence on the acoustic energy difference in the
room between different room absorption conditions. This
quantity is then relevant for comparing the performance
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of the reconstruction as a function of the room damping
because it accounts for the acoustic energy not absorbed
by the room, which, for the same reference source,
decreases as the room gets more damped. The non-nor-
malized error |S(f) — S(f)| is computed for each recovery
point in a 11 x 11 x 11 points grid that spatially samples
the aforementioned shoe-box test volume. Averaging the
error within the spatial grid will then give the average
error at each each frequency |S(f) — S(f)|. Figure 8 shows
a decrease in terms of accuracy as the damping of the
walls increases. This is explainable as the orthogonality
assumption of the mode shape functions in equation (3)
becomes weaker with higher damping in the room. Fur-
thermore, the modal identification on the RFRs is gener-
ally more challenging in a room with high damping than
in a lightly damped room. Regarding the correlation,
the average CORy, is still high at 98.3% with 1.8% of
standard deviation (o= 0.1) and 98.1% in average with
2.1% of standard deviation (¢ = 0.3). Figure 8 also shows
the error on the reconstruction sound field for a plane very
close to a wall (maximum distance from the wall is 0.1 m).
It can be observed that the sound field reconstruction
near the wall induces higher errors, as can be anticipated.
This is due to the aforementioned non-orthogonality of
the mode shape function as well as the higher errors
induced by extrapolation instead of interpolation as the
concerned point is mostly outside of the microphones
domain. The results from this evaluation are especially
meaningful for modal equalization. It shows that this
particular reconstruction framework can be used to effec-
tively assess the sound field within a room before and after
a given equalization method has been applied, which
paves the way for a new tool for assessing the in situ

performance of low-frequency room modes treatments [7]
space-wise.

Figure 8 also shows that the reconstruction error gener-
ally increases for higher frequencies. As the algorithm does
not particularly favor lower-order modes over the higher
ones, this indicates that something over the parameters esti-
mation step affects the accuracy level. The first possible
answer appears to be the complexity of the mode shape
function. For a room with complex geometry, the complex-
ity of the mode shape functions will also increase for higher-
order room modes which will generally require a higher
number of plane waves to converge. Even when using a
least norm method to increase the number of plane waves,
the compromise between regularization and instability of
the mode shape approximation [30, 31] means that the
accuracy still relies heavily on the number of measurements
available. Furthermore, as the frequency gets higher, the
modal density will increase which means that the average
distance (in Hz) between two consecutive modes will be
smaller and induce more difficulties for the modal estima-
tion framework.

So far, the number of measurement points (micro-
phones) has not been mentioned. Figure 9 compares the
Pearson Correlation criteria (space-wise average and stan-
dard deviation) processed for different number of evalua-
tion microphones, and for different absorption coefficients
of the walls. For each case, the algorithm is repeated multi-
ple times with the same number of measurement points but
each time the locations of the input measurements are
chosen randomly from a set of 600 random points. This pro-
cedure is chosen so as to eliminate the bias that could ema-
nate from the placement of the microphones, especially in
the cases where the number of microphones is considerably
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Figure 10. Measurement set up in a real reverberation chamber in the laboratory.

low. For each case, the Pearson Correlation is calculated for
the 11 x 11 x 11 grid that samples the shoebox-shaped
reconstruction region. As can be seen, the correlation value
gets higher as the number of microphones increases. The
standard deviation value mentioned in this figure specifies
the standard deviation of the correlation value between dif-
ferent interpolating points in the rectangular reconstruction
region. A high standard deviation value will then indicate a
highly uneven reconstruction accuracy in which the correla-
tion of the reconstruction varies significantly depending on
the location of the interpolation. Conversely, a low stan-
dard deviation indicates that the spatial reconstruction
result is stable and can be trusted. Figure 9 shows that
the correlation values improve as the number of measure-
ment points increases. Furthermore, the standard deviation
also decreases significantly when more measurement points
are used for the framework. This shows that while the
reconstruction gets more accurate, the estimation accuracy
becomes also uniformly higher across all interpolation
points in the volume. One of the reason is the more mea-
surement points available, the better the chance to estimate
correctly the room modes information. It can also be
observed that for the analysis within a fixed bandwidth,
the performance typically becomes stable and reliable when
a certain number of measurement points is reached. In the
case of a lightly damped room, for instance, a grid of size
1331 within a volume of 40 m® can be reconstructed with
a high accuracy of 98.5% using just 30 input measurement
points which is an effective result for a practical number of
microphones. Furthermore, even with only 20 microphones,
the result is still considered stable with a trusted average
correlation around 95%.

4.5 Experimental results

The reconstruction framework is now applied to actual
measurements inside the reverberation chamber at EPFL,
which has the same geometry as the FEM model

(Fig. 10). The source, a custom-made subwoofer in a closed
wooden cabinet, is located at a corner in the room to excite
all room modes at low frequencies. The microphones (PCB
378B02 1/2” microphones) are spread randomly in the
room to replicate the previous numerical analysis. The ref-
erence velocity of the source is measured with a laser
velocimeter (Polytec OFV 500) placed in front of the loud-
speaker diaphragm.

Two main methods can be used to evaluate the recon-
struction results. One method is to directly compare the
reconstructed sound field to the simulated one in FEM.
This method can certainly verify the faithfulness of the spa-
tial reproduction results but is not recommended for a
point-by-point comparison as it is difficult to accurately
match the FEM model with the real one, since it relies on
the absorbing properties of the room which are not accu-
rately known. Moreover, the reference used for processing
the RFRs can be different between the simulation (volume
flow) and the actual case (velocity) and it is difficult to
accurately match the source excitation as well as its posi-
tion. Thus, besides this method, a small part of the mea-
surement points can be reserved to serve as an evaluation
set. Combining these two evaluation methods provides a
more concrete analysis of the reconstruction framework
with the experimental data.

In this experiment, the signals from 25 microphone posi-
tions are used as the inputs of the algorithm to reproduce
the sound field up to 75 Hz (within which about 20 modes
can be observed). The microphones are located randomly in
the room but were chosen so that they are practically
evenly distributed space-wise to cover the area of the recon-
structed rectangular volume. Figure 11 shows the spatial
comparison between the reconstructed sound field and the
reference one obtained from numerical simulation regarding
the same eigenmodes. As the numerical model cannot be
perfectly matched with the real room, there is a small differ-
ence in terms of the exact frequency of the eigenmodes.
Comparing these results, it can be seen that similarly to
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Figure 11. Sound field reconstruction from real measurements (bottom) at two eigenfrequencies (left: near 35 Hz, right: near 51 Hz)

as compared to the same eigenmodes from simulations (top).

the numerical results in the previous section, the recon-
structed sound fields from real measurements yield highly
accurate spatial recovery. The mode shapes are visible
and the locations of nodal lines are correctly depicted with
high spatial resolution. Once again, small mismatch in a few
points is to be expected but the overall spatial representa-
tion remains to be faithful.

Using the evaluation set of 30 other microphone signals
within the domain of interest, the results also agree with the
previous simulation validation. Using SOMP for modal esti-
mation, the average correlation stays at 97.8% with 1.89%
of standard deviation. As expected, this result is slightly less
accurate than the average correlation obtained with simula-
tions but is still highly reliable. As mentioned earlier,
SOMP is particularly robust and can perform well even
when a priori information is missing. On the other hand,
under the same circumstance, using a semi-supervised
RFP curve fitting gives a slightly lower average correlation
of 96.9% with a higher standard deviation of 2.3%. This
result also agrees with the analysis in Section 4.2 regarding
the different nature of the two methods. Three different
examples of the reconstructed RFRs by both RFP and
SOMP are plotted in Figure 12 and compared to the actual
measurements from the evaluation set. Generally, without a
detailed supervision and calibration, the RFP method will
return a slightly less accurate result than SOMP as can
be observed from the figure. However, its processing speed
is much faster and hence could allow for re-calibration
depending on the situation.

It should be noted that in practice, when the room
geometries and wall absorption coefficient are not known,
evaluation set like this along with the comparison parame-
ters such as the correlation values are among the few avail-
able indications to know whether the reconstruction results
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Figure 12. RFR reconstruction from 25 measurements for
three different evaluation points in the room using RFP and
SOMP (correlation ranging between 97% and 99%).

are reliable. Therefore, practically, it is advised to always
have a reserved evaluation set inside the domain of interest
to navigate the adequate number of microphones required
for any certain objective.
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Regarding the experiment set-up, as the number of
microphones is practically small, a blind random placement
of microphones might leave out crucial areas of the room.
Hence out of all the possible randomization, it is advised
to choose an appropriate placement that does not leave
out crucial areas of the region of interest. Moreover, place-
ment technique like the one suggested in [30] might also be
used to improve the recovery results. Lastly, it should be
noticed that the measurement was conducted in a reverber-
ation chamber without removing the reflective diffusing
panels (Fig. 10). This shows that the framework is
robust enough to perform well even in a practical non-
empty room.

5 Conclusion

In this paper, we have investigated a robust sound field
reconstruction framework in a room at low frequencies.
Through modal decomposition and plane wave approxima-
tion of mode shape functions, the framework allows recover-
ing the entire sound pressure distribution of the room at
any frequency within the concerned bandwidth, from a lim-
ited set of measurements. Within the framework, the perfor-
mance of two different modal estimation methods in the
time and frequency domain, namely SOMP and RFP, are
compared. Both methods are shown to allow retrieving
the modal parameters of the room. Between the two
approaches, SOMP has been proven to be more robust
whereas RFP has significant advantages in terms of compu-
tational cost.

The space-wise analysis of the reconstruction results
confirms the practical applicability of the framework in
the field of modal equalization. The reconstruction is per-
formed inside a non-rectangular reverberation chamber
using 20-30 microphones, which are proven sufficient to
address the bandwidth of interest (containing around 20
modes). The results first show that the reconstruction is
highly accurate for a lightly damped room. The framework
is further tested by increasing the global absorption of the
room walls. For these cases, the reconstruction shows a
slight reduction in terms of accuracy, especially for positions
close to the walls. This slight drop in accuracy is anticipated
as it is generally more challenging to retrieve the modal
parameters for highly damped room. Nevertheless, the over-
all reconstruction results retain a sufficiently high level of
reliability. This means that the framework may be used
to assess the space-wise performance of existing passive
and active modal equalization methods. More importantly,
the results of the method can be used as input for on-the-fly
reconfiguration of active low frequency absorbers, such as
the electroacoustic absorbers developed in [7]. Such in situ
reconfigurability of active devices presents interesting
potential for optimizing room mode equalization in real
rooms, and should be further studied.

This paper tackles the case where a single source is fixed
inside of the room. Further work should focus on retrieving
the entire sound field for multiple source positions in the
room. The microphones placement in this research are

spread randomly in the room. However, considering a low
number of microphones, the accuracy could benefit from a
predefined microphones placement strategy, that should
be further studied.
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Appendix

Rational fraction polynomials and global curve-fitting

Assuming that a system is linear and of second dynam-
ical order, its frequency response measurements can be rep-
resented as a ratio of two polynomials in the Laplace
domain (s = jw) using the RFP form of:

Sas’
H(w) =2

~ n
Z kak
k=0

,a; and b; € R. (14)

Furthermore, if the system is resonant, which means that the
response of the system is governed by its resonances, the fre-
quency response function can be reformulated using the par-
tial fractional form to highlight the poles of the system:

H(a))—i{ L } (15)

%
k=0 S — Pk S = Pk

where p, = jw;, — Jy, is the kth pole of the system and ry, is
the corresponding residue.

The curve fitting procedure focuses on minimizing the
squared error J between the analytical and measured
response computed at each and every frequency bin e;:

L
J= Ze;‘ei, (16)
i1

in which L is the length of the frequency vector. Now,
assuming that multiple different frequency response func-
tions of the system were measured, they will contain the
same inherent poles and hence the denominator of each
and every measurements should contain the same charac-
teristic polynomial. This is a valid claim since for a reso-
nant system such as the one in room acoustics, the
modal frequencies and modal damping are the same
regardless of where they are measured within the room.
This simplifies the curve fitting procedure and also allows
a global curve fitting [22] of the entire set of measurements
to recover the parameters in equations (14) or (15).

To further avoid ill-conditioned problems, the frequency
response function is reformulated using orthogonal polyno-
mials only in the positive domain of the frequency axis using
the Forsythe method [32]. This greatly simplifies the compu-
tation of the problem and although the final result is
expressed in the orthogonal function expansion form, it is
always possible to trace back to the form in equation (15)
for information regarding the poles and residues. This
method, detailed in reference [29], is non-iterative and
sufficiently fast. Furthermore, by reasonably choosing m
and n, it can compensate the effects created by out-of-band
modes and hence, reduce the fitting error. As any other
curve fitting method in the frequency domain, it suffers from
over-fitting as well as from the lack of frequency resolution.

small number of microphones. Acta Acustica, 4, 5.
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