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Multistability in Kerr resonators which are driven by continuous or modulated optical waves gives rise to
the superposition of distinct nonlinear states, yielding a unique platform for studying complex soliton
dynamics. Here, by pumping a crystalline microresonator with two lasers that are frequency detuned from
each other by one or multiple cavity free spectral ranges, we go beyond the traditional bichromatic pumping
framework and enter an unexplored multistability regime that allows observing novel dynamics including
composite solitons and successive soliton collisions. We generate complex frequency comb patterns,
observing the velocity mismatch between the solitons and the dual-pumping-induced lattice traps and
showing the synchronization of the repetition rates of constituent distinct solitons under the influence of
index-barrier-induced intersoliton repulsion. We also demonstrate soliton collisions and observe transient
soliton response with spectral analysis and ultrafast imaging, highlighting the eigenfrequency of dissipative
soliton dynamics that coincides the “soliton (S) resonance.” Furthermore, we exploit the higher-order
dispersion effect to manipulate the intrinsic group velocity mismatch between distinct solitons and
demonstrate reversible switching between the composite soliton state and the soliton collisional state. Our
findings bring to light the rich physics of the Kerr multistability and may equally be useful in microcomb-

based spectroscopy and metrology.

DOI: 10.1103/PhysRevX.10.021017

I. INTRODUCTION

Optical temporal solitons, particlelike optical wave
packets that maintain their shape during propagation, have
been extensively studied in fibers and lasers [1,2], owing to
both the fascinating physics they present and the promise
in optical communication, which however has not
materialized due the potential cost of infrastructures that
are compatible with wavelength division multiplexing.
Dissipative solitons, which rely on a double balance of
gain and loss as well as nonlinearity and dispersion, are
however routinely used in mode-locked lasers. In recent
years, a particular type of cavity solitons—temporal sol-
itons in dissipative systems [3] with Kerr nonlinearity, also
known as dissipative Kerr solitons (DKSs)—have been
attracting surging research interest in platforms ranging
from bulk free-space cavities [4] and fiber ring resonators
[5] to microresonators of a variety of host materials [6,7].
In particular, DKSs generated in microresonators are,
on the one hand, promising for numerous applications
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including spectroscopy [8,9], low-noise microwave gen-
eration [10,11], imaging [12], and telecommunication [13]
as they produce miniaturized and coherent frequency
combs (microcombs). On the other hand, DKSs exhibit
a plethora of interesting phenomena such as Stokes solitons
[14], soliton breathers [15—-17], and soliton crystals [18].
Yet, to date, direct soliton interactions, including short-
range binding [19,20] and collision [21,22], have not been
thoroughly investigated in DKSs, despite the fact that they
hold critical importance, not only for understanding the
fundamental soliton dynamics, but also for applications
such as a vernier spectrometer using counterpropagating
DKSs [23], as well as tricomb spectroscopy [24] with
spatial multiplexing of DKSs [25]. The difficulty is
threefold: first, solitons pumped by the same lasers have
the same group velocity, which makes the control of the
relative locations of solitons difficult; second, because of
the low output power and the high repetition rate of
microresonator DKSs, commonly employed imaging tech-
niques including dispersive Fourier transformation tech-
nique [26] and electro-optic imaging technique [27] cannot
be applied to image the close interaction of similar DKSs
due to the limited temporal window or the coarse reso-
lution; third, because of internal disturbances such as mode
crossings [28], DKSs usually interact with other DKSs via
long-range dispersive-wave-mediated effects [29-32],
forming groups with large intersoliton separations, thus
prohibiting the inception of direct binding and collision.
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FIG. 1. Multistability dynamics in a dual-pumped Kerr resonator. (a) An illustration of the two possible dynamic states enabled by

bichromatically pumped multistability, namely the composite soliton and the soliton collision. (b) The concept of the bichromatic-
pumping-enabled multistability in the frequency domain. (c) In the time domain, the two solitons (bound in the figure) travel at a
velocity different from that of the intracavity lattice traps. (d) The two microcombs which correspond to the two distinct DKSs.
(e) Experimentally generated comb power as the two lasers are swept across the resonances with a detuning difference Q. The four
labeled panels respectively correspond to (1) Q/2z = —20 MHz, both the soliton steps driven by the two lasers are shown separately,
(2) Q/27 = 0 MHz, only one soliton state exists, (3) Q/2z = 10 MHz, the primary-pumped soliton state disappears after the secondary
pump is coupled in efficiently, (4) /27 = 20 MHz, the coexistence of distinct soliton steps shows between the dashed lines. (f) The
simulated intracavity intensity evolutions with conventional dual-pumped soliton lattice traps (upper panel, §; = ,) and bichromatic-
pumping-enabled multistability (lower panel, §; — §, = 70k). The relative drifting of the DKS driven by the secondary laser in the lower
panel is a result of the different intrinsic soliton group velocities due to the FSR difference between the two pumped resonances. The
secondary solitons annihilate close to the end of the simulation because the effective detuning reaches the end of the secondary soliton

existence range, which is much narrower than the primary soliton existence range due to the lower pump power.

Prior works used injected potential wells to trap multiple
solitons together, which led to merging or annihilation of
solitons [33-36], but, in general, the generation and the
flexible control of close soliton binding and soliton collision
are extremely challenging, and have not been studied
experimentally.

In this work, by simultaneously pumping two optical
resonances in the same mode family of a microresonator,
we demonstrate that each resonance can be independently
driven to its upper or lower stable branch of Kerr bistability
[37,38]. As a result, the system can be operated in the
regime of multistability, where multiple stable equilibrium
states are allowed [39—42]. This bichromatically pumped
multistability allows us to deterministically generate soliton
collisions as well as composite solitons [see Fig. 1(a) for
conceptual illustrations], which consist of two different
solitons that mutually trap each other and form a stable

soliton bound state [43]. Owing to the nonoverlapping comb
spectra of different solitons, with an electro-optic sampling
technique we are able to unveil not only the subpicosecond
intersoliton separations in a composite soliton state, but also
the eigenfrequencies of DKS dynamics when a collision
event occurs. Moreover, by tuning the intrinsic group
velocity difference between two dissimilar DKSs, we switch
between the composite soliton state and a collisional state
(characterized by periodic DKS collisions) in a reversible
manner without soliton merging or annihilation.

II. BICHROMATICALLY DRIVEN
MULTISTABILITY

Figures 1(b)-1(d) illustrate the concept of bichromatic-
pumping-enabled multistability. Two resonances in the
same mode family are pumped by two laser fields with
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respectively controlled pump-resonance detunings o; and
0,. When the mismatch between the two detunings is
relatively small, the beating of the laser fields creates
potential wells on the amplitude or phase-modulated intra-
cavity field, which are essentially lattice traps that can trap
solitons and discipline the soliton group velocity (repetition
rate) [34,44,45]. Similar situations have also been demon-
strated with a pulse pumping scheme [45,46], although the
lattice traps are created by multiple, rather than two,
pumping laser fields. Once the detuning mismatch exceeds
the maximum trapping range such that solitons can no
longer follow the lattice traps, they drift to a location where
the amplitude of the modulated intracavity field is below
the critical point for soliton existence, leading to soliton
annihilation [45]. Until now, the bichromatically pumped
system has been operated in the well-known bistability
regime [47-49] where only one DKS species can be
generated. However, as the detuning mismatch continues
to increase, the bistability paradigm fails, and the system is
admitted to the multistability regime, where both resonan-
ces can be pumped to the upper branches of the Kerr
bistability [see Fig. 1(b)], supporting their own DKS. In
this situation, in time domain, the intracavity field shows
the coexistence of two distinct DKS species and the
lattice traps that are drifting with a different velocity
[see Fig. 1(c)]. One should note that this bichromatically
driven multistability is physically distinct from the multi-
stability regime driven in a single resonance by a modulated
laser [41], as the modulated light source in the earlier work
could not create soliton lattice traps with intracavity
potential wells. In contrast, here the solitons are continu-
ously drifting over the minima and maxima of the lattice
traps, yet they are able to survive. In the frequency domain
such a coexistence of solitons generates two sets of
microcombs mutually interleaved [see Fig. 1(d)].

Figure 1(e) shows the experimentally generated micro-
comb power when a primary laser (~400 mW) and a
secondary laser (~100 mW) are coupled into a magnesium
fluoride (MgF,) microresonator with a free spectral range
(FSR) of 14.09 GHz. With the total pump power of
~500 mW from an erbium-doped fiber amplifier (EDFA)
that is used to amplify both the primary and the secondary
lasers, this power ratio is suitable for achieving a maximum
soliton coexistence range. The frequency separation between
the two lasers is 28.18 GHz (i.e., 2 FSRs). Four representative
snapshots are displayed as the detuning mismatch (6, — ;)
changes from —20 to 20 MHz. When the mismatch is close to
0 MHz, i.e., the lattice trap’s group velocity matches that of
solitons which are pumped primarily from the primary laser,
typical DKS signatures (i.e., soliton steps) are observed,
which means that the DKSs in bistability can be generated
and trapped. As the mismatch increases, at first the solitons
generated by the primary pump cannot survive after the
secondary pump is efficiently coupled into the cavity. How-
ever, when the mismatch reaches approximately 20 MHz

[panel 4 of Fig. 1(e)], the DKS step corresponding to the
secondary laser is observed to coincide within the step region
of the primary soliton, indicating the appearance of multi-
stability as two different kinds of classical bistable DKSs are
excited simultaneously.

We model this scenario using the Lugiato-Lefever
equation (LLE) [50-52], which we express as

aAaLt(t) = (—%—l— i(276) + iDint(ﬂ)>Aﬂ

— igF[|APPA], + (8,0 + B ™) VVikex - Sins (1)

where Aﬂ and A are the spectral and temporal envelopes of
DKSs, respectively [related via A(1) = Y, A,e™#P1], k is
the cavity loss rate, g is the single-photon-induced Kerr
frequency shift, k., is the fiber coupling rate, |s;,|*> denotes
the pump power, J,, and J,,,, are Kronecker delta functions,
D (1) is the integrated dispersion that is defined as
Din () = w, — 0y — puD,, and FJ|, represents the uth
frequency component of the Fourier series. The secondary
pump is incorporated into the driving term with a ratio
and an extra detuning Q. With these notations the primary
pump (i.e., the pump with the larger effective detuning)
exhibits a mode number of x4 = 0, while 7 is the secondary
pump mode number.

We perform simulations for the two representative
scenarios of conventional dual-pumped soliton lattice
trapping and the coexistence of distinct DKSs, respectively.
The top subplot in Fig. 1(f) shows the generation and the
evolution of DKSs as two lasers of identical detunings are
swept across the resonances. Multiple solitons are generated
after the modulation instability (MI) stage and they are
attracted to certain locations by the lattice traps (which are
visible in the background; see Supplemental Material [53]
for more details). However, as seen in the bottom subplot,
when there is a significant amount of detuning mismatch
(70x), as the two lasers are scanned over the resonances, both
of them generate their own DKS after the MI (at locations
around 200 x 10% and 900 x 103 round-trip counts) and the
two different DKS states coexist, without being affected by
the rapidly drifting lattice traps that are constituted by the
background continuous wave (cw) drive fields.

III. COMPOSITE SOLITONS

We first investigate the case where two pump lasers are
closely spaced (i.e., |n| < 3). Two telecom band lasers with
a linewidth of ~10 kHz are operated in free-running
conditions, pumping two resonances after amplification.
Figure 2(a) presents an optical spectrum of the coexisting
DKSs for the secondary laser pumping the adjacent mode
(i.e., 4 = —1.) The DKS examination setup is similar to the
one in Ref. [41], which uses an electrical spectrum analyzer
(ESA) to monitor the DKS repetition rate f., and a vector
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FIG. 2. Observation of dual-pumped composite solitons. (a) Optical spectrum of a composite soliton with n = —1. The inset on the left

shows the central part of the spectrum. The inset on the right shows the measured single repetition rate of the composite solitons. The
resolution bandwidth (RBW) of the measurement is 100 Hz. (b) The measured response of pump probing by vector network analyzer.
Two pairs of “S resonance” and “C resonance” are indicated. (c),(d) Two examples of generated composite soliton spectra corresponding
to the pumping schemes shown in the left-hand insets with n = 2 and n = -3, respectively. The qualitative illustrations of constituent
primary and secondary soliton patterns are exhibited in the right-hand insets, respectively.

network analyzer (VNA) to measure the transfer function of
the Kerr resonator [66—68]. The optical spectrum shows that
a primary DKS and a secondary DKS coexist, and the
transfer function in Fig. 2(b) also shows two pairs of typical
“Sresonance” and “C resonance,” each of which corresponds
to a unique DKS state. Since the second-order dispersion
coefficient ((D,/2x)) is 2 kHz, the difference between the
intrinsic repetition rates of the two solitons is equally
expected to be 2 kHz. However, we observe only a single
repetition rate, which suggests that the two distinct solitons
form a bound state and travel with identical group velocity.

We generate multiple spectra of superpositions of pri-
mary and secondary DKSs with varied |n|, two of which are
presented in Figs. 2(c) and 2(d) for examples. The
compositions of constituent DKSs are inferred from the
interference patterns [41] of the comb spectra and quali-
tatively shown in the insets. Despite the coexistence of
multiple soliton states giving rise to a kaleidoscope of
complex DKS microcomb patterns, there is always only a
single repetition rate observed, which suggests that the
primary solitons and the secondary solitons are stably
bound together when their difference in intrinsic soliton
group velocity is relatively small.

Our theoretical analysis based on coupled LLEs
reveals that unlike the binding between similar DKSs in a
monochromatically pumped multisoliton bound state that
locks the relative phases between solitons [29,30], the
formation of composite solitons as studied here relies on

the soliton-imposed refractive index barriers which are
induced by the cross-phase-modulation (XPM) effect (seethe
Appendix A and Supplemental Material [53] for details). In
contrast to the large intersoliton separations in the mono-
chromatically pumped multisoliton bound state, the separa-
tions between distinct DKSs in the case of multistability are
close to the soliton durations. To verify the structures of the
composite solitons, we use an electro-optic comb (EOC) to
conduct ultrafast sampling [27,41]. Figure 3(a) depicts the
concept of the sampling technique that allows us to measure
the intersoliton separations between distinct DKSs with
subpicosecond resolution (see the figure caption and
Appendix B for details). Figures 3(b)-3(d) show the optical
spectra and the sampled interferograms of three different
composite solitons (left-hand panels) and the examples of
corresponding sampled structures (right-hand panels), with
averaged intersoliton separations indicated. The simulated
composite soliton profiles are presented in the insets, showing
remarkable agreement between the theoretically predicated
intersoliton separations and the experimental results. All the
measured separations are of only a few hundred femto-
seconds, evidencing a direct soliton interaction that is
fundamentally different from the dispersive-wave-mediated
long-range interactions [29-31] between similar solitons.

IV. SOLITON COLLISIONS

Our observation of composite solitons reveals the role of
XPM in binding distinct DKSs. Naturally, one would
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Measurement of intersoliton separations. (a) Conceptual illustration of the process of determining intersoliton separations in

composite solitons. Similar to the principle of the dual-comb spectroscopy, the EOC beats with the DKS at the receiving photodetector,
generating interferograms [27]. Owing to the frequency offset between the primary and the secondary combs, the interferograms can be
separated into the primary ones and the secondary ones, which allow the separations between distinct DKSs to be measured with a
resolution that is much shorter than the temporal duration of the probing EOC pulses (see Appendix B for details). (b)—(d) The optical
spectra of three composite solitons (left-hand panels) and the corresponding sampled structures (right-hand panels). The insets in the
left-hand panels are interferograms sampled by the electro-optic comb. In the insets in the right-hand panels are the simulated temporal
profiles. The measured and the simulated intersoliton separations are indicated.

expect that there is a limit in the inherent soliton group
velocity mismatch beyond which the XPM-induced refrac-
tive index barriers cannot keep distinct solitons bound
anymore. In this situation, it is not immediately obvious
whether the solitons would annihilate upon collision or
stably coexist with periodic collisions (thus forming a
collisional soliton state). To test this regime of colliding
DKSs, we increase the mode number difference (|n|)
between the driven resonances, leading to an intrinsic
DKS repetition rate mismatch which can be approximated
by Afrep = [n| x D,.

Figure 4 presents our observation of the coexistence of a
primary DKS and a secondary DKS without being bound
together, with |n| = 47. Two repetition rates are observed,
with a difference Af ., of 96 kHz. Given that in our case,
D, is ~2 kHz, the measured A f ., is in excellent agreement
with the expected value. The outcoupled solitons are
registered by a photodetector, and the detected power
fluctuations at low frequencies (0—7.5 MHz) are presented
in Fig. 4(c). We observe multiple spectral peaks at Af .,
and its harmonics. We also simulate the collisional soliton
state with the single-LLE model to calculate the spectrum
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FIG. 4. Observation of soliton collisions. (a) Optical spectrum
of the coexistence of a primary soliton and a secondary soliton.
(b) The spectrum of the repetition rates of solitons. The inset
shows the two prominent spectral peaks with a frequency
difference of 96 kHz. There are also multiple sidebands with
equal frequency separations that are generated by the collisions.
(c) The spectrum of the output soliton power at low-frequency
ranges. The overall shape resembles that of the sidebands around
the repetition rates, having two peaks around 3 and 5.7 MHz
which we attribute to the peaks around the S-resonance frequen-
cies in the noise transfer function [67] in a modulated DKS
microcomb.

of the power fluctuations of DKSs, showing excellent
agreement with the experimental results (see Appendix C
for details).

We use the EOC-assisted sampling technique to image
the periodic soliton collisions. Figure 5(a) shows the comb
spectra and the VNA traces of two collisional states with
n=29. In Fig. 5(b) the reconstructed images of the
primary DKS and the secondary DKS are shown in the
upper panels and the lower panels, respectively. The red
dashed lines indicate the locations where collisions occur.
In Fig. 5(c) are the enlarged soliton evolutions around the
collision locations that are indicated by the white dashed
boxes in Fig. 5(b). We plot the fluctuations of the peak
amplitudes of the imaged solitons in Fig. 5(d). The results
show that upon collision DKSs exhibit strong oscillations
that decay in a few microseconds, a timescale that is in

agreement with the cavity photon decay time. However, the
oscillation frequencies are found to be different for the
primary DKSs and the secondary ones [see the difference
between the red traces and blue traces in Fig. 5(d)]. While
the primary DKS oscillates at around 5 MHz, the secondary
DKS shows an oscillation frequency close to 3 MHz. We
point out that, interestingly, the two oscillation frequencies
quantitatively fit the frequencies of the S resonances
corresponding to the primary and the secondary DKS
[see the VNA spectra in Fig. 5(a)]. This observation
highlights the fact that the S resonance is an eigenfre-
quency of the DKS response to modulations and perturba-
tions, and therefore also applies to the collisional dynamics.
It also shows how the DKS dynamics markedly deviates
from a particlelike behavior.

V. SWITCHING BETWEEN COMPOSITE
SOLITON AND SOLITON COLLISION

It is evident from our studies so far that, depending on
the intrinsic group velocity mismatch, the coexistence of
distinct solitons leads either to a bound state of composite
soliton or to successive collisions. A reasonable assumption
is that there exists a region of group velocity mismatch over
which the two states can be switched in between each other.
Here we exploit the detuning dependence of the repetition
rate [69-71] to selectively tune one of the constituent
solitons in order to observe the reversible switching
between the composite soliton state and the state of soliton
collision.

The experimental setup is schematically depicted in
Fig. 6(a). With a secondary pump order n = 11 we generate
the coexistence of a single primary DKS and a single
secondary DKS [see the microcomb spectrum in Fig. 6(a)],
and then tune the primary detuning from 30 to 40 MHz
and then back to 30 MHz [see the cavity resonances in
Fig. 6(b1)]. At the beginning, while the output solitons do
not show power fluctuations in Fig. 6(b3), we observe only
one repetition rate in Fig. 6(b2), indicating that the primary
soliton and the secondary soliton are bound together as a
composite soliton. As the primary detuning is increased,
the measured repetition rate slowly decreases due to the
intrinsic repetition rate change of the primary soliton, until
the single repetition rate suddenly splits into two prominent
signals at a primary detuning of ~34 MHz. Concurrently,
the power fluctuation spectrum exhibits multiple spectral
components at the frequencies which correspond to the
repetition rate difference and its harmonics, indicating
the dissociation of the bound state and the switching to
the collisional soliton state. As the primary detuning is
further increased, the higher repetition rate (which corre-
sponds to the single secondary soliton) stays nearly the
same, while the repetition rate of the primary soliton shows
an overall tendency to decrease. After the primary detuning
of 40 MHz is reached, the detuning is reversed until it
reaches the original 30 MHz. In doing so, the soliton group
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FIG.5. Imaging of soliton collision dynamics. (a) Optical spectra and VNA response spectra of soliton collision between dual primary
solitons and a single secondary soliton (left-hand panel), and between single primary soliton and single secondary soliton (right-hand
panel). (b) Images of primary solitons (upper) and secondary solitons (lower) during the soliton collisions. The locations where
collisions happen are indicated by the red dashed lines. (c) Enlarged images of soliton collisions. Each corresponds to the numbered
white dashed box in (b). (d) The fluctuation of the peak intensities of imaged solitons when collisions occur. The primary soliton and
secondary soliton show very different characteristic oscillation frequencies.

velocity mismatch is reduced, and we observe the reversal VI. DISCUSSION AND CONCLUSION

to the composite soliton state when the two repetition rates This work reported on the combined theoretical and

join into one. This is accompanied with the disappearance  experimental study of the Kerr multistability that allows
of the soliton power fluctuations at low frequencies. for the generation of composite solitons, and studied in
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FIG. 6. Reversible switching between composite soliton state
and collisional soliton state. (a) In the experimental setup (top), the
two lasers are separated from each other by ~11 FSRs, and the two
pump-resonance detunings are actively locked by locking the
phase-modulated sidebands of lasers to the Pound-Drever-Hall
(PDH) error signals. While the secondary pump-resonance detun-
ing is unchanged, the detuning of the primary pump is varied by
continuously tuning the PDH modulation frequency. The optical
spectrum of the coexistence of a primary soliton and a secondary
soliton (bottom). (b) The evolutions of the VNA response (b1), the
repetition rate spectra (b2), and the power fluctuation spectra (b3)
as the primary pump-resonance detuning is varied from 30 to
40 MHz and then back to 30 MHz. The jumps of the primary f,
around 37 MHz are attributed to a strong single dispersive wave
[11] that we confirm by comparing the acquired microcomb spectra
before and after the jump. The range where the state of soliton
collision is switched on is denoted by the red dashed lines.

particular the regime of the collisional soliton state. To the
best of our knowledge, this is the first time the multi-
stability is investigated in a bichromatic pumping setting,
where two novel DKS dynamical states emerge, with the
framework of bistability breaking down. In addition, the
multistability generation scheme can be extended to even
more complicated scenarios (e.g., using more than two
lasers to pump multiple resonances with different effective
detunings respectively [53]), showing potential for study-
ing more complex soliton dynamics.

Our work casts light on several intriguing questions.
Firstly, where is the boundary between the conventional
bistability and the multistability in a dual-pumped reso-
nator? Previous works [44,72,73] treat the dual-pumping
scheme as an approach to manipulate DKSs in the context
of bistability. However, here we show that as the pump-
resonance detuning mismatch increases, the multistability
emerges and both pumps can support their own solitons
whose existence is almost unaffected by the interference
between the laser fields. Secondly, can DKSs driven at
different resonances be bound together? Our work shows
that, different from the relative phase-dependent long-range
binding of similar DKSs, distinct DKSs can be closely
bound with XPM-induced soliton barriers. We would also
like to mention the relevance of our findings to studies of
the optical analog of event horizons [74-77], which use
similar index barriers to trap weak probe waves in fibers.
Our work enriches the field by showing that in Kerr
resonators solitons can be either blocked by or released
from the rotating boundaries imposed by other DKSs,
which yields potential applications in pulse timing jitter
compensation [78]. Lastly, what are the eigenfrequencies
involved in DKS dynamics? Earlier works [67,68] sug-
gested that the S-resonance frequencies correspond to the
so-called DKS relaxation oscillation. In this work the
imaging of colliding solitons shows that the solitons exhibit
excitable oscillations at the same frequencies of S reso-
nance, which is closely related to fundamental soliton
characteristics given that DKSs breathe at the same
frequencies before they annihilate. Therefore the S-
resonance frequencies can be understood as the intrinsic
eigenfrequencies of DKS dynamics that can be excited by
applying small perturbations or modulation signals.

For potential applications in metrology and spectros-
copy, this work develops an approach to generate micro-
combs with interlocked repetition rates. One should
note that for most of the experiments the two pumping
lasers are in free-running condition, showing the remark-
able robustness of the interlocking mechanism. In addition,
the DKS collisional state can be related to earlier studies on
soliton-based wavelength-division multiplexing fiber tele-
communication systems, in which fast and numerous
collisions between solitons of dissimilar wavelengths
(and hence different group velocities) can reduce the
detrimental effects caused by nonlinear interactions
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between solitons [79-82]. In this regard, microresonator
DKSs may provide a compact and convenient platform to
study soliton nonlinear interactions that would require
massive length of fiber or waveguide in conservative
systems. Moreover, our study on the soliton collision is
of importance for dual-comb spectroscopy based on the
spatially multiplexed DKSs as the sidebands introduced by
the intermodulation between colliding solitons manifest
themselves as artifacts in the dual-comb interferograms [25].
The code and data used to produce the plots within this
article are available by following the link in Ref. [83].
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APPENDIX A: COUPLED LUGIATO-LEFEVER
EQUATIONS

With the assumption that XPM is the dominant mecha-
nism that enables the binding of distinct solitons, we use a
set of coupled LLEs to describe the intracavity fields that
are driven by the primary pump and the secondary pump,
respectively. Since the two fields have different carrier
frequencies, we simplify the situation by ignoring all the
phase-related coupling terms and consider only the XPM
between the two fields. In the frequency domain, the two
soliton states correspond to two sets of optical frequency
combs, and here for clarity we denote them as the primary
(P) comb and the secondary (S) comb, respectively. In a
frame that is comoving with the waveform in the primary

soliton (free spectral range D(lp) /2m) centered at the pump
frequency (w),), the coupled equations are written as

aA'(P)(t) K . . x(P
ﬂal‘ = ;0\/’Tcxsin + <—§ +i(276) + lDinl(/“’))A/S :
_ lg(]:-HA(”P) |2A(P)]M + ]:'[ZlA(S) |2A(7))]M)’
(Ala)
oA, (1

ot = 5;mﬁ\/’<exsin

+ (—g +i(215 - Q) + iDim(ﬂ)>A,§5>

— ig(F[[A®PA)], + F2|APPAG)]),
(Alb)

where A,(,p) and A,(,S) represent the spectral field envelope of
the primary and the secondary combs, respectively, and
AP) and A(®) are the temporal amplitudes of the intracavity
field. The last terms in the equations are the XPM-induced
coupling terms [2]. In the simulation, we neglect the higher-
order dispersion to reasonably simplify the analysis. As a
result, the comoving frames for the two fields are different
only due to the effect of the second-order dispersion,

which leads to D(lp) = Dgs) + nD,. Here, (DYP) /2m) and

(D(15) /27) are the FSRs at the primary and the secondary
pumped resonances, respectively.

In Figs. 7(a) and 7(b), we show the evolution of the
intracavity fields that are simulated by the coupled LLEs.
For the simulation we set y = —5, § = (150«/2x), and
Q = (100x/27x). The two distinct DKSs are seeded at well-
separated locations at the beginning of the simulation.
Since the secondary soliton has a repetition rate that is
lower than that of the primary soliton by 10 kHz, it meets
the primary soliton at round-trip counts of ~200 x 10°.
Then the two solitons start to move together, showing that
the composite soliton is formed. To compare the simulation
results with the single-LLE model, we also run the
simulation based on Eq. (1). In Fig. 7(c) the result is pre-
sented, showing excellent agreement with those derived
with Eq. (A1). The amplitudes of the intracavity fields at
the end of the simulations are plotted in Fig. 7(d). The
comparison shows that the coupled LLEs yield an inter-
soliton separation that is slightly larger than the result
based on the single-LLE model, which we attribute to the
simplifications made to the coupled LLEs. Despite this
minor discrepancy, the coupled LLEs confirm that the
formation of the composite soliton is mainly induced by the
XPM effect and that the constituent DKSs interact with
each other in a short range that is of the order of the DKS
durations. With a seminumerical method we further analyze
the binding mechanism due to the XPM effect. Details can
be found in the Supplemental Material [53].

In addition to the simulations based on the coupled-LLE
model, we also introduce strong dispersive waves in the
single-LLE model by imposing large frequency deviations
on some particular modes. We use the model to extensively
simulate the evolution of multiple solitons in the bichro-
matically driven multistability. The results reveal that while
the similar solitons can form bound states due to dispersive
waves, the binding of distinct solitons is only possible
when they are in close proximity. Such results are expected
because the dispersive-wave-mediated binding relies on a
fixed relative phase between solitons, but the relative phase
is never fixed for distinct solitons. To further corroborate
the XPM-induced binding analysis, in Supplemental
Material we directly add index barriers of different ampli-
tude in the single-LLE model to study the motion of
solitons [53]. Our further investigation shows that under the
influence of an intensive index barrier such as the one
created by a dissimilar intracavity soliton via XPM, solitons
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can be blocked out of an index barrier with repulsive effect.
Such repulsive effect induced by a positive index change in
anomalous dispersion is counterintuitive and can be attrib-
uted to the unique DKS feature of the coexistence of DKS
and CW background.

APPENDIX B: DETAILS OF ELECTRO-OPTIC
SAMPLING

As depicted in Fig. 8(a), the EOC is generated by
modulating a 1555-nm CW laser with a Mach-Zehnder
modulator (MZM) and an array of electro-optic modulators
(EOMs) [27]. This modulation frequency sets the sampling
rate to be ~30-40 MHz. The carrier frequency of the EOC
is adjusted such that the beat frequencies between the
electro-optic comb and the composite solitons are in the
range of 4.5-6.5 GHz, which can be properly bandpass
filtered. After being amplified by an EDFA, the optical
spectrum of the EOC is displayed in Fig. 8(b). The more
intensive spectral components at the longer wavelengths
are caused by the unbalanced gain of the EDFA for
different spectral ranges. Figure 8(c) shows the radio-
frequency (rf) spectrum of the interferograms correspond-
ing to the data in Fig. 3(b). The subsets of the spectral
components that belong to the primary DKS comb and the
secondary DKS comb are separated, as indicated by the
different colors. After applying the inverse fast Fourier
transform (IFFT) to the primary and the secondary rf
combs, respectively, we reconstruct the interferograms of

the primary and the secondary DKS in the time domain [41],
which are shown in Fig. 8(d). Because of the limited optical
bandwidth of the EOC (and hence the large width of the
probing pulses), the temporal widths of the envelopes of the
interferograms are significantly larger than those of
the DKS, as can be seen in Fig. 8(d) as well as in the
sampled structure examples in the right-hand panels in
Figs. 3(b)-3(d). For the same reason, the amplitudes of
the sampled structures do not correctly reveal the relative
DKS amplitudes. However, measuring the temporal loca-
tions of the maximum amplitudes of interferogram envelopes
allows us to determine the intersoliton separation between
the primary and the secondary DKS with a resolution that is
not limited by the EOC bandwidth. Each of the measured
intersoliton separations shown in Fig. 3 is averaged over
1.2 x 10* interferograms. In Fig. 8(e) we plot the total 1.2 x
10* data points of the measured intersoliton separations for
the averaged value of 629 fs presented in Fig. 3(b). The
standard deviation is calculated to be 107 fs, whichis 17.1%
of the averaged separation. The separation fluctuations may
be introduced by the amplitude and width fluctuations of
individual solitons, and can degrade the mutual coherence of
the synchronized repetition rates, causing extra noise espe-
cially in short timescales.

APPENDIX C: SIMULATION
OF SOLITON COLLISION

We simulate the soliton collision state with the single-
LLE model expressed by Eq. (1). The secondary mode
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order y = 47 is the same as that in the experiment shown in
Fig. 4. The primary pump-resonance detuning (279) is set
to be 70k, and the dual-pumping detuning mismatch (|Q|) is
50x. The second-order dispersion coefficient (D,/2x) =
2 kHz and third-order dispersion coefficient (D3/27) =
—1 Hz are included in the resonator dispersion. A single
primary DKS and a single secondary DKS are seeded,
and the whole simulation includes 2.1 x 10® round-trip
times. Figures 9(a) and 9(b) show two collision events in
the intracavity field evolution and the corresponding
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FIG. 9. Simulation of soliton collision. (a) Intracavity field
amplitude evolution showing two collision events. (b) The
corresponding intracavity energy evolution. (c) The calculated
spectrum of the intracavity energy fluctuations.

intracavity energy fluctuations, respectively. Totally 15
soliton collision events are shown in the simulation, corre-
sponding to a collision frequency of approximately 98 kHz.
The intracavity energy fluctuations in the time domain are
used to calculate the spectrum presented in Fig. 9(c), which
is in excellent agreement with the experimentally measured
power fluctuation spectrum shown in Fig. 4(c).

One should note that in the conventional monochromatic
pumping situation the collision between two similar sol-
itons is generally unstable because the overlap of two
solitons essentially creates a high-order soliton that is
forbidden in dissipative Kerr cavities. This is why the
soliton collisions induced by injected potential wells result
in either soliton annihilation or merging [34,35]. However,
the multistability-enabled soliton collision is dynamically
stable because during each collision period even the two
distinct solitons overlap with each other spatial-temporally
for a short time; they never overlap in the frequency
domain. Therefore they cannot form high-order solitons
to become dynamically unstable.
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APPENDIX D: SIMULATION OF SWITCHING
FROM COMPOSITE SOLITON TO SOLITON
COLLISION

The switching phenomenon reported in Fig. 6 is numeri-
cally simulated with the single-LLE model of Eq. (1).
We repeated similar simulations with varied n and we
found that the switching happens with |n| = 10, which is
very close to the experimental value of 11. Figure 10(a)
shows the simulation result when switching from
composite soliton to soliton collision happens at n = 10.
The simulation starts with a composite soliton with the
primary detuning dp = —80k and the secondary detuning
0s = —30k. In order to include the effect of detuning-
dependent repetition rate shift due to higher-order
dispersion [71], the third-order dispersion coefficient
(D3/2rx) = —4 Hz is incorporated into the LLE model.
To reproduce the experimental condition, 65 is kept the
same during the whole simulation while §p is continuously
decreasing. The composite soliton decomposes when p
reaches —107k, switching to the collisional state. We
numerically compute the instantaneous soliton repetition
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FIG. 10. Simulation of switching. (a) Evolution of the intra-
cavity field when a composite soliton decomposes into two
unbound distinct solitons. The effective detunings of the primary
pump and the secondary pump are shown in the upper panel.
(b) The numerically computed instantaneous soliton repetition
rates relative to (D, /2x). The theoretically calculated repetition
rates are plotted in red curves.

rates (relative to (D;/2x)), which are displayed in
Fig. 10(b). After the switching the repetition rate mismatch
is approximately 30 kHz, showing excellent agreement
with the experimental observation in Fig. 6.

Analytical expression of the repetition rate shift of the
primary soliton due to third-order dispersion can be found
in [71]:

3D,

Afp = (D1)

And similarly, the secondary soliton repetition rate shift can
be written as

nD2 (35D3

Afg=—22 .
fs=57+ 3D,

(D2)
Furthermore, by using the method similar to the procedure
in Ref. [41] based on the conservation of soliton momen-
tum, we derive the repetition rate shift of the composite
soliton as

_ nDy\/5s Ds
A= 5 o 1 /35) 3D, O 05 V/ords) (DY

In Fig. 10(b) we plot the repetition rate shifts based on the
analytical expressions. Remarkable agreement between the
theory and the numerical results is obtained.

APPENDIX E: PUMPING ONE RESONANCE
WITH TWO LASERS

A special case of the bichromatic pumping is that the two
lasers are used to pump the same cavity resonance. Strictly
speaking, this case does not belong to the bichromatic
pumping category as the beating of the two lasers does not
create any intracavity potential well. Instead, modulation
with a period that is orders of magnitude larger than the
round-trip time is executed. We perform the simulation
of this case, using the same parameters that are used in
Fig. 1(f), except that the two lasers are driving the same
mode resonance of u = 0. The result is shown in Fig. 11(a).
Since the difference between the two pumping frequencies
is the pump-resonance detuning difference, which is
smaller than the FSR by around 3 orders of magnitude,
the coexistence of the two laser fields essentially introduces
a slow modulation in the intracavity field. One period of the
slow modulation takes around 1000 round-trip times;
therefore, the modulation is not visible in the background
field in Fig. 11. In addition, in this simulation where high-
order dispersion and Raman effect are not considered, the
primary and the secondary solitons have the same group
velocity since they are excited in the same resonance. In
reality, however, because high-order dispersion almost
always exists, solitons with different pump-resonance
detunings exhibit dissimilar group velocities, which
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FIG. 11. Simulated intracavity intensity evolutions with two
lasers driving one cavity resonance. (a) Only second-order
dispersion (D,) is considered in the simulation. (b) Third-order
dispersion (D5) is also included in the model. All the parameters
used in the simulations are the same as those used for obtaining
the results shown in the lower panel in Fig. 1(f), except that both
lasers are driving the same cavity resonance of y = 0.

inevitably leads to the binding of dissimilar solitons.
Figure 11(b) presents the simulation result when a small
amount of third-order dispersion ((D3/27) = —4 Hz) is
included in the model. Third-order dispersion induces
detuning-dependent soliton group velocity shift [71], thus
creating the group velocity mismatch between the primary
and the secondary solitons. Consequently, soliton binding
with subpicosecond intersoliton separations is enabled even
when the two soliton species are pumped at the same
resonance.

Experimentally, such single-resonance excitation with
dual pumping can be realized either by carefully tuning the
frequencies of the two lasers or by using a modulator such
as an EOM to create the secondary pumping field from the
primary laser. In Fig. 12(a) the two configurations are
illustrated. One should note that when the EOM is used, the
detuning mismatch is set by the modulation frequency, and
only the modulation sideband with the higher frequency is
used as the secondary pump (assuming that the sideband
has an intensity that is lower than that of the carrier). Being
far detuned from the resonance, the sideband with the lower
frequency has negligible impact. Figures 12(b) and 12(c)
show two multistability-enabled microcomb spectra that we
use the first and the second configuration to generate,
respectively. In both cases only one soliton repetition rate is
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FIG. 12. Experimental realization of single-cavity-resonance
excitation with dual pumping. (a) Two experimental configura-
tions we use to pump two dissimilar soliton microcombs from the
same cavity resonance. (b) The microcomb spectrum generated
with the dual-laser configuration. The constituent soliton pattern
is illustrated in the inset. (c) The microcomb spectrum generated
with the one-laser-with-EOM configuration.

observed, indicating that close-range binding is formed.
With the electro-optical sampling technique we are able to
confirm that the intersoliton separations are of a few
hundred femtoseconds, which are similar to those of the
dual-pumped composite solitons. A comprehensive study
of the coexistence of two soliton species excited in a single
cavity resonance can be found in Ref. [41].
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