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ABSTRACT:

Camera calibration refers to the modeling of the relationship between the coordinates of object points and their projections on
the image plane. This is usually done by parametric models that describe the physical properties of the lens systems and camera
assemblies, such as the camera principal distance, the principal point, and various types of optical distortions. In photogrammetry,
accurate knowledge of the parameters of such models, often referred to as Interior Orientation (IO), is of ultimate importance. In
this work, we target advanced corridor mapping applications with UAVs. In this scenario, the camera calibration is not completely
observable due to the unfavorable geometry of the flight trajectory (e.g., no cross flight lines available and a single altitude) and
needs to be determined beforehand. Further challenges are introduced by the limited mechanical stability of UAV-grade cameras.
This may cause slight variations in the IO that need to be recovered while processing production flights. We review and compare
two well known camera models, the Brown-Conrady and the Ebner’s self-calibration functions, in 36 calibration setups and provide
a discussion of the results, where sub ground sampling distance accuracy in the checkpoints was achieved for some, but not all,
configurations.

1. INTRODUCTION

Camera calibration, or the camera Interior Orientation (IO), is
an essential prerequisite to determine precise and accurate three
dimensional, metric, information from images. It models the re-
lationship between the coordinates of object points in the cam-
era reference frame and the corresponding image coordinates.
The knowledge of such relationship allows, among others, to re-
cover three dimensional object coordinates from multiple views
by means of a bundle adjustment algorithm (Triggs et al., 1999).
The IO is specific to each particular assembly of camera and
lenses and may change in time (Läbe, Förstner, 2004).

A wide range of digital cameras commonly employed in photo-
grammetry are equipped with lenses designed to obey the per-
spective projection law (i.e., the collinearity equations). How-
ever, this is seldom true in reality because of at least four effects
related to imperfections in their construction (Fraser, 1997): i)
symmetric radial distortion, ii) decentering distortion, iii) im-
age plane unflatness and iv) in-plane image distortion. These
can cause non negligible deviations from collinearity. At least
two families of models have been proposed to account for this:
Brown-Conrady (Brown, 1971) (abbreviated to Brown in the
following) and Ebner’s self calibration functions (Ebner, 1976).
These models are characterized by a variable number of para-
meters that need to be determined, through a process called
camera calibration (Remondino, Fraser, 2006).

Camera calibration is typically approached by acquiring a large
set of images (typically more than 50) of an object (such as
a chessboard or a calibration field composed of several Ground
Controls Points: GCPs) in order to describe accurately the cam-
era behavior. The parameters of the chosen camera model (e.g.,
Brown) are then estimated to best fit the observations. A very
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well known approach in computer vision relies on the use of
easily recognisable targets (e.g., checkerboards) whose met-
ric dimensions are known. Several established tools are avail-
able to determine Brown’s distortion coefficients in this setup,
e.g., (Bouguet, 2000), however, these often yield correlated es-
timates for the calibration parameters. One reason is that all
the known points lie on the same plane. Even in three dimen-
sional laboratory calibration setups, the depth of field is typic-
ally much smaller with respect to target applications, such that
erroneous estimates for the distortion coefficients may be ob-
tained (Lichti et al., 2008). Therefore, photogrammetrists typ-
ically prefer to perform camera calibration in conditions that are
similar with respect to the target application. For example, in
aerial photogrammetry, dedicated flights are performed over a
field equipped with several GCPs: the orientation of the camera,
along with the IO, are recovered during the bundle adjustment.
This approach also relies on additional points identified auto-
matically (tie-points) whose object space coordinates are not
known.

Further issues related to camera calibration arise in the emer-
ging field of aerial photogrammetry based on Micro Aerial
Vehicles (UAVs), which are becoming an essential tool for
surveyors, engineers and scientists (Colomina, Molina, 2014).
Here, consumer-grade cameras and lenses are employed due to
payload size, weight and cost limitations of UAVs. The mech-
anical stability of such sensors is uncertain: for example, the
µm level positioning and alignment of the lens might change
when vibrations, bumps during landing, temperature variations,
etc. occur during the operation of a UAV. This implies that the
IO determined from one calibration flight may not be directly
applicable, as it is, in subsequent production flights (Cramer et
al., 2017). However, in general it is not possible to determine
the IO from scratch in production flights as i) the geometry of
certain mapping missions, e.g., for corridor mapping, is such



that the IO is not fully observable, ii) practitioners strive to re-
duce the number of GCPs since they are time and cost intensive.
This calls for sound methods to exploit the IO from dedicated
calibration flights but at the same time recover minor variations
due to the mechanical instability of consumer-grade cameras.

In this work we focus on long corridor mapping missions with
UAVs where no GCPs are available. Here, a high quality a-
priori IO is essential. We consider five instances of models from
the Brown’s and Ebner’s families, differing by the number of
IO parameters, which we determine using two different calib-
ration setups. Next, we employ these IOs in a 2 km long cor-
ridor mapping flight, first using only values determined during
calibration, and then using three different strategies to estim-
ate corrections for camera mechanical instabilities during the
bundle adjustment. Practically unbiased Check Points (CPs)
errors and sub-Ground Sampling Distance (GSD) root mean
squared error (RMS) were achieved, in certain cases, approach-
ing the accuracy to which CPs are known. We’ve also found
combinations of models and calibration strategies which do not
provide satisfactory results, for which we investigate the causes
and provide an extensive discussion.

This work is organised as follows: in Section 2 we review the
Brown and Ebner’s calibration models in a unified formulation.
In Section 3 and 4 we review the calibration state of the art
in Integrated Sensor Orientation (ISO) and we present three
strategies to re-calibrate the IO during production flights. In the
last sections we present the results of a rigorous experimental
evaluation of the different models and strategies presented in a
real-world corridor mapping application.

2. CAMERA MODELS

In this section we review two approaches to model the depar-
tures from collinearity typical of many narrow angle cameras
and lenses. The first is the physical oriented approach, the
Brown function, while the second, more numerically oriented,
is given by the Ebner self-calibration functions, and later ex-
tensions. Whereas the principles behind those are well known,
several slightly different formulations have been presented in
the literature. Thus, we report those used in this study in the
following analysis.

We define the projection function π : R3 → R2 as:[
x
y

]
=

1

Z

[
X
Y

]
, (1)

where [X,Y, Z]T are the object coordinates of a point with re-
spect to the camera reference frame (in meters) and [x, y]T is
the corresponding (unit-less) projection on a plane at unitary
distance from the optical center of the camera. The well known
pinhole camera model is found by multiplying π by the prin-
cipal distance of the camera, e.g., in pixels. Many lens systems
are designed to best follow this relation.

More complex camera models, able to account for different
kinds of distortion effects introduced by real lens systems, build
on π as follows: [
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]
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π
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with ξ : R2 → R2. Image coordinates [x′, y′]T are typically
expressed in pixels. The function ξ involves a set of parameters

which are generally referred to as Additional Parameters (APs),
or camera Interior Orientation (IO).

2.1 Brown distortion model

In Brown’s distortion model (Brown, 1971), the function ξ(·) is
defined as the composition of two other functions ξ = ξ2 ◦ ξ1:
the output of the function ξ1 is used as input of the function ξ2.

ξ2 :

[
x′

y′

]
=

[
f +B1 B2

0 f

] [
x′′

y′′

]
+

[
ppx
ppy

]
, (3)

ξ1 :

[
x′′

y′′

]
=
(
1 +K1r

2 +K2r
4 +K3r

6 + . . .
) [x
y

]
+

+

[(
P1

(
r2 + 2x2

)
+ 2P2xy

)(
2P1xy + P2

(
r2 + 2y2

))] (1 + P3r
2 + . . .

)
.

(4)

where:

1. f and [ppx, ppy]T are the principal distance and the prin-
cipal point (in pixels),

2. B1 accounts for non-uniform scaling and B2 for skewing
along the axis of the imaging sensor,

3. Ki and Pi are the radial and tangential distortion coeffi-
cients,

4. “. . .” stands for an arbitrary number of additional terms in
the polynomial expansion in r2,

5. r2 = x2 + y2.

This formulation is very well known and corresponds to the one
implemented in established photogrammetry software, such as
Agisoft Metashape, or open-source computer vision libraries,
such as OpenCV.

In this work we consider three specific instances of the Brown
model, referred to as Brown10, Brown15 and Brown18 in the
following, which differ in the total number of parameters em-
ployed. Whereas f , ppx, ppy , B1 and B2 are always con-
sidered, the models differ in the order of the polynomial ex-
pansions for the radial and tangential distortion (with respect
to r2):

1. Brown10: Ki, i ∈ [1, . . . , 3], Pj , j ∈ [1, . . . , 2],

2. Brown15: Ki, i ∈ [1, . . . , 6], Pj , j ∈ [1, . . . , 4],

3. Brown18: Ki, i ∈ [1, . . . , 8], Pj , j ∈ [1, . . . , 5].

2.2 Orthogonal polynomials

A second family of models for camera distortions was intro-
duced in (Blázquez, Colomina, 2010) building on a typical ex-
ample of Orthogonal polynomials: the Ebner’s self-calibration
functions (Ebner, 1976) (extensions of Ebner’s Orthogonal
polynomials such as Grün polynomials:(Grün, 1986) are also
referred in (Blázquez, Colomina, 2010) but increase the number
of parameters). We refer the reader to the original publications
for the derivations. The function ξ reads as follows:

ξ :
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where bx and by are the width and the height of the image (in
pixels) divided by twice the nominal focal length (in pixels).
This model is fully defined by the set of 18 parameters aij and
bij and will be referred to as OrthoPoly18 in the following.

Brown’s and Orthogonal Polynomial models are intrinsically
different and it is not possible to give a closed form expression
that would map parameters from one model to the other, except
for the following:

1. a11 → ppx,

2. b11 → ppy ,

3. a21 → f +B1,

4. b12 → f .

3. CAMERA CALIBRATION

In order to properly compensate for the distortions introduced
by the lens system, one has to first choose which model is
best suited for the camera in use, and second determine the
values for the parameters defining the model (the IO, or the
APs). The first step is often left to user experience, even though
modern photogrammetry software is able to automatically se-
lect the most significant parameters to be considered within a
model family (e.g., choose between Brown10 and Brown15).
The second step is called calibration. If the calibration is per-
formed without the use of an external instrument to characterize
the sensor, we speak of self-calibration. The methods are well
known, and we are going to summarize them in the following.

Camera calibration via aerial photogrammetry is commonly
achieved by establishing a dense network of accurately geo-
referenced ground control points (GCPs) over a calibration
field. Dedicated flights are executed to collect several images in
a favourable geometrical configuration (e.g., cross flight lines,
different elevations and a mix of nadir/oblique views). The
images are then oriented by means of the bundle adjustment
algorithm, which determines the camera exterior orientation
(EO), the parameters of the distortion model (IO), and possibly
their precision and reliability. This approach is commonly re-
ferred to as Indirect Sensor Orientation (InSO).

In InSO, it is sometimes difficult to achieve optimal de-
correlation between the camera EO and IO, and within the IO
itself, even when the calibration have been performed with sev-
eral camera orientations and flight heights. This is the case
when the GCPs lie on the same plane, such as when the com-
puter vision approach to camera calibration, based on checker-
boards, is employed. In this case the parameters corresponding
to the focal length (f in BrownXX and a21, b12 in OrthoPolyXX)
remain correlated with the camera position.

If the aerial mapping platform is equipped with a survey grade
GNSS receiver, and (optionally) an IMU, the additional inform-
ation made available by these sensors can be introduced in the
bundle adjustment. This approach is called Integrated Sensor
Orientation (ISO), see for example see (Rehak, 2017) for a com-
prehensive description focused on UAVs.

In ISO, GNSS and inertial observations are fused together by
means of a Kalman filter/smoother in a pre-processing step.
This calculates positions and orientations for the camera that
can be used as prior information in the bundle adjustment (aerial

control, in photogrammetry jargon). More modern approaches
consider a single step where both image and raw inertial/GNSS
observation are adjusted together (Cucci et al., 2017). The
availability of the extra information from GNSS and inertial
sensors helps to de-correlate the camera model parameters from
the camera exterior orientation.

In UAVs, only MEMS IMUs can be employed due to space
and take-off weight limitations. These are substantially less
accurate with respect to tactical or navigation grade IMUs
commonly employed in airborne photogrammetry. Thus, the
GNSS/inertial solution might be biased, or not sufficiently ac-
curate. In this case, a very effective approach is to use relative,
instead of absolute, position/orientation control in the bundle
adjustment, as proposed in (Blázquez, Colomina, 2012) and
further investigated for the UAV scenario in (Rehak, Skaloud,
2016). This technique exploits the fact that the GNSS/inertial
solution may not be sufficiently accurate, but is locally precise,
and thus it can be effectively employed to constrain the relative
change between subsequent image orientations. Furthermore,
relative orientation control eliminates the need to determine the
camera boresight with respect to the IMU. We refer the reader
to the original publications for the details.

3.1 Orthogonal Polynomials over-parameterization

In InSO, OrthoPoly18 suffers from over-parameterization:
some of the parameters defining the model fully correlate with
the exterior orientation of the camera. This means that if no ab-
solute aerial orientation control is available, unreliable estim-
ates or worse, numerical instabilities and singularities will be
obtained during the bundle adjustment.

To address this issue, in (Blázquez, Colomina, 2010), the au-
thors introduced six constraints on the parameters aij , bij :

a11 = b11

a21 = −b12

b13 = −2a22

a31 = −2b22

a12 = b21

. (6)

If these are used to simplify Equation 5, the original 12 para-
meter Ebner’s self-calibration functions are obtained.

In this work we’ve chosen to omit the first two constraints in
Equation 6, since they correspond to f and pp in BrownXX.
These are important for modeling consumer-grade cameras
where the lens system can not be considered fully geometrically
stable in time, or in large camera systems where they depend
on environmental factors such as temperature and air pressure.
Simplifying Equation 5 with the remaining three constraints
gives OrthoPoly15, which requires at least absolute aerial po-
sition control during calibration.

4. RE-ESTIMATING THE INTERIOR ORIENTATION

In UAVs, consumer grade digital cameras are commonly em-
ployed. These are not built for photogrammetry applications
and can not be considered mechanically and geometrically
stable. In particular, the alignment of the lens with the ima-
ging sensor is subject to change due to external stresses such
as vibration or temperature change. The lens radial distortions
are in general considered to be more stable, but can still depend
on environmental factors. This means that the IO may slightly



change with time and thus be different between calibration and
production flights.

To account for this, IO is often re-calibrated during production
flights. This means that the bundle adjustment algorithm is ini-
tialized with the IO determined from calibration flights, and es-
timated corrections which account for camera instabilities are
applied while processing subsequent production flights. Indeed,
particular care needs to be taken as the geometry of production
flights may not guarantee the observability of the full IO (e.g.,
in corridor mapping). In this work we consider three strategies
which are discussed in the following.

4.1 Leading (Lead)

The parameters f , ppx and ppy in BrownXX and the correspond-
ing parameters a11, a21, b11 and b12 in OrthoPolyXX, are es-
timated, while the remaining parameters are kept fixed. This
option is well known and implemented in professional aerial
photogrammetry softwares such as Pix4D Mapper and Agisoft
Metashape.

4.2 A-posteriori covariance (APC)

Let Θ be the vector of the interior orientation parameters, e.g.,
for BrownXX:

Θ = [f, ppx, ppy, B1, B2, . . .] (7)

The a-posteriori covariance matrix of this vector, ΣΘ, is avail-
able as an additional output from the bundle adjustment run on
the dedicated calibration datasets. The square root of the diag-
onal of ΣΘ is typically reported as the error bound for the IO
vector. On the off-diagonal terms, often neglected yet signific-
ant to experienced practitioners, we find the covariance between
two parameters. Non-complete observability of some paramet-
ers is spotted by computing the correlation matrix from ΣΘ and
looking for off-diagonal terms which are close to one in abso-
lute value.

We can exploit the prior information on the IO available
from the calibration flight, including the residual correlations
between the single parameters, for the re-estimation of the IO.
During the bundle adjustment for the production flight we re-
estimate the entire IO vector, where we include an extra obser-
vation equation as follows, where Θ0 have been determined in
a calibration flight.

Θ−Θ0 = 0, (8)

Σ−1
Θ weights the pseudo-observations Θ0.

4.3 A-posteriori covariance inflated (APCI)

While ΣΘ is the best estimate of uncertainty for the camera IO
just after the calibration flight, the use of this information in
production flights does not account for possible changes in IO
due to camera instability.

We thus propose to scale up the diagonal elements correspond-
ing to the leading parameters defined in Section 4.1. The de-
gree to which each parameter is up-scaled is determined by the
amount that they are expected to change with time.

CF1 CF2 PF

UAV type Copter Fixed wing Fixed wing
Aerial control No Yes Yes
Geometry Close range Block Corridor
Images 75 440 290
Flight lines 26 4
Flight levels 2 2 2
Long. overlap [%] ≈ 100 65 70
Lat. overlap [%] ≈ 100 45 70
Mean depth [m] 16.3 157 117
Min depth [m] 6.9 111 84
Max depth [m] 22.7 546 186
mean GSD [mm] 3 30 20
Tie-points 2,565 22,955 23,813
# GCPs 17 21 0
# CPs 1 4 24
GCPs accuracy
(XYZ) [mm] 2, 2, 2 10, 10, 15 10, 10, 15

GCPs accuracy
(xy) [pixels] 0.1 0.2 0.2

Table 1. Calibration and production flights details.

5. EXPERIMENTAL EVALUATION

In this work we address challenging corridor mapping applica-
tions where we seek to achieve a ground accuracy that is better
than the GSD using no ground control points. In these cases,
it is essential to determine a reliable IO beforehand since the
geometry of such production flights does not allow for self-
calibration. Indeed, in corridor mapping missions we typic-
ally do not observe at multiple elevations and/or orthogonal
flight-lines. Furthermore, in our case no ground control point
is available. Another important element is the correct choice of
the camera model, which needs to be able to compensate for
lens distortion while minimizing the number of parameters em-
ployed.

For all the flights, we have employed an aerial photogrammetry
payload tailored for a small fixed wing UAV (Rehak, Skaloud,
2015). This payload is composed of: i) a custom, 20 Mpx cam-
era for aerial photogrammetry developed by IGN, France (Mar-
tin et al., 2014) with Zeiss Biogon 35 mm lens, ii) a Gecko4Nav
redundant IMU board with two Intersense NavChip MEMs
IMUs (Clausen, 2019), iii) a Topcon B110 GPS/GLONASS
L1/L2 receiver.

We determine the IO of the camera during the bundle adjust-
ment as described in Section 3. Two different strategies are
considered:

1. CF1. A set of close-range images of a calibration field
densely covered with mm-accurate GCPs (surveyed with
theodolites) is oriented without the use of any aerial
control (Indirect Sensor Orientation: InSO). The images
are taken with converging geometry and from distances
between 8 and 12 m.

2. CF2. A block mapping mission is flown over a large
area equipped with several cm-accurate GCPs (surveyed
by post-processed GNSS). The images are oriented with
aerial control (Integrated Sensor orientation: ISO with ab-
solute position and relative orientation control). Two flight
altitudes are considered, i.e., 120 and 150 m AGL.



CF1 CF2
E N h E N h
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mean 56 -8 185 22 -5 1

max 95 38 243 58 28 46

RMS 60 21 186 29 12 17

L
ea
d mean 2 1 48 4 -1 15

max 40 28 96 38 23 60

RMS 22 15 52 20 11 23

A
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C

mean 0 1 46 15 -3 3

max 37 24 92 51 26 48

RMS 20 12 49 25 12 17

A
P
C
I mean 2 0 31 7 -1 9

max 36 24 77 42 23 53

RMS 20 12 36 21 11 19

B
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mean 55 -9 173 23 -6 2

max 94 37 229 60 28 46

RMS 59 20 174 31 12 17

L
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d mean 3 0 43 5 -1 14

max 41 25 90 40 22 57

RMS 22 14 47 20 11 22

A
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mean 1 0 45 17 -4 3

max 36 24 90 53 26 47

RMS 20 12 48 26 12 17

A
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I mean 3 0 29 8 -2 10

max 38 23 74 43 23 53

RMS 20 12 34 21 11 20
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ix

mean 55 -9 172 23 -6 2

max 94 37 229 60 28 46

RMS 59 20 173 30 12 17

L
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d mean 3 0 42 5 -1 14

max 41 26 90 40 22 57

RMS 22 15 47 20 11 22

A
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mean 1 0 44 17 -4 3

max 36 24 90 53 26 47

RMS 20 12 48 26 12 17
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I mean 3 0 28 8 -2 11

max 37 23 74 43 23 54

RMS 20 12 34 21 11 20

O
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ix

mean -274 41 -850 32 -8 -6

max 388 136 924 65 50 49

RMS 284 80 852 36 24 24

L
ea
d mean -6 -4 -114 13 -6 -115

max 78 98 182 48 54 158

RMS 40 39 119 23 25 117

A
P
C

mean 11 -11 -255 23 -7 -12

max 45 78 308 55 49 54

RMS 24 33 256 28 24 25

A
P
C
I mean 3 -5 -138 10 -4 -21

max 34 70 189 41 49 63

RMS 20 30 141 19 24 30

O
rt
h
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ol
y
18

F
ix

mean

Not applicable

32 -8 -6

max 65 50 49

RMS 36 24 24

L
ea
d mean 15 -9 -145

max 54 61 186

RMS 26 29 146

A
P
C

mean 23 -7 -11

max 56 49 53

RMS 29 24 25

A
P
C
I mean 10 -4 -20

max 41 48 62

RMS 19 24 30

Table 2. Statistics of the checkpoints error for PF. Units are mm.

See Table 1 for a detailed description of the considered flights.

For both CF1 and CF2, we consider five choices for the
camera models: i) Brown10, ii) Brown15, iii) Brown18, iv)
OrthoPoly15 and v) OrthoPoly18. See Section 2 and Sec-
tion 3.1.

We test the IO determined with each combination of calibra-
tion strategy and camera model on a challenging 2 km N-S ori-
ented corridor mapping mission, referred to as the Production
Flight (PF) in the following, see again Table 1. This can be
done by either keeping the IO fixed as it has been determined
from the calibration flights (Fix, in the following), or by cor-
recting for estimated camera instabilities in the bundle adjust-
ment starting from the known initial values, according to any of
the strategies presented in Section 4, i.e., Lead, APC, APCI.

For each of the 5 (camera models)× 4 (re-calibration strategies)
× 2 (calibration setups) − 4 (because OrthoPoly18 cannot be
applied in CF1 where no aerial control is available) = 36 ex-
periments, we compute the statistics of the CPs error, in terms
of mean, maximum and root mean squared error (RMS). See
Table 2. To ease the interpretation, the cells are color coded
according to the RMS, where white and red are associated with
the lowest and highest values, respectively.

6. DISCUSSION

6.1 Camera calibration strategy

The IO parameters determined in CF2 perform better than those
determined in CF1. In fact, when the first ones are directly ap-
plied in PF with no correction, (Fix), they always yield better
results.

In Figure 1 we have reported the correlation matrix for the
Brown10 IO parameters as determined from CF1 and CF2.
The matrix for CF1 shows substantially higher correlations
between parameters as compared to that of CF2, notably for
the lead parameters. Note that almost complete correlation ex-
ists between the principal distance and the y component of the
principal point (ρf,ppy = −0.97). This means that the values
for the IO parameters could not be fully resolved, and that one
could manipulate those to a relatively large extent (e.g., along
the direction of the first eigenvector of the covariance matrix)
and obtain similar values for the image observation residuals.

We argue that the reason for this is that aerial control in CF2

brings extremely valuable information to de-correlate IO para-
meters. This is an argument for the use of aerial control in cam-
era calibration flights.

6.2 Camera models

We observe that the physical models BrownXX outperform
OrthoPolyXX in the considered case. Indeed, some aspects of
the distortions specific to the considered lens system could not
be compensated using any of the OrthoPolyXX models.

To show this, we attempt to compare the departures from col-
linearity as observed from tie-points and as implied by the es-
timated IO model. For each tie-point Pi we define a vector ~vPi

as the difference between its image projection implied by the
pinhole camera model and the actual tie-point image coordin-
ates:

~vPi = fπ(Pi) +

[
ppx

ppy

]
− zPi , (9)
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Figure 1. IO correlation matrix for Brown10. Black to white colors highlight low and high correlation coefficients, respectively.

where Pi, f , ppx and ppy are taken from the output of the
bundle adjustment for PF with OrthoPoly18. A vector ~vM ,
i.e., the corrections implied by a given IO model, can be defined
analogously for any point of the image plane.

~v can be decomposed in two components, radial, in the direction
of the principal point, and orthoradial, i.e., orthogonal to the
first, see Figure 2.

Figure 2. Decomposition of the departure from collinearity
vector, ~vPi into its radial (vθ) and orthoradial (vρ) components

for a tie-point observed at image coordinates zPi .

As an example, in Figure 3 we have plotted the radial compon-
ent of ~vM along the diagonal of the image plane (blue curve)
and the observed ~vPi for the tie-point observation close to such
diagonal, for all the considered IO models. It is readily evid-
ent that BrownXX fits the observations better than OrthoPolyXX.
Note the overfit in Brown18 in the extremities of Figure 3c. In
Figure 4 and Figure 5 we have plotted the radial and the or-
thoradial components of ~vM , respectively, as a function of the
image coordinates. We can observe that no clear radially sym-
metric correction is implied by OrthoPolyXX, see especially
Figure 4d and 4e.

These results may hold for the specific lens at hand, a high qual-
ity Zeiss Biogon, and may not be generally applicable. How-
ever, the numerical models based on Ebner’s self-calibration
functions were developed in the seventies when aerial photo-
grammetry was performed by means of film cameras and ad-
ditional corrections due to film out of plane deformations were
important. This is why numerically inspired models were de-
veloped. We suggest that this may no longer be appropriate

with modern digital cameras. In fact, with digital cameras, even
consumer grade, the distortion effects are dominated by a com-
ponent that is radially symmetrical. For this, no explicit term is
present in Ebner’s functions.

6.3 Re-calibration

With respect to the re-calibration strategy, we argue the follow-
ing:

1. In general, it is not optimal to directly employ the IO as
determined in calibration flights (Fix), at least with con-
sumer grade cameras, since it is well known that the lead-
ing IO parameters may slightly but significantly change
due to camera mechanical instability.

2. The well known strategy of re-estimating the leading IO
parameters (Lead) improves results with respect to Fix in
all the considered experiments and yields some of the best
results.

3. APC and APCI further improve upon Lead and such im-
provement is more marked when the available IO para-
meters from calibration are correlated, as in CF1. Unfortu-
nately, these strategies are not implemented in commercial
aerial photogrammetry software.

4. It is not clear whether APCI is better than APC. We note that
APCI has one tuning parameter which affects how much
the diagonal components of ΣΘ corresponding to the lead-
ing IO parameters are inflated. This is related to how much
those are expected to change with time and is an empirical
parameter that relies upon user experience and the specific
camera being utilized.

Finally, we note that no matter what re-calibration strategy we
employ, better results are obtained when IO from CF2 are em-
ployed. This is related to the fact that the geometry of cor-
ridor mapping missions enables correction for imperfect IO,
even when the full a-priori uncertainty ΣΘ is employed.



(a) Brown10 (b) Brown15 (c) Brown18

(d) OrthoPoly15 (e) OrthoPoly18

Figure 3. Radial component of the observed departures from collinearity, ~vPi (red dots), and as implied by the estimated IO model,
~vM (blue curve), for points on the diagonal of the image plane.
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Figure 4. Radial component of ~vM as a function of image coordinates. Black corresponds to +10 pixels and red to −10 pixels.
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Figure 5. Orthoradial component of ~vM as a function of image coordinates. Black corresponds to +2.5 pixels and red to −2.5 pixels.



7. CONCLUSIONS

In this work we have investigated different calibration strategies
and IO models targeting corridor mapping applications. In this
scenario, a-priori knowledge of the IO is essential. We’ve seen
that certain choices may lead to poor results and should be
avoided, while others allowed us to obtain sub-GSD residuals
at checkpoints using no GCP.

Our results can be summarized in the following guidelines use-
ful to UAV practitioners who are targeting delicate mapping
missions in which redundancy and ground control are limited:

1. prefer calibration flights in similar configurations (e.g.,
altitude) with respect to production flights,

2. use aerial control during camera calibration, as opposed to
laboratory setups or Integrated Sensor Orientation,

3. allow some form of re-estimation of the camera calibration
during the bundle adjustment of production flights (unfor-
tunately only Lead is available in commercial bundle ad-
justment software),

4. strive to reduce the number of calibration parameters, as
long as they are sufficient for modeling the lens at hand,

5. prefer the Brown family model over Ebner’s for lenses
with a predominant radial distortion component.
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