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Abstract

In structural health monitoring (SHM), risk assessment and decision strategies rely primarily on sensor
responses. Simulated data can be generated to emulate the monitoring phenomena under different natural
operational and environmental conditions in order to discriminate relevant features and thus identify potential
anomalies. Reduced order modelling techniques and one-class machine learning algorithms allow to efficiently
achieve this goal for a fixed number and location of sensors. However, since the number of sensors available on
a structure is often a limitation for SHM, identifying the optimal locations that maximize the observability
of the discriminant features becomes a fundamental task. In this work we propose to use the variational
approximation of sparse Gaussian processes to systematically place a fixed number of sensors over a structure
of interest. The healthy parametric variations of the structure are included by clustering the inducing inputs,
i.e., the outcome of variational inference. This technique is tested on several numerical examples and is
demonstrated to be efficient in detecting damages. In particular, it allows for considering the realistic case
where damage types and locations are a priori unknown, thus, overcoming the main limitation of existing
sensor placement strategies for SHM.

Keywords: Sensor placement, anomaly detection, sparse Gaussian processes, variational inference,
structural health monitoring (SHM)

1. Introduction1

When monitoring a structure over time, its deterioration and damages represent a great concern and the2

early detection of unexpected behaviour might prevent sudden shutdowns or help avoid catastrophes. In the3

last decades, the traditional visual inspection of complex and valuable assets such as bridges, buildings, wind4

turbines, etc., has been gradually replaced with structural health monitoring (SHM) systems, which aim at5

providing reliable information on the performance and integrity of a structure [14]. In the context of SHM, the6

combination of sensor measurements, numerical models simulating the underlying behaviour of a structure of7

interest under different environmental and operational conditions, and machine learning techniques has led8

to the design of structural digital twins. These virtual representations seek to assess the structural state of9

damage in real-time and can potentially support an automated decision-making strategy. Even though there10

exists a variety of SHM techniques, mainly differing by the quantity of interest to estimate or for the type11

of sensors employed while keeping into account the different requirements and limitations, they all rely on a12

network of sensors. Hence, their performance depends critically on the quality of the information collected13

at those sensors. Clearly, both improving sensor sensitivity and deciding where to place sensors play a key14

role in the digital twin industry.15

Motivated by the opportunities of cost reduction for SHM systems and the improvement in the quality16

of the monitoring outcome, optimization of sensor placement (OSP) has received growing interest during the17
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last decades. The exhaustive review [33] provides a collection of examples of OSP applied to SHM, classified18

based on the different techniques employed for the sensor placement optimization itself, among which the19

vibration-based and the wave-based monitoring are the most commonly used. While the former depend on the20

dynamics of the structure using passive sources, e.g., only the ambient loads on the structures are considered,21

the latter are usually used in the active sensing domain. Where as vibration monitoring techniques aim at22

identifying changes in the natural frequencies and mode shapes with respect to a baseline, in the wave-based23

monitoring field, vibrations are generated by a controlled source, e.g., a sinusoidal wave or a short pulse24

impulse, and signal-processing techniques are used to differentiate baseline time-dependent responses from25

the reflections and refraction of the wave caused by the presence of damages. Since the non-destructive26

impulses used to excite a structure have a high damping effect, i.e., it is difficult to observe the effect of the27

guided-wave far from the source, wave-based monitoring techniques are usually employed to monitor pipes or28

plate-like components with complex geometries, e.g., in aeronautical applications [31, 49]. On the contrary,29

large-scale assets, e.g., dams, bridges, etc., are usually monitored by vibration-based techniques, see e.g., [7],30

or by static approaches, see e.g., [22].31

Despite their fundamental differences, the general deployment of an OSP strategy is similar for both32

approaches. The OSP process can be split into a sequence of a few stages going from the choice of sensor33

types, over to the definition of operational parameters, e.g., the candidate sensor locations, and, finally, to34

the characterization of a suitable cost function and optimization algorithm, e.g., gradient-based techniques35

are chosen when the cost function is continuous and differentiable, while meta-heuristic optimizations might36

be necessary otherwise. We discuss here the state of the art of OSP for both the vibration- and the wave-37

based monitoring techniques. Among the most popular placement strategies for the former, we note the38

effective independence method (EFI), the kinetic energy method (KE), and the more recent information39

theory approach, which obtains an optimal placement of sensors by minimizing the information gain within40

a Bayesian experimental design framework, see e.g., [34, 7, 3]. For active sensing based on guided waves,41

we focus on [15] and [28]. In the former, the authors propose an optimization procedure where the sensor42

locations are chosen to minimize the appearance of false alarms and mis-detections. The latter proposes a43

strategy to increase the sensitivity to damage by using simulation-based techniques, in which, by comparing44

the numerical solution of the guided-wave propagation in undamaged versus damaged scenarios, sensors are45

placed where the largest increase in the signal amplitude is observed. When the wave propagation patterns46

are very complicated, it has been proposed to maximize the area of coverage (MAC) within a sensor network,47

see e.g., [49], where physical properties of Lamb wave propagation and complex geometrical properties are48

taken into account, or [47], where the ellipse equations with the sensor actuator pair as the foci are used to49

compute the coverage area.50

We note that, with the exception of the strategies which maximize the coverage area, all OSP techniques51

require knowledge about the characteristics of the damage, e.g., its type, its location, its severity, or its size.52

Consequently, these approaches do not generalize well when other types of damages occur and, even though53

engineering knowledge can certainly direct the attention to damages that are more likely to occur, it seems54

unreasonable to characterize them all. In particular, when relying on numerical simulations to describe the55

effect of a particular damage on a structure, including many damage types and all possible combinations56

becomes computationally intractable. A valid alternative is to resort to anomaly detection techniques, where57

damages are identified only by looking at the output of multiple undamaged scenarios, collected under58

different standard conditions, which may represent environmental or operational healthy variations. We refer59

to [29, 5] and references therein for a description on how to address the damage detection problem with60

anomaly detection learning strategies for a fixed network of sensors. However, many questions arise if one61

wishes to find the optimal sensor locations in the absence of any damage information. In particular, the62

definition of new operational parameters and their corresponding cost function must be considered.63

In this work we propose a novel strategy for sensor placement in the context of anomaly detection applied64

to SHM when a fixed budget is given, i.e., the number and type of sensors is fixed. The sensor locations are65

systematically identified as the spacial positions for which the reconstruction error of an output of interest at66

all unsensed locations is minimized. The quantity of interest chosen to define the cost function for the sensor67

placement optimization algorithm is the same quantity used to train the anomaly detection classifier which68

distinguishes healthy configurations from damaged ones. As such, the proposed placement strategy is based69

on an appropriate indicator of the damage detection performance of a given network. More precisely, we70

employ the variational inference of sparse Gaussian process regression (GPR) for a damage-sensitive quantity71
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of interest representing an healthy scenario, and we use the inducing inputs as the sensor locations. With72

the variational formulation, sensor locations are selected by minimizing the Kullback-Leibler (KL) divergence73

between the exact posterior distribution and the variational distribution. Therefore, placing sensors at the74

corresponding location of the inducing inputs addresses both the information compression of the whole domain75

and the total variance reduction at the sensor locations. We also rely on an Expectation-Maximization (EM)-76

like algorithm for the training phase, which, on one hand, prevents a combinatorial search in the case of a77

discrete admissible set of points and, on the other hand, allows us to include domain restrictions in the78

optimization to avoid placing sensors in areas difficult to reach or not suitable for monitoring. Furthermore,79

we extend the proposed algorithm to take into account the natural variations of the model parameters, e.g.,80

loads, boundary conditions, material properties, etc., by means of an unsupervised clustering algorithm. To81

conclude, we present some numerical examples to test the validity of the proposed method. In particular, we82

resort to a wave-propagation based strategy to place sensors on both 2D and 3D structures and to a static83

monitoring approach with passive sources to place sensors on a 3D representation of an offshore jacket.84

We observe that we can relate some features of our approach to existing methods which are not specifically85

designed for SHM. First, the choice of recurring to GPs for sensor placement has been proposed in [10,86

25], where either the maximum entropy principle or a mutual information criterion are used to identify87

near-optimal locations. In contrast, our work replaces the classic GPR model with a sparse variational88

approximation, which at the same time identifies the optimal sensors as the inducing points automatically and89

accommodates problems with large data set. Additionally, the strategy presented in [25] is used to monitor90

diffusion-like spatial phenomena, e.g., temperature in an indoor environment, while the SHM applications91

involve more complex phenomena, for which the training of a GPR is not always straightforward. Second,92

in the recent work [2], the authors propose a strategy to place sensors in a systematic manner to assist field93

experts in placing sensors in nuclear reactors. In particular, they propose to use the magic points found by the94

greedy algorithm of the generalized empirical interpolation method (GEIM) as sensor locations and show the95

effectiveness of this strategy on multidimensional examples based on synthetic measurements. Lastly, sparse96

approaches for sensor placement have been proposed in [6], where the authors exploit the low-dimensional97

structure exhibited by many high-dimensional systems to compress a signal to very few measurements if the98

sole objective is classification. Despite the use of sparsity-promoting techniques, this work is entirely based99

on classification, which is different from the scope of our work.100

The remainder of this paper is organised as follows. Section 2 presents the physical phenomena and101

synthesizes how we efficiently construct a database of healthy configurations in both a dynamic and a static102

scenario. Sparse Gaussian process approximations are presented in Section 3 with a particular emphasis103

on variational sparse GPR. We explain how variational approximations are used for sensor placement in104

the absence of damage states in Section 4 and provide numerical evidence of the quality of this method in105

Section 5. Conclusions are given in Section 6.106

2. Generating a database of synthetic healthy measurements107

Simulation-based strategies provide a tool to monitor a structure of interest where experimental measure-108

ments are replaced with synthetic sensor signals, thus allowing to generate accurate datasets inclusive of many109

possible scenarios, which would be otherwise unrepresented. As both practical and efficient techniques, they110

have received increasing attention in recent years, see e.g., [27, 48, 37, 5, 24, 40]. Although a key step in SHM111

corresponds to the identification of good locations to place sensors, classic simulation-based strategies for112

damage detection often rely on the assumption that these locations are known, i.e., the structure of interest113

is already equipped with a network of sensors. As mentioned in Section 1 and further clarified in Section 4,114

the placement strategy proposed here is based on the same quantity of interest used to define damage detec-115

tion classifiers. As a direct consequence, the practical process of generating a synthetic database, used either116

for anomaly detection or for sensor placement, is the same. Hence, in this work we focus on the construction117

of a database of simulated healthy configurations where a few given sensor locations are replaced with the118

points of a coarse mesh over the domain of interest. The optimal locations will be chosen as a subset of119

these points or as an arbitrary new set which belongs to the initial domain in a way that will be specified in120

Section 4.121

In the remaining of this section, we first provide a short summary of anomaly detection strategies in Section122

2.1. Then, in Section 2.2, we present the mathematical formulation of the governing physical problem, i.e.,123
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the parametric acoustic-elastic equation in both its dynamic form and its simplified static version, together124

with its numerical discretization. The explanation on how to efficiently deal with the need of repeatedly125

solving the problem for multiple parameters using the reduced basis method is also explained. We conclude126

with Section 2.3, where we define the chosen quantity of interest, obtained by extracting damage-sensitive127

features from the raw signals.128

2.1. A brief recap of SHM anomaly detection129

Different from a supervised learning approach, in the anomaly detection framework, the dataset does not130

include any damage scenarios. This is done under the assumption that since it would be unreasonable to131

describe all types of damages, representing only some damaged configurations would lead to a bias towards132

certain types and therefore to mis-detections with high probability. Classic supervised learning algorithms,133

where every different damage type is associated with a different categorical class, are here replaced with semi-134

supervised learning techniques, where only healthy states are used to train one-class classifiers, e.g., one-class135

support vector machines, local outlier factor, or auto-encoders. We note that, to avoid redundancies, in the136

context of both one-class and standard classification, raw measurements, e.g., displacements or accelerations,137

are not directly used in the training, but instead they are processed into features which are sensitive to138

damages but robust to noise and healthy variations. Then, in the online phase, the classifier is tested against139

new measurements to assess if they conform to the normal condition, reflected in the offline data, i.e., test140

samples will be classified either as healthy (inlier) or unhealthy (outlier).141

We observe that, with anomaly detection techniques it is no longer possible to classify damages by type.142

However, by training a separate one-class classifier for each separate location, damage localization and severity143

can still be assessed for a given array of sensors. We refer the interested reader to [8] for a thorough description144

of outlier detection algorithms and to [29, 5] and references therein for how such algorithms are used in the145

context of SHM.146

2.2. The governing problem of linear elasticity147

Let Ω ⊂ Rd with d = {2, 3} be an open bounded domain, approximating the geometry of a given148

structure of interest and let [0, T ] be a relevant time domain for sensor measurements. Let us also consider149

a p-dimensional parameter space Ωµ = [µ1
1, µ

1
2] × [µ2

1, µ
2
2] × · · · × [µp1, µ

p
2] ⊂ Rp, representing the baseline150

variations of healthy configurations under normal environmental and operational conditions, which can be151

described by both physical and geometrical properties. For a given parameter µ = [µ1, . . . , µp] ∈ Ωµ, we152

seek the vector-valued displacement u = u(x, t;µ) : Ω× [0, T ]× Ωs → Rd such that153

ρ
∂2u

∂t2
+ ρη

∂u

∂t
−∇ · σ(u;µ) = s(x, t;µ) in Ω× (0, T ]. (1)

In the above strong-form formulation, ρ is the density, η is a non-dimensional damping coefficient, σ = σ(u;µ)154

is the stress tensor σ = 2µε(u) +λTr (ε(u)) I, where I is the d dimensional identity matrix, Tr(·) is the trace155

operator applied to the strain tensor ε(u) =
1

2

(
∇u+ (∇u)T

)
and the Lamé constants µ and λ are defined156

by E, the Young’s modulus, and ν, the non-dimensional Poisson’s ratio, as157

µ =
E

2(1 + ν)
and λ =

Eν

(1 + ν)(1− 2ν)
. (2)

Equation (1) is equipped with suitable boundary and initial conditions, which may depend on µ, and158

s = s(x, t;µ) is a parameter-dependent function s : Ω× (0, T ]× P → Rd representing the source term.159

After introducing a suitable spatial and temporal discretization, Equation (1) can be solved numerically,160

by resorting for example to the finite element (FE) method. The continuous solution u(t;µ) of the weak-161

form of (1) is therefore replaced with its discrete counterpart uh(tn;µ) ∈ Vh, where Vh is a conforming162

finite-dimensional subspace of V = H1(Ω;Rd) with dim(Vh) = Nh. Moreover, tn = n T
Nt

is the n-th time163

step of the discrete time interval [0, T ], which is partitioned into Nt equal sub-intervals. With the goal of164

sensor placement, we are only interested in the solution at few specific locations, representing the vertices of a165

coarse mesh with ndof degrees of freedom. The parametric discrete displacement signal ui(µ) are (Nt+1)×d-166

dimensional vectors defined as167

ui(µ) := [uµi (t0),uµi (t1), . . . ,uµi (tNt)] for i = 1, . . . , ndof, (3)
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where uµi (tn) = uh(xi, tn;µ) =
∑Nh
j=1 uj(tn;µ)ϕj(xi). Here, {ϕj(x)}Nhj=1 is a basis for Vh and uj(t;µ) is the168

j−th coefficient of the solution of the linear system associated with (1).169

To construct a reliable and robust dataset containing many possible combinations of environmental and170

operational conditions, we repeatedly solve (1) for different parameters. To overcome the computational171

burden associated with this step we resort to model order reduction techniques, see e.g., [21, 38], which172

seek to accurately approximate the underlying high-fidelity model by constructing a low-dimensional model173

by leveraging an offline–online decoupling. Indeed, the reduced model is built during an expensive offline174

phase, where a set of high-fidelity solutions are combined to fulfil a suitable orthogonality criterion. Then,175

in the online phase, for a new parameter, the reduced basis solutions are inexpensively obtained by solving176

a smaller linear system, i.e., the reduced problem. Finally, the solution is projected back to the original177

space. While the details of the reduced basis go beyond the scope of this work, we refer the reader to [5]178

and references therein for an in-depth description of how the reduced basis method can be used to solve the179

acoustic-elastic problem in frequency domain and how to reconstruct the time signal with numerical inverse180

Laplace transforms. Similarly, for the static problem, we refer the reader to [22, 13], for the details of the181

associated reduced model.182

2.3. The chosen quantities of interest are the damage-sensitive features183

In the SHM framework it is common to resort to damage-sensitive features, extracted from the raw184

displacements, to support the decision-making process, see e.g., [29, 48, 5]. From a mathematical standpoint,185

the desired feature function186

F = F(ui(µ)) : R(Nt+1)×d → RQ×d (4)

takes as input a discrete time signal (3) and outputs a set of Q d-dimensional features. In the context187

of guided-wave problems, feature extraction refers to the process of compressing raw sensor measurements,188

which are high-dimensional because of high sampling rates and possibly long time windows, i.e., both Nt and189

T are usually large, into low-dimensional vectors. Indeed, as the dimensionality of the training dataset grows,190

many state of the art machine learning algorithms, including anomaly detection models, become intractable.191

Dealing with a large number of features not only leads to poor generalization capabilities, but also to inefficient192

learning models with high computation costs. This phenomenon, known as curse of dimensionality, can be193

overcome by feature compression. As mentioned, the ideal features should be damage-sensitive and, at the194

same time, insensitive to the natural variation of the baseline operational and environmental conditions.195

Common choices for features for guided-waves approach can be found, e.g., in [29]. We follow the strategy196

presented in [5], where the authors use six features, i.e., the arrival time of the wave, the crest factor, the197

number of peaks and valleys as well as the minimum and the maximum amplitude in a fixed time window.198

To further reduce the dimensionality of the output of interest after normalizing the features, we rely on199

principal component analysis (PCA), computed by a singular value decomposition to yield an orthonormal200

basis ordered by energy of variance. Indeed, the displacements along the d directions are correlated, leading201

to redundant features. The optimal number dy of retained principal components, i.e., those with the highest202

variability, is determined by looking at the cumulative explained variance ratio as a function of the number of203

components. For the sake of notation, we let F include both the classic feature extraction and the subsequent204

PC compression, i.e., F = F(ui(µ)) : R(Nt+1)×d → Rdy .205

We remark that there exists alternative anomaly detection algorithms where the entire time signals can206

be used directly. For example, long short-term memory (LSTM) autoencoders are a type of recurrent neural207

networks (RNNs), successfully used in the context of speech recognition or text translation, see e.g., [19].208

More generally, autoencoders are a type of neural networks, whose output is a reconstructed copy of the input209

[17]. The strength of autoencoders lies in the identification of a low-dimensional non-linear manifold where210

the input data lay on. This manifold can be used to reconstruct the full signal with few variables, called211

the latent variables. In particular, in the anomaly detection framework, the latent variables could play the212

role of the aforementioned features, with the main difference that the network would be purely data-driven,213

while the features are based on engineering knowledge. Despite this desirable property, it is less clear how214

autoencoders could be used for optimal sensor placement.215

We finally observe that while signal compression is a fundamental step for the dynamic case, in the216

context of static loads, the formulation is greatly simplified. Indeed, since the problem is static, the vector217

of displacements (3) also becomes time-independent, i.e., ui(µ) ∈ Rd for i = 1, . . . , ndof. Moreover, the218

aforementioned compression process based on damage-sensitive feature extraction and PCA is not needed219
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when the quantities of interest are the discrete displacements. In this cases the feature map (4) is the identity220

map, i.e., F = F(ui(µ)) : Rd → Rdy , with dy = d.221

To conclude, we remark that, in the online phase, the reduced problem has to be solved for nµ random222

input parameters, possibly chosen from a fixed sampling strategy, e.g., Sobol sequence, Latin hypercube etc.,223

to obtain the healthy dataset, i.e.,224

Y(µj) = [F(u1(µj)), . . . ,F(undof
(µj))], for j = 1, . . . , nµ, (5)

where F is defined in (4).225

3. Sparse GP Regression226

The sparse GP regression has received increasing attention in the last decades thanks to its ability to227

overcome the computational limitation of a standard GP. Indeed, given the number of training samples n, the228

computational complexity of generating a GP model is O(n3) and the associated storage requirement O(n2),229

which becomes intractable for large data sets. The corresponding sparse methods instead rely on a small230

set of m � n points to facilitate the information gain of the whole data set, thus allowing for a complexity231

reduction, i.e., O(nm2). After a short introduction of GP regression in Section 3.1, we detail the properties232

and advantages of its sparse variation in Section 3.2. We discuss the formulation of variational inference of233

a sparse approximation in Section 3.3, which is of relevance to the method proposed in this paper.234

3.1. A short review of GP regression models235

A GP regression (GPR) model is a supervised machine learning approach, whose goal it is to construct236

a regression model to predict continuous quantities of interest given a set of observations. A GP is a set237

of random variables, any finite subset of which follows a Gaussian distribution. We observe that a GP is238

fully defined by its first and second moments. Without loss of generality, we take the mean function m(x)239

to be zero. The covariance function k(x,x′;θ), also called the kernel function, is parametrized by a small240

set of hyperparameters θ, e.g., the variance of the kernel and the lengthscales of the input dimensions, thus241

incorporating some prior knowledge on the smoothness of the stochastic process and the similarity between242

data points.243

Let D = {(xi, yi)}ni=1 denote a training data set of d-dimensional inputs X = [x1, . . . ,xn]T and the244

corresponding real-valued realisation y = [y1, . . . , yn]T of a latent function f(x) corrupted by some Gaussian245

white noise ε, i.e.,246

yi = f(xi) + εi, where εi ∼ N (0, σ2
y),

where σ2
y is the variance of the noise. We assume a zero-mean GP prior over the latent function we are trying247

to model, i.e., f(x) ∼ GP (0, k(x,x′;θ)). Given the noisy dataset, this can be expressed by the marginal248

likelihood249

p(y|X,θ) = N (y|0,Knn + σ2
yIn),

where Knn is the n× n covariance matrix with [Knn]ij = k(xi,xj ;θ), and In is the n−dimensional identity250

matrix. For the sake of convenience, we consider the variance of the noise σ2
y as an additional hyperparameter251

belonging to the set θ. The best performance of a GPR model, i.e., its ability to make accurate predictions,252

strongly depends on the hyperparameters. The optimal hyperparameters are estimated from the training253

data D by minimizing the negative log likelihood over the space of hyperparameters:254

θopt = arg min
θ

− log [p(y|X,θ)] ,

where255

log [p(y|X,θ)] = log
[
N (y|0,Knn + σ2

yIn)
]

= −1

2
yT (Knn + σ2

yIn)−1y − 1

2
log |Knn| −

n

2
log 2π. (6)

To predict the function values at p new test inputs X∗ = [x∗1, . . . ,x∗p], one assumes a joint GP prior of256

the latent function values for the training data fn = [f(x1), . . . , f(xn)]T and the unobserved function values257

f∗ = [f(x∗1), . . . , f(x∗p)], i.e.,258

p(fn, f∗) = N
(
0,

[
Knn Kn∗
K∗n K∗∗

])
.
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Here, K∗n = KT
n∗ is the covariance matrix between the new inputs X∗ and the training samples X, i.e.,259

[K∗n]ij = k(x∗i,xj ;θopt). Thus, the noise-free posterior distribution is obtained by conditioning the predic-260

tive targets f∗ on the observations y and it has the following posterior mean and variance estimates261

my(x∗) = K∗n(Knn + σ2
yIn)−1y,

ky(x∗,x∗) = k(x∗,x∗;θopt)−K∗n(Knn + σ2
yIn)−1Kn∗.

We finally remark that the performance of the predictive distribution peaks with a correct choice of the kernel262

function followed by an accurate estimation of the hyperparameters. Among the commonly used covariance263

functions, we consider the automatic relevance determination squared exponential (ARD-SE) kernel and the264

ARD exponential (ARD-E) kernel, i.e.,265

kARD-SE(x,x′;θ) := σ2
f exp

(
−1

2
r

)
and kARD-E(x,x′;θ) := σ2

f exp
(
−
√
r
)
, where r =

d∑
j=1

(xj − x′j)2

σ2
j

, (7)

respectively. Above, θ := [σ2
f , σ

2
1 , . . . , σ

2
d], where σ2

f is the output variance, which determines the average266

distance of the function away from its mean and σ2
j are the characteristic lengthscales for j = 1, . . . , d. For267

more details on GPR models and kernel functions we refer the reader to [53, 52, 32].268

3.2. Sparse GPR models269

The non-parametric nature of GPR models makes them popular for the prediction of continuous func-270

tions. However, the training of a GPR model leads to a cubic scaling of the computational cost with the271

number of training samples. This complexity prevents GPRs to be used for big data sizes. To overcome this272

disadvantage, sparse approximations of GPR methods have been developed, providing an efficient training273

process that scales linearly with the number of training data. These methods rely on m� n auxiliary latent274

variables, evaluated at some inputs Z ⊂ Rm, which are often referred to as the inducing inputs, to reduce the275

computational requirements to O(nm2), thus making the sparse GPR competitive among machine learning276

methods for large data sets.277

Following [39], we present an overview of sparse GPR methods. A crucial assumption in these models is278

that the training latent variables fn and the test variables f∗ are conditionally independent given the inducing279

variables fm, evaluated at the corresponding inducing points Z = [z1, · · · , zm]T . This means that they can280

be expressed in two separate conditional distributions, i.e.,281

p(fn, f∗) ' p̂(fn, f∗) =

∫
p̂(f∗|fm)p̂(fn|fm)p(fm)dfm. (8)

Different sparse approaches adopt different inducing conditional distribution approximations p̂(f∗|fm) and282

p̂(fn|fm), while the inducing prior remains the same p(fm) = N (0,Kmm). We mention here three algorithms,283

by chronological appearance, which build upon one another to achieve better approximations. First, the284

sparse greedy approximation to GPR proposed in [43] formulates the approximated joint prior (8) as follows285

p̂1(fn, f∗) = N
(
0,

[
K̂nn K̂n∗
K̂∗n K̂∗∗

])
.

Here K̂ab = KamK−1
mmKmb is the Nyström approximation of the true prior covariance K, which leverages the286

information provided by the m inducing inputs. Intuitively, K̂nn and K̂∗∗ quantify how much information287

fm provides about fn and f∗, respectively. The main drawback of this approach is that K̂ has only m degrees288

of freedom, i.e., the joint prior is degenerate, which results in overconfident predictions over a very limited289

family of functions. An alternative approximation is proposed in [11, 41], where the exact prior variance290

matrix K∗∗ is employed instead of approximating it by the inducing variables:291

p̂2(fn, f∗) = N
(
0,

[
K̂nn K̂n∗
K̂∗n K∗∗

])
. (9)

In this way f∗ retains its own prior variance, leading to more reasonable predictive uncertainties than those292

given by the previous model, even if the predictive means are identical. Further improvements on the joint293
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kernel approximation have been made in [45] with the Sparse Pseudo-input Gaussian processes (SPGPs)294

approximation, where a more sophisticated joint prior is employed:295

p̂3(fn, f∗) = N
(
0,

[
K̂nn + diag[Knn − K̂nn] K̂n∗

K̂∗n K∗∗

])
.

Note that, as opposed to the previous two methods, the diagonal of K̂nn is corrected to be the exact one,296

thus imposing an additional independence assumption about the training conditional distribution fn given297

fm.298

A particular note should be made about the inducing variables, which, depending on the approach, can299

either be a subset of the training set X or arbitrary locations in the input space. The former selection300

strategy leads to a prohibitive combinatorial optimization, for which sub-optimal greedy-like solutions have301

been proposed to alleviate the computational complexity, see e.g., [44, 43, 41, 50]. Nevertheless, relaxing the302

constraint on the inducing variables as a subset of the training data can potentially lead to a better local303

optimizer, as the optimization continuous and the target space is now larger. However, we observe that, in304

both cases, reaching the global minimum is intractable and one can only expect to converge to a good local305

minimum. This limitation is common to the optimization of marginal likelihood functions, which are often306

non-convex with respect to the hyperparameters. A common trick to overcome this issue is to use multiple307

starting points for both the hyperparameters and the inducing inputs [9]. Ultimately, by considering the308

inducing inputs Z as extra kernel hyperparameters that parametrize the covariance, their optimal values can309

be obtained simultaneously by minimizing the negative log likelihood, i.e.,310

(Zopt,θopt) = arg min
Z,θ

− log [p̂(y|X,Z,θ)] = arg min
Z,θ

− log
[
N (y|0, K̂exact

nn + σ2
yIn)

]
, (10)

where, K̂exact
nn is the top left submatrix of the chosen prior covariance p̂, e.g., p̂i, i = 1, 2, 3.311

We finally remark that the quantities in (10) are trained in O(nm2), while the computational complexities312

for the predictive mean and variance are O(m) and O(m2), respectively. We refer the reader to [39] and313

references therein for more details on the similarities and differences on various sparse methods for GPR.314

3.3. Variational inference of sparse GPR315

An alternative to the exact inference is variational inference, which is another popular method in statistics.316

Instead of minimizing the negative log likelihood (10), variational inference seeks to find an approximation of317

the true GP posterior p(f∗|y) among a given family of distributions. Observing the differences between the318

marginal log likelihoods (6) and (10), it is clear that, although the latter represents an exact inference, it is319

based on a modified prior and therefore a continuous optimisation of (10) with respect to Z will not converge320

to the true GP model. Variational inference instead seeks to overcome this by considering the inducing inputs321

as variational parameters, whose optimal values are to be estimated jointly with the hyperparameters.322

In [50], a variational Gaussian distribution q(fn) is chosen to approximate the exact posterior p(fn|y) on323

the training function values fn, such that, with the assumption of conditional independence of fn and f∗ given324

the inducing variables fm, p(fn|y) can be approximated by the variational posterior325

q(fn) =

∫
p(fn|fm)q(fm)dfm.

The optimized inducing variables and hyperparameters are thus obtained by minimizing the Kullback-Leibler326

(KL) divergence between the true posterior and the variational posterior. In [50], it is proposed to minimize327

the KL divergence of the augmented true posterior p(fn, fm|y) and the augmented variational posterior328

q(fn, fm) = p(fn|fm)q(fm), which is equivalent to maximize the variational lower bound329

L(Z,θ) = log
[
N (0|K̂nn + σ2

yIn)
]
− 1

2σ2
y

Tr(Knn − K̂nn), (11)

where the second term is the negative trace of Knn − K̂nn scaled with (2σ2
y)−1 and K̂nn is defined as in330

Section 3.2. The resulting (Zopt,θopt) can then be used to build the predictive distribution, which is given331

by332

q(f∗|y) = N
(
K̂∗n(K̂nn + σ2

yIn)−1y,K∗∗ − K̂∗n(K̂nn + σ2
yIn)−1K̂n∗

)
. (12)
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We note that this is exactly the one used in [11, 41], i.e., the approximation with a joint prior (9). In terms333

of the predictive distribution the two methods are the same. However, the variational method, with the334

extra regularization term, relies on a very different selection of the inducing inputs and the hyperparameters.335

As opposed to the exact inference defined in (10), this additional trace term acts as a regularizer of the336

log likelihood, i.e., it summarizes the total variance of the conditional prior p(fn|fm) and, as such, it can337

be viewed as an accuracy indicator of predicting fn given fm. Minimizing this term prompts a good overall338

estimation of the statistics of the training data. We further note that, in the variational inference setting, the339

inducing variables Z determine the flexibility of both p(fn|fm) and q(fm), and, hence, the posterior q(fn|y).340

Finally, we remark that GPy [18], a Gaussian process regression framework in Python, is used for the341

numerical implementation of the examples presented subsequently.342

4. Variational approximation for systematic sensor placement343

In this work, we seek to provide a systematic sensor placement strategy in the context of anomaly344

detection for SHM. We therefore assume that only synthetic data generated by undamaged configurations345

under different environmental and operational conditions are available, i.e., we have no information regarding346

the type and severity of the anomalies. This is a realistic assumption because it is likely that many different347

types of damages will occur in the life time of a structure. If, on one hand, simulating all possible damages348

and locations would not be computationally feasible, it would on the other hand not be reasonable to make349

the hypothesis that including in the training set only a few representative damage types will generalize well350

to other types and locations; instead, it is more likely that mis-detections would occur. On the contrary,351

anomaly detection strategies detect damages by characterizing the similarities among healthy samples and352

identify as damaged new samples with significantly different properties from the undamaged ones, see e.g.,353

[36]. Mathematically, this corresponds to unsupervised or semi-supervised learning techniques as opposed354

to supervised algorithms, where a different class is assigned to every different type (or location) of damage.355

This poses a significant challenge in the context of sensor placement where one has to define a suitable cost356

function to be optimized with respect to the operational parameters, e.g., the candidate locations for the357

sensor placement, the available number of sensors and so on. Indeed, existing cost functions are usually358

formulated in terms of damage detectability, see e.g., [33], which is a well defined concept only when a finite359

number of damages is assumed.360

To overcome this obstacle, we propose to train a sparse GPR model of the monitoring phenomena,361

represented here by a chosen quantity of interest, e.g., displacement, stress or a function of those, by means362

of variational inference. By fixing the number m of inducing variables as the number of sensors that the user363

wishes to place on the structure, we identify the sensor locations with the local optima Zopt, obtained from the364

optimization of the variational lower bound (11). Then, the learned sparse GP model can be used to predict365

the effect of having placed sensors at particular locations Zopt. We recall that the optimal inducing variables366

Zopt are such that the KL divergence between q(fn) and the true posterior p(fn|y) is minimal. On one367

hand, q(fn) being a good approximation of the exact posterior distribution p(fn|y) implies that the inducing368

variables provide enough statistics for the observed data, i.e., the information in the training data fn can be369

compressed well in fm. As a consequence, the sensor locations Z do not cluster on the boundaries of the input370

domain, thus preventing “waste” in the sensed information. On the other hand, minimizing the regularizing371

trace term in (11), which represents the total variance of the conditional prior distribution p(fn|fm), ensures372

that the mean square error of reconstructing the training latent values fn from the inducing variables fm is373

small. Indeed, the variational approximation guarantees that the sparse predictive distribution is as close as374

possible to the exact predictive distribution. This minimizes the reconstruction error not only at the sensor375

locations, but in the rest of the domain too. Hence, leveraging the variational sparse GPR for optimal sensor376

placements provides a tool to maximize the statistical information gain on the whole computational domain377

when using a fixed number of sensors, while reducing the computational requirements when compared to a378

traditional GP kernel based method.379

In this section we elaborate on how the numerical data obtained from healthy structures, as described380

in Section 2, and the variational sparse GPR presented in Section 3.3 are combined for optimal sensor381

placement. After introducing the notation, in Section 4.1 we present details on placing sensors through382

variational inference of sparse GP for one particular structure configuration, while in Section 4.2 we describe383

how we handle the parametric dependency characteristic of each configuration in the context of optimal384
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sensor placement. In Section 4.1, emphasis is given to an ad-hoc optimization setup which allows, on one385

hand, to constrain sensors to lie on a specific portion of the domain and, on the other hand, to deal with386

extremely large input data. Both requirements are indeed common in the context of SHM, where structures387

may be represented by billions of degrees of freedom and only certain locations might be admissible to place388

sensors. We conclude with a description on how this procedure can be used to provide information about389

the sensitivity of a fixed network of sensors in Section 4.3.390

Let us consider a d-dimensional spacial domain Ω ⊂ Rd with a suitable triangulation Th, where h represents391

the mesh size, leading to a total of ndof mesh points X = [x1, . . . ,xndof
]. Moreover, let Ωµ ⊂ Rdµ be a dµ-392

dimensional domain representing the space of natural variations of the parameters of an healthy structure, e.g.,393

different operational loads, external excitements and material properties. For a given parameter combination394

µ ∈ Ωµ, we assume that the inputs and outputs are mapped through a function f and that this process is395

corrupted by some Gaussian white noise ε ∼ N (0, σ2
y), i.e.,396

yi(µ) = f(xi;µ) + ε, for i = 1, . . . , ndof, (13)

where Y(µ) = [y1(µ), . . . ,yndof
(µ)] are the ndof dy-dimensional outputs of interest (5), e.g., displacements397

of an elastic structure or features extracted from time-dependent signals.398

We point out that, in contrast to most of the cases where GPRs are employed, in this work, the training399

outputs Y(µ) are not experimental, but simulated. As a direct consequence, for a given parameter µ, the400

map from inputs to outputs is known exactly, i.e., f(xi;µ) is a function of the discrete time-signals (3),401

as described in Section 2. Therefore, we do not focus on constructing a GPR model to predict the mean402

and variance of the outputs at new spatial locations. The novelty of our approach lies in the fact that the403

sparse GPR is adopted to place sensors systematically; placing a Gaussian prior on the input-output map,404

i.e., f(x) ∼ GP(0, k(x,x′;θ)), allows us to employ the variational inference algorithm presented in Section405

3.3 and thus to identify the location of sensors as the inducing inputs.406

4.1. Constrained variational approximation407

The variational learning of the hyperparameters and the inducing inputs are obtained by maximizing the408

variational lower bound (11), which is in general an unconstrained non-convex optimization problem. Indeed,409

even if we may have positivity constraints on some hyperparameters, e.g., the variance and lengthscales of the410

kernel function, the fact that we approximate the log value of those hyperparameters transforms the problem411

to an unconstrained optimization. While this may not be an issue for the aforementioned hyperparameters,412

which appear to be squared in the kernel functions (7), we do need to impose some locality constraints on413

the inducing points to prevent them to be outside the input domain, especially when this is non-convex.414

Moreover, in some particular scenarios in the framework of SHM, one has to consider that it may be only415

possible to place sensors on a portion of the asset, e.g., sensors should not be placed inside a solid 3D416

structure, or they could only be placed on the above-surface structure of an offshore wind turbine, or only417

on the core of a nuclear reactor, avoiding the reflector subdomain [2].418

We consider sensor placement for a specific configuration, i.e., the input parameter µ is fixed in (13). For419

succinctness, we neglect the parameter dependence in this part, i.e., yi = yi(µ). Let ns be the number of420

sensors to be placed and Ωs ⊂ Ω the admissible domain for sensor locations. To overcome the issues related421

to unconstrained optimization mentioned above, the minimization of the negative variational lower bound422

(11) is modified as423

(Zopt,θopt) = arg min
z∈Ωs∀z∈Z, θ

−L(Z,θ),

where Z = [z1, · · · , zns ]T ⊂ Rd×ns is the collection of the ns sensor locations and each one of them is424

constrained to belong to Ωs. The optimization problem can be solved by common gradient-based constrained425

optimization algorithms, see e.g., [51], when Ωs is a continuous domain. However, in real-life engineering426

applications, due to the complexity of Ωs, it may be cumbersome to specify its boundaries analytically and,427

in such cases, it is worth to replace Ωs with a discrete counterpart comprising a finite number of admissible428

points |Ωs| � ns. This clearly poses a challenge for gradient-based techniques, which are not very efficient429

in discrete settings. To deal with real-world problems, we propose to use the genetic algorithm (GA) in our430

process. The GA, a type of evolutionary optimization algorithm, takes inspiration in the natural selection431

and undergoes three main stages: selection, crossover, and mutation [12, 42]. Having received increasing432

attention in the recent decade in the field of discrete optimization, the GA has been used to address several433
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optimal sensor placement problems [20, 33]. We propose to combine the gradient-based optimization with434

the GA to form an EM-like algorithm. At first, we fix the inducing points Z and employ a gradient-based435

algorithm to optimize the hyperparameters θ. We then fix the hyperparameters and use the GA to find436

the optimal inducing points. We lastly iterate over these two steps until convergence is reached. This437

approach is summarized in Algorithm 1. For the sake of completeness, we observe that, in case of continuous438

admissible domains Ωs, one can either choose to combine the two optimization steps mentioned above or to439

keep them separately by replacing the GA with another gradient-based constrained optimization to estimate440

the inducing points. The second approach is advantageous for continuous problems with a faster convergence.441

We finally remark that DEAP (Distributed Evolutionary Algorithms in Python) [16] is the framework used442

for the numerical implementation of the GA examples presented in this work.443

Algorithm 1: Variational approximation for systematic sensor placement

Input: training dataset {X,Y}, admissible set Ωs, and max iteration number kmax

Output: optimal constrained inducing points and hyperparameters (Zopt,θopt)
Initialization: set k = 0 and randomly initialize Zk s.t. zi ∈ Ωs for i = 1, . . . , ns
while not converged and k < kmax do

Compute the optimal hyperparameters θk+1 = arg minθ −L(Zk,θ).
Compute the optimal constrained locations Zk+1 = arg minz∈Ωs∀z∈Z−L(Z,θk+1)
Set k = k + 1

end
Set: Zopt = Zk, θopt = θk

4.2. Including parameter dependency in sensor placement444

Let us reintroduce the parameter dependency and consider a set of nµ parameters Dµ = [µ1, . . . ,µnµ ],445

where µj ∈ Ωµ for j = 1, · · · , nµ. Applying Algorithm 1 for all these parameters, we obtain a set of446

nµ parameter-dependent inducing points [Zopt(µ1), . . . ,Zopt(µnµ)], where Zopt(µj) correspond to the ns447

optimal locations for the specific parametric underlying system defined by µj ∈ Ωµ. Having a continuous448

mapping from the inputs to the outputs and under the assumption that the parameters in Ωµ only vary some449

accessory properties without altering the topology of the structure, it is reasonable to assume that each one450

of the ns inducing points Zopt(µj) lie in the neighborhood of the corresponding inducing point obtained for451

a different input parameter, i.e., Zopt(µi) for i 6= j and i, j = 1, . . . , nµ. Therefore, to include the parametric452

dependency and summarize the information from this set of nsnµ into a set of ns locations, we propose to453

employ the K-medoids algorithm to find ns clusters and its corresponding centers.454

Similar to K-mean algorithm, K-medoids is a clustering algorithm that breaks the data set into a user-455

defined number of groups and minimizes the distance of the center of each cluster and the points in it. The456

difference between these two clustering algorithms is that the K-means algorithm averages points within457

a cluster as the center, whereas K-medoids selects only data points as cluster centers. In comparison, K-458

medoids is more robust as the algorithm seeks to minimize the sum of dissimilarities of all points inside459

a cluster instead of the sum of squared Euclidean distances, as used in the K-means algorithm, which is460

sensitive to noise and outliers [4]. We point out that, in the numerical examples, the clustering step is carried461

out in Matlab [30] by employing the built-in function kmedoids. For more details on K-medoids algorithm,462

we refer the readers to [35, 4].463

We summarize the algorithm for sensor placement that incorporates parameter variation of a solid struc-464

ture in Algorithm 2. We notice that given different initial conditions, the K-medoids algorithm can lead465

to different clusters. The final decision can be made by either fixing the initial condition or by engineering466

experience across the resulting clusters.467

4.3. A tool for sensor sensitivity468

The technology proposed here can also be applied to answer a few related questions: (i) how many sensors469

are needed to achieve a prescribed precision? (ii) what is the expected sensitivity of a fixed sensor network?470

(iii) when a fixed network of ns sensors already exists, given a budget of nextra
s additional sensors, where471
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Algorithm 2: Parametrized variational approximation for systematic sensor placement

Input: parametric training dataset {X,Y(µj)}
nµ
j=1 and admissible set Ωs

Output: optimal constrained sensor locations Zopt

for j = 1, · · · , nµ do
Apply Algorithm 1 to data set {X,Y(µj)} to get ns inducing inputs Zopt(µj) constrained to Ωs

end
Apply K-medoids algorithm to the nsnµ inducing inputs [Zopt(µ1), . . . ,Zopt(µnµ)] to get ns clusters
Set: Zopt = cluster centers

should these be placed to achieve optimal coverage? Properly addressing these queries is of great importance472

in the maintenance of real-life engineering problems.473

The first point refers to the need of defining a suitable measure to quantify the quality of the locations,474

whether they are obtained with the proposed variational approach or already placed on the monitored struc-475

ture. A straightforward choice is to compute the reconstruction of the quantity of interest, i.e., mq
Y(µj)

(xi) at476

all training points xi ∈ X, for i = 1, . . . , ndof. Here mq
Y(µj)

(xi) is the mean of the posterior distribution (12)477

of the sparse model based on the variational parameters, i.e., outcome of Algorithm 2. Hence, the relative478

reconstruction error of the quantity of interest at unsensed locations can be used as an indicator of the sensor479

sensitivity. On one hand this quantity grows as we move away from the sensors and, on the other hand,480

increasing the number ns of sensors is expected to improve the global coverage. Moreover, we define the481

average relative reconstruction error over the nµ samples as482

R =

nµ∑
j=1

1

nµ

‖Y(µj)−mq
Y(µj)

(X)‖
‖Y(µj)‖

, (14)

where Y(µj) is the simulated quantity of interest (5). A low R value is an indicator of a good global placement483

which takes the parametric dependency of the structure into account. An additional indicator to quantify484

the quality of sensor placement is the point-wise relative variance reduction, defined as485

Vi =
KimK−1

mmKmi

Kii
, for i = 1, . . . , ndof, (15)

where K is the kernel matrix with optimized hyperparameters defined in Section 3. This quantity expresses486

how much variance reduction can be achieved by including the chosen sensor locations. A relative variance487

reduction close to one indicates that the inducing variables alone can reproduce the full GP prediction well.488

Finally, we note that in the variational inference framework of the proposed approach, it is possible489

to jointly optimize some inducing inputs and keep the already existing sensor locations fixed. Thus, the490

strategy presented in this work can be efficiently implemented to systematically place additional sensors491

while accounting for the already existing structural coverage.492

5. Numerical results493

In Sections 5.1, 5.2, and 5.3, we provide examples of sensor placement in two and three dimensions for494

which we use the methodology presented in Section 4. A wave-based monitoring strategy is employed for the495

2D and 3D examples given in Sections 5.1 and 5.2, respectively. Here, we resort to the mean reconstruction496

error and the relative variance reduction to test the quality of the sensor locations. Section 5.3, instead,497

presents a real-life engineering example, for which a static monitoring approach is used. Taking into account498

the complexity of the geometry and the large number of degrees of freedom, tests to assess the good quality499

of the placement are performed by looking at the achieved accuracy in detecting damages. The synthetic500

databases used in the training phase are constructed following the procedure given in Section 2.501

5.1. Two-dimensional examples for the guided-wave problem502

The examples in this section follow the wave-based monitoring approach, for which we train a variational503

sparse GP model with compressed signals. We consider the same governing problem (1) for three different504
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geometries shown in Figure 1 and we refer to these problems as Problems 1a, 1b, 1c, whose domains will be505

identified by Ωa,Ωb, and Ωc, respectively.506
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Figure 1: 2D examples with different geometries: Problem 1a relies on 360 training inputs (small black dots), corresponding to
the vertices of a coarse mesh over the domain, while Problems 1b and 1c have 286 and 375 training points, respectively. The
location of the center of the active source is the same for three geometries and corresponds to S̄ = [0.54, 0.125] (black triangle).

For each problem, we consider zero initial conditions for both the displacement and the velocity and prescribe507

free slip boundary conditions, i.e.,508 {
u · n = 0

(σ · n) · τ = gN
on ∂Ω,

where τ is the tangential vector to ∂Ω and gN = 0 for simplicity. The high fidelity numerical solutions509

of (1) are computed using the FE approximation by P1 elements over a domain discretized in tetrahedral510

cells with a total of Nh = 30′912 degrees of freedom, while for the RB solver we rely on 267 basis for Problem511

1a. Similar order of magnitudes of these parameters are used for the other two problems: Nh = 31′200 and512

284 basis for Problem 1b and Nh = 26′072 and 306 basis for Problem 1c. For the discretization in time,513

we consider Nt = 20′000 and T = 20 for the three problems. The natural variations are described by three514

parameters, i.e.,515

µ = [E, ν, k] ∈ Ωµ = [0.999, 1.001]× [0.329, 0.331]× [1.9, 2.1] ⊂ R3, (16)

where E is the Young’s Modulus, ν the Poisson’s ratio which determines the Lamé constants (2) and k is a516

parameter of the active source function s(x, t;µ), defined as follows517

s(x, t;µ) =
exp

{
−
∑d
i=1

(xi−µ̄i)2
2σ̄2
i

}
2πσ̄d

ks sin(kπt) te−t. (17)

Here, σ̄ = 0.01 represents the width of a Gaussian centered at S̄ = [0.55, 0.125] with fixed amplitude coefficient518

ks = 100. The parameter k represents the number of cycles before attenuation of the source impulse. For519

each problem we consider nµ = 100 samples and, to obtain a well balanced dataset, we sample from a Sobol’s520

sequence [23], i.e., a base-2 digit sequence which provides a successively finer uniform partition of the intervals521

Ωµ. We note that the density and damping coefficients are fixed, i.e., ρ = 1, η = 0.1, respectively.522

The training points X ⊂ Rndof ⊂ Ωi with i = a, b, c are obtained by fixing the same size of a coarse523

mesh for the three problems, thus recovering ndof = 360, ndof = 286, and ndof = 375 mesh points, for524

Problems 1a, 1b, and 1c respectively1. We observe that the mesh points on the boundary are not included525

in the training set. This correspond to a practical choice due to the free-slip boundary conditions, for which526

at least one of the the two displacement directions will be identically zero on each boundary edge. For527

each geometry we consider dy = 3 quantities of interest (5) to train the variational sparse GP, i.e., the first528

1We note that the ndof degrees of freedom refer to the number of training points for the sensor placement strategy and they
are independent from the Nh degrees of freedom used in the numerical simulations in Section 2.2. In general, ndof � Nh.
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three principal components of the Q = 12 features extracted from the discrete time-dependent displacement529

signals (3), obtained for µ1, . . .µnµ . We note that for Problems 1a, 1b, and 1c, the first three principal530

components account for more than 80% of the variability. By way of example, Figure 2 shows the normalized531

features over the nµ samples and the corresponding principal components for Problem 1a with µ = [1, 0.33, 2].532

Normalization is performed by features, i.e., the means m̄1, . . . , m̄Q and variances σ̄1, . . . , σ̄Q are computed533

for each one of the Q features over all training points (e.g., ndof = 360 for Problem 1a) and all simulations534

obtained for nµ input parameters.535

(a) Normalized features.

(b) Principal components.

Figure 2: Example of normalized features extracted from the solution obtained by solving the acoustic-elastic problem on the
geometry 1a with µ1 = [1, 0.33, 2] (a). The first and second row show the 6 features related to the displacement along the x
and y directions, respectively for a total of Q = 12 features. The Q corresponding principal components are shown in (b). The
first three principal components account for 60.5%, 13.3%, and 11.5% of the variability, respectively for a total of more than
85%. Similar values are obtained for all the other samples and, for the other two geometries, i.e., Problems 1b and 1c, the
importance of the three components is more balanced. The mean and standard deviation used for the normalization are based
on the features extracted from nµ = 100 samples, obtained using the first 100 parameters of a Sobol sequence based on Ωµ.

In terms of setup for the GPR, we note that for all the three examples, we use the ARD-Exponential536

kernel (7), which provide the best performance on the training set with respect to other popular choices, the537

Squared Exponential, Matérn-32 ad Matérn-52, both ARD and not.538

By applying the sensor placement methodology described in Section 4 for {X,Y(µj)}
nµ
j=1, we obtain the539

systematic placement of sensors shown in Figure 3. For each geometry, the plots overlay the locations of540

the ns = 4, 9, 16, 25 inducing points obtained by applying Algorithm 1 nµ times over the admissible domains541

Ωa, Ωb, and Ωc, i.e., a total of nsnµ inducing inputs, sometimes overlapping, is shown. The sets of inducing542

points are compared with the corresponding centroids, obtained by applying Algorithm 2, and, as an example,543

the inducing points obtained by applying Algorithm 1 for the first Sobol’s parameter µ1 = [1, 0.33, 2] are544

also shown. While for larger numbers of inducing points, clusters appear to be more visible, for smaller ns,545

the location of the nsnµ inducing inputs shows more variability. This can be explained by the fact that546

the optimal inducing inputs are optimized to reconstruct different quantities of interests, which depend on547

the input parameter µj . However, one also have to consider that, when trying to reconstruct a non-trivial548

quantity of interest over a complex structure with only few ns points, the sparse model might get stuck in a549
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local minimum without reaching convergence. For example, the inducing points obtained for µ1 for Problem550

1a and ns = 9 are not very well distributed over the entire domain. Nevertheless, the centroids seem to be551

a good summary of the entire underlying phenomena. Indeed, as shown in Figure 4, the optimal centroids552

obtained by clustering the results over the first nµ = 10 or the entire parameter domain, i.e., over nµ = 100553

sample, are almost always indistinguishable. We note that purple stars in Figure 4 correspond to the same554

centroids shown in Figure 3, i.e., obtained by averaging the results of nµ = 100 samples.555

Figure 3: Comparison of the location of inducing points obtained by applying Algorithm 1 for nµ = 100 samples (cyan squares)
and the corresponding ns centroids obtained with Algorithm 2 (red stars). The inducing points obtained for one particular
sample, i.e., µ = [1, 0.33, 2], are also shown (yellow circles). Each row shows a different geometry while each column shows a
fixed number ns of inducing points, which increases from left to right, i.e., ns = 4, 9, 16, 25.

As mentioned in Section 4.3, two ways to quantify the quality of the sensor placement outcome are556

by means of the reconstruction error and the variance reduction. Figure 5 shows the point-wise mean557

reconstruction of the first sample for Problems 1a, i.e., mq
Y(µ1)(xi) with xi ∈ X. We observe that as ns558

increases, the different characteristics of the three principal components become visible in the reconstruction.559

We also note that reconstruction accuracy achieved for the first principal component Y1 is higher than the560

one for the other two. Indeed, the highest variability of the first principal component correspond to a less561

noisy field, simpler to be reconstructed by means of GPR. We remark that similar results are obtained for562

Problems 1b and 1c. Figure 6 shows, for the three problems, the mean reconstruction error over the nµ563
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Figure 4: Comparison of the centroids obtained with Algorithm 2 for different number of samples nµ, namely nµ = 10, 40, 70
and 100. Each row shows a different geometry while each column shows a fixed number ns of inducing points, which increases
from left to right, i.e., ns = 4, 9, 16, 25.

samples, defined in (14), for the three quantities of interests as a function of the number ns of inducing564

points. These errors are compared to those obtained by reconstructing the principal components using the565

centroids as fixed variational hyperparameters in a new sparse GPR model. We observe that the difference566

between these two is minimal, which implies that the centroids are good approximations of the inducing567

points for sensor placement. Finally, Figure 7 shows the relative variance reduction (15), averaged over the568

nµ samples. A variance reduction above 0.7 almost everywhere even for ns = 4 is an indication of good569

sensor placement.570

To conclude, Figure 8 compares the position of the centroids obtained with Algorithm 2 with the centroids571

obtained by applying the K-medoids algorithm to the training points X directly. This strategy is chosen as572

a proxy to place points equidistantly over a complex domain. Although this naive strategy may seem to give573

almost as good results as the laborious methodology followed to obtain the variational centroids, as shown574

in Figure 9, placing sensors without including physical information does not yield a good result. Indeed, the575

mean reconstruction accuracy obtained by training a new variational sparse GP model with fixed inducing576

inputs as the centroids obtained by K-medoids on the training points is not as good as the one obtained with577

variational centroids.578
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Figure 5: Comparison of the first three principal components obtained for Problem 1a either by extracting the features from
the time signals and then performing PCA (first row) or by sparse GP reconstruction using ns = 4, 9, 16 or 25 inducing points
(second to fifth rows). As the number of inducing points increases, the output of interests can be better reconstructed. The
reference principal components correspond to the results obtained for µ1 = [1, 0.33, 2]. The color scale is the same for the
reference and the corresponding reconstructions.

5.2. A three-dimensional example for the guided-wave problem579

The sensor placement strategy following the guided-wave monitoring approach can be extended to 3D580

problems. Let us consider the geometry of a T-beam as shown in Figure 10. We consider the acoustic-elastic581

model (1) with zero initial conditions and homogeneous Dirichlet boundary conditions imposed on the surface582

z = 0 together with zero traction on the remaining surfaces. We compute the high fidelity solutions using583

the FE approximation by P1 elements over a fine mesh with Nh = 262′863 degrees of freedom and for the584

low fidelity model we use 505 basis. For the time discretization, we set Nt = 10′000 and T = 10. We consider585

the same parameter space (16) as for the 2D problem, where k is the free parameter of the the active source586

function (17), centered at S̄ = [0.7, 1, 2]. The training dataset corresponds to ndof = 4688 input points of a587

coarse mesh restricted to the Neumann surfaces and dy = 4 output of interests, i.e., the first four principal588
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Figure 6: Mean reconstruction errors with error-bars with respect to the number ns of inducing points for the first, second and
third principal components (solid lines) used to train the variational sparse GP model. The corresponding mean reconstruction
error, obtained by training a new variational sparse GP model with fixed inducing inputs corresponding to the centroids, is also
shown (dashed lines). Each plot shows the result for one of the three geometries.

Figure 7: Relative variance reduction (15) obtained using ns centroids and averaged over nµ samples. Each row shows a
different geometry while each column corresponds to a fixed number ns of inducing points, which increases from left to right,
i.e., ns = 4, 9, 16, 25. The color scale is the same for all the plots.

components of the normalized Q = 18 features, extracted from the discrete time signals, as described in589

Section 2.3. We note that the union of the first four principal component accounts for more than 90% of the590

total variability for all samples. By way of example, the first two components obtained for µ1 = [1, 0.33, 2]591

are shown in the first row of Figure 12. After running Algorithm 2 for nµ = 10 Sobol’s parameters, we obtain592

the inducing points and the centroids of the K-medoid clusters shown in Figure 11. Figure 12 also shows593

the mean reconstruction of the first two output of interest mq
Yj(µ1)(X), for j = 1, 2, over the training set X594

for a fixed parameter µ1 and increasing number of sensors, i.e., ns = 4, 16, 36. As expected, the different595

characteristics of the output of interest become more visible in the predictions as the number of sensors596

increases. Finally, the relative variance reduction (15), with respect to the centroids and averaged over nµ597

samples, is shown in Figure 13 for all training points. An overall relative reduction above 92% is achieved598

already for ns = 4 sensors.599
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Figure 8: Comparison of centroids obtained using Algorithm 2 (red stars) and the naive clustering, referred to as equidistant
points (cyan down-facing triangles). Each row shows a different geometry while each column shows a fixed number ns of
inducing points, which increases from left to right, i.e., ns = 4, 9, 16, 25.

4 9 16 25

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

4 9 16 25

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

4 9 16 25

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 9: Mean reconstruction errors with error-bars with respect to the number ns of inducing points for the three quantity
of interest jointly (solid line) used to train the variational sparse GP model. The corresponding mean reconstruction error,
obtained by training a variational sparse GP model with fixed inducing inputs corresponding to the centroids is also shown
(dashed line) together with the one where the fixed inducing inputs are the naive centroids (dotted line). Each plot shows the
result for one of the three geometries.
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Figure 10: 3D geometry of a T-beam with 4688 training points (small black dots), corresponding to the vertices of a coarse mesh
over the domain. The location of the center of the active source corresponds to S̄ = [0.7, 1, 2] (black triangle). The Dirichlet
boundary corresponds to the surface at z = 0 (cyan filled surface).

Figure 11: Comparison of the location of inducing points obtained by applying Algorithm 1 for nµ = 10 samples (cyan squares)
and the corresponding ns centroids obtained with Algorithm 2 (red stars). Each plot shows a different fixed number ns of
inducing points, i.e., ns = 4, 9, 16, 25, 36.

5.3. Application to a realistic geometry of an offshore jacket600

We now consider a real-life engineering example of an offshore jacket, consisting of 192 components, as601

shown in Figure 14. The bottom of the jacket is fixed on the ground and other boundaries are assumed to602

be free. We introduce two parameters, µx, µy ∈ Ωµ = [0.1, 1] kPa, representing the surface wind loads on the603

64 components in the dark box in Figure 14 in the x and y directions, respectively. We assume the jacket to604

be linear elastic with Young’s modulus E = 200 GPa and Poisson’s ration ν = 0.3. As mentioned in Section605

2.3, the displacements under different load combinations are chosen as quantity of interest. The degrees of606

freedom of the full model exceed four million in the original finite element model which is solved by the607

SCRBE solver from Akselos [1]. To further accelerate the process, the degrees of freedom can be drastically608

reduced by taking a random subset of points within each component as representatives of that component.609
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Figure 12: Comparison of the first two principal components obtained by extracting the features from the time signals and then
performing PCA (first row) or by sparse GP reconstruction using ns = 4, 16, or 36 inducing points (second to fourth rows). As
the number of inducing points increases, the output of interests can be better reconstructed. The reference principal components
correspond to the results obtained for µ1 = [1, 0.33, 2]. The color scale is the same for the reference and the corresponding
reconstructions.
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ns = 4 ns = 16 ns = 36

Figure 13: Relative variance reduction (15) obtained using ns centroids and averaged over nµ samples. Each plot shows a
different fixed number ns of inducing points, which increases from left to right, i.e. ns = 4, 16, 36. The color scale is the same
for the three plots.

In this way, the total number of degrees of freedom decreases to Nh = 4632. Here, we choose to first identify610

the optimal ns components and then place one sensor per chosen component instead of computing the exact611

locations of the sensors directly. We note that this is a practical procedure in real-life engineering where the612

exact location of a sensor on a chosen component can be decided later, both empirically through engineering613

experience and practicality. We assume a budget of ns = 10 displacement sensors and, for each one of the614

192 components, we fix a sensor location, e.g., the point near the geometric center of that component. Thus,615

the admissible set Ωs is such that |Ωs| = 192. We randomly generate nµ = 40 samples in Ωµ and apply616

Algorithm 2 to get the ns cluster centers as the components for sensor placement, as shown in Figure 15.617

We note that though the geometry of the jacket structure is complicated, the chosen components are dis-618

tributed approximately evenly over the whole domain, providing evidence that employing variational inference619

of sparse GPRs prevents waste of sensed information. To validate this sensor configuration, considering the620

complexity of the geometry and the large number of degrees of freedom, we return to the anomaly detec-621

tion strategy introduced in Section 2.1. First, we place ns = 10 displacement sensors on the surface of the622

optimal components and then train a one-class support vector machine (OC-SVM) classifier for each sensor623

location, following the procedure presented in [5], for nµ = 100 samples, randomly generated from Ωµ. We624

observe that for real-life engineering problems, to assess the most probable damages, one may include know-625

how and experience of engineers. For the proposed configuration, we consider an increased wind load, i.e.,626

Ωextra
µ = [1, 1.5] kPa, to represent a source of potential structural damages. We design four test scenarios,627

depending on the chosen input parameter space, i.e., either the baseline Ωµ or the modified Ωµ, and for628

each case we sample nµ = 100 parameters. In particular, case 1 corresponds to the healthy scenario, i.e.,629

µx, µy ∈ Ωµ; case 2 and 3 represent scenarios of potential minor damages, i.e., we choose µx ∈ Ωextra
µ and630

µy ∈ Ωµ for case 2 and, the opposite, i.e., µx ∈ Ωµ and µy ∈ Ωextra
µ for case 3; lastly, for case 4, the loads in631

both directions are sampled from the extended parameter space, i.e., µx, µy ∈ Ωextra
µ . The trained OC-SVM632

classifiers are then used for testing, as shown in Table 1 and Table 2. We observe that under these conditions,633

the classifiers, trained with only nµ = 100 samples, provide accurate results for all four scenarios. However,634

among all scenarios, we observe that for case 2 we do not get as accurate results as compared to other cases.635

We point out that the test cases are randomly generated and we notice that the false positives in cases 2636

and 3 correspond to the situation in which one of the two parameters, i.e., either µx or µy, sampled from637

Ωextra
µ , is close to the lower bound, i.e., close to the healthy domain Ωµ, fooling the classifier. In this case,638

the accuracy of the classifier can be improved by enlarging the training data set. Finally, we remark that,639

given the general situation where various types of anomalies in different locations can appear during the640

life time of a structure, relying on the assumption that we only have access to the simulation data of the641

healthy structure allows us to present a systematic way to place a designed amount of sensors to encourage642

the representation of the statistics of the whole domain while preventing sensed information waste.643

6. Conclusions644

A systematic approach to address the sensor placement problem in a SHM context where no prior knowl-645

edge on the damages is assumed is proposed. The examples presented in this work provide numerical evidence646
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Figure 14: Jacket model: wind loads applied on components in the square.

that the variational inference of sparse GPR can be modified to place the sensors on structures characterized647

by complex geometries. The proposed approach is validated against both 2D and 3D numerical examples to648

confirm the quality of the sensor placement. We note that one of the novelties of the proposed method is that649

it does not assume any prior information of the anomalies, hence, it is robust to different type and severity650

of damages. In this work, the generation of synthetic healthy databases leverages reduced order modeling651

techniques to efficiently include physical and geometrical parametric dependencies. As a direct consequence,652

the method is easily extendable to other structures and avoids high computational costs related to simulating653

high fidelity models and considering all possible damage combinations.654

We finally remark that in real-life engineering, the parameter space describing the natural variations655

of a large-scale structure is expected to be high dimensional. The procedure explained in this work can656

be extended to many parameters, but it requires a higher computational effort for both the construction657

of an healthy database and the training of multiple sparse variational GPR models. When the number of658
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Figure 15: Jacket model: components chosen for sensor placement.

parameters is too large, one may rely on methodologies that compress the parameter space by retaining only659

those few parameters that influence the quantity of interest the most. The variance-based global sensitivity660

indices (Sobol’s indices) [46] and the derivative based global sensitivity measures (DGSM) [26] are popular661

choices.662
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