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Do not go gentle into that good night,

Old age should burn and rave at close of day;

Rage, rage against the dying of the light.

Though wise men at their end know dark is right,

Because their words had forked no lightning they

Do not go gentle into that good night.

Good men, the last wave by, crying how bright

Their frail deeds might have danced in a green bay,

Rage, rage against the dying of the light.

Wild men who caught and sang the sun in flight,

And learn, too late, they grieved it on its way,

Do not go gentle into that good night.

Grave men, near death, who see with blinding sight

Blind eyes could blaze like meteors and be gay,

Rage, rage against the dying of the light.

And you, my father, there on the sad height,

Curse, bless, me now with your fierce tears, I pray.

Do not go gentle into that good night.

Rage, rage against the dying of the light.

— Dylan Thomas





Abstract
Following the cultural revolution of the late 1960s, the number of elite and recreational runners

rose consistently, reaching approximately 7.9 million road races participants in 2018. Today,

running is everywhere. City parks, forests, mountain trails, and athletic tracks are now the

playground of numerous running enthusiasts, whatever their ages, gender, and social back-

ground. With such heterogeneity in the runners’ profiles, the motives to maintain a running

habit vary from psychological, social, and physical objectives to performance-oriented goals.

Although the health benefits of running are well-recognized in the scientific literature, its

regular practice also presents risks of injuries. To study the underlying mechanisms associated

with injuries or improvements in performances, scientists have investigated the kinematics

and the kinetics characteristics of the running gait. Habitually, this quest requires the use

of precise monitoring instruments only accessible in well-equipped research laboratories.

However, over the past two decades, the advent of wearable sensors shifted the analysis of

running into real-world settings, where runners encounter different environments, outside, in

the wild. It is in this setting that the current thesis situates itself.

This thesis presents a new wearable system for the objective assessment of the running gait in

real-world conditions. The proposed method uses foot-worn inertial sensors and lab-validated

algorithms to provide a reliable analysis of the spatiotemporal parameters of running. The

system can operate outdoors and over extended periods while providing a quasi-real-time

evaluation of each step. Further, with its automatic detection of the sensor location and

calibration, the proposed method is easy-to-use and accessible to non-initiated users. For

the technical validation of the proposed system, the spatiotemporal metrics were compared

with gold-standard reference systems. Temporal events and gait phases were validated in-

lab against a reference force plate integrated into a treadmill, and the results of a novel

orientation-drift correction model compared to a state-of-the-art motion capture system.

Three overground speed estimation methods were evaluated in real-world conditions and

compared to a Global Navigation Satellite System device. Finally, these methods were tested in

different settings, such as a marathon race, a mountain ultra-marathon, and a 400-m hurdling

competition. These tests provided valuable insight into the limitations of the proposed system

and suggested several improvements for its use in real-world conditions.

Overall, this thesis presents a new device for researchers to assess the running gait outside

of the laboratories. It aims to augment the resolution of running analysis by handling the

technical challenges associated with inertial sensors and providing fast and reliable biome-

chanical metrics. As such, the system could contribute to extending the knowledge about
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the mechanical adaptations experienced in real-world environments and long-term running.

Moreover, the potential of such an instrument for in-field performance evaluation was tested

in this thesis and showed promising results. Hence, such an assessment of the running gait

during training and competitions could help athletes and coaches monitor the training load

and improvement in performances. Finally, with the advents in the miniaturization of wear-

able sensors, the proposed methods could be used in various running-related applications,

such as shoe-fitting, rugby, soccer, and other sports where running is a critical component.

Keywords: running, inertial sensors, wearable, foot, spatiotemporal parameters, orientation

drift correction, speed, validation, marathon, trail running, hurdling, real-world running
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Résumé
Suite à la révolution culturelle de la fin des années 1960, le nombre de coureurs professionnels

et amateurs n’a cessé d’augmenter, avoisinant les 7.9 millions de participants à des courses

sur route en 2018. Aujourd’hui, la course à pied est partout. Les parcs, les forêts, les chemins

de montagne et les pistes d’athlétisme sont le terrain de jeu d’une multitude de coureurs,

indépendamment de leur âge, genre ou statut social. Avec une telle hétérogénéité de profils,

les motivations conduisant à une pratique régulière peuvent être diverses ; psychologiques,

sociales, physiologiques ou dans un but de performance. Bien que les bénéfices de la course

à pied sur la santé soient reconnus par la littérature scientifique, une pratique régulière

peut présenter des risques de blessures. Afin de mieux comprendre les mécanismes sous-

jacents associés à ces blessures ou à une amélioration des performances, les scientifiques ont

étudié la cinématique et la cinétique des différents mouvements générés en course à pied.

Habituellement, cette quête requiert l’utilisation d’appareils de mesure avancés et rarement

accessibles en dehors des laboratoires scientifiques. Toutefois, les progrès réalisés dans le

domaine des capteurs portés ont transposé l’analyse de la foulée hors des laboratoires, dans

des conditions réelles qui requièrent une adaptation constante du coureur en fonction de son

environnement.

Cette thèse présente un nouveau système porté capable de fournir une évaluation objective

des paramètres biomécaniques de course. Les méthodes proposées utilisent des capteurs

inertiels placés sur le pied et des algorithmes validés en laboratoire. Le système a été conçu

pour une utilisation en conditions réelles, sur de longues périodes et dans le but de fournir

une évaluation quasi-instantanée de chaque pas. En outre, étant capable de détecter auto-

matiquement son emplacement et de se calibrer en fonction celui-ci, le système proposé

est facile d’utilisation et accessible aux utilisateurs non-initiés. La validation technique a été

effectuée de manière contrôlée et par comparaison à des systèmes de référence précis. Les

paramètres temporels de course ont été comparés aux mesures d’une plateforme de force

intégrée dans un tapis roulant. La méthode d’estimation de l’orientation du pied basée sur un

modèle biomécanique du pied a quant à elle été comparée à un système optique de capture

du mouvement. De plus, trois méthodes d’estimation de la vitesse de course ont été proposées

et comparées à un système de positionnement par satellites. Enfin, les méthodes dévelop-

pées ont été testées dans différent situations : lors d’un marathon, d’un ultra-marathon de

montagne ainsi que lors d’une compétition de 400 mètres haies.

En conclusion, ma thèse propose un nouveau système de capteurs portés permettant aux

chercheurs d’évaluer la foulée en course à pied en dehors des traditionnels laboratoires de
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mesure. Le système a pour objectif d’augmenter la résolution de l’analyse de course en résol-

vant les défis techniques associés aux capteurs inertiels et en fournissant une évaluation fiable

et rapide des paramètres biomécaniques. Ainsi, le système pourra contribuer à étendre les

connaissances sur les adaptations mécaniques nécessaires lors d’une course hors laboratoire,

dans différents environnements et sur une durée prolongée. De plus, les tests réalisés lors de

ma thèse ont démontré le potentiel d’une telle technologie dans le suivi des performances. Le

système pourrait ainsi permettre aux athlètes et aux entraineurs de quantifier la charge d’en-

trainement ainsi que d’éventuelles améliorations. Enfin, grâce à la miniaturisation continue

des capteurs, les méthodes proposées dans ma thèse pourraient également servir à d’autres

applications, telles que le choix et la personnalisation des chaussures ou l’analyse d’autres

sports, tels que le rugby et le football.

Mot clés : course à pied, capteurs inertiels, capteurs portés, pied, paramètres spatiotemporels,

correction de la dérive des capteurs, vitesse, validation, marathon, course de montagne, 400

mètres haies, conditions réelles de course
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1 Introduction

1.1 Run, Forrest, Run!

“Every morning in Africa, a gazelle wakes up. It knows it must outrun the fastest lion or it will

be killed. Every morning in Africa, a lion wakes up. It knows it must run faster than the slowest

gazelle, or it will starve. It does not matter whether you are a lion or a gazelle. When the sun

comes up, you better be running.” – Unknown

The past few decades have seen the rapid development of biomechanics studies and the quest

to unveil the underlying principles of human locomotion. The reason why locomotion became

the cornerstone of human movement analysis inevitably finds its root in its prominence in Hu-

mans life and its requirements in metabolic energy. In the human and animal kingdom, energy

is the currency that dictates how each metabolism operates, and we, humans, evolved into an

incredibly efficient mechanism, optimizing the metabolic cost of locomotion by switching

between different types of gait (Alexander McN., 1989); walking, running, and sprinting are

the direct consequences of this adaptation. Although these types of gait differ in function,

the broad scientific literature on walking constituted a well-founded knowledge basis for the

early running studies. The scientific analysis of running is, somehow, the logical continuation

of walking studies. Walking and running are cyclic by nature; they consist of a repetition of

movements coordinated to generate the forward motion of the body segments. Although

the two methods share similarities, running is distinguished from walking by higher over-

ground speed and by the presence of a period when both feet are off the ground (i.e., the aerial

phase), whereas walking is a succession of single and double support phases. Moreover, higher

impacts and ground reaction forces, decreased stance phase, increased swing phase, more

ample range of motion of the lower limbs, and greater eccentric muscle contraction have been

observed for running (Dugan & Bhat, 2005; Keith R Williams, 1985). Consequently, running is

more complex to measure, and technological advancements in laboratory instrumentation

were required for biomechanical studies to emerge.

Back in early 1970, academics were disputing whether the mechanics of running was a valid

topic of scientific study. It is the explosive growth of running in the late 1960s that raised the
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Chapter 1. Introduction

interest of scientists, supported by more influential lobbies, attractive market opportunities,

and an increasing incidence of running injuries to study (P. R. Cavanagh, 1990). Today, running

is pursued by millions of recreational runners worldwide (Scheerder et al., 2015) and is studied

for its own sake.

Running can take many forms, and several of its branches have also rapidly developed in

the past decades. Competitive marathon running is an excellent example of this evolution.

Marathon used to be reserved for well-trained individuals, and finishing a marathon was

gratifyingly rare. Today, marathons attract both athletes and recreational runners. Surely recre-

ational runners attain the end of the 42 kilometers slower than the well-trained individuals,

but they nonetheless reach the finish line. Mountains races also captured the interest of new

adepts. These events, often referred to as trail running, offer a different running experience.

Surrounded by nature, participants are running at different altitudes and shifting from uphill

walking to down-hill running many times within the course of a race. As for marathons, trail

running also has its extremes, the so-called “ultra-trail” events. These races can be up to 330

km long and take approximately a week for the slowest participants to complete. Furthermore,

running also occurs in many other disciplines; the obvious ones, such as track and field events,

and the less obvious ones, such as rugby and soccer. Track and field disciplines are at the

origin of today’s modern running, with several Olympic games events actually being variations

of running. Sprinting, for instance, is the fastest form of running and hurdling is a form of

running with obstacles that an athlete must clear in order to complete the race.

After all, running stands at the root of most sports activities. It is, therefore, crucial to carefully

appreciate its underlying mechanisms and provide a safe environment for anyone who seeks

either health benefits, competition rewards, or wishes to enjoy a pleasant and relaxing run.

1.2 Running analysis: a brief history

Before diving into the current state-of-the-art of running studies, it seems essential, or at the

very least interesting, to understand how running became a valid and recognized topic of

research. Therefore, this section aims to provide an overview of the history of running studies

but does not have the pretentiousness to cover all the significant discoveries which led to

today’s knowledge. Instead, an exhaustive list of key findings is discussed in chronological

order. The content of this section was inspired, for the most part, by (P. R. Cavanagh, 1990;

Heinrich, 2009).

Before any instrumentation was available, detailed observations and paintings were efficient

ways to characterize movements; hence the first attempts toward an analysis of running were

based on the description of its kinematics. The instantaneous postures illustrated on the vase

paintings from the age of classical Greece ( the fifth century B.C.) suggest that the artists at the

time recognized the mechanical differences between long-distance running and sprinting as

various body posture and ranges of movement are depicted on these works of art (Figure 1.1).

Moreover, in his quest to describe the movements of humans and animals, the brilliant mind of
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1.2. Running analysis: a brief history

Figure 1.1 – Greek vase paintings of distance running (left) and sprinting (right). Source
(Gardiner, 2002).

Aristotle (384-355 B.C.) scrutinized the different types of gait and reflected on the relationship

of structure and function. For instance, he observed that flexion of the knee joint is necessary

to minimize the vertical motion and sustain progression. He also understood the concept

of forces, anticipating Newton’s third law, as he wrote: “. . . the forces of that which causes

movement and of that which remains still must be made equal. . . For as the pusher pushes, so

the pusher is pushed.”

With the decline of the Grecian and Roman society, came a rather fruitless period for loco-

motion analysis. Renaissance was a revival for the Aristotelian concepts of motion, and no

one individual better embodies the relation between Science and Art than Leonardo da Vinci

(1452-1519). He described and illustrated the principles of motion that were intended to help

students of painting with accurate representations of a variety of human locomotion activities

and demonstrated remarkable insight into the mechanics of running, meticulously analyzing

its patterns under different conditions and going as far as speculating about the distribution

of the weight under the foot during grade running: “He who runs down a slope has his axis on

his heels; he who runs uphill has it on the toes of the feet; a man running on the level ground

has it first on his heels and then on the toes of his feet (Keele, 1983).”

With the 17th-Century and its scientific revolution, arose one of the most important, if not the

most significant, contribution to mechanics; Isaac Newton’s (1642-1727) laws of motion. At the

time, Newton and other scientists were trying the formulate the underlying mechanical rules to

explain natural phenomena, and their rich heritage is still vividly used by biomechanists today.

A contemporary of Newton, Giovanni Borelli (1608-1679) was among the first to describe the

animal and human musculoskeletal system in terms of structural engineering. In his classical

volume, De Motu Animalium (“Animal motion”), Borelli associated animals to machines and

used a mechanical approach to prove his theories. With propositions such as the “compass

gait,” his work is considered as the starting point of biomechanical studies of locomotion.

A thoughtful and meticulous capacity to observe and describe movements was still the best

instrument available then. An excellent example of such work is the study published in 1836
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by the brothers Wilhelm and Eduard Weber, Mechanik der menschlichen Gehwerkzeuge (“The

mechanics of human locomotion”). The Webers are best remembered for their suggestion that

the lower limbs can act as a pendulum. As an attempt to explain the underlying principles

of the human gait and without any sophisticated instrumentation, they proposed several

postulates on running, separating their remarks according to the speed. For instance, they

noticed that the duration of a stride is shorter in running than in walking, but the length of the

stride is greater. They also commented on the smaller vertical oscillation of the trunk during

running compared to walking. More importantly than the observations, they listed almost

150 hypotheses and hence established an agenda for future research. However, these needed

appropriate measurement systems to be tested.

It is only a few years later that the field of instrumentation experienced one of its most signifi-

cant advancements, and they all originated from the creativity and genius mind of Etienne

Jules Marey (1830-1904). Marey was a pioneer in metrology, the automatic recording of the

timing of events, and used his ingenuity to study human locomotion. One of the most famous

inventions of Marey is the device that combined shoes instrumented with air chambers, a

primitive head-worn accelerometer, and a pneumatic recording system (Figure 1.2, left). This

device also included an onboard chart-recorder with a rotating drum to allow the running ex-

periments to be carried outside the laboratory. With such an experimental arrangement Marey

was able to record the swing and stance phases of locomotion. In a quest to estimate the exact

length of stride, he undertook the construction of the most advanced facility ever dedicated

to the study of locomotion called the Physiological Station (Figure 1.2, right). This outdoor

laboratory included a 500-m circular track equipped with a variety of instruments; a telegraph

wire ran all around the track, and posts equipped with a mechanism able to break the circuit

when the runner came alongside were placed at regular intervals (50 meters). Besides, Marey

also devised the first force platform and set a calibration method to account for non-linearities.

He was also the first to synchronize photographic and force measurements. His understanding

of running biomechanics at the time was astonishing; remarkably, he suggested that storage

and reutilization of elastic energy was a process that operated to conserve metabolic energy.

However, and somewhat surprisingly, Marey achieved more recognition as a pioneer of cin-

ema, due to his inventions in photographic devices, than as an early biomechanist. In the

same period, another scientist was constructing ingenious devices. Vierordt (1881) was using

ink-spraying nozzles attached to the body to simultaneously track the position of the different

body parts and realized that there were considerable variations in the gait phases of normal

locomotion.

Later, it is to Braune and Fisher that we owe one of the major advances in the modern math-

ematical approach to the study of biomechanics. The content of their study of locomotion,

published in Der Gang des Menschen (Braune & Fischer, 1895-1904/1987), was monumental

in both the scope and vision. The authors reported their use of electrical discharge tubes

attached to the subject and how time-consuming and fatiguing the experiments were (often

from ten to twelve hours of continuous activity). The measurements had to be carried at night

as there were no other means of darkening the room where they captured the position of the
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Figure 1.2 – (Left) A pneumatic recording system connected to instrumented shoes with air
chambers and an early accelerometer placed on the head. (Right) the Physiological Station
of E. J. Marey used for his work on walking and running gait analysis. Source (Marey, 1873;
Bénabou, 2009).

Geissler tubes on photographic plates. They then digitized the film plates using a precision

optical system, calculated the three-dimensional coordinates of the landmarks, and built

graphical and physical models of the subject. From these data, they were able to calculate

resultant forces and moments at the joints of a 12-segment rigid body model. With minor

changes, the techniques used by biomechanists today are nearly the same as the one proposed

by Braune and Fischer.

The photographic work of Eadweard Muybridge (1830-1894) also had an impact on the visual

perception of the running gait. He produced over 20’000 photographs of humans and animals

in motion. As the photographs were of good-quality, scientists and artists were able to appre-

ciate the sequential images of various movements in more detail. For instance, Muybridge is

said to have shown in 1872 that all the foot of a trotting horse concurrently left the ground.

The trends and discoveries of the twentieth century were predominantly orientated towards

muscle mechanic and energy expenditure. A. V. Hill, a Nobel prize winner, was drawn toward

the study of running as an experiment of maximal muscular effort. His research led to the

definition of a velocity curve for sprint running, the evaluation of the external work during

uphill running, discussions about the efficiency of running, and formulations about the effect

of air resistance at different running speeds. He was one of the first scientists to combine

a physiological and mechanical approach in the study of running. Benefitting from Hill’s

work, W. Fenn proposed a segment-by-segment calculation method of kinetic and potential

energy to estimate the cost of sprint running. However, Fenn was also conducting significant

experiments on isolated muscles, with the “Fenn effect” defined as the additional heat of

shortening in an active muscle.

Today, the tremendous progress in new technologies, sensors miniaturization, wireless con-

nectivity, computing facilities, intelligent system, and data analytics has once again shaken
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the field of running biomechanics. As for Marey’s inventions, new tools often provide answers

to previously asked questions.

1.3 Benefits and risks of running

There is incontrovertible evidence that regular physical activity provides numerous health

benefits (Warburton et al., 2006), and running does not act as an exception in that regard.

Several cohort studies have investigated all-cause mortality and other health outcomes among

runners compared with non-runners. For instance, these studies found that running can

reduce the risk of premature death by 25%–40% (D. chul Lee et al., 2017), reduce the risks of

cancer-related mortality by 30%–50% (Chakravarty et al., 2008; Schnohr et al., 2013), increase

bone mineral density (Brown & Josse, 2002), decrease blood pressure (Swain & Franklin, 2006),

lower depressive symptomatology and improve the emotional well-being (Galper et al., 2006).

Running also promotes other healthy behaviors such as maintaining normal body weight, not

smoking, and consuming light-to-moderate amounts of alcohol (D. chul Lee et al., 2017). For

many, running provides the opportunity to enjoy the natural environment, and it helps to

escape from worry and anxiety (Shipway & Holloway, 2010). In contrast, some studies revealed

that using running to cope with stress can result in negative addiction and that some runners

experience withdrawal when they are unable to run (Leedy, 2000; Morgan, 1979).

Similarly, running can also lead to injuries that diminish pleasure in exercise and lead to

temporary or even permanent discontinuation of running. Extensive research suggested that

the incidence of running-related injuries ranges from 6.8 to 59 injuries per 1000 hours of

exposure (Lopes et al., 2012). Therefore, investigating the behaviors leading to higher risks of

running-related injuries is a continuing concern within the field of biomechanics. Although

runners sometimes endure traumatic injuries (e.g., sprains, muscle injuries, skin lesions),

running injuries usually differ from the acute sports traumatisms caused by an excessive

load on a structure and resulting in a fracture or a tear of the tissues (e.g., ACL injuries,

bone fractures). Running-related injuries tend to appear gradually as the lower-limbs absorb

small to moderate impacts repetitively; hence, most of these injuries are soft tissue injuries.

Several systematic reviews identified medial tibial stress syndrome, Achilles tendinopathy,

plantar fasciitis, and patellofemoral syndrome as some of the most frequent running-related

musculoskeletal injuries (Benca et al., 2020; Lopes et al., 2012; Van Gent et al., 2007). The

lower limbs, especially to the knee, are the most affected by running-induced injuries, with

an incidence of lower-leg injuries ranging from 9.0% to 32.2%, from 5.7% to 39.3% for the

foot, and 3.4% to 38.1% for the upper leg (Van Gent et al., 2007). Identifying the origin of

running-related injuries is a laborious task due to the multifactorial nature of these injuries.

Nevertheless, several intrinsic and extrinsic factors, such as the weekly mileage, the history

of previous injuries, malalignment of the leg, footwear, and training errors (e.g., training too

often, too fast, or too long), have been associated with higher injury risks (Phillips et al., 2015;

Van Der Worp et al., 2015).
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In addition to its association with running economy and performances, a poor running

technique can also lead to injuries (Folland et al., 2017; S. C. Winter et al., 2020). Assessing an

individual’s running mechanics remains a central component of injury prevention, as specific

biomechanical faults enhance the risk of injury (Bredeweg et al., 2013; Noehren et al., 2013).

Therefore, providing feedback on the running movements could help to keep the runners

safe. For instance, research showed that most runners were able to reduce lower extremity

loadings associated with stress fractures when real-time visual feedback was provided (Crowell

et al., 2010). Unfortunately, today, state-of-the-art analysis of running remains confined

in well-equipped laboratories and thus hardly accessible to most runners. Democratizing

such analysis by making it affordable and easy-to-use, such as with wearable sensors, could

significantly improve our understanding of running-related injuries and prevent injuries.

1.4 Running demographics

Before the cultural revolution of the 1960s and 1970s, recreational running was considered as

an atypical and rather strange physical activity. For many, it was a waste of energy and was

reserved for competitive athletes practicing through university and extracurricular programs.

However, this cultural revolution changed the public’s perception and gave rise to what is

now referred to as the running boom (Scheerder et al., 2015), transforming running into a

recreational activity attracting huge masses of runners and joggers. With a growing number of

adepts, business companies started to identify new and promising marketing opportunities,

therefore also contributing to the promotion of running.

Although the ensuing decades saw impressive growth in the number of elite and non-elite

runners training in public spaces and registering to marathons, running was still merely

practiced by men. At the time, misconceptions about women’s capacity to run long distances

were preventing a large portion of the population from running. It remained so until the period

called the second wave of running when women started to take part in running activities

actively (Lynch & Hoch, 2010; Scheerder et al., 2015). Hence, since 2000, the number of runners

and running events increased steadily (Figure 1.3).

A recent analysis of more than 70 thousand events from 1986 to 2018 suggests that, for the

first time in history, there are more female than male runners. In 2018, over the 7.9 million

participants in road races, 50.14% were females (Andersen, 2019). Although a small decrease

occurred since the peak of 2016 (9.1 million), running gave rise to the expansion of other

disciplines within its scope (e.g., trail running, ultra-marathons, Ironman). Moreover, the

recent decrease in marathon finishing times embodies the current shift in motivations ob-

served in participants; a growing portion opts for a psychological, health and socially focused

approach rather than an achievement-based focus (Andersen, 2019; Scheerder et al., 2015).

Consequently, running event organizers have expanded or abolished the time limits of their

races and have introduced new race distances, like 15km, 10km, 5km, and even 1km (Van

bottenburg et al., 2010). Moreover, participants in road races have never been older. The
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Figure 1.3 – (Left) Trends in the number of participants in running races of different distances
between 2001 and 2018. (Right) Evolution of the average finish time in marathons for females
and males (Andersen, 2019).

average age increased from 35.2 in 1986 to 39.3 years old in 2018. The most significant increase

was observed in short distance races, with the average age of 5K runners rising from 32 to 40

years old (+25%).

As mentioned above, these demographics changes are accompanied by changes in running

motives. Some of the most frequently reported reasons to take part in running activities are (1)

psychological motives (e.g., maintaining or enhancing self-esteem, coping with negative emo-

tions and stress), (2) social motives (e.g., feeling part of a group, recognition, and approval), (3)

physical motives (e.g., health and weight loss), and (4) performance motives (e.g., competition,

ambition) (Andersen, 2019; Shipway & Holloway, 2010).

1.5 The assessment of running

The analysis of the running gait is usually categorized based on the nature of the research

question. Kinematics studies aim to assess the motion of the body-segments separately, or

as a whole. It includes the description of the translational movements (e.g., the position, the

speed, the acceleration) and rotations (e.g., orientation angles, angular velocity) in space,

and do so independently of their causes (i.e., the forces). The position and orientation of

the lower limbs during running have been of great interest for researchers, and the foot,

as the only body-segment interacting with the ground, received particular attention. For

instance, the orientation of the foot in the sagittal and frontal planes gave rise to a large

number of publications on topics like the foot strike patterns (Daoud et al., 2012; Hatala et

al., 2013), and pronation/supination (Benno Nigg et al., 2019). Also, a variety of upper-limb

movements (Hinrichs, 2016; Hinrichs et al., 2016) have been thoughtfully documented, such

as the description of the joint angles (Keith R Williams, 1985), the sagittal plane trunk posture

(Teng & Powers, 2014a, 2014b) and the rotation and oscillation of the pelvis (Schache et al.,

1999). Kinetics studies the cause of movement and examine the external or internal loads
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acting on the body structure. Generally, these studies aim to quantify the forces and their

moments acting on specific bones and joints. Of particular concern are the consequences on

the health of the runners and the effectiveness of external interventions (e.g., footwear, insoles,

feedbacks). For instance, studies have shown that relatively low levels of impact forces are

at a reduced risk of incurring overuse running injuries (Hreljac, 2004). Physiological studies,

such as oxygen uptake, describe how the human organism consumes metabolic energy to

sustain the running movement. The influence of the running condition (e.g., speed, slope),

environment (e.g., altitude, terrain), and other interventions (e.g., training programs, diet) are

usually at the center of these researches. Studies occasionally also combine the kinematic and

kinetic aspects of running and investigate their relation from a physiological standpoint, such

as to examine the biomechanical factors associated with running economy (Moore, 2016).

Central to the entire discipline is the quest to improve the running performances. Finally,

spatio-temporal studies deal with the analysis of spatial and temporal parameters within the

different phases of the running gait. With the running gait subdivided in cycles, these studies

use a discrete approach in the resolution of their research questions. The duration of the

stance phase (i.e., contact time), of the phase of flight, the running cadence, and the stride

length are all examples of variables considered in spatio-temporal studies (Dugan & Bhat,

2005; Novacheck, 1998).

The subsequent sections introduce the fundamental components of running biomechanics

and present the terminology for the rest of this thesis. The review starts with a description

of the temporal events and gait phases that compose the running cycles and discusses the

effects and causes associated with variations in these parameters. Finally, the most common

kinematic and kinetic features are reviewed.

1.5.1 Temporal events and gait phases

The running gait is comprised of a succession of cycles called strides as the basic units of

measurement in gait analysis (Novacheck, 1998). A cycle is comprised of two steps, and

the inverse function of the duration of a stride and a step are defined as the stride and step

frequency (or cadence), respectively. Moreover, one stride can be divided into two stages: the

aerial and terrestrial phases. The terrestrial phase is generally referred to as the stance phase

and the aerial phase as the flight phase (or phase of float). As shown in Figure 1.4 and later

discussed in this section, each period can further be subdivided into sub-phases. The study of

those phases, as well as the different methods and instrumentation required to assess them, is

often denoted as the temporal analysis of the running gait.

In running, two events must be detected on each leg in order to extract the main temporal

features of a stride: the initial contact (or touchdown) and terminal contact (or take-off)

events. Initial contact occurs when the foot first initiates contact with the ground during

landing and terminal contact when the toes lose contact at the end of the pushing phase.

The mid-point between initial and terminal contact is known as the mid-stance event. Initial
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Chapter 1. Introduction

Figure 1.4 – Temporal events and gait phases of a running cycle (or stride). The temporal events
are depicted according to the leg highlighted in red, and the percentages are approximations
reported during jogging.

contact marks the start of the stance phase, which is often divided into two sub-phases: (1)

the weight acceptance phase (or braking phase) where the subject absorbs the landing forces

and supports the vertical collapse of the center-of-mass (CoM), and (2) the pushing phase (or

push-off) where a forward acceleration is generated to propel the body mass forward (Hamner

et al., 2010). With terminal contact and the end of the stance phase starts the swing phase.

The term “contact time” is often encountered in the literature as it refers to the duration of the

stance phase. This phase lasts until the following initial contact event of the same foot and has

its mid-point defined as the midswing event. Moreover, as the swing phase period starts for

one leg, the contralateral leg approaches the end of its swing phase, leading to a period where

none of the foot is in contact with the ground, the flight phase. By definition, the flight phase

starts with terminal contact of ipsilateral leg and ends with initial contact of the contralateral

leg. Hence one swing phase is composed of a period of flight (“early float” in Figure 1.4), the

stance phase of the contralateral leg, and a second flight phase (“late float” in Figure 1.4).

As the early inventions of Etienne Jules Marey (section 1.2) illustrate, the absolute and relative

duration of the abovementioned gait phases has been of interest for more than a century.

How these phases changes as the running speed increases has received particular attention.

For instance, a considerable amount of literature has shown that stride frequency increases

almost linearly for slow to moderate speed and non-linearly for fast running (Luhtanen &

Komi, 1978; Ari Nummela et al., 2007; Keith R Williams, 1985) (Figure 1.5, left). However, the

method used to augment the velocity through a change in the stride frequency and stride

length varies among individuals (Ari Nummela et al., 2007; Van Oeveren et al., 2019; Weyand

et al., 2000). Also, it is well recognized that the absolute contact time and flight time decrease

as the running speed increases (Luhtanen & Komi, 1978; Nilsson et al., 1985; Ari Nummela et

al., 2007; Keith R Williams, 1985) (Figure 1.5, right). The change in contact time with speed is

non-linear in that decreases are greater at slower speeds than at faster speeds. Interestingly,

their relative time, often expressed in percent of a gait cycle, is responding otherwise to an
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1.5. The assessment of running

increase in velocity; runners spend proportionally more time in the flight phase than in the

stance phase as velocity augments (Dugan & Bhat, 2005; Nilsson et al., 1985). For example, the

observations in (K.R. Williams, 2008), for one individual, showed that contact time during a

step decreased from 80% at 3.6 m/s to 66% at 6 m/s, and flight time increasing from 20% to

34%. Moreover, a recent study was able to predict the running speed of an individual based on

a personalized model with contact time as the only input (De Ruiter et al., 2016).
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Figure 1.5 – (Left) Stride frequency (open circles) and stride length (black dots) as a function
of the running speed. (Right) Flight time (open circles) and contact time (black dots) as a
function of the running speed. Source (Ari Nummela, Keränen, & Mikkelsson, 2007).

Other studies have investigated how these temporal parameters were affected by the appear-

ance of fatigue (Bates & Haven, 1974; Elliot & Ackland, 1981; Joseph Mizrahi et al., 2000;

Jean Benoît Morin et al., 2011; S. Winter et al., 2017). Fatigue can diminish coordination and

efficiency in the movements, thereby affecting the running performance. A common problem

in fatigue studies is that running speed also changes during a prolonged run, and it can be

challenging to identify the changes due to fatigue and those due to the altered velocity. In a

study (Elliott & Roberts, 1980) where the speed was controlled, the authors reported trends

towards an increase in stride frequency, an increase in contact time, and a decrease in flight

time.

Tightly linked with the notion of fatigue is the notion of running economy and running effi-

ciency. In distance running, small improvements in energy expenditure can lead to substantial

progress in performance. Consequently, researchers have tried to relate these physiological

improvements with the temporal parameters of gait (P. E. Martin et al., 2008; Moore, 2016).

For instance, runners seem to naturally select the most economical (or nearly optimal) stride

frequency (or stride length). The studies supporting this self-optimization theory often used

precise manipulations of both cadence and stride length to extrapolate the most economical

stride frequency mathematically. Interestingly, the difference between preferred and mathe-

matically optimal stride frequencies is greater for novice (8%) than for trained runners (3%)

(de Ruiter et al., 2014). However, there is little agreement yet regarding the association of

contact time and flight time with the cost of running.

Overall, the analysis of the aforementioned gait phases plays a fundamental role in the as-

sessment of running. Stance, swing, and flight phases constitute the framework within which
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other kinetic and kinematic features are studied. For these studies, it is therefore imperative

to accurately and precisely detect the events of initial contact and terminal contact. In the

literature, the majority of studies have used force plates, contact mats, or high-speed cameras

as reference measurement systems (Van Hooren et al. 2019; (Peter R. Cavanagh and Lafortune

1980; Munro, Miller, and Fuglevand 1987; J. Hamill et al. 1983). Although force plates are

accepted as state-of-the-art systems for temporal events detection in running, they suffer

from several limitations; the detection timing of the initial and terminal contact events on the

vertical ground reaction force depends on the filtering method, and the detection threshold

used (BM Nigg 1983). Moreover, their lack of portability and their setup complexity restrict

their use for in-laboratory experiments, which is a major drawback given the in-field nature of

the running activity.

1.5.2 Kinetics of running

Kinetics studies examine the external or internal loads acting on the musculoskeletal struc-

ture. For it is within the period of ground contact that the body interacts with the earth, a

vast portion of the scientific literature focused on the stance phase, and specifically on the

assessment of the ground reaction forces (GRF). These forces are generally measured using

floor-integrated force plates or instrumented treadmills. Although the instrumented treadmills

allow for continuous monitoring of the GRF, they can be affected by the noise induced by the

vibrations of the treadmill. While a recent review suggested that the mechanics of running are

mostly comparable between motorized treadmill and overground running, they also observed

considerable differences for sagittal plane kinematics (Van Hooren et al., 2019).

The GRFs have been a subject of research in many biomechanical studies and the shape of

the force-time curves investigated under various conditions (Peter R. Cavanagh & Lafortune,

1980; J. Hamill et al., 1983; Munro et al., 1987). Because it approximates the loading on

the lower extremities required for the support of the body mass, the vertical GRF received

particular attention. Moreover, the magnitude of the vertical GRF is usually higher than

in the anteroposterior and mediolateral directions. The magnitude of the vertical GRF can

vary considerably among individuals running at the same speed (4.5 m/s), ranging from

approximately 2 to 3 times the body weight, according to (Peter R. Cavanagh & Lafortune,

1980). Also, increases in the running velocity have been associated with increased peak

force amplitudes (Weyand et al., 2010). The terminology used to describe the vertical force-

time curve has varied among studies, but a naming convention (BM Nigg, 1983) is now

predominant; the initial peak referred to as the impact peak, occurs within 10% of the stance

phase, and the second peak referred to as the active peak, over the latter 60-75% of stance

(Figure 1.6). Interestingly, one study has shown that during uphill and downhill running, as the

angle of the hill changes from a steep downhill to a steep uphill: normal (i.e., perpendicular to

the ground surface) impact peaks decrease and normal active peaks do not change (Gottschall

& Kram, 2005). Also, it is important to note that the shape of the ground reaction force patterns

depends primarily on the running style (i.e., the foot strike pattern). For midfoot and forefoot
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Figure 1.6 – Vertical ground reaction force observed for two landing techniques: (Left) rear-
foot strike and (Middle) forefoot strike. (Right) Differences in loading rate between barefoot
rearfoot strikers (RFS), shod RFS, and barefoot forefoot strikers (FFS). Source (Lieberman et
al., 2010).

strikers (see section 1.5.3), the impact peak is typically attenuated or absent (P. R. Cavanagh,

1990; Lieberman et al., 2010; Payne, 1983; Keith R Williams, 1985) (Figure 1.6, middle).

The loading rate best characterizes these differences in the shape of the early vertical GRF

between populations and is often expressed in bodyweight per second to facilitate the com-

parison of across runners. In addition to the landing technique (Figure 1.6, right), the loading

rate also depends on the running speed (Munro et al., 1987). Despite its association with

the notion of impact and shock, a systematic understanding of how this feature contributes

to injuries is still missing. For instance, several studies have investigated the association

between the loading rate and the history of lower-limb stress fractures but found conflicting

results (Zadpoor & Nikooyan, 2011). Some researchers used a different approach toward the

assessment of the landing impact; they examined how it propagates across the body and

suggested that the primary mechanisms for attenuation may differ according to the footfall

patterns (Gruber et al., 2014).

The GRF in the anteroposterior direction is often related to the notions of braking and propul-

sion. In the initial phase, the anteroposterior GRF opposes forward motion, hence the forward

speed of the runner is slowed down (i.e., the braking phase). In the second phase, its direction

is consistent with the movement, hence the forward speed increases (i.e., propulsion phase).

Although extensive research has been carried out to explain the interindividual variations, no

evidence of a regular pattern has emerged. However, the anteroposterior GRF was shown to be

relevant for the understanding of sprint mechanics and is commonly used in the estimation of

the running power (Rabita et al., 2015). In comparison, it was proven more difficult to find

relevant patterns in the mediolateral GRF.

The point of application of the GRFs known as the center of pressure (CoP), is located below

the foot. The trajectory of the CoP has been proposed to classify the landing technique across

runners; the strike index (Peter R. Cavanagh & Lafortune, 1980). This index aims to divide the

shoe midsole into three equal parts, record the position of the CoP at the time of initial contact,

and use that position to define whether an individual first contact was made in the rear one
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third (rear-foot strike), in the middle third (mid-foot strike) or the front third (fore-foot strike)

of the shoe. Researchers also used the mediolateral trajectory of the CoP to assess the inward

and outward rotation of the foot during the stance phase and the timing of such mechanisms

(De Cock et al., 2005, 2008). Similarly, existing research recognizes that the initial contact with

the ground for most runners occurs on the lateral border of the foot (P. R. Cavanagh, 1990). A

more descriptive metric than the CoP is the distribution of the plantar pressure. For instance,

plantar pressure distribution was proposed to examine the association between the structure

and the function of the foot (Hillstrom et al., 2013), to classify runner according to the function

of their foot (De Cock et al., 2006), to compare the mechanics of overground and treadmill

running (Hong et al., 2012) or investigate the pressure patterns and their associations with

running-related injuries (Mann et al., 2016).

Attempts to describe the interdependency of mechanical parameters and examine the rela-

tionship between the motion of the center of mass (CoM) and the GRF, resulted in a variety of

models. Arguably the most common one, the spring-mass model, simplify the whole body

mass with a point mass on top of a single spring (Blickhan, 1989; McMahon & Cheng, 1990).

The motion of the point mass is assumed to be linear vertical and downward during the first

half of the stance phase and upward during the second half. So if the displacement of the

CoM, the active peak force, and the mass of a subject are known, the vertical and leg stiffness

can determine based on this model and using Hooke’s law (Farley & González, 1996; Marlène

Giandolini et al., 2014; Pappas et al., 2014). Inversely, this model can also be used to predict

the vertical ground reaction force (Geyer et al., 2006), running economy (Dalleau et al., 1998),

stride length, and other features (Bullimore & Burn, 2007). This model was designed for level

running, yet one study suggested that it could be generalized by adding a damper in parallel

with the spring for downhill running, and a motor for uphill running (Dewolf et al., 2016).

However, the spring-mass model does not account for the asymmetric force-time curve of the

vertical GRF and fail to predict its high-frequency components, such as the impact force peak.

Consequently, more sophisticated models have been proposed to solve this issue. These

are generally referred to as the multi-body mass-spring-damper models (Clark et al., 2017; J.

Mizrahi & Susak, 1982; Nedergaard et al., 2018). Whereas these complex models tend to predict

the GRF more accurately than the simpler spring-mass model, the additional parameters

required for these models need to be estimated, hence are a potential source of error, and

makes them increasingly difficult to understand their physical meaning.

Another commonly used model to calculate the mechanics of the lower limbs is the so-called

inverse dynamic method. This method estimates the net joint forces and moments at each

joint of the lower limbs using inputs such as the GRF, the center of pressure, the segments

parameters (e.g., mass, length), and the segments kinematics. The early work of Braune

and Fischer (section 1.2) laid the foundation of this indirect measurement method, which

has, since then, been used in a consequent amount of running researches to examine the

relationship between technique and internal load (Mei et al., 2019; Van Hulle et al., 2020). This

method emphasizes the cause and effect relationship between kinetics and kinematics, and
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the importance of considering both approaches in the analysis of the running gait.

Muscle activity timing and relative intensity have also been widely documented for running,

and it constitutes a field of research by itself. These metrics are commonly obtained through

electromyography and surface or fine wire needle electrodes. However, muscle activity can

not be measured with inertial sensors. Thus, its review is not included in this thesis.

1.5.3 Foot kinematics

Investigating the whole-body kinematics is a continuing concern in the field of running biome-

chanics. Although a considerable amount of literature investigated the motion of the upper

limbs and trunk segment, the majority of studies focused on lower extremities. Nevertheless,

it is important to note the significance of the existing literature regarding the oscillation of

the CoM. This characterization directly relates to the spring-mass model previously discussed

(section 1.5.2). For instance, studies have demonstrated that the vertical oscillation of the

CoM decreases with running speed and was reported from 10.9 to 6.7 cm for speeds between

3.9 and 9.3 m/s (Luhtanen & Komi, 1978). Also, low vertical oscillations were shown to be

beneficial for running expenditure (Moore, 2016); from a mechanic standpoint, the amount

of work required to support the CoM during the stance phase increases as the CoM vertical

displacement also increases. Besides, scientists scrutinized numerous other upper-segment

kinematic features such as the trunk angle in the sagittal plane (Teng & Powers, 2014a, 2014b),

and the role of the arm swing movement (Arellano & Kram, 2014).

Regarding the lower limbs, the kinematics of the knee and hip have been thoughtfully de-

scribed. In particular, the continuous changes in the thigh and knee angles have been reported

under various running conditions (e.g., speed, footwear, landing technique) (Keith R Williams,

1985), and many studies have investigated the position of the lower leg at initial contact; it has

been proposed that the orientation of the lower-limb segments could affect the changes in the

horizontal running speed observed during the braking phase of support (Peter R. Cavanagh et

al., 1977).

As the only segment interacting directly with the ground, the movement of the foot received

particular attention. Also, in this thesis, the main focus is on the movement of the foot due

to the comfort and simplicity that shoes offer in the placement of motion sensors, and in

the relevance of foot biomechanics to analyze gait. Therefore, the remaining of the current

section reviews the kinematic features of the foot only. The pose of the foot (i.e., position and

orientation) have been particularly scrutinized throughout the last decades. Two key concepts

have been at the center of many discussions: the foot strike patterns and the inward and

outward rolling motion of the foot during the stance phase.

The sagittal plane orientation of the foot at initial contact is usually classified into one of three

classes, the so-called foot strike patterns: a rear-foot strike (RFS) occurs when the heel lands

first; a midfoot strike (MFS) when the heel and ball of the foot land nearly simultaneously;
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and a fore-foot strike (FFS) when the ball of the foot initiate contact first after which the heel

follows shortly. As introduced above, in most research, this characterization of the landing

phase was performed through the measurement of the strike index (section 1.5.2). Recently,

the footstrike angle (FSA), defined as the sagittal plane angle between the foot and the ground

surface at initial contact, was shown to be an acceptable alternative to the strike index (Altman

& Davis, 2012). The authors of the same study also proposed the following classification limits

based on the FSA: rearfoot strike > 8°, midfoot strike between -1.6° and 8°, and forefoot strike <

1.6°.

Most recreational runners use an RFS at slow and moderate running speeds. Studies have

analyzed the distribution of the foot strike patterns of a large number of participants in a

competitive distance race and found that over 80% of individuals were rear-foot strikers, ap-

proximately 20% were midfoot strikers, and roughly 1% were forefoot strikers (Hasegawa et

al., 2007; Larson et al., 2011). In sprinting, however, nearly all individuals use an FFS (Mero

et al., 1992). A cluster analysis of 102 recreational runners suggest that three distinct and ap-

proximately equally sized groups of strike angle adaptations exist as the velocity increases: (1)

small/negative FAS throughout; (2) large positive FSA at low velocities (≤ 4 m/s) transitioning

to a smaller FSA at higher velocities (≥ 5 m/s); (3) large positive FSA throughout (Forrester &

Townend, 2015). Nevertheless, speed is not the only factor affecting the foot strike angle. Two

studies observed that a high percentage of marathon participants switched from an FFS or

MSF to an RFS as the distance increased and that the more elite performers were less likely to

heel-strike (Bovalino et al., 2020; Larson et al., 2011). Such observations suggest that fatigue

can alter the preferred landing technique, which in turn depends on the running experience.

From a mechanical perspective, the Achilles tendon and the plantar arch are the anatomical

springs that contribute to most to the energy storage and restitution process of each step;

together, they retain roughly 50% of the potential and kinetic energy lost during stance phase

(Alexander, 1991). Since these anatomical springs are most activated using FFS and MFS (Perl

et al., 2012), it seems theoretically sound that experienced runners, and faster runners tend

to prefer an FFS or MFS landing technique. Though the connection between the foot-strike

patterns and running-related injuries is still today widely debated among researchers, evidence

shows that individuals running barefoot tend to avoid RFS landing instinctively and that the

rear-foot strikers experience a higher loading rate than the mid-foot and forefoot strikers

(Lieberman et al., 2010) (Figure 1.6). Hence, researchers addressed footwear cushioning

as an injury prevention strategy making RFS acceptable (Kulmala et al., 2018; Ryan et al.,

2014; Sun et al., 2020). A recent review on the topic concluded that 1) increasing the forefoot

bending stiffness of running at the optimal range can benefit performance-related variables;

2) softer midsoles can reduce impact forces and loading rates; 3) thicker midsoles can provide

remarkable cushioning effects and attenuate shock during impacts but may decrease plantar

sensations at touchdown; 4) minimalist shoes would improve running performance (Sun et

al., 2020).

Although the foot strike pattern describes the pose of the foot in the sagittal plane, another

18



1.5. The assessment of running

Figure 1.7 – (Left) The subtalar joint axis indicated by the solid black line and the longitudinal
axis by the dashed black line. (Right) Two most common alternatives to pronation quantified
in the literature: β the Achilles tendon angle and γ the rear-foot eversion. Source (Nigg,
Behling, & Hamill, 2019).

term focuses on the rolling motion of the foot during the stance phase: the pronation and

supination movement. Pronation is defined as the inward rotation of the rear foot about the

subtalar joint axis, and supination as the outward rotation of the rear foot about the subtalar

joint axis (Benno Nigg et al., 2019) (Figure 1.7, left). At initial contact, the foot is supinated or

locked, to better absorb the landing impact. Then, during the first 40-50% of the stance phase,

the foot pronates or unlocks to offer more stability in support. Finally, the foot supinates again

throughout the pushing phase (i.e., rigidifies) to help propel the runner forward (Ferber &

Macdonald, 2015).

The assessment of pronation is complicated, if not impossible; measurement systems cannot

directly access to the subtalar joint axis. Nevertheless, scientists have described pronation-like

variables to study this rolling motion of the foot. The rear-foot eversion angle was defined

as the angle between the talus and the ground (Figure 1.7, right) (Areblad et al., 1990); it

corresponds to the inward rotation of the foot around the longitudinal axis of the foot. In

comparison, the inversion angle refers to the outward rotation of the foot. Instead of describing

the rotation based on the rear-foot, the Achilles tendon angle refers to the motion of the shank

(Reinschmidt et al., 1997). Unfortunately, existing studies have used these surrogate variables

(and many more) interchangeably with the term pronation, making it difficult to generalize

the findings on that matter. This might explain why inconsistent results have been reported

on the association between pronation and injuries (Behling et al., 2019).

Pronation and supination are natural protective mechanisms with which the foot accommo-

dates to uneven surfaces. However, the terms “over-pronation” and “hyper-pronation” have

been used many times in the literature. These terms refer to the potentially excessive motion

of the foot, but a clinical definition is missing (Benno Nigg et al., 2019). One reason that drove

researchers to examine pronation is the internal rotation that it induces to the tibia, which in

turn may create problems at the knee (Van Der Worp et al., 2015).

Recent research suggested to abandon the “impact” and “pronation” paradigms due to a lack

of biomechanical and epidemiological evidence and instead shift to new paradigms, such as
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“Muscle tuning,” “preferred movement path,” and “habitual motion path” (B. M. Nigg et al.,

2017; Trudeau et al., 2019). These studies suggest that each individual possesses a “habitual”

motion path that the body naturally adopts as a consequence of the optimal path of least

resistance of their joints and that any intervention affecting this path is inappropriate and

potentially harmful.

Finally, stride length refers to the distance covered from initial contact of one foot to the

next contact of the same foot. In comparison, step length is the distance between successive

footstrikes of each leg. This parameter has often been reported in the literature, for its direct

association with speed and stride frequency (Figure 1.5, left); if one knows the duration of a

stride and the distance covered during that stride, one can estimate the velocity. Speed is a

crucial element of running analysis; it affects the temporal parameters, the kinetic compo-

nents, and the kinematic features of the running. The relation between stride length, stride

frequency, and speed has been widely documented and suggest that each individual uses a

different strategy to generate speed (Elliott & Blanksby, 1979; Högberg, 1952; Mercer et al.,

2002).

1.6 The objectives of this thesis

The current chapter introduced running as a human locomotion method, its underlying mech-

anisms, and its journey into becoming one of the most popular physical activities worldwide.

The main temporal, kinetic, and kinematic properties of running were briefly introduced to

recognize the significance of gait assessment for injury prevention or performance analysis.

This chapter also emphasized on the real-world nature of running and described the protective

role of the foot in adapting to uneven surfaces.

While running is mostly an outdoor activity, paradoxically, most of today’s knowledge on

running mechanics was uncovered from the confines of fully instrumented laboratories and

not from its natural environment. These laboratories are generally equipped with state-of-

the-art measurement systems but suffer, nonetheless, from several limitations. For instance,

the limited volume that these systems can capture often restrain the analysis to treadmill

running. Long-term measurements are generally not possible due to the consequent amount

of data that needs to be stored. Consequently, continuous assessment of the running gait is

impossible and must instead be carried periodically. Lastly, the cost and complexity of data

processing restrict their use to research and elite athletes.

Nevertheless, the recent improvements and miniaturization efforts in sensor technologies and

the progress of information and communication technologies have moved the assessment

of running from the controlled in-lab environments towards real-world conditions using

body-worn systems. But, only a few of the existing wearables devices have been validated

against reference systems, making the outcomes of the studies that employed these body-worn

systems somewhat hard to evaluate. Hence, the lack of accurate portable systems and the

proliferation of real-world research increased the need for acutely validated wearable methods
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(i.e., sensors and algorithms).

Considering the above, Chapter 2 of this thesis is dedicated to the review of the state-of-

the-art of running assessment methods and challenges facing the recent shift from in-lab to

in-fields studies that wearable technologies induced. Chapter 2 also discusses the limitations

of wearable sensors and the potentially negative effects that non-validated devices could have

on the reputation of these systems.

The configuration of inertial sensors can vary from one to several devices on each of the body

segments. Nonetheless, attempts to reduce the configuration to a minimum should always be

considered, in order to make the system more accessible and more convenient for the users.

As introduced in this chapter, the foot has an essential role in absorbing the landing impact

and protects the other limbs from uneven surfaces by an intricate mechanism of rotations. It

is, therefore, a prime location for sensing technologies to monitor. Besides, the sensors can be

fixed on the shoe without direct contact with the skin, making the system more comfortable

for the runners. Therefore, by focusing on foot-worn sensors the main objectives of this thesis

were to design and validate new algorithms for running gait analysis to:

1. Assess the temporal parameters of running (Chapter 3)

2. Measure the orientation of the foot by reducing the orientation drift (Chapter 4)

3. Estimate the running speed using three different approaches (Chapter 5)

The mandatory stage of any new instrumentation consists of validating its measurements with

an appropriate reference system and carefully report the results. Although this affirmation may

seem trivial, it is unfortunately frequent to come across running studies based on instruments

or methods of inappropriately reported, or merely inexistent, evaluation of the error. The

terminology is also regularly misemployed with fundamental concepts such as accuracy, bias

(systematic error), and precision (random error) being incorrectly interchanged (Walther &

Moore, 2005). This issue is particularly recurrent for studies using body-worn inertial sensors.

Researchers rushed towards wearable sensors technology and sometimes forgot to question

the reliability of these tools. The same observation holds for commercialized devices. Knowing

the accuracy and precision of a measurement system is at the core of all scientific research. For

instance, if a 5% difference between two types of populations is observed for a given metric,

but the random error of the measurement system is unknown, how can anyone advocate

whether the difference is significant or purely due to the random error of the system?

Hence, in Chapter 3 and Chapter 4, the performance of the proposed wearable system was

validated for several kinematic features and the results compared to reference laboratory

equipment (ground truth). Moreover, the effect of the running speed and foot orientation

on the temporal detection bias (Chapter 3) is also discussed. Surprisingly, no drift correction

model was specifically designed for running; most studies assessed the orientation of the foot

using methods derived from walking analysis without considering the kinematic differences
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between the two types of locomotion. Hence, Chapter 4 proposes and evaluates a new drift-

correction method to assess the foot orientation in running. This method is based on a two-

segment model of the foot and suits to the different foot strike patterns observed in running.

Using the methods introduced in previous chapters, Chapter 5 presents the limitations of

the direct integration of foot acceleration in estimating the overground running speed and

proposes a linear model approach to estimate the instantaneous overground running speed

accurately. The system was validated against the reference measurements obtained from

a body-worn GNSS system. Finally, the accuracy of running speed estimation was further

improved based on a personalization process and sporadic access to GNSS measurements

(Chapter 5).

Wearable systems are meant for real-world conditions, outside, in the wild. It seemed, there-

fore, essential to test the practical limitation of the system developed in-lab and propose

adaptations when needed. The limitations that can be ignored during the technical validation

can become major restrictions outside the labs. For instance, during a 30 seconds trial, the

running cadence remains approximately the same and needs only to be estimated once with

a simple frequency-domain analysis. When running a marathon, however, the cadence is

continuously changing, and new methods must be implemented to cope with these real-world

requirements.

Three applications were used to show the usefulness, robustness, and efficiency of the pro-

posed running analysis system in real-world conditions: marathon running (Chapter 6), trail

running (Chapter 7), and hurdling (Chapter 8). With each of these applications, new chal-

lenges occurred, either associated with the configuration of the sensors, the environment

of the measurements, or atypical kinematic patterns (e.g., jumping over a hurdle). Chapter

6-8 address these challenges and propose several solutions to improve the robustness of the

system. Such improvements include a sliding window estimation of the running cadence, the

automatic detection of hurdle crossings, and a recurrent re-assessment of the misalignment

between the sensor frame and the functional frame of the foot.

1.7 Thesis overview

This thesis is comprised of four parts. Part I, Introduction and background, includes the

present introducing chapter and Chapter 2, State of the art in running assessment. Part II,

Algorithms development and Validation, includes Chapters 3 to 5 for temporal parameters,

foot orientation, and running speed estimation. Part III is dedicated to the applications of the

developed methods in marathons (Chapter 6), extreme mountain ultra-marathons (Chapter

7), and hurdling (Chapter 8) settings. Finally, Part IV includes the last chapter (Chapter 9),

which offers a general discussion about the main contributions of the current thesis.

The organization of the thesis is shown in Figure 1.8 and briefly described in the following

paragraphs. Note that, in Figure 1.8, shorter versions of the chapters’ names have been

preferred for the sake of graphical clarity. Also, throughout this thesis, the pronoun “we” is
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preferred when referring to a study with multiple authors. Hence, my contributions to these

studies (Chapter 3 - 8) are listed in a footnote below the abstract of each chapter.

1. Introduction

2. State of the art

Part I.
Thesis background

Part II.
Algorithms design and validation

3. Temporal events

4. Orientation drift correction

5. Speed estimation

Part III.
Applications

6. Marathon

7. Trail running

8. Hurdling

9. Conclusions

Part IV.
Discussions

(Falbriard; 2018)

(Falbriard; 2020)

(Falbriard; 2020)

(Jeker, Falbriard; 2020)

(to be submitted)

(to be submitted)

Figure 1.8 – Outline of the thesis, including four Parts and 9 Chapters. Chapters 3,4, 5, 7, and 8
are based on published or submitted papers, as shown in brackets.

Chapter 1 – (current chapter) introduces running as the main topic of the current thesis. An

overview of the running biomechanics and analysis principles used in scientific studies is

proposed with a historical perspective, from ancient Greece to the present knowledge. The

health benefits and most common injuries associated with regular running are also introduced.

Finally, this chapter briefly describes how running became one of the most popular sports

around the globe.

Chapter 2 – presents an overview of the current state-of-the-art in running assessment. The

instrumentation recognized as reference systems and the present state-of-the-art of wearable

technologies in running is introduced, with a primary focus on inertial sensors.

Chapter 3 – assess the performance of different kinematic features measured by foot-worn

inertial sensors for detecting running-gait temporal events to estimate inner-stride phases

duration. The results from the IMU-based system are compared with the reference detection

of a force plate and the errors presented in terms of accuracy and precision. Moreover, this

chapter also discusses the effect of the running speed on the performance of the system.

Finally, a new method based on a decision tree structure for automatic IMU-to-segment

assignment is described as additional results.

Chapter 4 - introduces a new method to estimate and correct the orientation drift measured

from foot-worn inertial sensors. The step-by-step description of a modified strapdown in-

tegration method that decreases the orientation drift is provided. This method is further

compensated by estimation of the joint center acceleration of a two-segment model of the

foot. The performance of the system was validated against an optical motion-tracking system

during level treadmill running. Moreover, the agreement between the visual determination of

the foot strike patterns and the foot strike angles obtained from a motion tracking system is

discussed as additional results.
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Chapter 5 – proposes and evaluates three different methods to predict the instantaneous

overground running speed based on foot-worn inertial sensors; the first method involves the

direct measurement of speed, the second a linear modelization of the speed, and the third a

personalized modelization based on sporadic inputs from a GNSS system. The performances

of a personalized and non-personalized model are compared, and the benefits of averaging

the predictions over several steps are discussed. Compared to the previous chapters, the

measurements of this study were obtained in a real-world environment at various running

speeds and slopes.

Chapter 6 – presents the capacity of the system to analyze the running spatiotemporal param-

eters in a marathon setting. The results suggest that a significant change in the spatiotemporal

parameters occurs around the 25th km and remains consistent until the end of the race. This

chapter also emphasizes the different time-resolutions that the system can provide, from

stepwise estimations to statistics over several kilometers.

Chapter 7 – investigates the effects of altitude and distance on the uphill vertical speed and

cadence during an extreme mountain ultra-marathon. This study was included in the current

thesis for two main reasons; first, the IMUs were placed inside a sock worn around the ankle,

therefore, testing the limits of the algorithms presented in chapter 3. Second, the setting of

the race was unusual as it comprised bouts of resting, walking, and running in inclined and

declined terrains of different types (e.g., rocks, concrete roads, grass).

Chapter 8 – tests the algorithms in a track and field event with obstacles within the race; 400

meters hurdling. In particular, it determines whether: (1) shoe-worn magnetic and inertial

sensors can be used to detect hurdle clearance and identify the leading leg in 400-m hurdles,

and (2) to provide an analysis of the hurdlers’ spatiotemporal parameters in the intervals

defined by the hurdles’ position.

Chapter 9 – provides a general discussion about the contribution of the current thesis, the lim-

itations of the proposed system, and the future outcomes. It also presents the commercialized

product, which has been developed based on the algorithms presented in this thesis.
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2.1 Overview

Scientific-grade running assessment is commonly performed inside research labs equipped

with state-of-the-art measurement systems. However, as the size and price of wearable devices

decreased, researchers started to monitor running in real-world conditions with, sometimes,

poor reliability in the measurements. Today, when designing new measurement protocols,

scientists need to evaluate the trade-off between the accuracy of the lab instruments and the

convenience of wearable sensors to select the right instrumentation. Running biomechanists

often refer to the laboratory equipment as “reference systems” or “state-of-the-art measure-

ment system.” Such terminology emphasizes the distinction between reliable and accurate

in-lab systems and supposedly less accurate ambulatory monitoring devices.

This chapter introduces the common in-lab measurement systems and reviews the state-of-

the-art of inertial sensing technology in running. Since the present thesis proposes novel

algorithms based on foot-worn inertial measurement units (IMU), this review focuses pri-

marily on accelerometers and gyroscope sensors: discussing their configuration, monitoring

capacities, and limitations. Also, the signals obtained from inertial sensors are not intuitively

clear and require advanced algorithms to qualify and quantify the running gait objectively.

Hence, these algorithms are the actual added-value of the existing systems and need to be

carefully reported. Since the number of running studies based on inertial sensors is long and

rapidly increasing, this chapter provides an overview of the latest developments.

2.2 Reference measurement systems

2.2.1 Force plates

Force plates are typically used to measure the ground reaction forces applied to the body

during the period of stance. These systems are generally comprised of three-dimensional force

transducers located in each corner of a rigid plate, measuring the force based on piezoelectric
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or strain-gauge sensors (P. R. Cavanagh, 1990). Hence, a force platform can retrieve the

ground reaction force in three dimensions: the anteroposterior, the mediolateral, and the

vertical direction. Besides, several relevant parameters, such as the loading rate, the impact

forces, and the center of pressure trajectory are derived from these three-dimensional ground

reaction forces (section 1.5.2). In running studies, force plates are often set to record with

a sampling frequency between 200 to 4800 Hz (Butler et al., 2006; Lieberman et al., 2010),

and are recognized as the reference system in the assessment of the stance phase kinetics

(Higginson, 2009).

Because of their relatively small size (between 0.6 to 0.9 m in the running direction), runners

tend to adapt their stride length to make sure that their foot contacts with the ground within

the area of the ground integrated force plate. This issue is known as “targeting” (Challis, 2001).

Hiding the force plate form the runner by camouflaging its location offers a reliable solution,

but it also leads to a high number of footstrike partially, or entirely, out of the force-sensing

surface. To cope with this issue, researchers started using instrumented treadmills. These

treadmills have a force plate directly integrated under the rotating belt (Figure 2.1), which

makes them appropriate for continuous monitoring of the gait cycles (Belli et al., 2001; Dierick

et al., 2004). Most of the running studies on instrumented treadmills were performed with

the treadmill leveled. However, efforts were made to assess the kinetics of gait on inclined

treadmills (Gottschall & Kram, 2005; Iversen & McMahon, 1992).

Unfortunately, treadmills also have their own limitations. A recent review suggested that the

mechanics of running are mostly comparable between motorized treadmill and overground

running, but also noted that differences are observed in sagittal plane kinematics (Van Hooren

et al., 2019). Moreover, when running on a treadmill at a constant speed, intra-stride variations

of the belt speed between 5% to 15% are observed. These intra-stride variations strongly

Figure 2.1 – Schematic representation of an instrumented treadmill. Source (Willems &
Gosseye, 2013).
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depend on the quality of the treadmill; some treadmills can minimize that effect (Willems &

Gosseye, 2013). More importantly, the measurements tend to be noisier when obtained with

an instrumented treadmill than with a force plate integrated into the ground. This artifact

is partially due to the resonant frequency of the treadmill and the vibrations induced by the

motor. It is recommended, when possible, to characterize the dynamics of the instrumented

treadmill and apply corrective procedures when possible (Garofolini et al., 2019). Although a

recent study proposed a new force-plate-treadmill-wobbling-mass model to compensate for

these interfering oscillations, the most commonly used processing methods used to reduce

the noise are numerical filters. Since the characteristics of the noise depend on the treadmill,

different filtering methods have been reported in the literature. For instance, some studies

have used lowpass filters with cutoff frequency at 30 Hz (Weyand et al., 2010), or 50 Hz (Fellin

et al., 2010), or 100 Hz (Lieberman et al., 2015).

These differences in the pre-processing of the force signal can make the comparison of the

results between studies complicated. This is especially true in the context of temporal events

detection. The signal of the vertical ground reaction force is commonly used to detect the

moments of initial and terminal contact. When the foot initiates contact with the ground, the

vertical force suddenly increases. Since the vertical ground reaction force is roughly null within

the preceding flight phase, such an abrupt change is easily detected with a threshold. The

inverse situation also allows the detection of the terminal contact event. However, the filtering

method will affect the slope of the force profile around initial contact; thus, the timing of the

threshold-crossing event will change accordingly. Also, many thresholds have been used in the

literature. Some studies used absolute thresholds, 0 -150 N (Cronin & Rumpf, 2014; Leitch et

al., 2011; Nummela et al., 2007), others used thresholds relative to the subject’s body weight, at

3-20% of the body weight (Cronin & Rumpf, 2014), and others relative to the maximum vertical

force, e.g. 1% (K. R. Williams & Cavanagh, 1987). In some cases, two different thresholds were

used for initial and terminal contact (Kiselyov & Muallem, 2008).

The threshold and the filtering method have an even greater influence on the estimation of the

gait phases. When lowering the threshold, for instance, the event of initial contact is detected

earlier and terminal contact later. Hence, the error in contact time corresponds to the sum of

both errors. As showed in (Falbriard et al., 2018) that a difference in thresholds as low as 30 N

could change the contact time by more than 10 ms. Even though force plates are recognized

as reference systems for temporal analysis, the data processing method also influences the

detection results. Hence it is recommended to keep these limits in mind when discussing the

temporal analysis observations.

2.2.2 Optical motion tracking systems

Motion capture technologies are used to monitor the position and orientation of body seg-

ments in space. These systems provide reliable estimations of the running kinematics and

have been widely used for in-lab measurements. Motion capture devices can be categorized
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into two main categories: optical systems and electromagnetic systems. The latter has rarely

been used in running, probably because the receiver coils worn by the subject are less com-

fortable than the markers in camera-based systems and the magnetic field is distorted due to

the presence of iron in the ground.

Hence, optical motion capture is considered as the gold standard for the quantification of the

motion of body segments during running. These camera-based devices track the position

of markers attached to the subjects and compute their 3D coordinated with submillimeter-

accuracy (Eichelberger et al., 2016). There are two types of markers; passive markers reflecting

the ambient or infrared light, and active markers emitting light. Though active markers have

been used in a few running studies (McGrath et al., 2012), the majority of the commercialized

optoelectronic systems are based on passive markers (e.g., VICON, Qualisys, BTS SportLab).

In general, passive markers are smaller and less hindering the subject.

The number of markers and their position on the body segments depends on the application

(Figure 2.2). For instance, studies meant to quantify the lower and upper limbs opted for

a full-body configuration of markers (Folland et al., 2017; Maurer et al., 2012), while other

studies interested in a specific segment preferred customized settings (Koska et al., 2018;

Smith et al., 2015). Some predefined marker settings have been proposed for gait analysis

(Davis et al., 1991), and manufacturers of motion capture systems have even implemented

their automatic analysis in their devices (e.g., Plugin gait of VICON systems). The predefined

models allow for faster processing of the coordinates data but often require precise and

somewhat compelling placement of the reflective markers on anatomical landmarks. In

comparison, custom configurations can be relatively time-consuming during the labeling

stage and require particular attention in the calculation of the different coordinate frames.

The volume that can be captured depends on the number of cameras, which in turn depends

on the environment of the study (van der Kruk & Reijne, 2018). The cameras are usually

organized along the perimeter of the laboratory to observe the scene from different angles.

Their position is fixed at the calibration stage and must remain untouched throughout the

measurements; hence, the cameras are typically set around a treadmill (Folland et al., 2017;

Maurer et al., 2012), or on the side of a running lane (Kugler & Janshen, 2010; Zrenner et al.,

2018). Moreover, the complexity of the camera setting defines whether the markers can be

tracked continuously, or if temporary occlusion occurs. Occlusion is a typical limitation of

these systems, and it can be resolved through interpolation and filtering methods. There is a

lack, however, of consensus on which filtering method should be preferred. Different methods

have been reported in the running literature. For instance, Eslami et al. (Eslami et al., 2007)

used a low-pass zero-phase shift fourth-order Butterworth filter with a cut-off frequency at 12

Hz, while Lieberman et al. (Lieberman et al., 2015) preferred a cut-off frequency at 6 Hz, and

other groups proposed more sophisticated methods based on machine learning approaches

(Kucherenko et al., 2018).

The main objective of any markers’ configuration is to allow for an accurate representation of
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Figure 2.2 – (Left) Full-body configuration of markers during treadmill running. (Right) Con-
figuration of markers focused on the foot segment.

the underlying bone structure. However, soft tissue artifacts can have a large amplitude during

highly dynamics movement (Bélaise et al., 2016). The issue of soft tissue artifact designates

the relative motion between the skin markers and the underlying bones. The artifacts can be

in the order of a few centimeters depending on the activity and the marker placement (Peters

et al., 2010). In running, the main displacements were shown to occur for the skin markers

placed on the distal shank and anterior thigh (Dumas et al., 2014).

Apart from the typical kinematic measurement, such as the knee angle, the oscillation of

the center-of-mass, the foot strike angle, or the velocity of several body segments, motion

cameras have also been used for temporal events detection in running. These techniques

are particularly useful in circumstances where a force plate is not available. Several event

detection methods have been proposed and some were compared with a force plate as a gold

standard (King et al., 2019; Milner & Paquette, 2015). Handsaker et al. (Handsaker et al., 2016)

investigated the accuracy of four kinematics-based algorithms to estimate the timing of initial

contact over a range of running speeds and footstrike types. The authors recommended using

the first vertical acceleration of a marker placed on the posterior aspect of the calcaneus to

identify initial contact, and the vertical jerk peak of a marker placed on the distal end of the

hallux to identify toe-off. The precision was in the range of twenty milliseconds.

2.2.3 Video cameras and visual assessment

Even if the optical motion capture technology presented in section 2.2.2 is considered the

gold standard for kinematic assessment, they are rather time-consuming in their setup and

post-processing stages. In some conditions (e.g. foot movement), there is no need for such a

bulky setup, and simple video cameras can provide sufficient precision. Generally, the cameras

are set up to record one of the three anatomical planes: the frontal, sagittal, or transverse
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plane. Since the continuous assessment of any parameter would require to label each frame

manually, video cameras were mainly used in running studies to examine discrete variables.

For instance, Di Michele and Merni (Di Michele & Merni, 2014) used a high-speed camera (300

Hz) placed perpendicular to the running direction to determine the foot strike patterns on a

400-m outdoor athletic track. Video cameras were also used to assess the foot strike patterns

in other real-world conditions, such as marathons (Hasegawa et al., 2007; Kasmer et al., 2013;

Larson et al., 2011). Similarly, some studies attempted to examine the inversion and eversion

of the foot (Muñoz-Jimenez et al., 2015) and, in some rare cases, estimate the contact time

(Ammann et al., 2016).

Video cameras are often part of the whole instrumentation even when a state-of-the-art

motion tracking system is available. In these situations, their role is more to provide visual

assessment when needed. For instance, to check that the foot landed entirely on a ground

integrated force plate, or ensure post-measurements that a specific marker was correctly

placed on an anatomical landmark.

2.3 Inertial sensors in running

Inertial sensors or Inertial Measurement Units (IMUs) typically comprise accelerometers and

gyroscope. The recent advances in Micro-Electro-Mechanical Systems (MEMS) have made

these sensors smaller, power-efficient, and relatively inexpensive; thus, ideal for non-intrusive

wearable technology in sports. In an IMU, accelerometers measure both dynamic and static

acceleration (e.g., Earth gravitation acceleration) in an inertial frame of reference; and record

a null acceleration in free-fall. Gyroscopes derive the angular velocity of a rotating body using

the effect of the Coriolis force. The inertial sensor requires careful calibration to deduce their

offset and sensitivity. Different procedures have been proposed to estimate these parameters,

some simple and well-adapted to real-world applications (Ferraris et al., 1995), others more

sophisticated (Aggarwal et al., 2008).

Although the calibration improves the accuracy of the measurement, their results are not

error-free. For instance, the majority of modern inertial sensors measure in three directions

by combining three uniaxial sensors perpendicular to each other. Misalignment of the three

uniaxial sensors can lead to a phenomenon known as cross-talk. Although this issue has

been considerably reduced with MEMS technology, cross-talk occurs when uniaxial sensors

measure physical phenomena perpendicular to its axis. As for the offset and sensitivity, several

methods have been proposed to reset the orthogonality of the axes (Bonnet et al., 2009; Gietzelt

et al., 2013).

Like most electronics devices, sensors are affected by changes in temperature, which, for

instance, might arise as an important effect to account in winter sports applications. Moreover,

accelerometers and gyroscopes usually operate within a specific range, and, in the case of

highly dynamic movements, the acceleration or angular velocity may exceed this range and

saturate the sensor. Although saturation is generally temporary, it is particularly problematic
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when studying the peak value or when an integration of the signal is required. Today, most

commercial devices offer an operating range adequate for most sports applications, with ± 16 g

for the accelerometers and ± 2000 deg/s for the gyroscopes. The same conclusion holds for the

sampling frequency, typically set around 200-500 Hz in sports applications. Nonetheless, in

two recent studies, Mitschke et al. (Mitschke et al., 2017, 2018) observed that both the sampling

frequency and the operating range could affect the estimation of the running kinematics and

recommended using sampling frequencies above 200 Hz.

Acceleration and angular velocity are not easily interpretable. Generally, users prefer the

speed, the position, or the orientation to evaluate kinematics which are much more compre-

hensible. These metrics can be obtained with accelerometers and gyroscopes but require a

time-integration of the signals. As the sensors’ measurements are not error-free, and since the

integration function acts as a cumulative sum, the noise and bias generate a time-dependent

drift of the integrated signal. Drift may be slowly changing or can have discontinuities. More-

over, the source of the drift can be multifactorial; while it depends on the bias and noise of

the sensor, it may change with the type and intensity of movement, the sampling frequency,

and the signal pre-processing (e.g., filtering, interpolation). Also, since accelerometers are

instruments that measure the acceleration relative to freefall (i.e., the kinematic acceleration),

an accelerometer at rest will approximately measure a 1g acceleration. Therefore, to express

the motion of the sensor relative to an Earth-fixed reference frame, the acceleration associ-

ated with Earth’s gravity needs to be subtracted from the three-dimensional accelerometer

data. If not correctly removed, Earth’s gravity can become an essential source of integration

errors. Hence, many drift-correction techniques have been proposed, but the most com-

mon approaches are based strap-down integration (Favre et al., 2006; Sabatini, 2005), and

complementary filters (Madgwick et al., 2011; Sabatini, 2006).

For the sake of completeness, other motion sensor such as barometers and magnetometers

may be added to IMU, thus referred to as Magneto-Inertial Measurement Units (MIMUs). A

recent review (Camomilla et al., 2018) showed that the number of papers reporting IMU-based

sport-performance evaluation methods had grown gradually over the past decade. In the

same paper, the authors also listed the different fixation methods observed in these papers,

from tapes and straps to harnesses and suits. The fixation mean plays a crucial role in the

assessment quality. If an IMU is not firmly attached to the body, its intrinsic motion interferes

with the actual motion of the segment. This wobbling effect can be challenging to remove in

the post-processing stage and alter the accuracy of the measurements particularly during or

just after an impact.

For biomechanical analysis, different frames are interchangeably used to describe the position

and orientation of a body segment. A global frame (GF) is a fixed (global) laboratory frame. This

frame does not change its orientation or position over time. The directions of the global axes

are consistent, no matter which activities or subjects are being studied, or which investigator is

conducting the experiment1. In comparison, a local frame typically refers to a frame attached

to a body, possibly in motion. Hence, a local frame can change its orientation and position over
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time with respect to the global frame. Three generic local frames are commonly employed with

body-worn inertial sensors. The technical frame (TF) is a generic local frame rigidly associated

with a bony segment. It generally refers to the intrinsic sensor frame, the frame in which the

raw data are collected. Hence, this frame may be completely arbitrary as it depends on the

orientation and position of the sensors on the body, making the comparison between two

different configurations impossible. To avoid this issue, scientists prefer to use the anatomical

frame (AF) to describe the motion of a segment. The definition of the AF should always be the

same; its origin at the center of mass of the segment and the planes of the AF approximating

the frontal, transverse and sagittal anatomical planes. So, to align the TF of the sensors with

the AF of the segment, researchers have used a procedure called functional calibration. This

process estimates the orientation of the anatomical frame based on movements restricted to a

single plane (Favre et al., 2009; Lebleu et al., 2020). Thus, the functional frame is not exactly

the anatomical frame and can, therefore, result in different 3D kinematics when compared

with an anatomically set reference frame (e.g. in optical motion capture system).

Inertial sensors measure physical quantities related to the motion of a body and have shown

to be promising instruments to estimate temporal, kinematic, and dynamic parameters in

running. These parameters can be used in biomechanics research or in practice with coach-

oriented needs. Although these two aspects are related, from of sport-science point of view, it

is important to present the metrics obtained thought inertial sensors in an intuitive and inter-

pretable manner. For instance, directly commenting on the acceleration and angular velocity

time-curves might be relevant in biomechanical studies, but less pertinent for coaches and ath-

letes. Therefore, the following sections focus on the spatiotemporal parameters corresponding

more to coach needs, as introduced in Chapter 1.

2.3.1 Temporal analysis of the running gait

The detection of initial and terminal contact events is paramount to the estimation of gait

phases durations, such as contact time, flight time, swing duration, or step duration. Temporal

events are the building blocks of the running gait and are necessary to provide a cycle-by-cycle

analysis. Some studies have used IMUs on the upper body (Abt et al., 2011; García-López et al.,

2005), other focused on the shank/tibia segments (Crowell et al., 2010; McGrath et al., 2012;

Ogueta-Alday et al., 2013) and some used foot-worn IMUs (Mercer, Devita, et al., 2003; M.

Norris et al., 2013). However, few studies have validated the results against a gold standard

measurement.

Mo & Chow (Mo & Chow, 2018) compared three methods during overground jogging and run-

ning, and evaluated the detection error of initial contact, terminal contact, and stride duration

with a ground-integrated force plate. Each method was based on different sensor placement

and used sensors on the foot, shank, and pelvis (Figure 2.3). The authors concluded that initial

1The definition of reference frames follows a different convention than that used in earth sciences, astronomy
or engineering disciplines as navigation and guidance. The employed global frame (GF) may not be parallel to the
geographical coordinate system.
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contact can be detected most accurately by using the peak foot-resultant acceleration and

terminal contact as the minimum before positive peak shank vertical acceleration. Using this

method, they reported a relative mean ± STD error of 4.1 ± 1.8% for contact time and 26.6 ±

4.3% when only foot-worn IMUs were employed. The method based on the pelvic acceleration

showed an 8.7 ± 3.7% error an confirm the previous observation from other studies (J. B. Lee

et al., 2010; Wixted et al., 2010).

Similar methods based on shank-worn IMUs have also been used in other studies (Michelle

Norris et al., 2016; Purcell et al., 2005). For instance, Mercer et al. (J A Mercer et al., 2003) used

shank-worn accelerometers to estimate the stance phase duration. They defined initial contact

as the minimum acceleration before the peak impact and terminal contact as the minimum

acceleration after a second local maximum. Even though the authors did not evaluate the

detection error, one study (Schmidt et al., 2016) used the same method for sprinting and

reported a systematic error for contact time estimation of -2.5 ± 4.8 ms and a 95% limits of

agreement range from -11.8ms to 6.8ms.

Weyand et al. (Weyand et al., 2001), used the acceleration peak from a foot-worn accelerometer

to detect initial and terminal contact and compared their estimation of contact time with

a treadmill-mounted force plate. They reported a bias (mean ± STD) of 14.6 ± 0.5% when

computed over 165 trials. In comparison, Chew et al. (Chew et al., 2017) used the first local

minimum to define initial contact and the latter for terminal contact and compared the results

with a force plate. They reported a precision 14 ms and 19 ms for initial and terminal contact,

respectively. Noticeably, Strohrmann et al. (Strohrmann et al., 2012) also used the peak

acceleration norm to define initial contact but proposed a 2 g threshold to detect terminal

contact.

Gyroscopes based methods have also been proposed and adapted from walking gait analysis

(Mariani et al., 2013). McGrath et al. (McGrath et al., 2012) used the shank angular velocity

in the sagittal plane to detect initial and terminal contact events and compared the results

to a marker-based data acquisition system. The two events were derived using an adaptive

threshold approach and observed a mean error of 24 ms and -28 ms for initial and terminal

contact, respectively.

Ammann, Taube & Wyss (Ammann et al., 2016), compared contact time estimations between

shoe-worn IMUs and a high-speed video camera for 132 steps of 12 athletes at running

speeds within 22.3 ± 5.8 km/h. Because data processing was done by proprietary software, the

algorithms were not described in the methods.

Zhao et al. (Zhao et al., 2016) proposed a relatively different approach in the detection of the pe-

riod of stance. They used foot-worn inertial sensors and a frequency-tracking algorithm from

the field of audio analysis to obtain information about gait cycle duration and subsequently

determined the stance phase point for the next gait cycle. Even though the authors did not

validate the detection results, their approach differs from the more traditional methods based

on heuristic feature detection. Besides, with the advances in machine learning techniques,
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Figure 2.3 – Acceleration signals used in the detection of initial and terminal contact in the
comparison study by Mo & Chow (Mo & Chow, 2018).

some researchers have investigated whether these techniques could improve temporal events

detection in running. For instance, Robberechts et al. (Robberechts et al., 2019) evaluated gait

event detection from 3D tibial acceleration signals using a heuristic-based method and two

machine learning methods. Their results suggest that machine learning approaches better

predict the timing of initial and terminal contact. However, machine learning methods are

prone to overfitting and would require validation with large data sets to concluded on the

actual performance of the system.

Furthermore, several commercialized devices are available on the market for running gait

assessment, but only a few have been validated against gold-standard reference systems.

A recent paper (García-Pinillos et al., 2019), however, evaluated the concurrent validity of

two commercialized foot-pods systems (i.e., Stryd and RunScribe systems) during treadmill

running. Detection times were compared with a 1000 fps high-speed camera. They observed

that the Stryde system underestimated contact time (5.2%) and overestimated flight time

(15.1%), whereas the RunScribe system underestimated contact time (2.3%) and overestimated

flight time (3.2%).
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Based on this review, the best detection performance seems to be obtained when initial contact

is detected by a foot-worn IMU and terminal contact using a shank-worn IMU. However, no

study compared the performance of a multitude of kinematic features in detecting initial

and terminal contact. The majority of the existing literature focused on peak detection

methods assuming that the landing impact would create large high-frequency oscillations in

the acceleration signal. Even though the latter is relevant, there is usually more than a single

peak, and these peaks can be separated by a few milliseconds; this enhances the chances to

observe a relatively high random error in the detection performances. Moreover, the precision

of these methods could be largely affected if the sensor is not firmly fixed on the body segment.

2.3.2 Foot strike patterns and rear-foot eversion

Two different approaches have been proposed for the assessment of the foot strike patterns: (1)

estimation of the foot orientation in the sagittal plane at initial contact, and (2) model-based

classification of the foot strike pattern. The first method typically involves the integration of

the angular velocity measured on foot and is prone to orientation drift. Therefore, the first

attempts were more oriented towards the latter type of approach, modeling.

Strohrmann et al. (Strohrmann et al., 2011) classified the foot strike type using the minimum

and maximum peak of the unfiltered foot’s pitch angular velocity in a 0.2 s window around

initial contact. They compared their results with foot strike patterns derived from video

observations but only reported the performance of the system with a figure (Figure 2.4, left).

Giandolini et al. (Giandolini et al., 2014) validated a method to identify the running pattern

based on accelerometers located on the heel and metatarsals. They calculated the reference

foot strike angle using retroreflective markers placed on the lateral side of the right shoe at

the heel and the fifth metatarsal head. Their proposed method used delay between heel

and metatarsal peak accelerations to estimate the foot strike angle and obtained an overall

classification of 86.3% accuracy (Figure 2.4, right).

Recently, van Werkhoven et al. (van Werkhoven et al., 2019) showed that shoe-worn sensors

were able to accurately (92.2% success) distinguish between rearfoot and non-rearfoot foot

strikes using an angular velocity cut-off value of 0 deg/s. However, when estimating the foot

strike angle by direct integration of the angular velocity, the authors only reported a correlation

of 86%. The reference system was a traditional 2D video analysis.

The methods based on foot-worn inertial sensors that estimate the 3D orientation of the

foot first emerged from the field of walking analysis. Although different methods have been

proposed (Mariani et al., 2010; Sabatini et al., 2005) most share the same underlying structure:

(1) integration of the angular velocity obtained from a foot-mounted gyroscope to calculate

orientation in the fixed global frame and (2) combine the measurements from other sensors

(e.g., accelerometer, magnetometer, GPS) to estimate and remove the orientation drift. Such

method, for instance, was used in a validation study (Brégou Bourgeois et al., 2014) on walking
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Figure 2.4 – (Left) Cluster method based on foot-worn inertial sensors proposed in
(Strohrmann et al., 2011) to discriminate heel, midfoot, and toe strikers. (Right) The overall cor-
relation between timing-based method (THM) and the reference system used in (Giandolini
et al., 2014). Black dots represent the mean of each participant within each condition.

analysis and reported accuracy and precision of 0.5 ± 2.9° and 3.9 ± 5.8° in the estimation of

the pitch angle at initial and terminal contact, respectively.

In order to compensate for the orientation drift during the integration of angular velocity,

methods such as the zero-velocity-update (Skog et al., 2010; Zhang et al., 2017) usually require

the presence of low accelerations or low magnetic disturbances during the period of stance.

Although these periods are generally present during low-speed human locomotion, they are

either rare or inexistent as the speed increases and thus are likely to underperform in run-

ning. Nevertheless, studies have proposed a hard reset of the drift based on the hypothetical

presence of a foot-flat period during the stance phase of running. Bailey & Harle (Bailey &

Harle, 2014) tested two methods (linear de-drifting and extended Kalman filter) to compute

the orientation of the foot in 5 subjects based on shoe-mounted IMUs. They reported an error

(mean + STD) in foot strike angle of 1.92 ± 1.09° at 8.28 km/h and 3.18 ± 1.19° at 12.24 km/h.

Using a similar approach, Koska et al. (Koska et al., 2018) reported error biases (°) ± 95% limits

of agreement (°) of -3.1 ± (-7, 3.4) at 10 km/h, -3.8 ± (-7.6, 2.1) at 12km/h and -5.9 ± (-11.1, 1.8)

at 15 km/h.

Shiang et al. (Shiang et al., 2016) also assumed the presence of a foot-flat period during

the period of stance and defined the difference between two local maximums as the strike

index. Their results show a good correlation between the strike index and the pitch angle

obtained with optical motion capture. Although this approach seems reasonable for rearfoot

strikers, it is not appropriate for forefoot strikers as their rearfoot segment possibly never

comes into contact with the ground. Also, typically-rearfoot strikers tend to switch from a

rearfoot to a forefoot strike pattern when the running speed increases; speed might likewise

be a confounding factor for any drift reduction method.
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Figure 2.5 – (Left) Reflective markers (MA method) and IMU placement on the right shoe.
(Right) Bland-Altmann plot of the agreement between the eversion range (EvROM) and the
optical motion capture system at 10 and 12 km/h. Source (Koska et al., 2018).

Assessing the rear-foot eversion in running is slightly more complicated than the foot strike

angle since the range of the eversion movement is usually low. Moreover, the methods based

on foot-worn inertial sensors usually require an initial value to start the drift correction, and

this initial value should be subject-specific in order to be accurate. Assuming that the eversion

angle is null at mid-stance is not a reliable correction, since each individual demonstrates a

different degree of pronation while running. To avoid this correction problem, Koska et al.

(Koska et al., 2018) compared two parameters related to the inversion/eversion rotation of the

rearfoot: (1) the eversion range of motion (i.e., difference between maximum and minimum of

the integrated gyroscope in frontal plane); (2) the maximum eversion velocity (i.e., maximum

of the angular velocity in the frontal plane). They compared their estimation against an optical

motion tracking system and showed the limitation of such an approach (Figure 2.5).

2.3.3 Stride length and speed

Stride or step length are two metrics closely related to the running speed. As discussed

previously (section 2.3.1), temporal parameters can be measure quite accurately using body-

worn inertial sensors. Thus, if the distance covered during one step (or stride) can be estimated,

then the running speed can be calculated by dividing this value by the duration of the step (or

stride). Hence, when discussing the matter of speed estimation, it is important to consider

both step/stride length and their duration. Some studies proposed an accurate ambulatory

method, based on body-worn IMUs, to estimate the overground speed of running but few did

so for instantaneous speed estimation. There are two main categories of methods that are

described below. The first category relies on the direct integration of the IMU acceleration

and angular velocity data, and the second on machine learning models.

Regarding the first category, Yang et al. (Yang et al., 2011) developed an algorithm to estimate

the running speed using a single shank-mounted IMU. Through integration, the orientation

of the shank segment in the sagittal plane was determined, and an estimate of stride-by-
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stride running speed was calculated by integrating the acceleration data. They validated their

method with seven individuals running on an instrumented treadmill at speeds between 2.50

m/s and 3.50 m/s. For each subject, the speed estimation error of each trial was calculated as

the difference between the average estimated speed over 30 stride cycles and the treadmill

speed (i.e., bias). The authors reported the inter-trial mean ± STD of the bias and showed

errors of 0.11 ± 0.03 m/s for 2.5 m/s treadmill speed, and 0.09 ± 0.02 m/s at 3.5 m/s. Chew

et al. (Chew et al., 2017) used the same method as in Yang et al. (Yang et al., 2011) but used

shoe-worn inertial sensors and considered the shank and foot as a single rigid body that

rotates about the ankle joint during the period of stance. The bias of this method was between

0.16 to 0.41 m/s depending on the running speed (2.2 m/s to 3 m/s) and the precision between

0.23 to 0.32 m/s. The authors also validated the stride length and obtained a bias between 0.14

to 0.45 m and precision between 0.46 to 0.62 m.

In the second category, several models have been discussed in the existing literature. Some of

the models were generic, but the majority aimed to personalize their estimation either based

on the input of other devices or on a subject-specific calibration procedure. The models are

generally based on a set of features interrelated with the running speed. For instance, Provot

et al. (Provot et al., 2019) investigated the effect of running speed on acceleration measured at

three different positions: the foot, the tibia, and the L4-L5 lumbar. The authors concluded that

the features associated with the signal energy (e.g., RMS value) were highly correlated (r2 > 0.9)

with the overground velocity. A recent study (Soltani et al., 2019) proposed a real-world speed

estimation method based on wrist-worn inertial sensors. The authors obtained a median

[IQR] (Inter-Quantile Range) bias of -0.02 [-0.2 0.18] m/s and precision of 0.31 [0.26 0.39] m/s

for a non-personalized method. These results improved to 0.00 [-0.01 0.02] and 0.18 [0.14

0.23] for the bias and precision, respectively, when they used a personalization method based

on the sporadic speed of a GNSS device. Researchers in (De Ruiter et al., 2016) proposed a

personalized speed estimation model based solely on the measurement of the contact time.

They measured contact time using shoe-worn inertial sensors and personalized a model for

each of the 14 participants. They personalized the model based on the average speed obtained

over several bouts of 125 meters and compared their speed estimation with those obtained

with a stopwatch over the same 120-meters bouts. This method reported a median RMSE of

2.9 and 2.1% (two runs). Similarly, but with different instrumentation, de Ruiter & van Dieën

(de Ruiter & van Dieën, 2019) proposed a method based on feet sensors and timing-gates to

estimate the step length during maximal sprint acceleration. They fitted a mono-exponential

function to the time-gait measurements to estimate the instantaneous speed and divided this

estimation by the duration of the steps detected with the IMUs. Their method showed a bias ±

limit of agreement of -0.00 ± 0.11 m. Another study (Hausswirth et al., 2009) compared in-lab

a commercialized speed estimation device (i.e., Polar RS800sd foot pod) with the speed of a

treadmill and reported an inter-trial mean ± STD bias of -0.03 ± 0.14 m/s. The accuracy of

the system is relatively low, considering that it required a subject-specific calibration before

the measurement. Finally, in a study (Herren et al., 1999) conducted in outdoor conditions,

the authors explored whether triaxial accelerometer can be combined with subject-specific
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neural networks to assess the speed and incline of running accurately. The authors reported

an RMSE of 0.12 m/s for the average speed within the trials.

Overall, a variety of methods have been proposed to estimate the step length and the running

speed based on body-worn inertial sensors. However, most were evaluated for jogging and

level running. As the performance of some of the studies mentioned above suggests, the

actual running speed seems to affect the error, especially for the methods based on the direct

integration of the acceleration. Hence, there is a need for more real-world validated speed

estimation algorithms, where the validation is carried at multiple speeds and with a wide

range of incline.

2.3.4 Impacts and ground reaction forces

Inertial sensors can not directly measure forces. However, according to Newton’s second law,

researchers have associated the impact forces with the maximum values (or peaks) observed on

the accelerometer data. Based on this simple association, studies that investigated the effects

of the repetitive loads during running were among the first to use body-worn accelerometers

in the field of sports science. Some studies, for instance, acquired head acceleration data

to examine the capacity of the body in absorbing the repetitive landing shocks (Abt et al.,

2011; Crowell et al., 2010). Others have used accelerometers on the trunk to investigate shock

attenuation in the human lumbar spine during running (Castillo & Lieberman, 2018). However,

most of the studies used accelerometers on the lower limbs, and especially on the tibia.

A recent review (Sheerin et al., 2019) on the measurement of tibial acceleration in runners

concluded that this metric is clearly affected by running technique, running velocity, lower

extremity stiffness, as well as surface and footwear compliance. The review also highlighted the

interrelationships between fatigue, effective mass, and tibial acceleration which still require

further investigation, and their impact on risk of injury. Moreover, the authors also proposed

some guidelines to avoid common handling and processing mistakes. They advised for a

capture sampling frequency between 300–600 Hz and recommended a “heel drop” test to

allow confirmation of the integrity of attachment before testing begins.

Even though tibial acceleration is a proxy measurement for the impact forces, it does not

correspond to a direct estimate of the ground reaction forces (GRF). As discussed in section

1.5.2, the kinematic parameters of running have been widely examined from the standpoint of

the effective load applied to the musculoskeletal structure of the human anatomy. Logically,

with the advents in wearable sensors, scientists have investigated whether body-worn inertial

sensors could be used to estimate the GRF through biomechanical models and machine

learning methods. According to a recent literature survey (Ancillao et al., 2018), most of the

validated methods focused on the vertical component of GRF and attained acceptable results,

while a few focussed on the lateral components and found poor reliability in the estimation of

such quantities.
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Neugebauer et al. (Neugebauer et al., 2012) proposed a model based on a hip-worn accelerom-

eter to estimate the peak of the vertical component of GRF during walking and running. Their

model relied on a statistical model based on repeated measures and achieved an average

absolute difference between the predicted and the reference force plate GRF of 9% while the

maximum observed error was 17.5%. Wundersitz et al. used an accelerometer on the upper

back to estimate the peak GRF and compared the output of their model with a force plate.

The authors reported a step-by-step absolute error of 24%. The model was based on the

hypothesis that the measured acceleration is proportional to force.Using a similar approach,

Charry et al. (Charry et al., 2013) preferred using an accelerometer affixed on the tibia. The

main advantage of this sensor placement is its capacity to detect the gait events accurately and

that a logarithmic fitting can approximate the correlation between acceleration and peak GRF.

This method reached an average error of 150 N when compared with a treadmill at different

running speeds.

More recent attempts were more directed towards machine learning approaches. Raper et

al. (Raper et al., 2018) designed a protocol to measure the continuous GRF during the stance

phase employing a single IMU mounted on the tibia. The results showed that the IMU could

underestimate the force up to 400 N. The authors attributed this error to a delay between

the peak in acceleration and the peak measured by the force plate. Recently also, Wouda et

al. (Wouda et al., 2018) estimated the vertical GRF during running using a combination of

three inertial sensors placed on the lower legs and pelvis. Two neural networks were used

subsequently in this method; first, to derive the lower joints kinematics and second, to estimate

the vertical GRF. The model achieved low estimations error when trained on subject-specific

data. Nevertheless, the authors concluded that the proposed method has the potential to be

applied for individual subjects, and with additional research can be extended for running in

various environments.

Despite the latest and promising results, the current state-of-the-art is not reliable and robust

enough to monitor GRF in real-word settings. Other studies (Clark et al., 2014, 2017), however,

have suggested that GRF might be estimated from temporal and kinematic features, such as

flight time, vertical acceleration of the lower limb during landing, and ground contact time.

However, these models require highly accurate spatiotemporal input and have never been

tested with inertial sensors.

2.3.5 Overall conclusions

This chapter reviewed the reference measurement systems used in the assessment of the

running gait and discussed their advantages and limitations. Despite their high accuracy,

reliability, and repeatability, this chapter showed that force plates and optical motion capture

system have several disadvantages. They are:

1. They are inherently bulky and require dedicated space to function optimally.
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2. They are sensitive to changes in the environment (e.g., ambient light, vibrations).

3. They are expensive.

4. They require highly skilled operators.

5. Their limited volume of capture often restrains their use to in-lab treadmill running.

Due to the latter constraints, investigating the use of body-worn inertial sensors in real-world

conditions is a continuing concern within the field of running biomechanics. These wearable

sensors retrieve physical measures of motion that can be processed to estimate the temporal,

kinematic, and dynamic parameters of running. However, accelerometers and gyroscopes are

subject to measurement errors, and their utilization as a research-grade instrument is prone to

misinterpretations. The fixation of the device, its configuration, the transformations between

of the different reference frames, the subtraction of the gravitational acceleration (in a fixed

frame), and the integration drift are some of the most prominent challenges encountered

with inertial sensors. It is, therefore, necessary to consider their potential limitations before

handling these devices and to evaluate their reliability against gold-standard systems. Sadly,

few studies have carefully reported on the error of their algorithms.

Therefore, this chapter reviewed the methods which have been validated against gold standard

systems and primarily focused on spatiotemporal and coach oriented running metrics. First,

temporal event detection appears to perform best when the IMU is located on the shank or

foot, with most of the existing methods considering the acceleration peak to detect the gait

events. Yet, no study compared the performance of a variety of kinematic features to estimate

the gait phases nor have assessed which features are affected by the running conditions (i.e.,

speed, slope, terrain). Second, lower-limb orientation drift correction methods are usually

based on zero-velocity-updates during the stance phase. Although static periods are generally

present during low-speed human locomotion, they are either rare or inexistent when the

speed increases and thus are not suited for running. Moreover, the drift correction method

directly affects the estimation of speed and position; an error in the calculation of the global

frame orientation will resume an inaccurate correction of the gravitational acceleration and

in the erroneous esti-mation of speed and position. Overall, a variety of methods have been

proposed to estimate the step length and running speed. However, few of these methods were

validated in real-world conditions, at multiple velocities, and with a wide range of incline.

Also, the state-of-the-art in ground reaction force estimation with body-worn inertial sensors

suggests that the current systems are not yet reliable in the real-world conditions and that

models based on spatiotemporal features should be pre-ferred. Meanwhile, tibial accelerations

have shown to be a valid proxy and have been examined in many outdoor studies. This lack

of methods explicitly designed for running and the divergence of the results in the literature

have raised concerns about the actual capacity of inertial sensors to provide research-grade

evaluations of real-world running. It is, therefore, essen-tial to provide validated algorithms

and to state the limitations of the results based on the validation protocol. Ideally, lab-validated

algorithms should also be tested in applied settings, to evaluate their applicability in real-world

conditions.
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3 Accurate Estimation of Running Tem-
poral Parameters

Abstract

This study aimed to assess the performance of different kinematic features measured by foot-

worn inertial sensors for detecting running-gait temporal events (e.g., initial contact, terminal

contact) in order to estimate inner-stride phases duration (e.g., contact time, flight time, swing

time, step time). Forty-one healthy adults ran multiple trials on an instrumented treadmill

while wearing one inertial measurement unit on the dorsum of each foot. Different algorithms

for the detection of initial contact and terminal contact were proposed, evaluated, and com-

pared with a reference-threshold on the vertical ground reaction force. The minimums of

the pitch angular velocity within the first and second half of a mid-swing to mid-swing cycle

were identified as the most precise features for initial and terminal contact detection with an

inter-trial median ± IQR precision of 2 ± 1 ms and 4 ± 2 ms respectively. Using these initial

and terminal contact features, this study showed that the ground contact time, flight time,

step, and swing time can be estimated with an inter-trial median ± IQR bias less than 12 ± 10

ms and a precision less than 4 ± 3 ms. Finally, this study showed that the running speed can

significantly affect the biases of the estimations, suggesting that a speed-dependent correction

should be applied to improve the system’s accuracy.

Keywords: running, inertial measurement unit (IMU), validation study, temporal parameters,

contact time

Chapter adapted from Falbriard, M., Meyer, F., Mariani, B., Millet, G. P., & Aminian, K. (2018). Accurate
estimation of running temporal parameters using foot-worn inertial sensors. Frontiers in physiology, 9, 610

Contributions: conceptualized the study design; conducted the data collection; designed the algorithms;
contributed to the analysis and interpretation of the data; drafted the manuscript.
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3.1 Introduction

In running, two temporal events (initial contact or touchdown and terminal contact or toe-off)

need to be detected in order to extract the main temporal parameters of each step: cadence,

contact time, flight phase duration, and swing phase duration. Initial contact (IC) is defined

as the time instant when the foot initiates contact with the ground at landing. Terminal

contact (TC) corresponds to the end of the pushing phase when the foot ends contact with the

ground. The intrinsic relationships between the different inner-stride temporal parameters

and running speed, shoe configuration, running economy, running performance, injury risks

have been widely investigated. Therefore, accurate detection of IC and TC are paramount.

In the literature, the majority of studies that investigated temporal parameters in running have

used force plates, contact mats or high-speed cameras as reference measurement systems

(García-López et al., 2005; Handsaker et al., 2016; Leitch et al., 2011; Ogueta-Alday et al.,

2013; Viitasalo et al., 1997). Although force plates are accepted as state-of-the-art systems

for temporal events detection in running, they suffer from several limitations. The detection

timing of the IC and TC on the vertical ground reaction force depends on the filtering method,

and the detection threshold used (Cronin & Rumpf, 2014). Moreover, their lack of portability

and their setup complexity restrict their use for in-laboratory experiments, which is a major

drawback given the in-field nature of the running activity.

Thanks to the recent improvements in MEMS inertial sensors, their low production cost,

their decrease in weight and size, and their ability to measure kinematics over large periods,

inertial sensors are now widely accepted systems to analyze human locomotion. In fact,

studies on gait analysis have shown that inertial measurement units (IMUs), when used

with state-of-the-art algorithms, can reliably fill the gap between subjective observational

analysis and bulky in-laboratory installations (Mariani et al., 2012, 2013). In running, inertial

sensors have predominantly been used to detect inner-stride temporal events and derive

temporal parameter estimations from them. Some studies have used IMUs on the upper body

(Bergamini et al., 2012; M. Norris et al., 2013), other focused on the shank/tibia segments

(Crowell et al., 2010; McGrath et al., 2012; John A. Mercer et al., 2003) and some used foot-

worn IMUs (Brahms, 2017; Chapman et al., 2012; Y. S. Lee et al., 2015; Reenalda et al., 2016;

Strohrmann et al., 2011). However, to the authors’ knowledge, only a few studies have reported

on the validity of their algorithms when compared with a state-of-the-art reference system. In

Ammann et al. (2016), CT estimations were compared between shoelaces worn IMUs and a

high-speed video camera for 132 steps of 12 athletes at running speeds within 22.3 ± 5.8 km/h.

Because data processing was done by proprietary software, the algorithms used to estimate CT

were not described in the methods. In Weyand et al. (2001), the authors used the acceleration

peak from a foot-worn accelerometer to detect IC and TC and compared their estimation of

CT with a treadmill-mounted force plate. The exact method used to detect IC and TC is not

documented in this study, and only the bias (mean ± STD) of the 165 trials is provided in the

results. There is, therefore, no information about the precision of the proposed system. For all

other methods, where no validation was reported, there is no evidence that the parameters
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measured are within an acceptable error range and that this error range does not change with

the running conditions.

Therefore, the present study aimed to investigate different algorithms to detect IC and TC

from different features measured by foot-worn IMU kinematic signals and estimate the main

inner-stride temporal parameters. The performance metrics (bias and precision) of each

algorithm were assessed in comparison with a reference system (instrumented force plate

treadmill), that allowed a validation of inner-stride temporal parameters over a high number

of steps and a large range of running speeds.

3.2 Methods

3.2.1 Measurement protocol

In total, 41 healthy adults (13 females and 28 males, age 29 ± 6 years, weight 70 ± 10 kg, height

174 ± 8 cm, running weekly 2.1 ± 1 hour, 11 being affiliated to a running club) running at least

once a week and without any symptomatic musculoskeletal injuries volunteered to participate

to this study. The study was approved by the local ethics committee (CCER-VD 2015-00006),

was conducted according to the declaration of Helsinki, and written informed consent was

obtained from all the participants prior to the measurements. Each participant was asked

to run multiple trials of 30 seconds each, wearing their usual shoes on an instrumented

treadmill, starting at 8 km/h and increasing by 2 km/h up to their maximum speed. A 6

minutes familiarization period (Lavcanska et al., 2005) was carried out on the treadmill and

served as a warm-up for the participants. The participants were free to decide on the rest

duration in-between the trials.

3.2.2 Wearable device and temporal features estimation

IMU-based system - One inertial measurement unit (IMU) (Physilog 41, Gait Up, Switzerland,

weight: 19 g, size: 50 x 37 x 9.2 mm) was worn on the dorsum of each foot and measured both

3D acceleration and 3D angular velocity at 500 Hz. Each IMU was affixed to the foot using an

adhesive strap around the shoe. The range of the accelerometer was set to ±16 g and ±2000 °/s

for the gyroscope.

Functional calibration - In order to use single axes of the inertial sensors in a meaningful and

reproducible manner, we designed a functional calibration method to automatically align the

technical frame of the foot-worn IMUs with the functional frame of the foot. The functional

frame of the foot was defined as in Figure 3.1: the origin is at the base of the second metatarsal

bone, YF is orthogonal to the horizontal plane defined by the ground surface, XF lies on

the horizontal plane projection of the line joining the center of the calcaneus bone and the

head of the second metatarsal bone, pointing distally, and ZF is orthogonal to the XF YF plane

1Datasheet available in the Appendix.
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Figure 3.1 – Technical frame of the foot-worn IMU (XT , YT , ZT ) and the functional frame of
the foot (XF , YF , ZF ). The 3 by 3 rotation matrix R aligns the IMU’s technical frame with the
functional frame of the foot.

pointing to the right-hand side of the subject. The functional calibration process requires static

standing periods in order to align YT with YF using the gravitational acceleration measured

by the IMU. Then, using the hypothesis that most of the foot’s angular rotations occur along

the ZF axis while running, we used Principal Component Analysis to find the rotation angle

around the ZT axis which aligns ZT with ZF . Finally, XT is the result of the cross-product

<ZT ,XT >.

Gait cycle detection- Using the cyclic nature of the running movement, an algorithm was

designed to segment a complete trial into mid-swing to mid-swing cycles. Following previous

work on gait analysis (Aminian et al., 2002; Sabatini et al., 2005), we hypothesized that the

pitch angular velocity (Ωp ) of the foot is maximum at mid-swing. To enhance and detect

the mid-swing peak, a 2nd-order Butterworth low-pass filter was designed with an adaptive

cut-off frequency. The cut-off frequency was set at 60% of the stride frequency estimated using

an auto-correlation method over a 5 seconds sliding window. This adaptive filtering method

was used to cope with the range of running speeds used in this study. The length of the sliding

window (5 seconds) was selected empirically and based on our observations of the signals.

Temporal features detection - The estimation of inner-stride phases relies on two main tem-

poral events: initial and terminal contact. The initial contact (IC) event corresponds to the

time instant when the foot initiates contact with the ground at landing. The terminal contact

(TC) event, also known as toe-off, corresponds to the end of the pushing phase when the

toes terminate contact with the ground. For each cycle, we identified kinematic features that

seemed to be valid candidates to detect IC and TC. Such features varied from global maximum

(M AX ), local maximum (M AXloc ), global minimum (M I N ), local minimum (M I Nl oc ) and

zero-crossing (Z er oX ) time samples and were detected on the following signals: the pitch

angular velocity (Ωp : angular velocity around ZF ), the pitch angular acceleration (Ω′
p ), the

pitch angular jerk or first derivative of the pitch angular acceleration (Ω′′
p ), the roll angular

velocity (Ωr : angular velocity around XF ), the norm of the angular velocity (‖Ω‖), the verti-

cal axis acceleration (Aver t : acceleration along YF ), the longitudinal axis of the acceleration
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(Along : acceleration along XF ), the coronal axis acceleration (Acor o : acceleration along ZF ),

the norm of the acceleration (‖A‖) and the first derivative of the acceleration norm or jerk

(‖A‖′). In some cases, an empirically chosen threshold was also used to improve the feature

detection (e.g. < -100 °/s). All these detection rules are detailed in Table 3.1 and illustrated in

Figure 3.2. Prior to the detection, the acceleration and angular velocity signals were filtered

using a 2nd-order low-pass Butterworth filter (Fc = 30 Hz) to minimize the influence of the

IMU fixation artifacts, and a temporary estimation of mid-stance was carried out for each

gait cycle in order to separate the detection zones for IC and TC. The detection zone for IC

was set as the period between the first zero-crossing of the pitch angular velocity (Ωp ) and

mid-stance. For TC, the detection zone was set as the period between mid-stance and the last

zero-crossing of the pitch angular velocity. Mid-stance was set as the time instant when the

angular velocity norm (‖Ω‖) is minimum within the 30% to 45% time-range of each mid-swing

to mid-swing cycle. Finally, the IC and TC events of left and right foot were combined in order

to estimate for each step i the ground contact time (CT), the flight time (FLT), the swing time

(SWT) and the step time (SPT) using the following relations:

C Ti = TCi − ICi (3.1)

F LTi = ICi+1 −TCi (3.2)

SW Ti = ICi+2 −TCi (3.3)

SPTi = ICi+1 − ICi (3.4)

3.2.3 Reference system and temporal features

Force plate - This study used an instrumented treadmill (T-170-FMT, Arsalis, Belgium) sam-

pling at 1000 Hz as a reference system for the validation. The force plate system and the inertial

sensors were electronically synchronized using a 5V pulse triggered manually and recorded

on each system while IMUs were synchronized with each others using radio frequencies. To

reduce the noise inherent to the treadmill’s vibrations, we first applied, on the vertical ground

reaction force (GRF) signal, a 2nd-order stop-band Butterworth filter with edge frequencies

set to 25 and 65 Hz. The filter configuration was chosen empirically to obtain a satisfactory

reduction of the oscillations observed during flight phases (i.e., subject not in contact with the

treadmill) while minimizing its widening effect during ground contact time.

Temporal features detection - IC and TC events were detected using a threshold on the filtered

vertical GRF signal, setting the first threshold-crossing occurrence as IC and the second as TC

for each step. As previous studies (Cronin & Rumpf, 2014; Weyand et al., 2001) used different

reference thresholds, we have decided to investigate the effect of eight reference thresholds on
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3.2. Methods

the validation results. Four thresholds were set to 20 N, 30 N, 40 N and 50 N, independently of

the subjects’ body weight (BW) and four others were set to 3 %BW, 5 %BW, 7 %BW, and 9 %BW.

Finally, we combined IC and TC events to find the reference inner-stride phases durations (CT,

FLT, SWT, and SPT) as in Eq. 3.1 - 3.4.

3.2.4 Statistical analysis and error estimation

In order to avoid developing algorithms that over-fits our data set and would, therefore, bias

the results, the first 10 subjects were randomly selected and dedicated to the development set

while the remaining subjects were only used as the validation set. The design of the algorithms

described in section 3.2.2 was conducted using the data from the development set solely. No

algorithms debugging was done over signals from the validation set.

To evaluate the error of the proposed system against the reference force plate, we computed

for each temporal feature, the bias (intra-trial mean) and precision (intra-trial STD) for all

steps within a trial. We then combined the results from each trial and computed the median

and IQR of both the bias and precision over all trials. These two steps resulted in four inter-

trial statistics per temporal feature for both sets (development and validation sets): bµ is the

inter-trials median bias, bσ is the inter-trials IQR of the bias, σµ is the inter-trials median

precision and σσ is the inter-trials IQR of the precision. Note that we have used the median

and IQR functions for the inter-trial statistics as the intra-trial bias and precision were not

normally distributed.

A similar method was used for the inner-stride phases. However, to avoid having a large

number of candidates for each parameter (12 IC candidates * 9 TC candidates = 108 possible

pairs of candidates for each phase estimation), we have decided to keep only the three most

precise candidates for IC, the three most precise candidates for TC and to combine them into

9 pairs of estimates for CT, FLT, SWT, and SPT. Then, similarly, the inter-trials bias (bµ, bσ) and

the inter-trial precision (σµ, σσ) were evaluated. Precision (i.e. intra-trial STD) was chosen

as selection criteria for IC and TC candidates as it informs about the range of random errors

made by the system among the steps of a trial. The bias, however, can potentially be decreased

using an appropriate model of the errors.

To investigate if the speed affects the intra-trial bias of the IC and TC candidates, we used the

Kruskal–Wallis test with a significance level of 0.05. We preferred this non-parametric test to

the one-way ANOVA because the Lilliefors test rejected, in most cases, the hypothesis that the

intra-trial biases were normally distributed among the running speeds. Consequently, in this

study, the null hypothesis was accepted only if the rank of the biases were equal among the

running speeds. The same hypothesis has also been tested on the precision. Note that this

test was applied to the complete data set (development and validation set) as there were no

speed-depend adaptations of our detection algorithms.

Finally, we used Bland-Altman plots and the best linear fit, in the least-squares sense, to show
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Chapter 3. Accurate Estimation of Running Temporal Parameters

the trend in the CT estimation errors on the development set. Finding the best linear fit on

the development set allowed us to further use the linear coefficients to correct the inter-steps

errors in the validation set. The inter-steps errors refer to the error of all steps within a group,

independently of the trial they belong to. The inter-steps bias is defined as the mean error of

all steps and the inter-steps precision as the STD of the error of all steps.

3.3 Results

3.3.1 Temporal events detection

Out of the 41 participants, 35 were kept for the evaluation of the proposed system. Within the

6 participants removed, 2 were removed because the data loss rate was above 20%, and 4 were

removed because of calibration errors of the systems. The results for the development set and

the validation set were computed from 10 subjects with 59 trials (4836 steps) and 25 subjects

with 146 trials (12092 steps), respectively. Trials with running speed at 8 km/h were removed

due to the presence of steps with double support for some subjects that makes the detection

of IC and TO impossible with the GRF of the reference system.

The minimum number of steps per trial was 67, and the maximum number of steps per trial

was 105, given that the running speed recorded ranged from 10 km/h to 20 km/h. Figure 3.2

illustrates the features used to detect IC and TC with the vertical grey dashed lines showing

the limits of the detection zones for IC and TC candidates. The signals showed in Figure 3.2

belong to the same step and are represented during one mid-swing to mid-swing cycle.

Table 3.2 summarizes the IC and TC events detection error for development and validation

sets, and for each kinematics feature candidate (kj and tj) extracted by applying the specific

detection rule on the kinematics signal. The results are obtained by using the reference value

estimated with a threshold at 7 %BW on the vertical GRF. The differences shown in the table

were computed such that a positive difference indicates that the event was detected later

in the signal than the reference. The three most precise IC candidates (median ± IQR) with

respect to the results from the validation set are k1 (2 ± 1 ms), k3 (2 ± 1 ms) and k8 (3 ± 2 ms).

The three most precise TC candidates (median ± IQR) with respect to the results from the

validation set are t1 (4 ± 2 ms), t4 (4 ± 2 ms) and t5 (4 ± 2 ms). One TC candidate shows a

noticeably lower inter-trial bias IQR: t5 with bσ = 7 ms.

Figure 3.3 shows the influence of the running speed on the IC and TC inter-trials bias for the

features (k1, k3, k8) and (t1, t4, t5). The graph was generated using the complete data set

(development and validation set) as it is solely used for visualization purposes. When the trials

are grouped according to the running speed, the Kruskal–Wallis test applied on the biases

shows that the running speed significantly affects the biases in k8 (p = .001), t1 (p < .001), t4 (p

< .001), t5 (p < .001) and precision in t1 (p < .001), t4 (p = .014) and t5 (p < .001).
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3.3. Results

3.3.2 Inner-stride phases estimation

Table 3.3 lists absolute and relative errors obtained for the estimations of CT, on the validation

set, when compared with the force plate estimation found using the reference threshold at 7

%BW. The bias and precision obtained when comparing the other force plate thresholds with

the 7 %BW reference threshold are also listed at the end of Table 3.3.

The most precise pair of IC and TC candidates for CT was (k1, t1) with an inter-trial median ±

IQR precision of 4 ± 2 ms or 1.8 ± 0.9 %. CT estimators (k1, t5) and (k3, t5) both have the lowest

absolute inter-trial IQR of the biases (bσ = 12 ms) while (k1, t5) has the lowest IQR in relative

values (bσ = 5.0 %). The reference values observed in this study ranged from 132 to 354 ms

for CT, from 29 to 238 ms for FLT, from 367 to 613 ms for SWT and from 254 to 435 ms for SPT.

Table 3.4 shows the relative and absolute errors for FLT, SWT, and SPT estimations for both (k1,

t1), (k1, t5), and (k3, t5) pairs.

Finally, Figure 3.4 shows the Bland-Altman plot for the CT estimation of the (k1, t1) and (k1, t5)

estimators. The orange dashed line represents the best linear fit according to the least-squares

method. These graphs were computed using all the steps in the development set (N = 4836),

independently of the trials.
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Contact time: Bland-Altman plot of the stepwise errors
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Figure 3.4 – Bland-Altman plot of the ground contact time (CT) estimation errors for the (k1,
t1) (top graph) and (k1, t5) (bottom graph) candidates. The error is measured on all the steps of
the development set (N = 4836). The orange dashed line represents the best linear fit according
to the least square method.
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Features Absolute CT errors (ms) Relative CT errors (%)
IC TC bµ bσ σµ σσ bµ bσ σµ σσ

k1 t1 -30 17 4 2 -13.8 5.5 1.8 0.9
k1 t4 -27 17 4 2 -12.9 5.5 1.9 1.2
k1 t5 -15 12 5 3 -7.1 5.0 2.1 1.0
k3 t1 -30 18 4 2 -13.8 5.6 1.8 1.0
k3 t4 -27 17 4 3 -12.9 5.5 1.9 1.4
k3 t5 -15 12 5 3 -7.1 5.2 2.2 1.1
k8 t1 -38 21 5 3 -18.1 6.0 2.1 1.0
k8 t4 -35 21 5 3 -17.4 6.1 2.2 1.3
k8 t5 -23 15 5 3 -10.8 5.5 2.2 1.3

20 N 8 6 3 1 4.0 2.2 1.3
30 N 5 4 2 1 2.2 1.6 1.0
40 N 2 3 1 1 0.9 1.2 0.6
50 N 0 2 1 1 -0.1 1.1 0.4

3 %BW 9 5 3 2 3.9 1.7 1.3
5 %BW 4 2 2 1 1.7 0.6 0.8
9 %BW -3 2 2 1 -1.4 0.5 0.7

Table 3.3 – List of the duration differences for contact time (CT) estimation (N = 146 trials,
12092 steps) when compared with reference at 7 %BW in the validation set. The first nine
rows show the estimation errors of the three most precise candidates for IC and TO detection
arranged as pairs while the last seven rows show the difference observed when using other
reference thresholds on the vertical GRF signal. “b” and “σ” are the abbreviations for bias
(intra-trial mean error) and precision (intra-trial STD of the error), respectively, while subscript
characters µ and σ represent the median and the IQR over all the trials in the validation set.

Parameter Estimator
Absolute errors (ms) Relative errors (%)

bµ bσ σµ σσ bµ bσ σµ σσ

FLT (k1, t1) 30 17 4 3 22.8 17.2 4 2.8
(k1, t5) 15 12 5 3 10.7 10.7 3.7 2.7
(k3, t5) 15 12 5 3 10.7 10.7 3.9 2.6

SWT (k1, t1) 30 17 4 2 6.3 3.7 0.9 0.4
(k1, t5) 15 12 5 3 3.2 2.6 1 0.6
(k3, t5) 15 12 5 3 3.2 2.6 1 0.6

SPT (k1, t1) 0 0 3 2 0 0 0.8 0.5
(k1, t5) 0 0 3 2 0 0 0.8 0.5
(k3, t5) 0 0 3 2 0 0 0.8 0.5

Table 3.4 – Flight phase duration (FLT), swing phase duration (SWT) and step time duration
(SPT) estimations errors for the (k1, t1), (k1, t5) and (k3, t5) candidates when compared with
reference threshold at 7 %BW. The results were computed from the data in the validation set
(N = 146 trials, 12092 steps). “b” and “σ” are the abbreviations for bias (intra-trial mean error)
and precision (intra-trial STD of the error), respectively, while subscript characters µ and σ
represent the median and the IQR over all the trials in the validation set.
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3.4 Discussion

In this study, we proposed, evaluated, and compared how different algorithms based foot-worn

IMU kinematic features performed in detecting IC and TC during running and in estimating

the main inner-stride temporal parameters: CT, FLT, SWT, and SPT. The errors (Table 3.2)

show that the bias and precision for IC and TC could reach very low values depending on

the kinematic features used. Therefore, by considering the most efficient kinematic features,

an accurate and precise estimation of inner-stride temporal parameters was proposed and

validated against a force plate as a reference system.

Table 3.3 shows that the three most precise IC candidates (k1, k3, and k8) and TC candidates

(t1, t4, and t5) can be combined to provide a precise estimation of ground contact time (CT).

The most precise pair of features obtained from the two minimums of pitch angular velocity in

IC and TC detection zones (k1, t1) had an inter-trials median ± IQR precision of 4 ± 2 ms (1.8 ±

0.9 %). However, the accuracy of the t1 candidate is speed-dependent (p < .001). This explains

the relatively high inter-trial IQR of the biases (bσ = 17ms) of CT for the (k1, t1) candidate. In

Figure 3.3, the median of the biases for the t1 candidate (as well for t4 and t5) seem to linearly

decrease as the speed increases. However, even though the Kruskal–Wallis test shows that

speed also affects t5 (p < .001), the range of the median biases is approximately two times

shorter for t5 (10 ms) than for t1 (21 ms).

To reduce the effect of the running speed on the bias, the minimums of pitch angular velocity

in the IC zone and the maximum of vertical acceleration in TC zone, i.e. (k1, t5) candidate

can be used. Although it is slightly less precise on the detection of CT, the results in Table 3.4

show better results in the estimation of FLT for both accuracy and precision. Given that the CT

decreases as the speed increases, a measure of the CT itself already contains information about

the running speed. Therefore, using the coefficients from the best linear fit (development set

data) showed on the Bland-Altman plots in Figure 3.4, the validation set inter-trials median ±

IQR bias decreased to -2 ± 14 ms (-1 ± 6.2 %) and 1 ± 10 ms (0.3 ± 4.9 %) for the (k1, t1) and

the (k1, t5) pairs, respectively. For both the (k1, t1) and the (k1, t5) candidates, the precision

did not change after the aforementioned correction. Note that the outliers observed on the

top graph of Figure 3.4 correspond to the detection errors of the t1 feature due to a second

minimum happening later in the pitch angular velocity signal.

Moreover, Table 3.2 reveals that the most precise features for IC detection were found on the

measurements from a single axis of the IMUs (k1, k3, and k8). This observation emphasizes

the importance of the functional calibration, which aligns the technical frame of the inertial

sensors with the biomechanically meaningful axes of the foot.

Table 3.2 also shows that, in general, the kinematic features used in this study tend to better

detect IC than TC. Considering that the IC event comes with a landing impact, while no abrupt

variation in the foot’s motion occurs at TC, the odds of missing the exact instant of TC are

higher. Moreover, the vertical force applied by the foot on the ground decreases drastically

at the end of the CT although foot is still in contact with the ground leading to a potentially

57



Chapter 3. Accurate Estimation of Running Temporal Parameters

early detection of TC. Similar observations were reported by Weyand et al. (2001). In fact, we

observed that the 3%BW detection threshold showed a bias (bµ ± bσ) of -2 ± 2 ms and 7 ± 4 ms

for IC and TC when compared to the 7%BW reference threshold. For both IC and TC, the bias

was the highest when compared to a force threshold set at 20N. These results show that the

detection accuracy of the force plate for TC, is more sensitive to the variations in the reference

threshold than IC.

Lastly, the inter-step errors of the k1 feature seem to follow a bimodal distribution when

including all step of the validation set, independently of the trials (N = 12092 steps). This

implies that there might be an additional source of variance other than running speed that

affects the detection of IC. Because the k1 feature is based on the angular velocity of the

foot at landing, we assume that the type of foot-strike employed (fore-foot strike or rear-foot

strike) could also introduce an error in the detection of IC. Further study would be required to

evaluate how foot-strike angle influences detection accuracy and precision of temporal events

during running. In addition, determining the applicability of the algorithms developed for

level running in this study to uphill or downhill running would also need further study.

This study used a different method to express the CT errors than in Ammann et al. (2016).

In the aforementioned study, the authors reported an inter-steps bias (N = 132 steps) of -

1.9 ms (-1.3%) and a random error (95% confidence interval) of 17.4 ms (6.1%) for CT. The

inter-steps bias and precision for the (k1, t1) pair showed comparable results. In fact, the

validation set inter-steps bias (N = 12092 steps) was -2 ms (-0.5%) for CT, after applying the

linear fit correction showed in the Bland-Altman plots in Figure 3.4. However, the inter-steps

random error (95% confidence interval) was slightly higher (23 ms) for the (k1, t1) pair than in

(Ammann et al., 2016). This can be explained by the fact that t1 precision is affected by speed

(p < .001) and that the range of speed in this study (10 – 20 km/h) is larger than in (Ammann et

al., 2016) (22.3 ± 5.8 km/h). In Weyand et al. (2001), the authors reported a bias (mean ± STD)

of 14.6 ± 0.5% when computed over 165 trials. These results are in accordance with the biases

showed in Table 3.3.

To the authors’ knowledge this study is the first to quantitatively demonstrate how, when

using foot-worn IMUs in running, the choice of kinematic features affects the detection

accuracy and precision of IC, TC and the inner-stride parameters derived from these two

events. Consequently, it is important that researchers report on the methods applied to

detect IC and TC events as it provides some information about the confidence interval of the

measurements.

3.5 Conclusions

This study aimed to validate, against a gold standard reference system, the performance of

several algorithms using foot-worn inertial sensors to detect running gait temporal events

and estimate inner-stride phases duration. The results highlighted the importance of suitable

kinematic signals and features to avoid large errors in detecting initial and terminal contact.
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3.5. Conclusions

The two minimum values of the pitch angular velocity in the first half and second half of a

mid-swing to mid-swing cycle provide the best estimation of IC and TC. Also, the maximum

value of vertical acceleration during the second half mid-swing to mid-swing cycle provides

a good estimation of TC which is less dependent on running speed. Using these initial and

terminal contact features, we showed that the ground contact time, flight time, step and swing

time can be estimated with an inter-trial median ± IQR bias less than 15 ± 12 ms and the

inter-trial median ± IQR precision less than 4 ± 3 ms. Running speed could have a significant

impact on the biases of the estimations, and therefore, the knowledge about the speed could

improve the results. Further studies should investigate the effect of the foot-strike angle on

the errors made by the features during initial contact.
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3.A Additional Results: Automatic Detection of Body-Worn Sensors

Location in Running

Abstract

When wearable motion monitoring systems are used with multiple sensors, it is convenient

to automatically identify sensor locations to avoid error and time-consuming attachment

procedure. This study aimed to design a method that automatically recognizes six sensor

locations (feet, shanks, thorax, and sacrum) of a body-worn inertial measurement unit (IMU)

during running. The method was trained and tested on a data set of 41 healthy subjects

running on a treadmill at speeds ranging between 12km/h to 22 km/h. We obtained the best

classification performance using a decision tree with binary K-NN classifiers at its nodes. The

proposed classification method achieved an accuracy of 99.4% in the distinction between the

upper vs. lower body sensors, 95% accuracy between the trunk and sacrum sensors, 97.3%

accuracy between the foot and shank sensors, 79.6% accuracy between the left and right

foot-worn sensors, and 88.2% between the left and right shank-worn sensors.

Keywords: inertial sensors, IMU-to-segment, decision tree, K-NN classifier, running

3.A.1 Introduction

In recent years, new wearable sensors with a broad range of applications arose in running.

However, these systems have yet to overcome several limitations, one of which being the

correct placement of the wearable sensors. Robust automatic detection of body-worn sensors

position has been proposed to improve their ease of use drastically (Amini et al., 2011; Graurock

et al., 2016; Kunze et al., 2005; Mannini et al., 2015; Saeedi et al., 2014; Shi et al., 2011; Weenk et

al., 2013; Zimmermann et al., 2018). In the case of multi-sensor configuration, no preparation

would be required before using the system, therefore removing the need for a time-consuming

set up prone to error and discomfort. Moreover, the versatility of the sensors would be

enhanced as their location could be adapted according to clothing or activity.

Previous studies have shown that IMU-to-segment assignment is feasible and reliable, through

various classification means, with 95% accuracy or above (Kunze et al., 2005; Saeedi et al.,

2014; Weenk et al., 2013). However, to the authors’ knowledge, the existing methods in the

literature have been designed for walking and other daily activities (e.g., talking on the phone,

cleaning) and thus may not be appropriate for running. Also, most previous studies (Graurock

et al., 2016; Kunze et al., 2005; Saeedi et al., 2014; Shi et al., 2011; Weenk et al., 2013) collected

data on a small number of participants, ranging from only 1 to 17 people with multiple trials of

each participant. Therefore, the models might be biased towards the gait of a few individuals

Publication accepted as Falbriard, M., & Aminian K. (2021). Sixteenth International Symposium on the 3-D
Analysis of Human Movement, Ames, Iowa, USA.

Contributions: conceptualized the study design; conducted the data collection; designed the algorithms;
contributed to the analysis and interpretation of the data; drafted the manuscript.
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and thus less able to generalize to unseen data. Some studies (Amini et al., 2011; Graurock et

al., 2016; Mannini et al., 2015) relied solely on the measurements from accelerometers and did

not consider other data such as angular velocity. While other focalized on the angular velocity

measurements only (Shi et al., 2011). Finally, it is worth noting that only a few research (Saeedi

et al., 2014; Weenk et al., 2013; Zimmermann et al., 2018) aimed to differentiate between

sensors placed on the left and right sides of the body (e.g., right foot and left foot).

In this research, we proposed a new classification method to automatically assign an IMU to

the left foot, right foot, left shank, right shank, upper trunk, or sacrum segments. The model

relied on a binary decision tree and was tested for running speeds between 12km/h to 20

km/h. We investigated both K-NN and K-Mean as candidate classifiers at the nodes and used

features from both the accelerometer and gyroscope sensors. Finally, our method aims to

classify each IMU individually; hence, any sensor configuration is possible (e.g., one IMU,

several IMUs on multiple segments, and multiple IMUs on the same segment).

3.A.2 Material and Methods

Protocol

In total, 41 healthy adults (13 females and 28 males, age 29 ± 6 years, weight 70 ± 10 kg, height

174 ± 8 cm) running at least once a week and without any musculoskeletal injuries volunteered

to participate to this study. The local ethical committee approved the protocol (CCER-VD

2015-00006) and the measurement sessions we conducted according to the declaration of

Helsinki. Each participant ran multiple trials of 30 seconds on an instrumented treadmill

at speeds ranging between 12 to 22 km/h. The participants were free to decide on the rest

duration in-between the trials and performed a 6 minutes warm-up on the treadmill before

starting the measurements.

Instrumentation and pre-processing

The participants were equipped with one IMU (Physilog 41, Gait Up, Switzerland, weight: 19 g,

size: 50 x 37 x 9.2 mm) on the following body-segments: left and right foot, left and right shank,

sacrum, and thorax (near the T2 vertebrae). The IMUs were recording the acceleration and

angular velocity with a 500 Hz sampling frequency and an operating range of ± 16g and ± 2000

deg/s, respectively. The shoe-worn and the shank-worn IMUs were fixed to their respective

body-segments using Silicon/Velcro elastic straps, while the sacrum and thorax IMUs were

fixed using adhesive tape.

To help with the distinction between the left and right leg sensors, we applied a previously

validated functional calibration (FC) algorithm (Falbriard et al., 2018) on the foot-worn and

shank-worn sensors. This step allowed the binary classifiers to dissociate the left and right

foot, and the left and right shank using the features from the different axes of the sensors. We

then applied a moving average filter (window length = 50 ms) on the data from each axis and

1Datasheet available in the Appendix.

61



Chapter 3. Accurate Estimation of Running Temporal Parameters

Upper-body Lower-body

Foot Shank

Left foot Right foot Right shankLeft shank

C1

C2 C3

C4 C5
Trunk Sacrum

IMU

Figure 3.5 – The tree structure of the classification steps identified as Ci where i = 1,. . . ,5

the L2 norm.

Decision tree and classifiers

The classification was based on the tree structure shown in Figure 3.5. When designing the

structure of the tree, we prioritized the nodes where we expected the greatest differences in the

quantity of movement. Hence, each IMU was first classified as an upper or a lower body sensor

(C1). Upper-body sensors were then classified as a sacrum or thorax sensor (C2). If an IMU was

labeled as lower-body sensors at C1, it then went through a second classification where the

distinction between the foot-worn and shank-worn IMUs was made (C3). Finally, we used the

third level of classifiers (C4 and C5) to determine whether the foot-worn or shank-worn IMU

was placed on the right or the left leg. Moreover, for each of the Ci classifiers, we evaluated the

performance of both the K-Means and the K-NN techniques.

Feature extraction and selection

The first step aimed to select the most relevant features to separate the classes. The features

extracted for the accelerometer and angular velocity norm of all IMUs are listed in Table 3.5.

Besides, the same features were extracted for the three axes of the foot-worn and shank-worn

sensors, hence replacing the final letter N by either X, Y, or Z for the parameter’s label. We did

not consider the axes of the thorax and sacrum sensors due to the lack of plug-and-play FC

algorithms for these locations. The majority of the features inform about the intensity of the

signal, with only the skewness and the kurtosis describing the shape of the distribution. Also,

since the classification must occur for all the IMUs independently, no inter-sensor features

were used in the analysis.

Feature selection was performed on the running trials of 7 subjects and using 100-fold cross-

validation, where, for each fold, we attributed 1/3 of the trials to the training set and 2/3 to
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Label Description

rmsAccN, rmsGyrN Root mean square (RMS)
stdAccN, stdGyrN The standard deviation
maxAccN, maxGyrN Maximum value
minAccN, minGyrN Minimum value
medAccN, medGyrN Median
iqrAccN, iqrgyrN Interquartile range (IQR)
peakAccN, peakGyrN The ratio of maximum value to RMS
skewAccN, skewGyrN Skewness
kurtAccN, kurtGyrN Kurtosis
momAccN, momGyrN Moment of order 5
modeAccN, modeGyrN The most frequent value (mode)

Table 3.5 – List of the features extracted for the accelerometer norm (AccN) and angular
velocity norm (GyrN).

the validation set. These 7 participants were later excluded from the data set used to assess

the performance of the model. The features were selected using the wrapper method; the

algorithm first selected the feature with the highest the F1-score (Eq. 3.5) and successively

repeated this process, adding the next feature with the highest F1-score at each iteration, until

no significant increase or decrease in performance occurred. Note that we computed the

F1-score on the validation set only.

F 1 = 2∗ P ∗R

P +R
(3.5)

With P the precision and R the recall (or sensitivity). We applied this selection procedure

for each of the classification stages (i.e., each of the Ci classifiers, i = 1,. . . ,5) with K-NN and

K-Mean used separately.

Evaluation of the model

To assess the performance of the model, we divided the data from 34 participants (we excluded

the 9 participants used for feature selection) into two sets: the training and test set using a

leave-one-subject-out approach. We used the F1-score, accuracy, specificity, sensitivity, and

precision for each of the Ci classifiers, where i = 1,. . . ,5, to assess the performance of the

proposed method.

To determine the optimal value for K for each Ci classifiers, we plotted the F1-measure as

a function of the number of nearest neighbors K and selected the K value with the best

classification results. Moreover, since the performance of the models may vary for different

running speeds, we have trained and tested the classifiers for each speed individually and

investigated whether differences occurred in the classification performances.
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3.A.3 Results

In total, 198 trials were used in this study: 28 for feature selection and 170 for the evaluation of

the model. We extracted 17 features from the acceleration and angular velocity norm of each of

the 6 body-worn IMUs. Also, these 17 features were extracted for each axis of the foot-worn and

shank-worn IMU after we applied the transformation obtained from the functional calibration.

Hence, a total of 121176 data points were available to train and evaluate the model.

Classifiers Features Method K FC F1-score

C1 rmsAccN, medAccN, medGyrN, skewAccN K-NN 5 No 0.996
C2 rmsAccN, medAccN, medGyrN, stdAccN K-NN 3 No 0.951
C3 stdAccN, stdGyrN, rmsAccN, rmsGyrN K-NN 5 No 0.968
C4 skewGyrX, skewGyrY, maxAccY, maxAccZ, kurtGyrX K-NN 3 Yes 0.785
C5 medAccX, medAccZ, medGyrX, medGyrY K-NN 5 Yes 0.904

Table 3.6 – Results from the feature selection process.

In Table 3.6, the features and configuration that obtained the highest F1-score are shown for

each classifier. Note that, at each node, the K-NN method outperformed the K-Mean approach.

Consequently, the general performances of the decision tree have been further assessed only

with the K-NN classifiers at its nodes. The accuracy, specificity, sensitivity, and precision

statistics of the proposed decision tree are summaries in Table 3.7, with each column of the

table corresponding to one of the Ci classifiers (Figure 3.5). Finally, the effect of running speed

on the F1-score is displayed in Table 3.8.

Statistics C1 C2 C3 C4 C5

Accuracy (%) 99.4 95 97.3 79.6 88.2
Specificity (%) 99.7 96.5 96.4 76.3 85.8
Sensitivity (%) 99.2 93.8 98.1 83.4 90.9
Precision (%) 99.8 96.8 96.4 75.4 84.8

Table 3.7 – Accuracy, specificity, sensitivity, and precision obtained using the leave-one-subject-
out process.

Speed (km/h) C1 C2 C3 C4 C5

12 1 0.98 1 0.91 0.92
14 1 0.99 1 0.89 0.92
16 1 0.99 1 0.90 0.95
18 1 0.98 1 0.89 0.97
20 0.99 0.93 0.99 0.90 0.95
All 0.99 0.95 0.97 0.81 0.91

Table 3.8 – F1-score of the different classifiers with the running speeds considered separately.
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3.A.4 Discussion

In this study, we proposed a simple decision tree structure to assign body-worn sensors to the

thorax, the sacrum, the left or right shank, the left foot, or the right foot. The results suggest

that the K-NN method outperforms the K-Means approach for all the nodes of the decision

tree (Table 3.6). Overall, the C1, C2, and C3 classifiers achieved good accuracy, specificity,

sensitivity, and precision using features extracted on the norm of the accelerometer and

from the gyroscope measurements. Hence, no function calibration was required for such

classification. Although the distinction between the left and right leg at C4 achieved lower

performances than the C1, C2, and C3 classifiers, the results from Table 3.8 suggest that these

results could be improved by using the running speed as an additional input to the model.

The current results are nevertheless acceptable if the proposed method serves as a warning to

the end-user in case the system expects an incorrect configuration. Hence, further research

should be carried to assign a probability of error for each class. Also, we used a time window of

29 seconds for feature extraction, but a shorter window length could also be implemented for

embedded scenarios. Indeed, whereas multiple cycles would ensure more robustness of the

classifier by decreasing the importance of any unusual steps due to obstacles or unexpected

movement, theoretically, a single cycle would be sufficient.

The IMU-to-segment assignment results obtained in this study are comparable to those

previously reported for walking. The method, however, used a simple decision tree with K-NN

classifiers at its nodes, while other researchers have proposed more sophisticated approaches

such as support vector machines (Amini et al., 2011; Mannini et al., 2015; Saeedi et al., 2014;

Shi et al., 2011) and deep-learning techniques (Zimmermann et al., 2018).
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4 Drift-Free Foot Orientation Estima-
tion in Running Using Wearable IMU

Abstract

This study aimed to introduce and validate a new method to estimate and correct the orien-

tation drift measured from foot-worn inertial sensors. A modified strap-down integration

was proposed to decrease the orientation drift, which, in turn, was further compensated by

estimation of the joint center acceleration of a two-segment model of the foot. This method

was designed to fit the different foot strike patterns observed in running and was validated

against an optical motion-tracking system during level treadmill running at 8, 12, and 16

km/h. The sagittal and frontal plane angles obtained from the inertial sensors and the motion

tracking system were compared at different moments of the ground contact phase. The results

obtained from 26 runners showed that the foot orientation at mean stance was estimated with

an accuracy (inter-trial median ± IQR) of 0.4 ± 3.8◦ and a precision (inter-trial precision median

± IQR) of 3.0 ± 1.8◦. The orientation of the foot shortly before initial contact was estimated with

an accuracy of 2.0 ± 5.9◦ and a precision of 1.6 ± 1.1◦; which is more accurate than commonly

used zero-velocity update methods derived from gait analysis and not explicitly designed for

running. Finally, the study presented the effect initial and terminal contact detection errors

have on the orientation parameters reported.

Keywords: running, inertial measurement units (IMU), validation study, orientation, drift,

angles, foot strike

Chapter adapted from Falbriard M, Meyer F, Mariani B, Millet GP and Aminian K (2020) Drift-Free Foot Orienta-
tion Estimation in Running Using Weara-ble IMU. Front. Bioeng. Biotechnol. 8:65. doi: 10.3389/fbioe.2020.00065
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4.1 Introduction

The orientation of the foot recorded slightly before, during, or after the ground contact phase

is an essential parameter for running analysis. Many studies have investigated how different

foot landing techniques give rise to kinematic and kinetic differences between subjects. For

instance, the foot strike patterns (i.e., rearfoot, midfoot and forefoot) and their association

with injury risks (Peter R. Cavanagh & Lafortune, 1980; Daoud et al., 2012; Goss & Gross, 2012),

running economy (Gruber et al., 2013; Joseph Hamill & Gruber, 2017; Miller & Hamill, 2015;

Perl et al., 2012), running performance (de Almeida et al., 2015; Kasmer et al., 2013; Larson

et al., 2011), collision forces (Boyer et al., 2014; Gruber et al., 2014; Lieberman et al., 2010),

muscle activity (Ahn et al., 2014; Yong et al., 2014) and footwear (Horvais & Samozino, 2013;

Larson, 2014; Lorenz & Pontillo, 2012; C. Meyer et al., 2018) have been at the core of many

research studies and changes of running paradigms within the last decades. The orientation of

the foot in different planes or relative to the shank has also been extensively analyzed and now

constitutes a primary marketing argument for the running industry (e.g., eversion/inversion,

pronation/supination) (Monaghan et al., 2014; Muñoz-Jimenez et al., 2015; B. M. Nigg et al.,

1993; Perry & Lafortune, 1995).

In research, the continuous measurement of the 3D orientation of the foot is generally ob-

tained using optical motion capture systems (Altman & Davis, 2012; Arndt et al., 2007; Riley

et al., 2008). While these systems measure the foot pose (i.e., orientation and position) accu-

rately, they are often restricted to well-equipped laboratories and treadmill running. As an

alternative to this lack of portability, a growing number of studies have shown that wearable

inertial sensors, if combined with state-of-the-art algorithms, can be used to provide reliable

spatiotemporal information (Camomilla et al., 2018).

Historically, the methods based on foot-worn inertial sensors that estimate the fixed-frame

orientation of the foot first emerged from the field of gait analysis. Although different methods

have been proposed (Mariani et al., 2010; Sabatini, 2005; Skog et al., 2010), most share the same

underlying structure: (1) integration of the angular velocity obtained from a foot-mounted

gyroscope to calculate the global frame orientation and (2) combine the measurements from

other sensors (e.g., accelerometer, magnetometer, GPS) to estimate and remove the orien-

tation drift. Methods such as the zero-velocity-update usually require the presence of low

accelerations or low magnetic disturbances during the period of stance to estimate the orienta-

tion drift. Although these periods are generally present during low-speed human locomotion,

they are either rare or inexistent as the speed increases (Foxlin, 2005; Park & Suh, 2010; Zhang

et al., 2017), and thus are likely to underperform in running.

Nevertheless, studies have proposed a hard reset of the drift based on the hypothetical pres-

ence of a foot-flat period during the stance phase of running (Bailey & Harle, 2014; Chew et al.,

2017; Yuan et al., 2019). Although this approach seems reasonable for rearfoot strikers, it is not

appropriate for forefoot strikers as their rearfoot segment possibly never comes into contact

with the ground. Also, typically-rearfoot strikers tend to switch from a rearfoot to a forefoot
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strike pattern when the running speed increases (Breine et al., 2014); speed might likewise be

a confounding factor for any drift reduction method. Note that if the continuous orientation

is not required, different approaches have been proposed to classify the foot-strike patterns

with foot-worn IMUs (Marlène Giandolini et al., 2014; Strohrmann et al., 2011).

The combination of strap-down integration with the difference between proximal and distal

accelerations at any joint center has been used to estimate the joint orientation and to model

the drift in dynamic movements (Dejnabadi et al., 2006; Fasel et al., 2018). To the authors’

knowledge, this method has never been tested to estimate the orientation drift of the foot in

running.

Hence, the objective of this research was to propose a novel drift-free orientation estimation

method for running built on a two-segment model of the foot and explore the abovementioned

combination of proximal and distal accelerations using a single inertial measurement unit

(IMU) placed on the rear foot. We assumed that, regardless of the foot strike pattern, a

forefoot-flat period is always present, and it can be used to estimate and compensate the foot

orientation drift. The proposed method provides an estimate of the orientation drift for each

stance period and can, therefore, be used for online analysis of the running gait. Moreover,

the proposed method does not require the presence of a second IMU on the forefoot, for such

complicated instrumentation would reduce its applicability for field studies.

4.2 Materials and Methods

4.2.1 Protocol

A total of 26 volunteers (9 females and 17 males, age 29 ± 6 years, weight 70 ± 10 kg, height 174

± 8 cm, running weekly 2.1 ± 1.0 h, 11 affiliated to a running club) participated in this study.

They were running at least once a week and had no symptomatic musculoskeletal injuries.

Participants gave their written informed consent before the measurements and ran for 45

seconds at 8, 12, and 16 km/h on a level instrumented treadmill, wearing their regular shoes.

A 6 min familiarisation period (Lavcanska et al., 2005) was performed on the treadmill and

served as a warm-up for the participants. This protocol was approved by the local ethical

committee (CCER-VD 2015-00006) and conducted according to the declaration of Helsinki.

4.2.2 Wearable systems

Inertial measurement units

One Inertial Measurement Unit (Physilog 41, GaitUp SA, CH, weight: 19 g, size: 50 x 37 x 9.2 mm)

was fixed on the dorsum of each foot using a Silicon/Velcro elastic strap. The accelerometer

operated at 500 Hz (± 16 g), the gyroscope at 500 Hz (±2000 deg/s), and sensors’ calibration was

performed according to Ferraris et al. (1995). We modeled the foot with two rigid segments:

1Datasheet available in the Appendix.
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the rearfoot and forefoot segments (Figure 4.1). Note that there was no sensor located on the

forefoot segment. We aligned the IMU’s technical frame (TF) with the rearfoot Functional

Frame (FFrear), as described by Falbriard et al. (2018); we recorded a standing period and used

the gravitational acceleration to set the FFrear y-axis parallel to the vertical axis of the foot.

Then, using principal component analysis (PCA) on the running measurements, we aligned

the FFrear z-axis with the principal vector, which we assumed parallel to the mediolateral axis

of the foot. Finally, we defined the FFrear x-axis as the cross-product between the FFrear y-axis

and the z-axis. Note that the calibration matrix was considered constant within the duration

of the trial.

Temporal events detection

Temporal events detection was based on previously validated algorithms (Falbriard et al., 2018).

We segmented the trials into running strides and extracted four events per stance phase. The

Initial (IC) and Terminal (TC) contact events, when the foot initializes and terminates ground

contact, were found using local minima on the pitch angular velocity. Also, the mean-stance

(MS) was defined as the mean time between IC and TC, and MinRot as the time-point of stance

when the norm of the foot angular velocity is minimum.

Orientation estimation

Strap-down integration of the angular velocity (Favre et al., 2008) is frequently used to obtain

the orientation of a body segment in the Global Frame (GF). However, this operation generates

a drift which accumulates with time. In this study, orientation estimation was performed in

three phases: (i) modified strap-down integration, (ii) drift modeling, (iii) drift estimation

and reduction. The modified strap-down integration method provides a first estimate of the

orientation. It assumes that, at MinRot of each stance phase, the FFrear and the GF are aligned.

In other words, it supposes that a rearfoot strike is used and that, at MinRot, the rearfoot

segment is flat on the ground. Since this hypothesis is not general enough (i.e., it does not

consider all the possible foot strike patterns), the subsequent phases (ii) and (iii) aims to

remove the drift further.

Modified strap-down integration (MSDI)

First, we set the quaternion GF
F F q̂(t ) to transform the IMU 3D kinematics from the FFrear into

the GF. The x-axis of the GF was parallel to the longitudinal axis of the treadmill’s belt, the z-axis

to the lateral axis, and the y-axis was perpendicular to the ground surface, pointing upward

(Figure 4.1). Typically, strap-down integration is computed between time-points at which the

orientation of the FFrear in the GF can be estimated. In walking, short zero-velocity periods

during foot-flat are often used to reset the integration drift (Sabatini, 2005). As these static

periods were not observed during running, we implemented a new integration method that

relies on a quasi-zero velocity update at MinRot and a bidirectional strap-down integration.

This method merges the strap-down integration results calculated in a forward and backward
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Figure 4.1 – The two-segments model of the foot during the stance phase. Using the RGB
convention, {FFrear} represents the functional frame of the rearfoot segment, {FFfore } the
functional frame of the forefoot segment and {GF} the room’s global frame. Points p and q are
arbitrarily placed on rearfoot, and forefoot segments, c ′ and c are respectively hypothetical
and optimum rearfoot-forefoot joint’s center. ~ac,q is the acceleration at c estimated from q ,
~ac,p the acceleration at c estimated from p, ~atr eadmi l l the acceleration of the treadmill and ~g
the Earth gravitational acceleration. Finally, δ is the orientation difference (i.e., quaternion)
between ~ac,p and ~ac,q while~rpc and~rqc are the distance vectors from point p to c and from q
to c, respectively.

direction, awarding higher weight to the estimation originating from the closest MinRot. So, for

each stride i ∈ [2,N-1], N is the total number of strides, we performed strap-down integration in

two directions. The quaternion GF
F F q̂backw ar d ,i (t ) with t ∈[MinRot(i),MinRot(i+1)[ results from

the forward strap-down integration and the quaternion GF
F F q̂backw ar d ,i (t ), with t ∈ ]MinRot(i-

1),MinRot(i)], from the backward integration. Note that, we assumed the FFrear at MinRot

(GF
F F q̂(MinRot)) to be aligned with the GF. The orientation difference was obtained as in Eq. 4.1:

GF
F F q̂di f f (t ) =GF

F F q̂backw ar d ,i+1(t )∗GF
F F q̂ f or w ar d ,i (t )−1 (4.1)

We then weighted the contribution of the “backward” and “forward” estimations in the actual

orientation GF
F F q̂di f f (t) through the correction of the helical angle (α(t)) obtained by the

transformation from the quaternion notation to the axis-angle notation (quat2helic):

(~u(t ),α(t )) = quat2hel i c
(GF

F F q̂di f f (t )
)

(4.2)
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αw (t ) =α(t )∗ t −Mi nRot (i )

|t −Mi nRot (i +1)| (4.3)

The corrected helical angle αw (t ) and vector ~u(t ) were then transformed back into quaternion

notation (helic2quat) and used to estimate the weighted orientation difference:

GF
F F q̂di f f ,w (t ) = hel i c2quat (~u(t ),αw (t )) (4.4)

Finally, we found the rearfoot orientation as:

GF
F F q̂(t ) =GF

F F q̂di f f ,w (t )∗GF
F F q̂ f or w ar d ,i (t ) (4.5)

Since the forward and backward orientation estimations are linearly weighted (Eq. 4.3), this

technique does not have jumps in the final orientation estimate GF
F F q̂(t ).

Drift modeling based on joint center acceleration (JCA)

During the stance phase of running, the kinematics of the rearfoot and forefoot segments vary

upon the landing technique. The forefoot segment always has a short flat period, indepen-

dently of the foot strike pattern (i.e., rearfoot strike, midfoot strike, or forefoot strike), while

the rearfoot segment is usually flat only for rearfoot strikes. However, all runners have the

forefoot segment that remains flat on the ground shortly after toe-strike and toward most of

the pushing phase (Peter R. Cavanagh & Lafortune, 1980; De Cock et al., 2005). The previously

calculated rearfoot orientation GF
F F q̂(t) could, therefore, be incorrect due to this potential

absence of the rearfoot-flat period. By modeling the foot with two segments, one can estimate

the acceleration at their joint center (i.e., point c in Figure 4.1) based on the rearfoot ~ac,p (t)

and forefoot ~ac,q (t ) accelerations. The above can be done using the function ϕ(~a,~ω,~r ) which

shifts the acceleration ~a(t) of any point of a segment to another point of the same segment

based on the segment’s angular velocity ~ω(t ) and the translation between the two points~r :

ϕ
(
~a(t ),~ω(t ),~r

)=~a(t )+ ~̇ω(t )×~r +~ω(t )× (~ω(t )×~r ) (4.6)

The drift model in this study assumes that, during the forefoot-flat period, ~ac,p (t )−~ac,q (t ) =~0.

Consequently, the orientation difference of the joint center accelerations (δ(t )) should also be

zero or minimal. During forefoot-flat, ~ac,q (t ) can be estimated from Eq. 4.6 by assuming no

angular rotation:

~ac,q (t ) =~aq (t ) =~g +~atr eadmi l l (t ) (4.7)
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where ~g is the earth gravitational acceleration and ~atr eadmi l l (t ) the acceleration of the tread-

mill. Note that, even if the treadmill velocity was set constant, the shearing forces acting on the

belt, shortly after landing, change the speed of the treadmill, hence generating a non-zero ac-

celeration ~atr eadmi l l (t ). The model also assumes that each point on the rearfoot segment has

a trajectory which lies on the surface of a sphere during forefoot-flat; hence, Eq. 4.8 describes

the accelerations acting at point p:

~ap (t ) =~ap,t ang (t )+~ap,cent (t )+~g +~atr eadmi l l (t ) (4.8)

where ~ap,t ang (t ) is the tangential and ~ap,cent (t ) the centripetal acceleration at point p.

Drift estimation and reduction

To estimate the orientation drift δ(t), the accelerations ~ac,p (t) and ~ac,q (t) were calculated

based on the acceleration and angular velocity at point p and q , respectively. As the exact

position (p) of the IMU is unknown (i.e., somewhere on the dorsum of the foot), we designed a

two-step optimization process to find the~rpc vector, necessary to find ~ac,p (t ). In the first step,

the point c ′ is selected as the candidate position, which minimizes the norm of the tangential

and centripetal accelerations. This point c ′ is chosen among all the rearfoot points j for which

~rp j ,x < 30cm,~rp j ,y < 10cm and~rp j ,z < 5cm in FFrear. We used Eq. 4.6 to find an estimate of~rpc ,

namely~rpc ′ , which minimizes Eq. 4.9 after removing the contribution of ~g (inclination) from

the acceleration at point j :

~rpc ′ = argmin
~rp j

(∥∥ϕ(
~ap (t )−GF

F F q̂(t )−1 ∗GF ~g ,~ωp (t ),~rp j
)∥∥)

, t ∈ S (4.9)

The function argmin returns the~rp j vector at which the input function is minimized. S is

the set of samples within the pushing phase of each stride i, defined as t ∈ [MinRot(i),TC(i)].

During the pushing phase, the tangential and centripetal accelerations are maximum. This

high signal-to-noise ratio optimizes the outcome of the minimization function in Eq. 4.9. As a

result, Eq. 4.6 and~rpc ′ can be used to estimate the acceleration at the point c ′:

~ac ′,p (t ) =ϕ(
~ap (t ),~ωp (t ),~rpc ′

)
(4.10)

If the point c ′ is reasonably close to the joint center c, the tangential and centripetal accel-

erations should approximately be null and, based on Eq. 4.7, ~ac ′,p (t)−~g can be used as an

estimate of ~atr eadmi l l (t ).

~ac ′,p (t ) ∼=~ac,q (t ) =~g +~atr eadmi l l (t ) (4.11)
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~ac ′,p (t )−~g ∼=~atr eadmi l l (t ) (4.12)

In the second step of optimization, ~ac ′,p (t ) was used as in Eq. 4.9 to refine the estimate of~rpc :

~rpc = argmin
~rpx

(∥∥ϕ(
~ap (t )−~ac ′,p (t ),~ωp (t ),~rpx

)∥∥)
(4.13)

~ac,p (t ) =ϕ(
~ap (t ),~ωp (t ),~rpc

)
(4.14)

Using Eq. 4.7 and Eq. 4.14 in GF, the orientation drift (δ(t )) was estimated, for each step, as the

orientation difference between ~ac,p (t ) and ~ac,q (t ):

δ(t ) =
[

cos

(
β(t )

2

)
, sin

(
β(t )

2

)
∗ν(t )

]
(4.15)

where ν(t ) is a unit vector perpendicular to ~ac,p (t ) and ~ac,q (t ) and β(t ) is the rotation around

ν(t ):

β(t ) = arccos

(
~ac,q (t )∗~ac,p (t )∣∣~ac,q (t )

∣∣∗ ∣∣~ac,p (t )
∣∣
)

(4.16)

ν(t ) = ~ac,q (t )×~ac,p (t )∥∥~ac,q (t )×~ac,p (t )
∥∥ (4.17)

The orientation drift of the ith stance phase, namely δi , was defined as the average quaternion

(Cheng et al., 2007) of δ(t ) where t ∈ [tm-ε, tm+ε]. The parameter tm was found as in Eq. 4.18

and ε = 5ms.

tm = min
t

(∥∥~ac,p (t )
∥∥−1

)
(4.18)

δi = mean(δ(t )), t ∈ [tm −ε, tm +ε] (4.19)

We then estimated the rearfoot orientation based on Eq. 4.5 and obtained the drift correction

with Eq. 4.20:

GF
F F q(tm) =GF

F F q̂(tm)∗k ∗δi (4.20)

k = 1/
(
1+e100∗(‖~ac,p (tm )‖−1.1)

)
(4.21)
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Note that the sigmoid function in Eq. 4.21 aims to reduce the weight of the update the fur-

ther the norm of ~ac,p (tm) is from the unit norm. The parameters of the sigmoid function

were selected such that a 10% error corresponds to a coefficient k equal to 0.5. Finally, we

used the same MSDI process to correct the estimate of GF
F F q̂(t): for each stance phase a new

GF
F F q̂ f or w ar d ,i (t) and GF

F F q̂backw ar d ,i (t) was computed, with the center time tm,i and with an

initial orientation defined as in Eq. 4.19.

4.2.3 Reference system

Temporal events detection

We used an instrumented treadmill (T-170-FMT, Arsalis, Belgium) as a reference system for

temporal events detection. The force plate recorded the 3D ground reaction forces (GRF)

at 1000Hz, and a 5V analog trigger synchronized the system with the IMUs. To reduce the

noise on the vertical GRF signal due to the treadmill’s vibration, we first applied a 2nd-order

stopband Butterworth filter with edge frequencies set to 25 and 65 Hz. Finally, the initial and

terminal contact events were found using a threshold on the vertical GRF set at 7% of the

participant’s body weight (Falbriard et al., 2018).

The 3D orientation of the foot with stereophotogrammetry

Motion tracking of the lower limbs was achieved using eight motion cameras (BTS Smart

400, BTS Bioengineering, USA) and 21 reflective markers placed on body landmarks. The

system operated at 100Hz and was synchronized with the IMUs and the force plate using an

analog trigger (i.e., 5V pulse trigger recorded on all the systems). We defined the GF of the

system using three reflective markers on the horizontal plane of the treadmill; the GF x-axis

set parallel to the belt (i.e., in the running direction) and the z-axis laterally to the belt, and the

y-axis perpendicular to the x and z axes (Figure 4.2).

Calibration in standing posture

The malleolus markers (Figure 4.2, m5-6) were frequently torn off while running, so we

recorded a 5-seconds standing posture at the beginning of each session. The calibration phase

aimed to obtain the matrix F F
T F Rcal i b which transforms the vector space from the Technical

Frame (TF) to the Functional Frame (FF). The position of the markers of the shoe remained

unchanged throughout a session, so the matrix F F
T F Rcal i b was considered constant and was

used to process the running trials. The TF was defined using the mean position of 4 reflective

markers firmly fixed around the IMU (Figure 4.2, m1-4) and the matrix GF
T F Rcal i b was set to

transform the vector space from the TF to the GF (Eq. 4.22 - 4.23). In Eq. 4.22, the N symbol

represents the normalization function, and the circumflex indicates that the average position

of the marker was considered.

~̃xT F = N
(
~̂m2 − ~̂m4

)
,~zT F = N

(
~̂m3 − ~̂m4

)
,~yT F = N

(
~zT F ×~̃xT F

)
,~xT F =~yT F ×~zT F (4.22)
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Figure 4.2 – (A) Rear/lateral view of the markers’ configuration used in this study. (B) Top
scheme of the markers’ configuration required in the definition of the foot’s technical (TF) and
functional (FF) frames. Markers illustrated in orange are the one needed to set the TF, in green
the FF, and in grey the duplicates which were not used in this study. Also, note that markers 5
and 6 were kept only during the calibration trials.

GF
T F Rcal i b = [

~xT F ,~yT F ,~zT F
]

(4.23)

We defined the orientation of the FF (GF
F F Rcal i b) using the two malleolus markers (m5-6) and

the GF vertical axis, as shown in Eq. 4.24 - 4.25.

~̃zF F = N
(
~̂m5 − ~̂m6

)
,~yF F = [0,1,0],~xF F = N

(
~yF F ×~̃zF F

)
,~zF F =~xF F ×~yF F (4.24)

GF
F F Rcal i b = [

~xF F ,~yF F ,~zF F
]

(4.25)

Finally, we obtained the matrix F F
T F Rcal i b using the two calibration matrices from Eq. 4.23 and

Eq. 4.25.

F F
T F Rcal i b =GF

F F R ′
cal i b ∗GF

T F Rcal i b (4.26)
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Reference orientation during running

During the running trials, only the markers m1 to m4 were kept. We calculated the TF of the

foot as in Eq. 4.22 except that the markers’ position at each time t was considered and not their

average position as for the calibration trials.

GF
T F R(t ) = [

~xT F (t ),~yT F (t ),~zT F (t )
]

(4.27)

Finally, we transformed the TF into the FF using the matrix from the calibration trial.

GF
F F R(t ) = (F F

T F Rcal i b ∗GF
T F R(t )′

)′ =GF
T F R(t )∗F F

T F R ′
cal i b (4.28)

By definition, the columns of GF
F F R(t ) correspond to the coordinates of the TF basis vectors in

the GF. The TF was computed based on the markers affixed on the IMU and was, therefore,

subject to fixation artifact. Three additional markers were placed on the subtalar region as

duplicates in case of unsatisfactory data quality. These markers were fixed on the shoe but

suffered from recurrent marker loss as the marker on the medial side was frequently hit by the

opposite foot during running. When present, however, these markers were used to visually

assess the sensor-to-foot motion (i.e., wobbling of the sensor) with an average RMS difference

of 3.68◦ obtained after the low-pass filtering of the pitch angle.

4.2.4 Validated angles

We calculate two reference angles using the 3D orientation of the foot measured by stereopho-

togrammetry (GF
F F R(t )): the pitch angle (θr e f ), defined as the projection of the FF x-axis onto

the sagittal plane in the GF and the roll angle (ρr e f ), defined as the projection of FF z-axis

onto the frontal plane in the GF. These angles were also computed for the IMU system using

the MSDI (GF
F F q̂(t)) method (θMSD I , ρMSD I ) and the JCA (GF

F F q(t)) method (θJC A , ρ JC A). By

definition, the pitch angle is zero when the rear foot remains flat on the ground and is posi-

tive when the forefoot segment is higher than the rearfoot segment. The Root Mean Square

error of θr e f (stance) - θMSD I (stance) and θr e f (stance) - θJC A(stance) was estimated for each

stance phase. In addition, the value of the pitch angle at initial contact, i.e., the foot strike

angle (θr e f (IC), θMSD I (IC), θJC A(IC)), at terminal contact, i.e., the pushing angle (θr e f (TC),

θMSD I (TC), θJC A(TC)) and at mean-stance (θr e f (MS), θMSD I (MS), θJC A(MS)) were extracted

from the different methods. These parameters rest on the detection accuracy of the IC and

TC, so they were computed based on the results of both the force plate (i.e., reference system)

and the IMU (Falbriard et al., 2018). Note that, because of the potential detection error of the

IMU-based method, we used the mean angle within an 8-millisecond window (i.e., ±2 samples

at 500Hz) instead of the exact angle at IC, MS, and TC. Moreover, the time (AC) and value of

the pitch angle last local maximum before IC was extracted and defined as the pre-activation

pitch angle (θr e f (AC), θMSD I (AC), θJC A(AC)). This feature describes the orientation of the foot
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shortly before landing when muscle pre-activation occurs (Kyröläinen et al., 2005). Also, as

the range of the roll angle was small, therefore potentially suffering from low signal-to-noise

ratio, only the activation roll angle (ρr e f (AC), ρMSD I (AC), ρ JC A(AC)) was defined as the last

local minimum before IC. A negative roll angle corresponds to an inversion of the foot and a

positive angle to an eversion.

4.2.5 Statistical analysis and error computation

This study focused on the trials at 8, 12, and 16 km/h, which corresponds to slow, moderate,

and fast running. Trials were either removed because of instrumentation errors, protocol

errors, or marker loss. We also removed the outliers steps from the data set according to the

following criteria: θr e f (MS) > 10° and θr e f (AC) < -80. After the outliers were removed, trials

with less than five strides were dropped from the study.

To evaluate the error of the IMU estimations against the reference motion tracking system,

we computed four statistics on the entire data set for each parameter. The bias (intra-trial

mean) and precision (intra-trial STD) were computed on the strides from the same foot and

the same trial. We considered the feet independently as runners may use different patterns for

the left and right foot. The bias and precision were later combined among all the trials: bµ the

inter-trials median of the bias, bσ the inter-trials IQR of the bias, σµ the inter-trials median

of the precision and σσ the inter-trials IQR of the precision. We used the median and IQR

statistics because the biases and precisions were not normally distributed.

The influence of the running speed on the intra-trial biases and precision values was tested

using the non-parametric Kruskal-Wallis test with a significance level set at p < 0.1. This

test was preferred to an ANOVA analysis because of the low number of trials and the lack

of prior knowledge about the seemingly not normal distributions. Also, boxplots were used

to visualize the biases and precision differences among the running speeds. Finally, we

graphically assessed the agreement between the IMU-based system and the reference motion

capture system using Bland-Altman plots (Bland & Altman, 1986).

4.3 Results

In total, 4252 steps were analyzed in this study. The mean ± STD (min, max) number of

recorded strides per trial was 36 ± 6 (10, 45) for a total of 59 trials (23 at 8 km/h, 23 at 12

km/h, and 13 at 16 km/h). The pitch angles during the stance phase and obtained from the

different estimation methods are shown for a rearfoot (left) and a forefoot (right) striker in

Figure 4.3. We emphasized on the IC and TC detection differences between the force plate

and the IMU-based method using vertical dashed lines.

Table 4.1 shows the results of the inter-trials error statistics for the MSDI and JCA orientation

estimation methods. The range (95% interval) observed on the reference system for the pitch
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Figure 4.3 – Comparison of the pitch angle measured from different measurement systems for
a rearfoot (A) and forefoot (B) striker. The blue curve is the estimation from the IMU-based
MSDI method (θMSD I ), the orange curve from the IMU-based JCA method (θJC A), and the
yellow curve from the reference motion tracking system (θr e f ). The IC events are shown using
down-pointing triangles, TC events with up-pointing triangles, MS events with squares, and
the AC peaks using circles. The black vertical dashed lines accentuate the detection differences,
for the IC and TC events, between the IMU and the force plate system.

and roll angles are: θr e f (IC) (-12.5, 18.2), θr e f (MS) (-11.8, -1.2), θr e f (TC) (-68.9, -41.6), θr e f (AC)

(-7.8, 28.9) and ρr e f (AC) (-29.5, -7.6). The error statistics are expressed in degrees and are

shown for two different temporal events detection systems: the IMUs and the force plate.

When the steps are gathered regardless of their trial and using the IMU-based event detection,

the mean ± STD error (°) of the JCA method are: θJC A(IC) (0.8 ± 5.9), θJC A(MS) (0.2 ± 4.7),

θJC A(TC) (17.0 ± 9.0), θJC A(AC) (2.1 ± 5.5) and ρ JC A(AC) (3.1 ± 4.9). Similarly, for the MSDI

method: θMSD I (IC) (3.9 ± 5.7), θMSD I (MS) (3.6 ± 3.9), θMSD I (TC) (20.2 ± 8.8), θMSD I (AC) (5.3 ±

5.2) and ρMSD I (AC) (4.6 ± 4.9).

Figure 4.4 illustrates the intra-trial biases (b) and precision (σ) statistics obtained for the

θJC A(AC) parameter at 8, 12, and 16 km/h. Two trials at 8 km/h had large biases (23.2° and

-14.8°) and were cut-off from the graph for the sake of illustration. The results from the Kruskal-

Wallis test suggest that the biases (b) and precision (σ) values for θJC A(AC) and θJC A(MS)

are not affected by the running speed. However, for the parameters θJC A(IC), θJC A(TC) and

ρ JC A(AC) the precision (σ) of the system was significantly affected (p < 0.05) but the intra-trial

biases (b) were not (p = 0.11, p = 0.21, p = 0.42).

Finally, a Bland & Altman plot (Figure 4.5) shows the agreement between the IMU-based

system and the reference motion capture system, with the mean (2.1°) ± STD (5.2°) of the error

displayed with yellow horizontal lines.
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Figure 4.4 – Boxplot of the intra-trial biases and precision results for the foot pitch activation
angle (θJC A(AC)) measured with the proposed method (JCA). In the figure, the intra-trial
biases are shown in blue and the precision values in orange. The grey dots represent the
statistic of each trial. Note that there are two dots per trial because the feet were considered
independently.

Figure 4.5 – Bland-Altman plot of the activation pitch angle (θJC A(AC)) for the JCA method.
The grey dots show the agreement of each step, the blue circles the agreement of the intra-trial
mean, and the yellow lines the mean ± STD of the error.
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Parameter
IMU-based event detection FP-based event detection

Bias (°) Precision (°) Bias (°) Precision (°)
bµ bσ σµ σσ bµ bσ σµ σσ

θJC A(IC) 0.9 6.7 2.4 1.5 6.2 6.9 2.2 1.1
θMSD I (IC) 3.7 6.0 2.1 1.1 9.9 7.2 1.8 0.8
θJC A(IC) – θMSD I (IC) -2.9 0.7 0.3 0.4 -3.7 -0.3 0.3 0.3

θJC A(MS) 0.4 3.8 3.0 1.8 1.1 3.5 1.3 1.1
θMSD I (MS) 3.8 3.8 2.0 1.7 4.3 3.1 0.8 0.4
θJC A(MS) – θMSD I (MS) -3.5 0.0 0.9 0.1 -3.2 0.4 0.5 0.8

θJC A(TC) 17.4 8.7 3.2 1.7 2.6 8.0 2.8 1.5
θMSD I (TC) 20.8 7.6 2.8 1.3 4.8 7.1 2.4 1.4
θJC A(TC) – θMSD I (TC) -3.4 1.1 0.3 0.4 -2.2 0.9 0.4 0.1

θJC A(AC) 2.0 5.9 1.6 1.1
θMSD I (AC) 5.0 5.7 1.2 0.9
θJC A(AC)- θMSD I (AC) -3.0 0.2 0.3 0.2

θJC A(stance) 4.5 2.8 0.8 0.6
θMSD I (stance) 6.2 4.1 0.6 0.3
θJC A(stance)- θMSD I (stance) -1.7 -1.3 0.2 0.3

ρ JC A(AC) 3.0 5.7 1.5 1.3
ρMSD I (AC) 4.4 5.5 1.5 1.2
ρ JC A(AC) - ρMSD I (AC) -1.4 0.2 0.0 0.1

Table 4.1 – Inter-trial analysis of the IMU-based pitch (θ) and roll (ρ) angles estimation errors
with motion tracking cameras used as a reference. The MSDI and JCA methods are evaluated in
two scenarios: (1) using temporal event detection from the IMU and (2) using temporal event
detection from the force plate (FP). The selected events are initial contact (IC), mean-stance
(MS), terminal contact (TC), and activation peak (AC). The results of the inter-trials median
(bµ) and IQR (bσ) of the bias, the inter-trials median (σµ) and IQR (σσ) of the precision and the
root mean square error (RMSE) of the continuous pitch angle (θJC A(stance), θMSD I (stance))
between IC and TC are presented in this table.

81



Chapter 4. Drift-Free Foot Orientation Estimation in Running Using Wearable IMU

4.4 Discussions

In this study, we proposed a new method to estimate the foot orientation during running,

based on a single IMU on the rear foot. While IMU-based estimation generates drift due to

strap-down integration operation, we proposed a modified strap-down integration (MSDI)

supplemented with a drift compensation method (JCA). The technique relies on the assump-

tion of a flat period in the forefoot, which is accurate for all landing strike pattern. Assuming

dynamic rearfoot kinematics during the pushing phase and a static period on the forefoot

segment, a two-segment biomechanical model of the foot is, therefore, well suited for running.

Also, the system requires no prior knowledge about the sensor’s location. The IMU must be

fixed on rearfoot, and the functional calibration is automatically performed. Validated against

gold standard stereophotogrammetry system, the proposed drift correction method allowed

to estimate the foot orientation at mean stance phase with a bias of 0.4 ± 3.8° and precision of

3.0 ± 1.8°. Note that the validation was restricted to the stance phase due to the occlusion of

the markers’ position during the swing phase.

In this study, the drift correction of the MSDI method is hypothetical and enforced. An

implication of this is the possibility that the biases (bµ and bσ) observed for this method

cannot be extrapolated to other populations or other running conditions (e.g., various speed

and style); we would certainly expect more significant biases in the case of forefoot strikers

(Figure 4.3, right). Instead, the JCA method uses a real measure of the orientation drift and

correctly estimated the pitch angle around MS, while the MSDI method remained around 0°

(Figure 4.3). The RMSE analysis (Table 4.1) also reveals better results for the JCA method with

better accuracy (bµ and bσ statistics). In contrary, the σµ and σσ statistics suggest that the

JCA method is slightly less precise. Note that these precision differences are always below 1°

(Table 4.1) and seem reasonable given that the θMSD I (MS) precision exposes the inter-steps

variability of the participants (i.e., of the reference system). Besides, the precision of the JCA

system could be improved by tuning the parameters of the sigmoid function of Eq. 4.21 in

order to reduce the effect of outlier estimations. Also, the algorithm provides near-real-time

processing of the orientation (i.e., in the order of a step), and could potentially be improved by

considering the orientation of the few preceding steps in the estimation of the drift (e.g., using

a weighted average).

Table 4.1 and Figure 4.3 highlight the importance of temporal events detection accuracy in

the estimation of the pitch angle at IC, MS, and TC. Large errors in the measured angles result

from the fact that IC and TC events are detected during phases of rapid change in pitch angle.

Table 4.1 reveals that, when the force plate system detected TC, the median bias (bµ) of the

JCA and the MSDI methods improved by 14.8° and 16°, respectively. Similarly, the biases were

worsened by 5.3° and 6.2° for IC. These findings can be explained by the fast-changing slope of

the pitch angle (θ) around the IC, while it is continuously negative around TC. In consequence,

the detection biases of IC and TC have dissimilar effects on θJC A(IC), θMSD I (IC), θJC A(TC) and

θMSD I (TC). Furthermore, these estimations are sensitive to synchronization delays between

the reference systems and the IMUs.
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Because the AC event is not affected by the temporal events detection technique, a more

detailed analysis was performed on the θJC A(AC) parameter. The parameter ρ JC A(AC) is also

unaffected by the detection accuracy of the temporal events; however, the pitch angle was

preferred because of the lack of generality in the roll angle drift correction hypothesis. The

assumption of a null roll angle for the forefoot segment may be incorrect for subjects with

pathological pronation/supination. In Figure 4.5, the optical motion-tracking system and the

IMU-based system demonstrate a good agreement across the range of angles.

Bailey & Harle (2014) used two methods (linear de-drifting and extended Kalman filter) to

compute the orientation of the foot in 5 subjects based on shoe-mounted IMUs. They reported

an error (mean + STD) for θ(IC) of 1.92 ± 1.09° at 8.28 km/h and 3.18 ± 1.19° at 12.24 km/h. The

present JCA results (0.8 ± 5.9°) show a better bias but a lower precision. The lower performance

in precision might be associated with the higher diversity of subjects and speeds analyzed

in this study. Also, the authors assumed that the pitch and roll angles were similar for every

stance phase, hence reducing the inter-steps variability of the system. Koska et al. (2018)

used trapezoidal integration of gyroscopic measurements to estimate the orientation of the

foot during the stance phase. The authors reported error biases (°) ± 95% limits of agreement

(°) of -3.1 ± (-7, 3.4) at 10 km/h, -3.8 ± (-7.6, 2.1) at 12km/h and -5.9 ± (-11.1, 1.8) at 15

km/h in the estimation of the sagittal plane (i.e., pitch angle) range of motion during stance

phase. Although heel-off events were defined using a fixed time window, their observations

corroborate with the results of the MSDI method. Shiang et al. (2016) also assumed the

presence of a foot-flat period (i.e., pitch angle = 0°) during stance, as for the MSDI method

used in the present study, and defined the difference between two local maximums as the

strike index. The range of angles (-5°, 27°) reported for the strike index reflect those obtained

for θJC A(AC) and θMSD I (AC) parameters in this study. Also, in Altman & Davis (2012), the

authors concluded that the foot strike angle, obtained from an optical motion capture system,

is an acceptable measure of foot strike pattern, and proposed the following classification

limits: rearfoot strike > 8°, midfoot strike between -1.6° and 8°, and forefoot strike < 1.6°. These

results, with a midfoot strike classification range of 9.6°, suggest that the JCA method provides

an acceptable measure of the pitch angle, with an accuracy of 2.0 ± 5.9° and 0.9 ± 6.7° for the

θJC A(AC) and θJC A(IC) parameters, respectively. However, such a conclusion does not hold for

the MSDI method (Table 4.1). A validation study on walking analysis (Brégou Bourgeois et al.,

2014) reported accuracy and precision of 0.5 ± 2.9° and 3.9 ± 5.8° in the estimation of the pitch

angle (θ) at initial and terminal contact, respectively. In comparison, we observed (when the

steps were gathered regardless of their trial) a 0.8 ± 5.9° and 17.0 ± 9.0° accuracy and precision

for θJC A(IC) and θJC A(TC) parameters. The lower performance may partly be explained by

the lower detection accuracy of the initial and terminal contact in running and by the highly

dynamic motion of the foot in running generating a greater level of noise during the period of

stance.

The results from the Kruskal-Wallis test suggest that neither the bias nor the precision of

the θJC A(AC) and θJC A(MS) parameters were significantly affected by the running speed.

However, we observed significant differences in the precision of θJC A(IC) and θJC A(TC). This
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possibly results from the effect speed has on the detection precision and accuracy of IC and

TC (Falbriard et al., 2018). Note that there is a performance trade-off made by the system

and associated with the running speed. At low running speeds, the norm of the tangential

and centripetal accelerations during the pushing phase is small and therefore decreases the

performance of the automatic estimation of~rpc in Eq. 4.9 - 4.13. Conversely, ground contact

times are longer at low running speeds (Nummela et al., 2007), increasing the probability of

sufficiently long static periods to directly estimate the 3D orientation of the rearfoot segment.

It is essential to bear in mind that the present study was performed on a 0° inclined treadmill.

Consequently, the results reported in this document cannot be generalized to uphill and

downhill running. Also, we obtained the reference orientation based on markers on the

sensors rather than on the shoe; therefore, the protocol constraints such as the lightweight

IMU and the IMU fixation are aspects that could affect the detection results. Finally, the

present study raises the possibility for the JCA method to be tested on active gait methods

other than running (e.g., Nordic walking).

4.5 Conclusions

In this study, we proposed and validated a new method to estimate and correct the orientation

drift estimation based on a foot-worn IMU using a two-segment model of the foot for drift

removal. The validation compared sagittal and frontal plane angles obtained from an optical

motion-tracking system with the estimation based on wearable inertial sensors. We showed

that the pitch angle at mid-stance can be estimated with an inter-trial median ± IQR of 0.4

± 3.8° and an inter-trial precision median ± IQR of 3.0 ± 1.8°. Although running speed can

affect the detection performance, the system showed a good agreement with the gold standard

optical motion-tracking system. Apart from the short standing period used for the functional

calibration, the proposed system is fully plug-and-play. It requires no prior knowledge about

the position of the sensors and needs no magnetometer.
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4.A Additional Results: How Accurate is Visual Determination of

Foot Strike Pattern and Pronation Assessment

Abstract

Nowadays, choosing adequate running shoes is very difficult, due to the high number of differ-

ent designs. Nevertheless, shoes have two main characteristics to fit the runners’ technique

and morphology: drop and arch support. Retailers’ advices are usually based on the visual

assessment of the customer’s running technique. Such a method is subjective and requires an

experimented examiner, while objective methods require expensive material, such as a 3D

motion system and pressure insoles. Therefore, this study aimed to determine the accuracy

of foot strike pattern and pronation assessment using video cameras, compared to a gold

standard motion tracking system and pressure insoles. Thirty-four subjects had to run at 8,

12, and 16 km/h shod and 12 km/h barefoot during 30 s trials on a treadmill. The agreement

between foot strike pattern assessment methods was between 88% and 92%. For pronation,

agreement on assessment methods was between 42% and 56%. The results obtained indicate

a good accuracy on foot strike pattern assessment, and high difficulty to determine pronation

with enough accuracy. There is, therefore, a need to develop new tools for the assessment of

the runner’s pronation.

Keywords: running, foot strike, visual assessment

4.A.1 Introduction

Running has become a very popular sport in the last decades, thanks to its accessibility, ease

of practice, and health benefits (Taunton et al., 2002). Nevertheless, injury risks are usually

underestimated by non-professional runners. In a prospective study, Macera et al. (Macera et

al., 1989) reported that each year, approximately one out of two runners gets injured. Assessing

foot strike and pronation is paramount as directly linked to injury risk (Stacoff et al., 2016).

Moreover, shoes adapted to the runner’s technique and foot morphology may reduce the risk

of injury (McKenzie et al., 1985). As a consequence, retailers usually propose shoes with two

main characteristics: soles with different drops to fit foot strike pattern (rearfoot, midfoot and

forefoot strikers), and neutral shoes vs. shoes with arch support for pronators. The Foot Strike

Index (FSI) indicates the location of the center of pressure when the foot hits the ground (Peter

R. Cavanagh & Lafortune, 1980). The foot is separated into three areas: rearfoot, midfoot, and

forefoot. Altman & Davis (Altman & Davis, 2012) showed the agreement between FSI and

Foot Strike Angle (FSA), the angle of the foot in the sagittal plane, measured using 3D motion

system (82% for shod condition and 60% barefoot) and between a direct visual classification

and FSI (75%). The pronation of the foot has also been measured using different methods.

Chapter adapted from Meyer, F., Falbriard, M., Aminian, K., & Millet, G. P. (2018). How accurate is visual
determination of foot strike pattern and pronation assessment. Gait & posture, 60, 200-202

Contributions: conceptualized the study design; conducted the data collection; contributed to the designed
the algorithms; contributed to the interpretation of the data.
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Brody proposed a method called “navicular drop” (ND) (Brody, 1982), where the navicular

height difference was measured seated (without body weight) and in a standing position

(with bodyweight). Foot characteristic was defined as follows: Under pronation: ND < 4 mm,

Normal pronation: 4-10 mm, Overpronation: >10 mm. Clarke et al. (Clarke et al., 1984) and

then McClay & Manal (McClay & Manal, 1998) defined the rearfoot eversion (EVA) as the

angle between tibia and heel, measured on the frontal plane. The following classification

was defined: Under pronation: EVA < 8°, Normal pronation: 8–15°, Overpronation: >15°.

Except for ND and a direct visual classification, all methods require extensive material and

data processing. In this context, using video cameras could allow for accurate and straight

forward foot strike patterns and pronation classification. The aim of this study was, therefore,

to compare the accuracy of the previously cited methods with a visual determination from

experts who analyzed slow-motion videos from cameras placed laterally and behind the

runner: The lateral and the back visual classification methods (LVC and BVC respectively).

4.A.2 Methods

Thirty-four healthy adults (12 females and 22 males) aged 21-46 years, height 158-193 cm,

weight 51-92 kg, running at least once a week and without any symptomatic musculoskeletal

injuries volunteered to participate to this study. The study was approved by the local ethics

committee. All participants signed an informed consent form before beginning the test.

Participants were first asked to run six minutes on a force plate treadmill (FMT170, Arsalis, The

Nederlands) at a self-selected speed, as a familiarization and warm-up (Schieb, 1986). Shoes

were removed, ND measured, and markers placed on each barefoot using the Heidelberg Foot

Measurement Method (Simon et al., 2006) for the back of the foot. The front foot markers

were substituted by a 4 markers-cluster. A 30 s trial was then recorded by the motion tracking

system at 100 Hz (Smart400, BTS Bioengineering, Italy), with the participants running at 12

km/h. Participants then wore their usual running shoes with pressure insoles (Pedar-X, Novel,

Germany). Markers were fixed on each shoe using the same configuration (only the navicular

marker was not repositioned). The participants had then to run 30 s at 8, 12, and 16 km/h. All

trials were also recorded using a lateral (left) and a back camera at 240 Hz (GoPro 3, GoPro,

USA). Direct comparison of running kinematics with vs. without shoes was possible at 12

km/h.

The time of initial contact was determined using the ground reaction forces recorded at 1000

Hz, for a 7% bodyweight threshold. Synchronized pressure insoles data were computed to

determine FSI as a foot strike pattern reference system. Three-dimensional orientations of

each were also computed (Smart Tracking, BTS Bioengineering, Italy) to calculate FSA and

EVA. Finally, three experts (biomechanists) used LVC to determine foot strike pattern, and BVC

was used by three other experts (clinicians) to determine over, normal, or under pronation of

the foot.

Confusion matrix was built to determine accuracy, precision, sensitivity, and specificity and
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compare consistency between foot strike pattern assessment methods and between pronation

assessment methods using the average values over each trial. Accuracy between expert

classification was also calculated. Finally, the Intraclass Correlation Coefficient (ICC) was

calculated to assess observer variability (Bartko, 1966). ICC values were interpreted according

to often quoted guidelines: Poor < 0.4 < Fair < 0.6 < Good < 0.75 < Excellent < 1 (Cicchetti,

1994).

4.A.3 Results

The results between foot strike pattern determination methods are presented in Table 4.2,

while the results between pronation determination methods are presented in Table 4.3. The

average standard deviation intra-trial was 1.88° for EVA and 2.00° for FSA.

Experts proposed accuracy between 86% and 94% for LVC classification, with an excellent

inter-assessors ICC of 0.89. For the barefoot condition, the accuracy between FSA and LVC

was 75%, while shod condition gave 97%. Figure 4.6 illustrates the relationship between FSI,

FSA, and LVC. Concerning BVC, experts proposed accuracy between 73% and 76%, for a poor

inter-assessors ICC of 0.05.

FSI - FSA (n = 93) FSI - LVC (n = 101) FSA - LVC (n = 128)
Rear. Mid. Fore. Rear. Mid. Fore. Rear. Mid. Fore.

(n = 65) (n = 11) (n = 17) (n = 70) (n = 11) (n = 20) (n = 73) (n = 18) (n = 37)

accuracy 88 92 91
precision 92 55 94 96 55 100 97 67 89
sensitivity 92 55 76 96 55 80 97 67 97
specificity 100 50 94 100 67 100 92 71 89

Table 4.2 – Overall accuracy, precision, sensitivity, and specificity given in percent for the
comparison between the foot strike pattern assessment methods. Values are given in % for
Foot Strike Index (FSI), Foot Strike Angle (FSA), Lateral Visual Classification (LVC) and for each
type of foot strike (rear., mid. and fore.).

EV - BVC (n = 55) EV - ND (n = 51) ND - BVC (n = 102)
Under Normal Over Under Normal Over Under Normal Over

(n = 33) (n = 15) (n = 7) (n = 39) (n = 14) (n = 7) (n = 50) (n = 40) (n = 12)

accuracy 56 49 42
precision 7 88 14 64 50 14 0 82 17
sensitivity 7 88 20 64 50 14 0 82 20
specificity 100 59 14 41 68 14 0 45 17

Table 4.3 – Overall accuracy, precision, sensitivity, and specificity given in percent for the
comparison between pronation assessment methods. Values are given in % for Eversion Angle
(EVA), Navicular Drop (ND), and Back Visual Classification (BVC) comparison.
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Figure 4.6 – Agreement between Foot Strike Index (FSI), Foot Strike Angle (FSA), and Lateral
Visual Classification (LVC) (color boxes)

4.A.4 Discussion

Classifying foot strike patterns using a single camera placed laterally seems appropriate to

determine rearfoot, midfoot, and forefoot strikers. There is a good agreement between the

three methods used in this project. Experts also gave accurate results for LVC, as expected by

Altman & Davis (2012). In their study, an overall 71% of correct classification between FSA

and direct visual classification was observed. The barefoot condition also scored with a lower

agreement between FSA and LVC. The difference between shod and barefoot condition is

probably due to the higher difficulty to determine two parameters: the initial contact, and the

orientation of the foot. Indeed, the shoes offer more contrast than the barefoot on images.

Concerning the shod condition, the few classification errors were probably caused by the

difficulty to estimate both the initial contact and the angle of the foot at that time. The midfoot

condition is more problematic to assess, and Figure 4.6 provides a visual incentive that only a

few runners land midfoot.

Classifying the pronation of the foot using the back camera leads to different conclusions:

the agreement between the ND, EVA, and BVC methods is very low. This can probably be

explained by the fact that the three different methods measure slightly different parameters:

EVA determines only the rearfoot eversion at ground contact, ND classifies the foot in a non-

dynamic way, while experts tried to estimate a malfunction (i.e., under or over-pronation) of

the foot that increases the risk of injury. The small number of under pronators also requires

interpreting the confusion matrix with caution. The fact that experts proposed different

estimations illustrates two points: the difficulty to accurately define the pronation, even
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among experts, and the difficulty of observing the movement of pronation from back videos.

Indeed, as described by Stacoff et al. (2016), forefoot movement may also influence pronation

at initial contact, implying a correlation between strike angle and pronation. The difference

between shod and barefoot running was measured only at 12 km/h. At different velocities,

one may assume that the bias would be higher with footwear since there are many additional

confounding factors (insole height, shoe drop, lateral support) that would likely make the

assessment more difficult and more variable.

One limitation of the present study was that FSA and the EVA were calculated by using the

markers of the Heidelberg foot model but with only a limited set of available markers. This

study showed the benefit of using video cameras to determine the foot strike pattern and the

limitation when determining pronation during stance in running. Defining more accurately

the foot pronation seems paramount since this factor is clinically important. Experts will also

be able to determine pronation with greater according to the definition, and the inter-assessor

ICC will probably increase.
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5 Running Speed Estimation Using
Shoe-Worn Inertial Sensors

Abstract

The locomotion speed is the main outcome in running analysis. Today, most wearable systems

for running speed estimation are based on GNSS devices. However, these devices have a

high power consumption and can suffer from sparse communication with the satellites. In

this study, we proposed three different approaches to estimate the overground speed in

running based on the measurements of foot-worn inertial sensors and compare them to GNSS

considered as reference. First, a method is proposed by direct strapdown integration of the foot

acceleration. Second, a feature-based linear model and finally a personalized online-model

based on the recursive least squares method were devised. We also evaluated the performance

differences between two sets of features; one automatically selected set (i.e., optimized) and

a set of features based on the existing literature. The data set of this study was recorded in

a real-world setting, with 33 healthy individuals running at low, preferred, and high speed.

The direct estimation of the running speed achieved an inter-subject mean ± STD accuracy of

0.08 ± 0.1 m/s and a precision of 0.16 ± 0.04 m/s. In comparison, the best feature-based linear

model achieved 0.00 ± 0.11 m/s accuracy and 0.11 ± 0.05 m/s precision, while the personalized

model obtained a 0.00 ± 0.01 m/s accuracy and 0.09 ± 0.06 m/s precision. The results of this

study suggest that (1) the direct estimation of the velocity of the foot are biased, and the error

is affected by the overground velocity and the slope; (2) the main limitation of a general linear

model is the relatively high inter-subject variance of the bias, which reflects the intrinsic

differences in gait patterns among individuals.; (3) this inter-subject variance can nulled using

a personalized model.

Keywords: IMUs, speed, running, linear prediction, personalization

Chapter to be submitted as Falbriard, M., Soltani, A., & Aminian, K. (2020). Running speed estimation using
shoe-worn inertial sensors: direct integration, linear and personalized model.

Contributions: designed the algorithms (except the personalization model); contributed to the analysis and
interpretation of the data; drafted the manuscript.
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5.1 Introduction

The overground speed is the most useful metric in training and performance analysis of run-

ning. Researchers have tried for decades to understand the physiological and biomechanical

adjustments occurring at different ranges of running speeds (Moore, 2016; Nummela et al.,

2007; Thompson, 2017; K. R. Williams & Cavanagh, 1987). However, most of the existing studies

were performed in a controlled environment (i.e., treadmill running inside a laboratory) where

the runner has to adapt his gait to run at a constant speed. In overground running, change of

environment, surface, slope, obstacles, and turns alter the gait and the running speed. Many

studies have discussed the biomechanical adaptations associated with running on a treadmill

versus running overground (Van Hooren et al., 2019). While standard motion capture (i.e.,

stereophotogrammetry and force plate) offers accurate measurements in laboratories, the

recent emergence of wearable systems is paving the shift towards studies carried overground

and in real-world conditions (Benson et al., 2018).

The real-world estimation of the overground speed is generally obtained using a body-worn

Global Navigation Satellite System (GNSS). Although these systems provide accurate and

reliable measurement of the locomotion speed (Terrier et al., 2000; Witte & Wilson, 2004), they

suffer from several limitations: (1) their high power consumption restricts their duration of use

in portable devices, (2) the communication between the receiver and the satellite is not always

guaranteed (e.g., indoor, near high buildings), and (3) the measurement accuracy decrease

during rapid changes of speed and position (Rawstorn et al., 2014; Varley et al., 2012). As a

solution to the latter limitation, systems based on the data fusion of body-worn inertial and

GNSS sensors have been proposed to monitor sports activities (Brodie et al., 2008; Waegli &

Skaloud, 2009; Zihajehzadeh et al., 2015). However, to address the issue of power consumption

and communication losses, IMU-based systems must be able to estimate the speed without

or with very limited input from a GNSS device.

Several methods have been proposed to estimate the walking speed using IMUs attached to

different body-segments (Aminian et al., 2002; Hu et al., 2013; Miyazaki, 1997; Sabatini et al.,

2005; Salarian et al., 2013; Zijlstra & Hof, 2003). One solution would be to extend and adapt

these methods to running. However, these methods often relied on walking models or on

the estimation of step length, which can not be directly applied to running because of the

aerial phases, where accelerometers are erroneous. Other studies have used machine learning

techniques to estimate the walking speed but did not validate the results for running (Fasel et

al., 2017; Zihajehzadeh & Park, 2016).

To the authors’ knowledge, few studies proposed an accurate ambulatory method, based

on body-worn IMUs, to estimate the overground speed of running, and even less did so

for instantaneous speed estimation. Two studies used a similar method (integration of the

acceleration signal) to calculate the velocity of the shank (Yang et al., 2011) and foot (Chew

et al., 2017) segments. However, the error of the system was computed over multiple strides,

in a small range of speeds, and for level treadmill running. As mentioned previously, the
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velocity estimated from the integration of segment acceleration has limitations, particularly

when the flight phase varies in a wide range or when various slopes are experienced as it is

the case in overground running. Another study (Hausswirth et al., 2009) compared in-lab a

commercialized speed estimation device with the speed of a treadmill and reported a relatively

low accuracy considering that the system required a subject-specific calibration. Subject-

specific neural networks were also devised to assess the running speed in free-living conditions

using only triaxial accelerometric measurements, but the model needed a calibration/learning

phase for each runner and was validated for the mean speed using few trials (Herren et al.,

1999). One study, however, exploited the personalized calibration and proposed a model

based solely on the contact time (De Ruiter et al., 2016). Although the authors obtained

a low root-mean-square error (<3%), these results were not instantaneous estimations but

rather the average speed over bouts of 125 meters. Besides, a more recent study (Soltani et al.,

2019) based on wrist-worn inertial sensors suggested that better results could be achieved by

including more features to the model.

The objective of the current study was three-fold: first, we aimed to extend an existing walking

algorithm based on strapdown integration of foot acceleration and show its limitation for

running speed estimation. Then we proposed a new linear model to predict the running

speed at each step and in real-world condition, based on relevant features extracted from

feet acceleration and angular velocity. Finally, we investigated how personalization improved

the performances of the system using additional data, such as occasional GNSS inputs. We

compared each method to the GNSS speed, considered as the ground truth, obtained during

outdoor measurements of overground running, at different speeds and slopes.

5.2 Methods

5.2.1 Protocol and instrumentation

33 healthy and active participants (18 males (age: 38 ± 9 y.o.; size: 180 ± 7 cm; weight: 76 ± 9

kg), 15 females (age: 36 ± 10 y.o.; size: 165 ± 7 cm; weight: 59 ± 7 kg)) without any symptomatic

musculoskeletal injuries participated to this study. The measurements were performed in

real-world conditions with sections of uphill, downhill, and level running. We asked the

participants to run the same circuit three times, once at self-adjusted normal, fast, and slow

speeds (Figure 5.1, left). The periods of rest and the walking bouts, in between the running

segments, were manually removed from the analysis. The local ethics committee approved

the present protocol, and we conducted the measurements in agreement with the declaration

of Helsinki.

Each participant was equipped with two time-synchronized sensors (Physilog 41, Gait Up,

Switzerland) strapped on the dorsum of the shoe. Each sensor included a triaxial accelerome-

ter, a triaxial gyroscope, and a barometer. The barometer was sampled at 50 Hz. Acceleration (±

1Datasheet available in the Appendix.
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ZFFYFF

XFF

ZFFYFF

XFF

ZGFYGF

XGF

Figure 5.1 – (Left) The elevation and speed of the running circuit. This figure was adapted
from (Soltani et al., 2019). (Right) the definition of the foot functional frame (FF) and global
frame (GF) used in this study.

16g) and angular velocity (± 2000 deg/s) were recorded at 500 Hz and were calibrated according

to (Ferraris, F., Grimaldi, U., & Parvis, 1955) before each measurement session. Furthermore, a

GNSS receiver (CAMM8Q, u-blox, CH) with an external active antenna (ANN-MS, u-blox, CH)

was mounted on the head using Velcro attached to a cap. GNSS was used as a reference system

for the estimation of the running speed. The GNSS receiver was set to pedestrian mode with a

sampling frequency of 10 Hz. With such a configuration, the datasheet of the manufacturer

reported a median error of 0.05 m/s for instantaneous speed estimation. MATLAB software

(R2018b, MathWorks, Natick, MA USA) was used for all the data processing steps without the

need for publicly available libraries.

5.2.2 Estimation of reference GNSS speed

The reference speed obtained from the GNSS receiver was processed according to (Soltani et

al., 2019) and in two steps (Figure 5.2). First, we enhanced the signal by removing the outliers

that did not correspond to running; hence, we removed all recorded speed samples outside of

the 5-20 km/h range. Moreover, the GNSS receiver provided an estimation of the accuracy of

each observation; hence we discarded any data-point with an error higher than 0.15 m/s. This

process retrieved an unevenly sampled reference speed signal. We applied a moving average

of 0.5-second width (in 10 Hz), followed by linear interpolation to obtain an equally-spaced

time series at 10 Hz. In the second step, the signal was down-sampled to provide the reference

speed (vr e f ), after a fourth-order low-pass Butterworth filter with the cut-off frequency at 0.25

Hz to reduce the noise.

5.2.3 Speed estimation based on direct integration of foot acceleration

In this section, we describe the sequence of transformations that we applied on the IMU and

barometer data to extract the gait features. The whole process can be summarized in four tasks:
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Outliers	 removal
Removing
• GNSS	speed	>	7	m/s
• GNSS	speed	<	1.67	m/s
• GNSS	error	>	0.5	m/s

Filtering	 the	unevenly-
sampled	 speed

• Moving	average	
(0.5-second	in	10	Hz)

Interpolation

• Linear
• Setting	the	sampling	
frequency	at	10	Hz

Step	1:	Enhancement

GNSS	
speed

Low-pass	filtering
Butterworth	filter
• 4thorder
• Cut-off	=	0.25	Hz
• Zero-lag

Down	sampling

• Linear	interpolation
• Setting	the	sampling	
frequency	at	2	Hz

Step	2:	Down	sampling

vref(t)

Figure 5.2 – Pre-processing steps applied to the GNNS measurements of speed to obtain the
reference speed estimation. This figure was adapted from (Soltani et al., 2019).

pre-processing, temporal analysis, spatial analysis, and foot speed estimation (Figure 5.3).

Pre-processing

First, a 4th-order low-pass Butterworth filter (Fc = 50 Hz) was applied on the raw acceleration

(at ) and angular velocity (ωt ) signals to reduce the noise. Then the IMU signals were aligned

with the foot segment by computing the rotation matrix that transforms the data recorded in

the technical frame of the sensors into the functional frame (FF) of the foot (Figure 5.1, right).

For this purpose, we used the measurements of level normal walking (Figure 5.1, left) and a

previously reported calibration method (Falbriard et al., 2018). This process aligned the y-axis

of the IMU with the vertical axis of the foot, pointing upward, the z-axis to the mediolateral

axis, pointing to the right side of the subject, and the x-axis to the longitudinal axis, pointing

towards the forefoot. Throughout this paper, if not mentioned otherwise, the data are reported

in the functional frame of the foot.

The last phase in pre-processing was estimating the overground slope. As the mechanics of

running differ between level, uphill, and downhill running (Vernillo, Giandolini, et al., 2017),

we assumed that the elevation difference between successive steps would be a relevant input

for the model. Therefore, the barometric pressure was converted by the hypsometric equation

to the altitude signal (Bolanakis, 2017) smoothed by applying a 4-seconds moving average filter

and down-sampled to 1 Hz time-series. The slope (st ) was defined as the altitude difference

between two samples spaced by 5 seconds, by assuming that changes of altitude shorter than

5 seconds would not have a significant effect on the running speed.

Temporal analysis

Temporal events detection was performed as described in Falbriard et al. (2018) by segmenting

the race into midswing-to-midswing cycles and detecting of several temporal events within
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Low-pass	filtering
Butterworth	filter
• 4thorder
• Cut-off	=	50	Hz
• Zero-lag

Functional	 calibration

• Linear	interpolation
• Setting	the	sampling	
frequency	at	2	Hz

Step	1:	Pre-processing

Temporal	 analysis
Segmentation	in	running	cycles
• Temporal	events	detection
• Estimate	gait	phases	
duration

Spatial	 analysis
Integration	of	ω(t) and	a(t)
• Drift	reduction
• Foot	orientation	in	GF
• Segment	speed	estimation

Step	3:	Speed	estimation

Altitude	&	Slope
Barometric-based	estimation
• Filtering
• Hypsometric	equation
• Differentiation

ω(t),	a(t),	 b(t)

Step	2:	Temporal	 analysis

s(t),	 vfoot(t),	Ѳ(t)

CT,	FLT,	
SWT,	STP,	
STR

Figure 5.3 – Steps performed on the IMU acceleration a(t), angular velocity ω(t), and baro-
metric pressure b(t) measurements. The outputs were later used for feature extraction; the
slope s(t ), the speed of the foot v f oot (t ), the pitch angle θ(t ), contact time CT, flight time FLT,
swing phase duration SWT, step duration STP and stride duration STR

each cycle. Midswing was detected as the positive peaks observed on the pitch axis (FF z-axis)

of the angular velocity measurements. Moreover, we improved the robustness of the peak

detection algorithm by applying the YIN auto-correlation method (De Cheveigné & Kawahara,

2002) over a 10-seconds sliding window (5-seconds overlap) to obtain an approximation of

the cadence and set an adequate minimum time difference between two peaks. The initial

contact event (IC), defined as the moment when the foot initiates contact with the ground

at landing, and terminal contact (TC), defined as the instant when the toes leave the ground

during the pushing phase, were then detected within each cycle using the two minimums of

the pitch angular velocity. Moreover, we defined the event MinRot as the time-point where the

norm of the angular velocity (||ωt ||) is minimum within the stance phase (i.e., between IC and

TC).

Spatial analysis and foot speed estimation

This process aimed to measure the orientation of the foot in the global frame (GF), remove the

Earth’s gravitational acceleration from the recorded acceleration, and integrate the corrected

acceleration to obtain the speed of the foot. In GF, the x-axis was in the running direction,

the z-axis corresponds to the axis perpendicular to the ground surface, and the y-axis was

defined by the cross-product of the z and x-axes (Figure 5.1). Using a previously validated

technique (Falbriard et al., 2020), foot orientation was obtained in GF, and foot acceleration in

FF was expressed in GF and the gravitational acceleration (g = [0 0 9.81] m/s2 ) removed. The

resulting acceleration (in GF) was integrated using a trapezoidal rule to get a first estimate of

the speed of the foot. We considered the speed of the foot to be zero during the stance phase

and, therefore, estimated and removed the integration drift by linearly resetting the speed

between MinRot and TC of each stance phase. Note that we preferred MinRot to the IC for drift

resting since MinRot corresponds to the time sample when the foot is the closest to a static
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state, reportedly used as the integration limits in walking gait analysis (Mariani et al., 2010).

We finally applied the inverse of the quaternions mentioned above to get the drift-corrected

speed of the foot segments (v f oot (t )) in the FF.

5.2.4 Development of a linear model for speed prediction

Feature extraction, linearization, and outliers removal

First, we extracted several parameters (p j ) for each step, which were later used as inputs

for the speed estimation model. As several studies reported on the association between the

changes in the duration of the gait phases and the running speed (Högberg, 1952; Nummela et

al., 2007; Saito et al., 1974), we computed the ground contact time (CT), the flight time (FLT),

the swing time (SWT), the step duration (STP), and the stride duration (STR) for each step i,

where i = 1. . . N, and N is the total number of steps (Eq. 5.1-5.5).

C Ti = TCi − ICi (5.1)

F LTi = ICi+1 −TCi (5.2)

SW Ti = ICi+2 −TCi (5.3)

ST Pi = ICi+1 − ICi (5.4)

ST Ri = ICi+2 − ICi (5.5)

As a few strides suffered from misdetections, outliers were removed according to (1) a valid

stride must last between 0.37 and 2.5 seconds, and (2) the flight phase (FLT) must be greater

than zero. Pitch angle (θ) at the IC was extracted as the angle between the longitudinal axis

of the foot (FF x-axis) and the ground surface (x and y-axis in GF). A positive pitch angle

corresponds to a rear-foot landing (i.e., talus region lower than the toes) and a negative pitch

angle to a forefoot strike.

We also extracted several statistics from the acceleration a(t), the angular velocity ω(t), the

foot speed v f oot (t), and the slope s(t) time-series. Moreover, since a(t), ω(t), and v f oot (t)

were 3-dimensional signals, these statistics were computed for each axis (i.e., x, y, and z) and

the norm of the signal. Note that the features were captured on the signals of a single stride

(i.e., between ICi iand ICi+2, where i = 1. . . N) before applying the statistical functions. We

opted for a stride-based segmentation instead of the step-based segmentation because a stride

corresponds to one period of gait and, therefore, is more likely to capture the complete pattern

of a cycle. Besides, the list of selected features (Table 5.1) aimed to collect information in the
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Type Feature Description

Intensity mean_<T>_<C> Mean value
std_<T>_<C> Standard deviation
med_<T>_<C> Median
iqr_<T>_<C> Interquartile range
max_<T>_<C> Maximum
rms_<T>_<C> Root-mean-square

Shape kurt_<T>_<C> Kurtosis
skew_<T>_<C> Skewness

Compression arm1_<T>_<C> First coefficient of the auto-regressive model of order 3
arm2_<T>_<C> Second coefficient of the auto-regressive model of order 3
arm3_<T>_<C> Third coefficient of the auto-regressive model of order 3

Table 5.1 – List of the features extracted for each stride on the continuous acceleration a(t),
the angular velocityω(t ), the foot speed v f oot (t ), and the slope s(t ). In the name of the feature,
variables <T> and <C> correspond to the label of the signal and to the channel, respectively.
Hence <T> must be replaced by a, ω, v f oot , or s while <C> must be replaced by x, y, z, or norm.

intensity of the signal (e.g., mean, STD, RMS), the shape of its distribution (e.g., skewness,

kurtosis) and its shape in a compressed format (e.g., coefficient of the auto-regressive model).

Moreover, as the temporal parameters (Eq. 5.1-5.5) already hold relevant periodic information,

we did not consider features in the frequency domain.

Before proceeding to the selection of the best features, we visualized the relation between the

reference speed vr e f (t ) and the features individually. Based on our observations, we identified

three functions that improved the linear relationship between the reference speed and some

of the input features; f1(p) = p2, f2(p) = p3, and f3(p) = 1/p. The functions f1, f2, and f3

were applied to all the features, and the results added to the list of features. Finally, we also

included several anthropometric parameters to the collection of features, such as the size,

weight, gender, and age of the participants.

Data set configuration

We divided the data into three subsets: validation, training, and testing sets. The participants

were randomly distributed into the three subsets. It is important to note that all the steps of a

single individual were attributed to only one of the subsets; this removed the performance bias

associated with the models trained and tested on measurements originating from the same

subjects (Halilaj et al., 2018). Figure 5.4 shows the data from each set with different colors and

illustrates their functions.

We used the 10 subjects (30%) from the validation set for feature selection (in orange in

Figure 5.4), and the 23 remaining participants (70%) were used interchangeably for training

(in blue in Figure 5.4) and testing (in green in Figure 5.4) of the model according to the leave-

one-subject-out cross-validation method. We emphasize on the fact that the validation set
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Figure 5.4 – Schematic representation of the data organization into the validation (blue),
training (orange), and testing (green) set. The validation set was used for feature selection,
the training set to train the coefficients of the linear model, and the testing set to evaluate
the performance of the predictions. The features are represented as p j and the linearization
function as f1(p j ), f2(p j ), and f3(p j ).

was not included in the evaluation of the model and served exclusively for feature selection.

We distinguished the development set from the other sets to lessen the risks of overfitting and

preferred a leave-one-subject-out approach for the assessment of the model’s performance

due to the relatively low number of individuals present in this study. Moreover, such a method

allowed us to identify potential outliers in the participants and later find collections of subjects

with similar biases.

The leave-one-subject-out cross-validation method functioned as followed: we trained the

model using the data from 22 subjects (training set) and tested on the data from one individual

(testing set). We then repeated this process, such that each participant appeared once in the

testing set.

Automatic feature selection

Here, we selected the features (Pauto) to minimize the mean-square error (MSE) of the speed

estimation model using the ordinary least squares method. The leave-one-subject-out method

was applied with 11 subjects for training and one subject to evaluate the error of the predictions

(Figure 5.4). The automatic feature selection process started with an empty set of inputs and

sequentially added the parameters p j or their transform ( f1, f2, f3), which minimized the

average MSE among all the subjects. This method is known as the forward stepwise selection

process and has proven to be reliable on large feature space (John et al., 1994; Kohavi & John,

1997). The algorithm stopped including new parameters if the gain in the average MSE was

lower than 1% of the previous MSE recorded. We deliberately set a low 1% criterion to obtain

a possibly unnecessary large number of inputs knowing that the model is trained using the
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LASSO method (Tibshirani, 1996) with shrinkage of the redundant features. To ensure that

the features contributed equally to the MSE estimation, we rescaled the inputs using a robust

z-score normalization method (Jain et al., 2005); after normalization, the feature’s mean was

equal to zero, and median absolute deviation equal to one (less sensitive to outliers than the

variance of one).

Comprehensive selected features

Although a supervised and automatic feature selection method may retrieve the subset with

the best prediction performance on a given set of parameters, the results are sometimes

difficult to interpret. Hence it is generally recommended also to evaluate the performance of

a comprehensive set of features selected based on their biomechanical relevance (Halilaj et

al., 2018). Based on the findings of previous research in running, we defined a list of features

(Pmanual ) known to be affected by variations in the running speed. Similarly to the automatic

selection of features, we willingly selected a large number of input features, potentially inter-

correlated, knowing that optional inputs will be discarded later in the training stage. In

summary, comprehensive features included the following:

– Anthropometric features: the height because taller individuals are likely to have longer

step length, thus higher speed, than shorter individuals with similar flight times.

– Temporal features: the CT, FLT, and STR contain relevant information about the stride

frequency and were shown to decrease with an increase in the running speed (Chapman

et al., 2012; Nummela et al., 2007; Saito et al., 1974).

– Speed and spatial features: the average speed of the foot (mean_v f oot _nor m) obtained

with a direct integration; the maximum angular velocity of the foot in the sagittal plane

(max_ω_z) assuming faster swing involves higher speed; the RMS value of the angular

velocity norm (r ms_ω_nor m) since higher speed should result in higher dynamic move-

ments; the maximum of the acceleration norm (max_a_nor m) as it was demonstrated

in previous studies that tibial peak accelerations increased with faster-running velocities

(Sheerin et al., 2019); and the average slope (mean_s) since uphill and downhill may

affect the running speed.

Training and testing of the model

The linear model was trained and tested with the leave-one-subject-out cross-validation

method. For each individual, the performance of the speed prediction was evaluated with the

model’s coefficients trained on 22 other subjects. This approach was preferred to a traditional

split of the data into two data sets (e.g., 70% training and 30% testing) due to the restricted

number of subjects available after the feature selection phase. Besides, the leave-one-subject-

out procedure allowed us to detect potential outliers in the participants and, therefore, possibly

identify the sources of poor estimation results.
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The least-squares regression coefficients were trained using the LASSO method (Tibshirani,

1996), with scaled inputs to have zero mean and a variance of one, and equally distributed the

observations’ weights at the initialization stage. To limit the risks of overfitting, we selected

the model with the smallest number of inputs, if any new input would improve the MSE by

less than 2%.

Since we observed some disparity in the data set (the steps between 2.5 m/s to 4 m/s were

over-represented), we used a random under-sampling (RUS) method to deal with the issue of

class imbalance (Pes, 2020). This process started by dividing the range of reference speeds

into five equally spaced groups, from 1.4 to 2.2 m/s, 2.2 to 3 m/s, 3 to 3.8 m/s, 3.8 to 4.6 m/s,

and 4.6 to 5.4 m/s. We then randomly selected the same number of steps from each group

based on the group with the least amount of steps (i.e., down-sampling of the majority). We

repeated this process ten times, generating ten versions of the under-sampled data set and

used these subsets independently. In other words, we trained and tested the model ten times

for each individual.

Finally, we investigated the changes in the speed prediction when input features were averaged

over consecutive steps. Instead of using a single step granularity for running speed, averaging

over several steps might conceivably improve the precision (i.e., random error) of the model.

We tested this approach on an even number of steps (i.e., 2, 4, 6, 8, and 10), for it equally

includes the sensor’s information from both feet. In order to avoid grouping non-consecutive

steps, we applied this averaging process before under-sampling the inputs.

5.2.5 Personalized model

Running speed estimation algorithm

Recently, online personalization methods have emerged in the field of human movement

analysis. For instance, such an approach demonstrated significant improvement in speed

estimation performances (Soltani et al., 2019). The objective is to personalize a generic speed

estimation model based on the sporadic reference data obtained from a GNSS device. We

describe the online-learning procedure used in this study in the following; we define n as the

observation (or sample) index used for the personalization where each sample corresponds

to one stride. Therefore, if we have M samples (i.e., strides) for the personalization, then n ∈
{1,2,3,. . . ,M}.

Let’s Q be the number features in each stride. We defined ~pn as the feature vector and sln as

the reference stride length for the n-th stride according to Eq. 5.6-5.7. Here, p j [n] is a symbolic

name for the j-th feature of the n-th stride. Moreover, vr e f [n] is the GNSS speed of the n-th

stride.

~pn = [
1 p1[n] p2[n] · · · pQ [n]

]
(5.6)
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sln = vr e f [n]× 1

ST Rn
(5.7)

For ~pn we used the selected features in Pmanual or Pauto based on results obtained in the

linear model. We first modeled the stride length through Recursive Least Square (RLS) and

then multiplied that by the stride frequency to obtain the running speed. The RLS is a real-time

and computationally effective online learning method, which does not need to have or store

all the training data from the beginning of training.

Let Pn and SLn be the feature matrix and the vector of actual stride length defined in Eq. 5.8-5.9,

respectively.

Pn =


~p1
...

~pn

 (5.8)

SLn =


sl1

...

sln

 (5.9)

Using the RLS approach, SLn can be modeled as in Eq. 5.10, where βn is the coefficient of

the model trained using n observations. If Pn−1 and βn−1 are the feature matrix and model

coefficients estimated using n-1 samples, then once we obtain a new sample (~pn and sln) for

the personalization, βn can be recursively estimated through Eq. 5.10.

βn =βn−1 +Dn~pn
(
sln −~pT

nβn−1
)

(5.10)

Where Dn , known as the dispersion matrix, itself, is recursively estimated by having only Dn−1

(i.e., the dispersion matrix estimated using n-1 samples) and the new personalization data (i.e.

~pn and sln) according to Eq. 5.11. Here, Kn is defined as Eq. 5.12.

Dn = Dn−1
(
I −~pn (I +Kn)−1~pT

n Dn−1
)

(5.11)

Kn = ~pT
n Dn−1~pn (5.12)

For each individual, ten strides from the training set were used to initialize the recursion

process of the RLS.
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Cross-validation

The data set was organized differently for the personalization process to consider the gait style

of each individual and minimize the training data from GNSS. Data from each individual was

divided into bouts of 10 strides, and half of these bouts were assigned randomly to the training

set and the other half to the testing set of that same individual. Consequently, we trained and

evaluated the models for each individual separately, using the uniquely the data from that

same individual.

5.2.6 Statistical analysis

We evaluated the performance of the model by computing the error on the training and testing

sets. We did so going from a single step to a ten-steps resolution according to the configuration

of the inputs. For each of the RUS iteration, the intra-subject accuracy (or bias) and precision

were estimated using the mean and standard deviation, respectively. The normality of the

speed error was tested using the Lilliefors test, and in the case of non-normal distribution,

the mean was replaced by the median and standard deviation by the Inter-Quartile Range

(IQR). To better understand the performance of the system, the intra-subject RMS error was

calculated, and the Pearson correlation coefficient was used to assess the linear dependence

of the predictions. Since we used the leave-one-subject-out method for training and testing,

the results were reported by computing the mean, the standard deviation, the minimum and

the maximum on the intra-subject biases, precision, RMS error, and correlation coefficients.

Agreement between the reference GNSS speed and the estimated speed was illustrated with

Bland & Altman plots (Bland & Altman, 1986). Furthermore, to evaluate the distribution of the

errors and possible overfitting, we used the cumulative distribution function (CDF) of step

absolute error for both training and testing sets.

5.3 Results

5.3.1 Direct speed estimation

Two subjects were excluded from the data set; because of the poor quality of the GNSS

measurements or because of an improper fixation of the IMU on the shoe and high Signal

to Noise Ratio (SNR) of the kinematic data. Since it required no learning, the direct speed

estimation method was performed on the 63’435 steps available in this study. We observed an

inter-subject mean ± STD (min, max) of 0.08 ± 0.10 (-0.12, 0.27) m/s for the bias, 0.16 ± 0.04

(0.08, 0.25) m/s for the precision, 0.20 ± 0.06 (0.08, 0.34) for the RMSE. The relation between

the speed estimation error and the overground velocity is presented in Figure 5.5, and the

effect of the slope in Figure 5.6.
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Figure 5.5 – Bland-Altman plot of the agreement between the direct speed estimation method
(v f oot ) and the GNSS reference (vr e f ). The error was estimated with a granularity of one step.
The dashed blue line represents the best linear fit according to the least square method.
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Figure 5.6 – The step by step error of the direct speed estimation method (v f oot ) in relation to
the slope of the ground surface. The dashed blue line represents the best linear fit according
to the least square method.
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Figure 5.7 – Mean Square Error (MSE) of the speed estimation during the forward step-wise
selection process. In grey, the MSE of each subject and blue the inter-subject average.

Automatic feature selection

In total, we used the 20’084 strides of the validation set to select 28 features out of the 668

features available. The feature selection process stopped at average Mean Square Error (MSE)

of 0.0057 m/s (Figure 5.7), which corresponded to a 1.12% improvement compared to the

previous step with 27 features. The selection process was repeated 100 times (i.e., 10 times for

each of the 10 subjects) and led to the set of features presented in Table 5.2.

Out of the 28 features selected, 16 (57%) resulted from one of the three linearization functions

( f1, f2, f3), one feature from the temporal analysis (STR), one from the orientation estimation

(θ). The other features are statistics extracted from the different time series (i.e., acceleration

a(t ), angular velocity ω(t ), the velocity of the foot segment v f oot (t ), and the slope s(t )).

5.3.2 Linear model

In total, 43’351 steps were used to train and test the linear model. Due to the subdivision of

the data associated with the leave-one-subject-out method, we used, for each individual, an

average ± STD (min, max) of 41’287 ± 188 (41’032, 41’642) steps for training and 2’064 ± 188

(1’709, 2’319) steps for testing. When the Pauto feature set was used for training, the LASSO

method always favored the same 7 inputs Pauto,best among the 28 features previously selected

(Table 5.2):

Pauto,best =
[
mean_a_nor m f1(mean_s) f3(ST R) f2(medi an_ω_z) · · ·
max_v f oot _nor m f1(mean_v f oot _nor m) f3(medi anω_nor m)

]
(5.13)
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# Label f(p) # Label f(p)

1 mean_a_nor m - 15 mean_v f oot _y p2

2 mean_v f oot _nor m - 16 medi an_ω_nor m p−1

3 iqr _a_nor m - 17 medi an_ω_x -
4 θ - 18 skew_v f oot _nor m -
5 mean_s p2 19 i qr _v f oot _nor m p−1

6 STR p−1 20 max_v f oot _y p−1

7 medi an_a_x p3 21 mean_ω_y -
8 medi an_ω_z p3 22 r ms_a_x p3

9 max_v f oot _nor m - 23 medi an_v f oot _x -
10 medi an_a_y p3 24 std_a_nor m p−1

11 mean_v f oot _x p2 25 skew_ω_nor m -
12 skew_v f oot _y p−1 26 skew_ω_z p2

13 medi an_v f oot _y - 27 std_a_x p−1

14 std_ω_z - 28 ar m3_v f oot _y p−1

Table 5.2 – The ordered list of the features automatically selected by the forward stepwise
selection algorithm.

In comparison, with Pmanual the LASSO method selected 4 inputs (Pmanual ,best ):

Pmanual ,best =
[
r ms_ω_nor m mean_v f oot _nor m mean_s C T

]
(5.14)

The performances of the linear predictor over the testing set are shown in Table 5.3; the

inter-subject mean, STD, minimum, and maximum are presented for the bias, the precision,

the RMSE, and the correlation coefficients. The results of the running speed estimation are

presented for single-step resolution and also where the inputs were averaged over 2, 4, 6, 8,

and 10 steps before being used by the linear model.

In comparison, when we used a moving average (4 steps) on the output of the speed estimation

model (i.e., not the inputs as in Table 5.3), then we obtained an inter-subject mean ± STD

(min, max) bias of 0.00 ± 0.10 (-0.17, 0.17) m/s, precision of 0.13 ± 0.05 (0.06, 0.23) m/s, RMSE

of 0.14 ± 0.05 (0.08, 0.28) m/s, and correlation coefficients of 0.985 ± 0.010 (0.956, 0.997).

The agreement between the speed estimation using Pauto,best (vest ) and the reference GNSS

system is presented for each stride (grey dots) and each individual (blue circles) in Figure 5.8.

Figure 5.9 (left) shows the CDF of the speed estimation error for each subject (grey lines) and

the subjects aggregated (blue line). In total, 56% of the recorded steps have an error below 0.1

m/s and 86% below 0.2 m/s. Finally, as illustration of overground measurement of speed over

a various range of self-adjusted speed, the speed obtained with the reference GNSS system

was compared for a typical subject with the speed estimation at step level (vest ,1), and the

estimation when averaged over four steps (vest ,4) in Figure 5.9 (right).
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Figure 5.8 – Bland-Altman plot of the speed estimation (vest ) obtained with the features
automatically selected (Pauto,best ) and compared with the reference GNSS speed (vr e f ). The
grey dots represent the steps, the blue circle the average results of each subject, the solid black
line the mean of the steps, the dashed black lines the STD of the steps, and the dashed blue
line the linear trend of the steps.

Figure 5.9 – (Left) The Cumulative Density Function (CDF) of the speed estimation error of
each step (|vr e f − vest |). The speed was estimated using the automatically selected inputs
(Pauto,best ). The grey curves represent the CDF of each individual in the testing set, the blue
line the inter-subject CDF of the testing set, and the orange line the inter-subject CDF of the
training set. (Right) Comparison between the speed estimation of each step (vest ,1), the speed
estimation averaged over four steps (vest ,4), and the reference GNSS speed (vr e f ).
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Bias (m/s) Precision (m/s) RMSE (m/s)
median IQR median IQR median IQR

0.00 0.01 0.09 0.03 0.09 0.06

Table 5.4 – Inter-subject median and Inter-Quartile Range (IQR) of bias, precision, and RMSE
of the personalized model.

5.3.3 Personalization

We used the features in Pmanual to train and test the personalized model since the results of

the generic model show little differences between Pauto,best and Pmanual ,best , and because,

with Pmanual , we could include the 10 subjects from the validation set in the training and

testing process without any risk of overfitting. For each subject, the training samples (i.e., half

of the data of the subject, randomly selected) were fed one-by-one to the RLS, and the speed

was estimated with the complete test set of the subject. Figure 5.10 shows this process for

the first 150 strides used for personalization of the model; the solid line and the shaded area

represents the inter-subject mean and standard deviation of the RMSE, respectively. Also, the

evaluation error for the first 10 strides is not displayed in Figure 5.10; these strides were used

to initialize the RLS algorithm.

In total, we used 1139 ± 149 strides for training and 1132 ± 149 strides for testing for each indi-

vidual. Table 5.4 reports the bias, precision, and RMSE of the personalized model. Figure 5.11

also shows the Bland-Altman plot of the personalized model where the mean and standard

deviation of the error is displayed by the dark and dotted lines, respectively. Moreover, the

Spearman’s test showed a high correlation of 0.97 between the estimated and the reference

values of running speed.
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Figure 5.10 – Evolution of the RMSE error during the personalization of the speed model.
Here, the solid line and the shaded area represent, respectively, the inter-subject mean and
standard deviation of the RMSE. The x-axis corresponds to the number of strides used for
the personalization. Note that, for a better visualization of the error evolution, the figure is
zoomed only on the first 150 samples used for personalization.

Figure 5.11 – Bland-Altman plot of the proposed personalized model. Here, the points repre-
sent samples in the testing of all subjects. The dark and dotted and lines show a mean and
standard deviation of the error, respectively.
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5.4 Discussion

In this study, we proposed three methods to estimate overground running speed using feet

worn sensors. First, we estimated the overground speed using solely the velocity of the foot

obtained through the direct integration of the acceleration. We evaluated this direct method

to test our hypothesis that the accelerometer fails to provide the correct value during the flight

phase due to the combination of rotational and translational accelerations. Nevertheless,

the velocity of the foot, with other relevant features, was selected as the input of the second

method based on a linear model to predict the running speed. Thanks to an exhaustive features

selection procedure and cross-validation approach, the model predicted the running speed

with better accuracy. Finally, we assumed that the running technique varies among individuals,

but that it should be well correlated with individual gait features. Therefore, we showed that

the performance of running speed could be improved using an online-personalization method

with sporadic access to some GNSS data. It is important to note that the same method could

be extended to less complicated instrumentation (e.g., a stopwatch over a fixed distance).

The speed estimation result for the method based on v f oot only confirmed our hypothesis

that the direct integration of the acceleration, as proposed for walking, cannot be generalized

to running due to the presence of aerial phases. The inter-individual mean bias (0.08 m/s)

we observed indicates that the direct integration method underestimates the speed during

the phase of flight. This underestimation confirms the inexact measure of the translational

movement by the accelerometer during the flight phase. Moreover, the trend displayed in the

Bland & Altman plot (Figure 5.5) indicates that the system underestimates the velocity more

at faster speeds. This observation is coherent with our hypothesis; the higher the speed, the

greater the distance covered during the phase of flight (i.e., longer step length) (Nummela et

al., 2007). Slope also seems to be a confounding factor of the error (Figure 5.6), with higher

errors obtained during downhill running. In conclusion, v f oot itself does not characterize the

speed of the subject as it cannot measure the distance covered during the period of the flight,

but v f oot was a good proxy for speed and was one of the main features for speed prediction

based on the linear model.

The selection of relevant features in the linear model was a crucial phase. Feature selection

was carried over 20’084 steps and aimed to retrieve the most relevant features among the

668 variables available. Although we used a high-dimensional feature space, the curse of

dimensionality issue did not apply as we used approximately 30 times more observations for

feature selection. The results of the feature selection process show that the cost function (i.e.,

MSE) decreased quickly with the first few inputs and then stabilized as additional features

were included (Figure 5.7). We set the stopping criteria intentionally low (i.e., 1% improvement

in the MSE), knowing that the LASSO method used for training the model would ignore the

inputs with redundant information. Interestingly, several of the features manually selected

(Pmanual ) were among the first to be selected by the automatic process (Pauto); however, using

different linearization functions (Table 5.2).
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The linear model required inputs parameters from the temporal and spatial domain, as well as

overground slopes. Hence a precise estimation of related parameters is paramount to optimize

the precision of the speed estimation. The methods used to obtain these parameters should

always be carefully reported and, ideally, previously validated. Interestingly, the model did

not select the FLY parameter and instead favored the inverse of the stride duration (i.e., the

stride frequency); hence none of the features selected required a bipedal configuration of the

sensors allowing us to use the model with a single foot-worn IMU in the future. Also, none of

the anthropometric parameters was necessary for the estimation of the running speed. This

result is somewhat surprising, as we expected the height to be an essential input.

Apart from its computation time greediness, one reported issue of the forward selection al-

gorithm is that decisions made early in the process cannot be changed, therefore potentially

affecting its performance when the inputs are correlated (Derksen & Keselman, 1992). Al-

though we observed some correlation in the inputs, we presumed that the two-fold selection

process (i.e., stepwise selection and LASSO) would not be significantly affected by that matter.

Moreover, the linearization of the feature-space was an essential component of this study.

We selected f1, f2, and f3 functions based on visual inspection of the data, and out of the 28

pre-selected features, 16 (57%) resulted from these linearization functions.

Although the performance of the automatically selected set of features (Pauto,best ) performed

slightly better than the comprehensive set of features (Pmanual ,best ), the differences remain

in the order of a few centimeters per second (Table 5.3). Indeed, the estimations based on

Pauto,best , with a granularity of 1, over-performed the ones using Pmanual ,best by 0.01 m/s in

the inter-subjects STD of the bias, 0.01 m/s in average precision, and display a slightly lower

RMSE. These differences are relatively little since several elements in Pmanual ,best were among

the most relevant features selected by the LASSO regression method in Pauto,best , or at least

were highly correlated. The results also show that averaging the inputs over several steps

had a moderate effect on the performance of the system; it reduced the random error of the

system with mean precision values consistently decreasing from 0.14 m/s for the step level

estimation to 0.11 m/s when the granularity decreased to 10 steps. Also, when the output of

step level estimated speed was averaged over four steps, the precision slightly improved (0.13

± 0.05 m/s). Hence, whether the inputs or the outputs are averaged does not seem to affect

the performances of the model.

Overall, the linear method showed good prediction results across a wide range of speed

and slope, observed in real-world conditions (Figure 5.9, right). It principally removed the

mean bias of the method based on v f oot only and slightly improved the precision. The

Bland-Altmann plot in Figure 5.8 shows a good agreement between the linear model and the

reference GNSS system. The linear trend of the error (dashed blue line) is almost horizontal (y

= 0.0034x+0.098), which suggests that the running speed has little effect on the error. These

results support the usage of the RUS technique on the training data; the model ensured

that all the ranges of speeds observed were equally represented. Although procedures more

sophisticated than the RUS method have been proposed, they do not always provide a clear
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advantage in the results (Japkowicz, 2000). Moreover, the CDF curves of the training and

testing sets do not indicate clear overfitting of the training data (Figure 5.9, left) as the training

set attains better performance than the testing set, but these are within an acceptable range.

It seems challenging to reduce further the STD of the bias using such a linear model since it

depends on the inter-subject differences as it has previously been reported that individuals

use different spatiotemporal adaptations at similar speeds. For instance, previous studies have

shown that the relationship between stride frequency and stride length was specific to each

subject (Nummela et al., 2007; Saito et al., 1974). These limitations were also encountered

by previous studies that aimed to estimate the running speed based on body-worn inertial

sensors. In (Yang et al., 2011), the authors used a shank-worn IMU to measure the velocity of

the shank and compared it with the speed of a motored treadmill. The study was conducted

at five predefined speeds (2.5, 2.75, 3, 3.25, 3.54 m/s), with seven participants, and the error

was calculated as the difference between the average estimated speed over 30 strides and the

constant speed of the treadmill (i.e., the bias). The results show inter-trial mean and STD of

the bias of 0.11 ± 0.03 m/s at 2.5 m/s, 0.10 ± 0.03 m/s at 2.75 m/s, 0.08 ± 0.02 m/s at 3 and

3.25 m/s, and 0.09 ± 0.02 at 3.5 m/s. The biases reported in (Yang et al., 2011) are in range

with those obtained in our study. However, the measurements were performed on a leveled

treadmill at a discrete and limited number of running speeds, and the results were averaged

over 30 strides (i.e., 60 steps). By considering the foot and shank as a single rigid body, the

authors in (Chew et al., 2017) used foot-worn inertial sensors with ten participants and a

similar approach as in (Yang et al., 2011). Based on the errors reported at each speed (8, 9,

10, 11 km/h), our method outperformed the one proposed in (Chew et al., 2017). Aiming to

evaluate the accuracy and the repeatability of a commercialized foot-worn running assessment

system (RS800sd, Polar, Kempele, Finland), the authors in (Hausswirth et al., 2009) performed

30-seconds measurements at multiple speeds (from 12 to 18km/h) and compared the speed

estimations with the speed of the treadmill. Even though the commercialized system required

a subject-specific calibration, the reported mean ± STD bias of -0.03 ± 0.14 m/s indicates a

slightly less accurate estimation of the running speed than the method proposed in this study.

In a study (Herren et al., 1999) conducted in outdoor conditions, the authors explored whether

triaxial accelerometric measurements can be combined with subject-specific neural networks

to assess speed and incline of running accurately. The authors reported an RMSE of 0.12 m/s

for average speed the whole running trial which is similar to our linear model estimations

when the inputs are averaged at least four steps.

In a recent effort to reduce the inter-subject differences in the bias, researchers in De Ruiter et

al. (2016) proposed a personalized speed estimation model based solely on the measurement

of the contact time (CT). They obtained the CT using shoe-worn inertial sensors and conducted

the measurements on an outdoor 2 km long tarmac. First, they personalized a model (speed =

αC Td ) for each of the 14 participants based on the average speed over several bouts of 125

meters. Then, they compared the personalized estimation results with those obtained with a

stopwatch over a fixed 120-meters distance (N = 35 bouts) and reported a median RMSE of

2.9 and 2.1% (two runs). In comparison, our linear model method obtained a mean RMSE
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of 5.1% at step level estimation, and the personalized method a median RMSE of 3.1%. This

slightly higher RMSE in our study is partly reflecting the variety of slopes in our measurements

in comparison to the level running in (De Ruiter et al., 2016).

A recent study (Soltani et al., 2019) proposed a real-world speed estimation method based

on wrist-worn inertial sensors. The authors obtained a median [IQR] (Inter-Quantile Range)

bias of -0.02 [-0.2 0.18] m/s and precision of 0.31 [0.26 0.39] m/s for the non-personalized

method. These results improved using a personalization technique similar to this study, with

0.00 [-0.01 0.02] and 0.18 [0.14 0.23] for the bias and precision, respectively. Hence, for both

the personalized and non-personalized methods, this study out-performed the wrist-based

estimation of the running speed.

The linear model is accurate for “average people” (i.e., individuals with typical running pat-

terns), and individuals with an atypical running technique will give rise to higher speed esti-

mation errors (Figure 5.8). In comparison, the personalized model adapts to the movements

of each individual; thus, it ensures a bounded error for “average” and “atypical” individuals

(Figure 5.11).

The proposed personalization demonstrates significant improvements in the performance of

the real-world running speed estimation. As reported in Table 5.4, the personalization process

improved the IQR of the bias by at least a factor of 10 and the median precision by roughly

30% by employing approximately 35 times less training data than the non-personalized linear

model. The personalized model bypasses the bias caused by the intrinsic variation of individ-

uals during real-world running. This observation is best characterized by Figure 5.10, which

demonstrates the relatively fast convergence of the proposed RLS-based personalization; after

roughly 50 strides, the model stabilized. As a consequence, the personalized model does not

require continuous GNSS value to be updated. Once a good performance is reached, GNSS

switch to off to save batteries. Moreover, the proposed personalized method is based on an

online learning technique that does not require a database; hence it saves time and energy. It

allows real-time speed estimation, computationally optimized, and does not need to store

training data.

5.5 Conclusion

In this study, we proposed and evaluated three different methods for real-world speed esti-

mation in running: direct speed estimation, training based linear model, and a personalized

model. The direct estimation of the foot velocity confirmed the hypothesis that accelerome-

ters inaccurately measure the translational motion of an individual during the flight phase;

therefore, techniques developed for walking analysis can not be generalized to running. We

evaluated the linear model for two sets of features: automatically selected (i.e., optimized)

or manually selected (i.e., comprehensive features). The model performed best when we

averaged its output over a few steps and showed that 4 steps (i.e., two left strides and two

right strides) provided an acceptable trade-off between performance (bias: 0.00 ± 0.11 m/s;
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precision: 0.12 ± 0.06 m/s) and time-resolution. The personalized method tested in this study,

used an online-learning technique based on recursive least-squares to personalize the speed

estimations for each individual. Our results indicate that such an approach primarily helps to

reduce the inter-subject bias (0.01 m/s) but also improves the average random error by more

than 30%.

Based on the results of this study, we recommend using the linear model for speed estimation

when the recordings of other accurate devices are temporarily unavailable and personalized

the model when these recordings are available. For instance, the system can be used as a

complement to a GNSS device experiencing sparse communication, either due to a reduced

transmission bandwidth (e.g., indoor running, city centers) or because of electrical power

limitations (e.g., low power systems).
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6 Gait Changes, Foot Strike Pattern and
Stiffness During Marathon Running

Abstract

Achieving a marathon race has become one of the ultimate objectives of a high number

of runners. It has also become the favorite playground on running research, as it involves

multiple and complex mechanisms (e.g., biomechanics, physiology, fatigue, injury prevention).

New opportunities appeared with the emergence of new lightweight wearable sensors allowing

the continuous recording of relevant parameters. This study aimed to assess the evolution of

spatiotemporal parameters, stiffness, and foot strike angle during a marathon and determine

possible breaks in running patterns. Twelve recreational runners were equipped with a GNSS

watch, and two inertial measurement units clamped on each foot to run the 2017 Geneva

marathon. Data were processed and split into 8 sections of 5 km. Using a linear mixed model,

we observed significant changes around the 25th kilometer. Contact time, fly time, swing

time, speed, duty factor, stride length, maximal ground reaction force, vertical stiffness, leg

stiffness, and foot strike angle were affected, and two breaks between consecutive sections

were observed: one around Km 25 and another around Km 35. No changes were observed on

stride duration, vertical oscillations of the center of mass, and leg length. Surprisingly, the

average foot strike angle decreased during the race. However, each participant kept a rearfoot

strike. This could be explained by the effect of fatigue on the running gait. Moreover, the two

breaks we observed are possibly due to the alteration of the stretch-shortening cycle and by

reaching physiological limits. This study highlights news measurable phenomena that can be

analyzed through continuous monitoring of athletes and recreational runners.

Keywords: IMU, marathon running, temporal parameters, foot strike, stiffness

Chapter to be submitted as Meyer, F., Falbriard, M., Mariani, B., Millet, G. P., & Aminian, K. IMU-based
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6.1 Introduction

The number of recreational runners participating in marathon races has drastically increased

in the past decade, with approximately one million participants in 2018. There is also a large

body of scientific literature on marathon running (i.e., Pubmed: over 2000 publications with

“marathon” in the title), including many studies describing how running-induced fatigue can

alter the runners’ gait which in turn can lead to running-related injuries. Marathon running is

considered as the pinnacle of distance running and therefore constitutes a logical playground

for the analysis of gait alterations with the increase of fatigue (Larson et al., 2011; Joseph

Mizrahi et al., 2000; Paquette & Melcher, 2017).

Different setups have been proposed to investigate fatigue in marathon running. The most

common one is based on the comparison of Post- versus Pre- responses as in Nagel et al. (Nagel

et al., 2008). In this study, the authors reported an increase of peak plantar pressure beneath

the metatarsal head in 200 runners. Similarly, Post-to-Pre comparison showed differences in

3D knee kinematics both in walking and running on 20 participants (Tian et al., 2020).

An alternative method consists of carrying several biomechanical measurements during a

marathon race, as used by Bertram et al. (Bertram et al., 2013). They compared the gait

characteristics obtained with a force plate in 84 runners at Pre-, km 18, and km 36. They

observed a progressive decrease of speed but little changes in maximal ground reaction forces.

Similarly, Larson et al. (Larson et al., 2011) recorded foot contact videos of only one left and

one right step at km 10 and 32 for 936 runners during a marathon race. The results show an

increase of rearfoot strikers between these points. A similar method was used on elite runners

at four laps of a marathon (Hanley et al., 2019), where a minimum of 54% of male runners

were rearfoot strikers and 67% for women. These values stayed consistent throughout the

four laps of the race. Recently, a decrease in tibial acceleration peaks measured by an inertial

measurement unit (IMU) was reported in 222 runners between km 10 and km 40, with rearfoot

strikers seemingly more affected (Ruder et al., 2019). However, the relationship between foot

strike pattern and injury risks has been debated for long (Stacoff et al., 2016).

Nicol et al. (Nicol, Komi, & Marconnet, 1991b) investigated the changes in running mechanics

by performing one maximal sprint test every 10 km during a simulated overground marathon.

They observed a significant decrease in the maximal sprinting speed after 20 km, with an

increase in the significance level at 30 and 42 km. The contact time during these sprints

increased from the beginning to the end of the race, and the average vertical force significantly

decreased. The authors noted that the repetitive impacts altered the stretch-shortening cycle

and consequently reduced the efficiency of the locomotion.

Another method of investigation consists of a laboratory simulation. For instance, in (Kyro-

lainen et al., 2000) participants were asked to run a marathon on a treadmill at a constant

speed, and only a minor increase in stride frequency and decrease in stride length was ob-

served while the kinematic parameters (hip, knee, and ankle angular displacements and

velocities), contact time, external mechanical work and power were maintained.
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Overall, there is a scarcity of reports on the changes in running mechanics (kinetics or kine-

matics) observed continuously. Wearable sensors could be a valuable alternative for providing

continuous data throughout the marathon races. In a preliminary study with only three ath-

letes, Reenalda et al. (Reenalda et al., 2016) used eight IMUs. Each participant was followed by

a cyclist to allow recording of the IMUs data on a datalogger connected by Bluetooth. Recently,

Clermont et al. (Clermont et al., 2019) equipped 27 runners with a commercial IMU placed on

the sacrum, allowing the report of subject-specific changes in the spatiotemporal parameters

of gait during a marathon race. To our knowledge, these later studies are the firsts to provide a

continuous biomechanical analysis of marathon competitions and confirm that body-worn

sensors are valuable tools to analyze the biomechanics of locomotion (running or walking) in

real-world settings.

However, one limitation of the previously cited study is its use of commercial body-worn iner-

tial sensors without publicly available and validated estimation methods for spatiotemporal

and kinematic estimations. Nowadays, emerging literature provides validated methods to

determine the running spatiotemporal and kinetic parameters (Falbriard et al., 2018, 2020).

Hence, the present study aimed to assess the continuous changes in spatiotemporal param-

eters, stiffness, and foot strike angles (FSA) in a marathon race by using foot-worn inertial

sensors in recreational runners based on validated algorithms. This study is one of the first to

investigate the continuous changes in foot strike patterns and stiffness during “real” marathon

competition.

6.2 Material and Methods

6.2.1 Protocol

A total of 12 recreational runners (age: 36 ± 10 year; size: 178 ± 7 cm; weight: 72 ± 6 kg; race

time: 231 ± 27 min [179 – 246 min]) participated in this study. Each participant was equipped

with a shoe-worn IMU (Physilog 51, Gait Up SA, CH) located on the dorsum of each foot. The

accelerometer and gyroscope were recording at 512 Hz with an operating range of ± 16g and

± 2000 deg/s, respectively. We set the barometer to record the atmospheric pressure at 64

Hz with an operating range of 260 to 1260 hPa. The participants also wore their personal

Global Navigation Satellite System (GNSS) tracking system (i.e., commercialized watch or

belt). The measurements were performed during the 2017 Geneva (CH) marathon (average

temperature: 13°C), which has the particularity of having the same section run twice during

the race (5-10 km and 25-30 km). This protocol was approved by the local ethical committee

(CER-VD 2015-00006) and conducted according to the declaration of Helsinki.

1Datasheet available in the Appendix.
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6.2.2 Data processing

GNSS system - Since the configuration of the GNSS systems was different for each participant

because participants used their own GNSS device, we started by pre-processing the position

data to harmonize the subsequent processing tasks. We first low pass filtered the position

using a 2nd-order low-pass Butterworth filter (Fc = 0.25 Hz) and then linearly resampled

the time series at 1Hz. To compute the distance covered, we used a cumulative sum on the

position difference samples. Finally, we obtained the running speed through the derivation

of the position and then pre-processed the signal similarly to Soltani et al. (Soltani et al.,

2019). First, we enhanced the signal by removing the outliers that did not correspond to

running; hence, we removed all recorded speed samples outside of the 5-20 km/h range. This

process retrieved an unevenly sampled reference speed signal; hence we applied a 3-second

moving average, followed by linear interpolation to obtain an equally-spaced time series at

1Hz. Finally, we applied a fourth-order low-pass Butterworth filter with the cut-off frequency

at 0.25 Hz to reduce the noise.

Foot-worn IMUs - We pre-processed the raw acceleration and angular velocity using a 4th-

order low-pass Butterworth filter (Fc = 50 Hz) and applied the functional calibration method

described in (Falbriard et al., 2018) to align the technical frame of the IMUs with the functional

frame of the foot. As some of the GNSS systems did not provide the elevation signal, we

obtained the running slope using the hypsometric equation on the barometric pressure data

and restrained the analysis to the bout of level running (Bolanakis, 2017). Temporal events

detection was performed as described in Falbriard et. al (Falbriard et al., 2018); we first

segmented the race into midswing-to-midswing cycles and carried the detection of initial

contact, terminal contact, and mid-stance events within the cycles. Using the event detection

results, we then derived the ground contact time (CT), the flight time (FLT), the swing time

(SWT), and the stride duration (STR). We also computed the duty factor (DF) (McGhee &

Jain, 1972) and the stride length (STRL) by multiplying STR and the GNSS speed. In addition,

we estimated the orientation of the foot in the global frame to investigate the continuous

changes in FSA throughout the race. This method used a two-segment model of the foot (i.e.,

rear-foot and fore-foot segments) in conjunction with a bidirectional strap-down integration

to estimate and reduce the orientation drift accumulating with time (Falbriard et al., 2020).

Finally, we used the method proposed by Morin et al. (J. B. Morin et al., 2005) to estimate

vertical (Kver t ) and leg (Kl eg ) stiffness during the race (Eq. 6.1 - 6.2). This model allowed us to

estimate the downward oscillation of the center of mass (∆z), the compression of the leg (∆L),

the maximal ground reaction force (Fmax ) from body mass, running velocity, leg length, FLT,

and CT by assuming sine-wave profile for vertical ground reaction force.

Kver t = Fmax

∆z
(6.1)

Kleg = Fmax

∆L
(6.2)
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Kver t and Kleg are often used in running to characterize the storage and return of elastic

energy by a spring-mass modeling of running.

6.2.3 Statistical analysis

Before computing the statistics over the different part of the race, we targeted only level

running by excluded walking and inclined period based on the following criteria: (1) the GNSS

speed must be higher than 6 km/h and the time of flight greater than 0 seconds (i.e., the subject

is running), and (2) the slope must be lower than 1% (i.e., level running). We then computed

the mean and standard deviation for each temporal, spatial, and stiffness parameters over

bouts of 5 kilometers long and investigated how these features changed throughout the race.

We then applied a linear mixed model on the eight 5km-long sections, one fixed effect on the

race section and a random intercept effect. All the statistical comparisons were obtained using

Jamovi Software (Jamovi project 2020, Version 1.2). The overall significance level was set at p <

0.05, and trends discussed at p < 0.10. The Bonferroni pairwise comparison tests were then

applied to identify differences between sections.

Since small differences in ground conditions (e.g., surface, slight incline) may influence the

biomechanical responses, a comparison of the two strictly identical sections (5-10 km vs.

25-30 km) is also displayed.

6.3 Results

Running a marathon significantly alters several spatiotemporal parameters early in the race.

A first significant change is visible since the Km15-20 section with a p < 0.05 for both the

FLT (Figure 6.1) and the DF (Figure 6.2B). The SWT and CT were then significantly affected,

starting at the Km 25-30 section. Figure 6.1 shows the evolution of the temporal parameters

as the distance increased. Speed and STRL (Figure 6.2A and 6.2C) also show a significant

decrease (p < 0.05 and p < 0.001 respectively) between the first and the last section of the race.

Except for STRT, which indicates no significant difference throughout the race, all the other

spatiotemporal parameters suffered from two significant breaks; first between Km 20-25 and

Km 25-30 sections, and then from Km 30-35 to the last section of the race (Figure 6.1 and 6.2).

The vertical oscillations (∆z; Figure 6.3A) and leg compression (∆L; Figure 6.3B) values re-

mained constant across the marathon race, while Fmax was already lower than at start after

km15 (Figure 6.3C). A significant break in Fmax was observed between the 20-25 and 25-30

sections and later between the 3-35 and 35-42 sections. Kver t and Kleg showed a significant

decrease after km 25 (Figure 6.3D and 6.3E), and the broken trend was visible for Kver t between

Km 20-25 and Km 25-30 sections.

Figure 6.4 shows the evolution of FSA across the different sections of the race. FSA ranged

[8°-14°], indicating that all participants were rearfoot strikers from the start and across all
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sections (Altman & Davis, 2012; F. Meyer et al., 2018). Surprisingly, The FSA significantly

decreased during the race, and after km 25, the FSA values became significantly lower than at

the start.

Table 6.1 provides a detailed comparison of the race section traveled twice by the participants,

first at Km 5-10 and then at Km 25-30. Relative differences between 5% and 14% were obtained

for the parameters with significant differences.

Parameters km 5-10 km 25-30 Difference (%)

FSA [deg] 10.75 ± 1.5 9.24 ± 0.58* -14.0
Kver t [KN/m] 31.7 ± 7.36 29.66 ± 5.57 -6.4
Kleg [KN/m] 15.2 ± 3.29 13.97 ± 2.34 -8.1
Fmax [N] 1901 ± 254 1798 ± 210* -5.4
CT [s] 0.214 ± 0.03 0.228 ± 0.037* 6.5
FLT [s] 0.138 ± 0.02 0.126 ± 0.024* -8.7
SWT [s] 0.490 ± 0.023 0.479 ± 0.025 -2.2
DF 0.30 ± 0.03 0.32 ± 0.04* 6.7
Speed [m/s] 3.29 ± 0.35 3.16 ± 0.42 -4.0
STRL [m] 2.31 ± 0.18 2.23 ± 0.20 -3.5

Table 6.1 – Biomechanical parameters for the two identical sections (5-10 vs. 25-30 km). Values
are presented as mean ± SD. * p < 0.05 (Bonferroni Post hoc) between the two sections.
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Figure 6.1 – Evolution of the temporal parameters, with changes in contact time (CT), flight
time (FLT), Swing time (SW), and Stride time (STRT). A grey area indicates the two identi-
cal sections of the race. * Significant difference compared to the first section (p < 0.05). #
Significant difference and (#) trend between two consecutive sections (p < 0.05).

Figure 6.2 – (A) Evolution of running speed during the marathon. (B) Changes in duty factor
(DF). (C) Changes in Stride length (STRL). A grey area indicates the two identical sections of the
race. * Significant difference compared to the first section (p < 0.05). # Significant difference
and (#) trend between two consecutive sections (p < 0.05).
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Figure 6.3 – (A) Evolution of vertical stiffness (Kver t ). (B) Evolution of leg stiffness (Kleg ). (C)
Changes in maximal ground reaction force (Fmax ). (D) Changes in the downward displacement
of the center of mass (∆z). (E) Changes in leg length (∆L). A grey area indicates the two
identical sections of the race. * Significant difference with the first (0-5 km) section (p < 0.05).
# Significant difference and (#) trend between two consecutive sections (p < 0.05).

Figure 6.4 – Evolution of foot strike angle (FSA) during the marathon. Grey area indicates
the two identical sections of the race. * Significant difference compared to the first (0-5 km)
section (p < 0.05). (#) Trend for difference between two consecutive sections (p < 0.01).
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6.4 Discussion

The current study presents novel findings regarding the alteration mechanism occurring for

several biomechanical parameters of the running during marathon race measured through

foot-worn inertial sensors. Also, to the authors’ knowledge, it is the first attempt to report the

dynamics of the main spatiotemporal parameters and more interestingly, of FSA and stiffness

during a “real” marathon race.

The main finding of this work is the highlight of two breaks on the evolution of running pattern

during the race: A first occurring around Km 25, and the second occurring around Km 35. It is

the first time that such behavior is highlighted, and it was made possible by the continuous

analysis of the marathon race. Moreover, a global look at the different curves (Figure 6.1 - 6.4)

indicates a progressive alteration of several parameters during the race, reaching a significant

difference around Km 25-30. This general observation is in line with the results obtained by

Nicol et al. (Nicol, Komi, & Marconnet, 1991b), who assessed in a simulated marathon the

changes in running mechanics by doing a maximal sprint test every 10 Km. They showed a

significant decrease in the maximal sprinting speed that was significant after 20 Km, and that

decreased even more at 30 and 42 Km. Using a biomechanical index, Clermont et al. (Clermont

et al., 2019) observed significant changes from Km 20-22 of the race, compared to a Km 4-

14 baseline. Using such an index helps to emphasize the global changes in biomechanical

patterns, but also remove the possibility to analyze the behavior of each parameter individually.

However, the authors did not investigate changes between consecutive sections, that could

highlight sudden modifications of the biomechanical parameters.

The temporal parameters measured in the current study showed a simultaneous increase of

CT and DF and a decrease of FLT during the race, resulting in a constant STR (and, therefore, a

constant stride frequency) (Figure 6.1). Tests carried on a treadmill showed different results,

with higher step frequency and constant CT (Nicol, Komi, & Marconnet, 1991a). Having the

constraint to follow a given speed on a treadmill implies that the runners cannot change their

speed and have to find another strategy to compensate for neuromuscular fatigue. Chan-roper

et al. (Chan-Roper et al., 2012) observed similar differences in running speed, CT, and STRL

between km 8 and km 40 of a marathon race and explained the changes by fatigue.

Kver t and Kl eg obtained in this study follow the same trend, as they both decrease progressively

during the marathon and reach a significant difference with the first section from Km 25-30

section (Figure 6.3). Previous studies showed that running different distances should not

have the same effect on the force-production ability of the runners and their leg and vertical

stiffness (Degache et al., 2013; Farley & González, 1996; J. B. Morin et al., 2011). Compared

to our results, Girard et al. (O. Girard et al., 2013) obtained a similar decrease in Kver t during

a 5 Km self-paced run, also caused by a decrease in Fmax and a constant ∆z. Nevertheless,

they did nott observe changes in Kleg . Running shorter distances, such as repeated sprinting,

followed the same principle (Olivier Girard et al., 2011; Hobara et al., 2010; Jean Benoît Morin

et al., 2006). On the other end, results from long-distance events such as ultra-marathon of
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170 Km or more showed a modification of the running patterns with an increase of stride

frequency, a decrease of FLT, Fmax , and ∆z resulting in a decrease of Kleg , but no effect on

Kver t (Degache et al., 2016; Guillaume Y. Millet et al., 2009). According to our results, we

deduce that running a marathon is short enough to affect Kver t and long enough to affect

Kleg .

Stiffness and the stretch-shortening cycle have always been implicitly linked to neuromuscular

fatigue. However, there is no consensus on the subjacent mechanisms. Rabita et al. (Rabita

et al., 2013) found a correlation between the decrease in Kl eg and the increase in energy con-

sumption during a running test to exhaustion. In a second study, the same author explained

the decrease of Kl eg by changes in muscle activation using electromyography.

The FSA between 8 and 16 degrees obtained in this study corresponds to a rearfoot strike,

as proposed by Altman and Davis (Altman & Davis, 2012). Therefore, each participant in

this study was categorized as a rearfoot striker, like approximately 85% of recreational long-

distance runners (Degache et al., 2016; Hanley et al., 2019; Larson et al., 2011). Larson et al.

(Larson et al., 2011) observed changes in the foot-strike pattern between Km 10 and Km 32,

with significant shifts from forefoot and midfoot to rearfoot strike. Almost no participant

switch from rearfoot to another category. This corresponds to the results obtained in this

study, even if a significant decrease in FSA was observed (Figure 6.4). Our method allows a

deeper investigation than the evolution of the foot-strike pattern, for it provides the strike

angle continuously throughout the race. The decrease of FSA observed in this study can be

explained by the effect of neuromuscular fatigue. Mizrahi et al. (Joseph Mizrahi et al., 2000)

reported a decrease in knee flexion after a 30 min high intensity run, suggesting that a lower

amplitude in the running pattern would also reduce the FSA. Moreover, Willson and Kernozet

(Willson & Kernozek, 1999) observed a decrease of heel loading after a fatigue running test

and explained it by an adoption of a more midfoot landing. Their results are aligned with our

findings and clearly indicate an adaptation of the runner during the race.

The Geneva marathon has the particularity to have a section ran twice by the participants,

first at Km 5-10 and then at Km 25-30. This section provides twice identical conditions during

the race and removes the undesired effects of slope and surface change. The results obtained

(Table 6.1) reinforce the validity of the results obtained on the other sections of the race, by

removing confounding factors.

Based on our observations, it was possible to find the onset of two significant breaking point

during the marathon. Analyzing the groups of runners with a more homogeneous level would

probably retrieve more details on the evolution of specific running parameters and linked

them more accurately with the onset of fatigue. We decided to divide the race into eight

sections to offer easy to read and interpret results, but the proposed system can provide a

granularity up to a single step, allowing the analysis of cycle variability.
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6.5 Conclusions

It is the first time that such a large amount of data was extracted from only two small and

autonomous devices attached to the runners’ feet. This study aimed to answer the gap between

laboratory experiments and practitioners’ concerns and needs in the field. Using a linear

mixed model, we observed significant changes in the running gait around the 25th kilometer.

Contact time, fly time, swing time, speed, duty factor, stride length, maximal ground reaction

force, vertical stiffness, leg stiffness, and foot strike angle were affected. We also observed

two breaks between consecutive sections: one around Km 25 and another around Km 35.

No changes were observed on stride duration, vertical oscillations of the center of mass, and

leg length. Future utilization of such systems will allow a more individualized analysis of the

evolution of running parameters, but also provide accurate and continuous data to understand

when and how runners respond to fatigue.
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7 Gait Parameters and Vertical Speed
During a Mountain Ultra-Marathon

Abstract

The aim of the present study was to investigate the effects of altitude and distance on uphill

vertical speed and the main spatiotemporal gait parameters during an extreme mountain

ultra-marathon. The vertical speed (VS), stride height (SH), and stride frequency (SF) of 27

runners were measured with an inertial sensor at the shank for two different altitude ranges

(low 1300-2000 m vs. high 2400-3200 m) of 10 mountains passes distributed over a 220 km

course. There was a significant interaction (F(4,52) = 4.04, p<0.01) for the effect of altitude

and distance on VS. During the first passes, the mean VS was faster at lower altitudes, but this

difference disappeared at a quarter of the race length, suggesting that neuromuscular fatigue

influenced the uphill velocity to a larger extent than the oxygen delivery. The average VS, SH,

and SF were 547 ± 135 m/h, 0.23 ± 0.05 m, and 0.66 ± 0.09 Hz. The individual VS change for

each uphill portion was more strongly correlated with the changes in SH (r = 0.80, P < 0.001, n

= 321) than SF (r = 0.43, P < 0.001, n = 321). This suggests a large effect of the knee extensors

strength loss on the diminution of VS.

Keywords: ultra-endurance, fatigue, altitude, uphill walking

Chapter adapted from David Jeker, Mathieu Falbriard, Gianluca Vernillo, Frederic Meyer, Aldo Savoldelli,
Francis Degache, Federico Schena, Kamiar Aminian & Grégoire P Millet (2020) Changes in spatio-temporal gait
parameters and vertical speed during an extreme mountain ultra-marathon, European Journal of Sport Science,
DOI: 10.1080/17461391.2020.1712480.

Contributions: conceptualized the study design; conducted the data collection; designed the algorithms;
contributed to the interpretation of the data.

131



Chapter 7. Gait Parameters and Vertical Speed During a Mountain Ultra-Marathon

7.1 Introduction

Mountain ultra-marathons (MUMs) have gained popularity in recent years (Hoffman et al.,

2010). These events are of interest to better understand how healthy subjects cope – from both

physiological and biomechanical points of view – with extreme loads and fatigue (G. P. Millet

& Millet, 2012).

Similarly to running events of shorter duration, maximal oxygen uptake (VO2max) and the

fraction of its utilization are important determinants of ultra-marathon performance (G. Y.

Millet et al., 2011). However, the measurement of the energy demand over the complete

course of a MUM is difficult if not impossible, and the results of laboratory studies can hardly

be extrapolated to a mountainous environment (Savoldelli et al., 2017). Altitude, exercise

duration, elevation changes, and temperatures are making the determination of the energy

cost of locomotion particularly difficult in the case of a MUM (Vernillo, Millet, et al., 2017).

At the moderate altitudes (2000–3000 m a.s.l) often encountered during a MUM, VO2max

is reduced by 7–8% per 1000 meters above sea level (Wehrlin & Hallén, 2006). Additionally,

exposure to moderate hypoxia exacerbates the development of peripheral fatigue (Amann et

al., 2006; Fan & Kayser, 2016). Therefore, the negative effect of altitude on uphill performance

should be greater the further an athlete gets on the racecourse during a MUM.

MUMs provide opportunities to assess the effects of prolonged uphill and downhill walk-

ing/running periods over extremely long distances on biomechanical parameters (Degache et

al., 2016; J. B. Morin et al., 2011). Previous studies have measured running mechanics either at

set points during a race (Degache et al., 2016; J.-B. Morin et al., 2011), or after the completion

of the event (Giandolini, Gimenez, et al., 2016; Lazzer et al., 2015; J. B. Morin et al., 2011;

Vernillo et al., 2014). Besides a case study (Savoldelli et al., 2017), there is a paucity of data

collected during real racing conditions, thereby limiting our understanding of the changes in

running mechanics during MUMs. Recording the gait parameters with an inertial sensor in

the context of going up a mountain pass would broaden our knowledge in this area.

An increased stride frequency (SF) - or reduced stride length (SL) - at a constant speed is known

to diminish the impact shock and the energy absorbed at the ankle, knee, and hip (Schubert

et al., 2014). Despite some debate regarding the importance of the cost of running in MUM

performance (Vernillo, Millet, et al., 2017), preferred SF and optimal SF remained the same

following a 6-hour trail run suggesting that, despite fatigue, athletes optimize their running gait

to preserve energetic efficiency (Vernillo et al., 2019). Furthermore, the muscle preservation

strategies used during a MUM of extreme duration did not lead to a modification of SL or

SF from pre- to post-race when tested at the same speed (Vernillo et al., 2014). However,

the speed loss expected during the climbs of a MUM (Saugy et al., 2013) must be related to

a reduction of the SF and/or SL. As the speed of locomotion is expressed vertically in this

study, the amplitude of the strides will be referred to as stride height (SH) rather than SL.

Considering that knee extensors (KE) force loss during a MUM was shown to be correlated

with performance time (Balducci et al., 2017) and that SF was not affected by an improvement
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in maximal strength (Sardroodian et al., 2015), loss of strength over the course of MUM should

primarily affect SH. Consequently, one may hypothesize that the expected decrease in vertical

speed (VS) throughout the race is mostly correlated with a decrease in the SH rather than a

reduction of the SF.

To our knowledge, the combined effects of altitude and distance on uphill running/walking

performance and biomechanics have never been studied to date. Therefore, the evolution

of VS and other spatiotemporal gait variables during the climbs of a MUM remains unclear

and would provide novel insights into the respective influence of (1) physiological factors, i.e.,

the convective oxygen transport altered by altitude, compared to (2) neuromuscular factors,

i.e., KE muscle fatigue induced by prolonged exercise, on the performance and pacing during

MUMs. The primary aim was to use an inertial sensor to investigate the effect of altitude

and fatigue on VS during a MUM of extreme duration. The secondary aim was to assess the

relationship between VS and SH and SF. We hypothesized that VS would be lower at higher

altitude and that the decrease in VS would be greater for the highest portion of each mountain

pass.

7.2 Methods

7.2.1 Participants

Twenty-seven athletes (3 women and 24 men) volunteered to participate in this study. Their

characteristics are presented in Table 7.1. All subjects were experienced MUM athletes, 15

of them had finished a previous edition of the race studied. The participants were informed

of the procedure and the risks involved. They gave their consent and could refuse to take

part in any of the tests. The study was approved by the Institutional Ethics Committee of

the University of Verona, Italy (Department of Neurosciences, Biomedicine and Movement

Sciences) and carried according to the Declaration of Helsinki.

N = 27 Age (y) Height (cm) Weight (kg) BMI (kg m-2) Performance index

Mean 45.3 176.7 72.8 23.3 549
SD 9.5 8.0 9.0 2.4 76.6
Range 22-64 158-193 59.8-93 19.7-28.7 412-743

Table 7.1 – Age, height, weight, body mass index and the International Trail Running Associa-
tion performance index of the participants.

7.2.2 Design

The international race supporting the study was the 2015 Tor des Géants (TdG). Considered as

one of the world’s most challenging mountain ultra-marathon (Vernillo et al., 2016), it covers a

total of 330 km and includes 24,000 m of elevation gain and loss. The maximum and minimum
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Figure 7.1 – Average vertical speed for the low (1298 to 2086 m) and high (2392 to 3204 m)
portions of the first five mountain passes with both a low and high-altitude portions (A). *p <
0.05 for differences with high altitude. #p < 0.05 for differences with previous pass. Values are
mean ± SD. Mountain passes used for the measurement of vertical speed, stride height, and
stride frequency (B).

altitudes are 3300 and 322 m, respectively, with 25 passes over 2000 m. The distance is divided

by six major aid stations where sleeping is allowed. Ten mountain passes were divided into

sections of 147-368 m of elevation gain and categorized as in high altitude (2392-3204 m a.s.l.)

and low altitude (640 to 2086 m a.s.l.) portions (Table 7.2). Each section was selected to avoid

flat portions or aid stations and did not start immediately after an aid station. The race was

stopped a few hours after the 80-hour mark due to bad weather conditions - athletes normally

have 150 h to cover the distance. Therefore, only the measurements up to the ascent of Col

Pinter, which correspond to pass number 10 (Figure 7.1), were used, and only the first 5 passes

with both a low and a high altitude section were used for the comparison of the VS between

low and high altitudes.

7.2.3 Methodology

The movement was recorded using Physilog 41 Silver device (Gait Up SA, Lausanne, Switzer-

land). The 19 g device was attached to each participant’s shank close to the ankle, encapsulated

in a waterproof elastic band, and securely placed over the lateral malleoli. The device was

recording tri-axial acceleration at 100 Hz, tri-axial angular velocity at 100 Hz, and the baro-

1Datasheet available in the Appendix.
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Low High

Altitude (m) Slope (%) Altitude (m) Slope (%)
Start End Gain Start End Gain

1. Arp 1298 1639 341 23.7 2392 2539 147 20.1
2. Crosatie - - - - 2506 2828 322 29.8
3. Fenêtre 1681 2032 351 21.7 2576 2815 239 19.1
4. Entrelor 1756 2086 330 23.2 2529 2822 293 32.2
5. Loson 1757 2010 253 13.8 2948 3204 256 23.3
6. F. di Champorcher 1614 1818 204 22.4 2508 2813 305 15.4
7. Coda 640 818 178 16.3 - - - -
8. Marmontana 1683 1936 253 16.4 - - - -
9. Lasoney 1707 2031 324 24.9 - - - -
10. Pinter 1422 1790 368 33.5 2573 2765 192 29.1

Table 7.2 – Characteristics of the portions of the mountain passes used for the analysis of
vertical speed, stride height, and stride frequency.

metric pressure at 50 Hz. First, altitude was estimated using the barometric pressure signals

as in the ICAO Standard Atmosphere model and then linearly corrected using the 10 passes

as altitude landmarks. A calibration process was designed to align the technical frame of

the sensors with the functional frame of the shank (Falbriard et al., 2018). Knowing the time

(T i mek ) spent in each section k of the pass and the elevation difference between the lowest

(Al ti tudek
low ) and highest limits (Al ti tudek

hi g h) of the section, average vertical velocity of

each portion was estimated by Eq. 7.1:

Al ti tudek
hi g h − Al ti tudek

low

T i mek
(7.1)

For each section, stride frequency (SFk ) was estimated using a 4 seconds sliding-window

and was set as the fundamental frequency component of the mediolateral angular velocity

of the shank obtained by Fast Fourier Transform (FFT) (Fasel et al., 2017). We then used this

fundamental frequency f0 to set the cut-off frequency (Fc = 1.5 f0) of the low-pass Butterworth

filter applied on the sagittal plane angular velocity signal. We used this highly filtered signal

(almost a sinusoid) to find the local peaks, which we assumed to correspond to the mid-swing

moment. Finally, we detected initial contact within each midswing-to-midswing period and

use the detection results to compute the stride frequency (Aminian et al., 2002). There was

no need to apply a high-pass filter. The determination of stride frequency using step by step

detection is more accurate than using FFT that gives only a rough estimation. Stride height

SHk within each pass section was defined as Eq. 7.2, where N k
str i des is the number of strides
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detected in the kth section.

SHk =
Al ti tudek

hi g h − Al ti tudek
low

N k
str i des

(7.2)

7.2.4 Statistical Analysis

The statistical analysis was performed using the R software (R Foundation for Statistical

Computing, Vienna, Austria) using a significance level of 0.05. Two-way repeated measures

analysis of variances (ANOVA) was used to determine the effect of altitude (low vs. high section

of mountain passes) and distance covered (number of mountain pass during the race) on VS.

Sphericity was tested using Mauchly’s test, and Greenhouse-Geisser correction was applied

when sphericity was violated. Normality was confirmed with the Shapiro-Wilks test. Post hoc

comparisons were made using Tukey honestly significant difference. Pearson’s correlations

were calculated to evaluate the association between VS, SH, and SF.

7.3 Results

Of the 27 athletes participating in this study, 4 withdrew from the race before it was stopped.

None of the 23 remaining athletes completed the whole 330 km. Only 6 athletes who were

not involved in the study reached the finish line before the race was stopped. For the five first

passes with both a low-altitude (1300-2000 m) and a high-altitude (2400-3200 m) portions,

there was a significant interaction [F(4,52) = 4.04, p < 0.01]. Figure 7.2 and 7.3 shows the

Tukey HSD post hoc comparison for the low and high-altitude sections of each mountain pass

analyzed. The average VS, SH, and SF were 547 ± 135 m/h, 0.23 ± 0.05 m, and 0.66 ± 0.09 Hz.

As shown in Figure 7.2 and 7.3, VS was more strongly correlated with SH than SF.

Stride height (m)

Ve
rti

ca
ls

pe
ed

(m
/h

) r = 0.80, P < 0.001, 95% CI [0.76, 0.84]

Figure 7.2 – Correlation between vertical speed and stride height for the selected uphill por-
tions of the mountain passes.

136



7.4. Discussion

Stride frequency (Hz)

Ve
rti

ca
ls

pe
ed

(m
/h

)
r = 0.43, P < 0.001, 95% CI [0.33, 0.51]

Figure 7.3 – Correlation between vertical speed and stride frequency for the selected uphill
portions of the mountain passes.

7.4 Discussion

The purpose of this study was to investigate the effects of altitude and distance on VS during

an extreme mountain ultra-marathon (Tor des Geants). The main findings were: (1) VS was

progressively diminished with race progression, and this decrease in speed was greater at

low than at high altitude; (2) the reduction in VS throughout the race is mainly related to a

reduction in stride height (SH).

The VS was lower at higher altitude for the first and third pass, but the deceleration was greater

at low altitude, which is contrary to the initial hypothesis. After the third mountain pass,

there was no more difference in VS between the two altitude portions studied. A case study

about an experienced athlete showed no metabolic fatigue during the major climbs of the TdG

(Savoldelli et al., 2017). The large decrease of speed in the second half of TdG has previously

been associated with sleep deprivation and fatigue (Saugy et al., 2013). Maximal aerobic speed

was shown to be more strongly related to performance in a MUM than KE force or KE force

loss (Balducci et al., 2017). These results were obtained during a shorter race (75 km with 3930

m of elevation gain). They do not contradict our findings, as the reduced VS at higher altitudes

in the first quarter of TdG indicates that the effect of aerobic capacity on performance is only

reduced beyond 75 km. Also, it is worth pointing out that there were no effects of the slope on

VS (p = 0.279). One may argue that central or neuromuscular fatigue may be different between

the low-altitude (at the beginning of the pass) and the high-altitude (at the upper part of the

pass) sections. In such an ecological set-up, it was impossible to measure fatigue at the bottom

and at the summit of each pass. This can be seen as a confounding factor since the differences

between low and high altitudes may be due to other factors than the altitude-induced changes

in aerobic capacity.

As expected, the reduction in VS was more strongly correlated with the reduction of SH than the

reduction of SF. Changes in running biomechanics during the TdG have been associated with

nociceptive feedback and the use of a smoother running pattern, which involved an increase in
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SF (Degache et al., 2016). In that case, the measurements were made on a treadmill at 12 km/h

before and after the race. With the speed being constant, the increase in SF was accompanied

by a reduction in stride length. However, the etiology of neuromuscular fatigue differs between

level and graded running where the decrease in maximal voluntary force observed for uphill

running is associated with metabolic fatigue whereas it is associated with mechanical damages

for downhill running (Giandolini, Vernillo, et al., 2016). A reduction in the strength of the KE

and the plantar flexors (PF) have previously been reported for the TdG and could explain the

reduction in SH observed in the present study (J.-B. Morin et al., 2011). We have previously

shown large fatigue in plantar flexors during hilly running (Fourchet et al., 2012). Strength

loss is similar in PF and KE during MUM (Saugy et al., 2013), while during level ultra-running,

greater stress occurs on PF compared with KE (24-h running exercise on a treadmill) (V. Martin

et al., 2010). Despite that there are no data available on hip flexors/extensors during or after

MUM, it is likely that a strength loss of the hip flexors or extensors could also be involved.

Moreover, the present results are in line with the previously reported decrease in uphill energy

cost following the TdG that was associated with a modification of the uphill running mechanics

presumably caused by a decrease in KE strength (Vernillo et al., 2014). Considering that the

preferred SF seems to be adjusted to be metabolically optimal despite the fatigue encountered

during a prolonged trail running exercise (Vernillo et al., 2019), the reduction in SF observed

may not be detrimental to the energy cost of movement. Overall, our results indicate that the

speed loss observed is likely related to a loss of KE strength; however, a voluntary reduction of

intensity could also explain the reduction in VS observed.

A positive pacing strategy, where the speed progressively decreases, is the most common

during ultra-endurance events (Abbiss & Laursen, 2008) and is the one adopted, consciously or

not, by every athlete of this study. Participants with a higher performance level generally show

greater speed loss during ultra-marathon events (Angus & Waterhouse, 2011; Kerhervé et al.,

2015; Lambert et al., 2004). The observed reduction in speed could have been partly related to

the athletes’ perceived exertion (Marcora, 2009), which – based on the psychobiological model

of endurance performance - plays a crucial role in the self-regulation of pacing (Pageaux, 2014).

Future studies regarding MUM should consider the role of motivation and rate of perceived

effort in the regulation of pace and their effects on performance. Because of the cancellation of

the event before its completion, it was not possible to determine if the athletes would increase

their speed in the last part of the race and whether or not this increase in speed would be

influenced by the altitude.

7.5 Conclusion

During the TdG, the pacing was different between low and high altitudes only in the first

quarter of the race suggesting that exertion influenced the uphill velocity to a larger extent

than the oxygen delivery. The reduction in VS was more strongly correlated to the decrease in

SH than SF and implies an effect of the KE strength loss.
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8 Hurdle Clearance Detection and Spa-
tiotemporal Analysis in Hurdling

Abstract

This research aimed to determine whether: (1) shoe-worn magnetic and inertial sensors can

be used to detect hurdle clearance and identify the leading leg in 400-m hurdles, and (2) to

provide an analysis of the hurdlers’ spatiotemporal parameters in the intervals defined by the

hurdles’ position. The data set is composed of MIMU recordings of 15 athletes in a competitive

environment. The results show that the method based on the duration of the flight phase was

able to detect hurdle clearance and identify the leading leg with 100% accuracy. Moreover,

by combining the swing phase duration with the orientation of the foot, we achieved, in

unipedal configuration, 100% accuracy in hurdle clearance detection, and 99.7% accuracy

in the identification of the leading leg. Finally, this study provides statistical evidence that

contact time significantly increases, while speed and step frequency significantly decrease

with time during 400 m hurdle races.

Keywords: inertial sensors, 400m hurdles, magnetometer, hurdle clearance, flight time, speed

Chapter adapted from Falbriard, M., Mohr, M., & Aminian, K. (2020). Hurdle Clearance Detection and
Spatiotemporal Analysis in 400 Meters Hurdles Races Using Shoe-Mounted Magnetic and Inertial Sensors. Sensors,
20(2), 354.

Contributions: conceptualized the study design; conducted the data collection; designed the algorithms;
contributed to the analysis and interpretation of the data; drafted the manuscript.
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8.1 Introduction

The last decade has seen a growing trend towards magnetic inertial measurement units

(MIMU)- based studies in track and field races, with the majority focusing on sprint distances.

These studies differ in terms of sensor configuration, sensor location, and type of parameter

measured (Macadam et al., 2019). Several groups have used inertial sensors in sprint running

to characterize temporal parameters (Ammann et al., 2016; Bergamini et al., 2012; Purcell et

al., 2005), body-segment orientation (Bergamini et al., 2013; Channells et al., 2006), ground re-

action forces (Gurchiek et al., 2017; Setuain et al., 2018), and speed (Gurchiek et al., 2018, 2019;

Mertens et al., 2018). Surprisingly, only a few studies used MIMU to quantify spatiotemporal

parameters in hurdle races. Recently Ho, Chang and Lin (Ho et al., 2019) used high-speed

video cameras and inertial sensors strapped on the dorsal surface of each foot to analyze flight

time, hurdle cycle time (i.e., the time between hurdles) and hurdle cycle velocity (i.e., hurdle

cycle time divided by the distance between hurdles) in 110-m hurdles. Unfortunately, the

authors offered no explanation about the method employed to detect the time point of hurdle

clearance (HC) or how they measured the parameters above. The authors in (Iskra et al., 2017)

used inertial measurement units (IMU) to evaluate the kinematics of the hurdlers’ upper limbs

and reported the linear velocities and the trajectory of the segments during hurdle clearance.

Overall, little research has been performed specifically on 400-m hurdles (Iskra & Coh, 2011),

and no wearable system has been proposed to detect HC and identify the leading leg (LL), i.e.,

the leg attacking the hurdle.

The variations in the average speed, contact time, flight time, and step frequency in between

the hurdles and the side of the leading leg are all relevant indicators of the athletes’ racing

strategy, and thus can have a significant impact on performance. Currently, such analysis

requires a set-up with multiple video cameras around the track and time-consuming manual

post-processing of the data. A wearable system capable of providing instant feedback would

significantly improve our capacity to monitor the training status and performance of athletes.

In alpine skiing, gate crossings have been detected through the use of magnets placed into

the snow and a magnetometer worn by the athlete (Fasel et al., 2019). Although potentially

transferable and useful, this technique has not yet been tested to measure the timing of hurdle

crossings. Therefore, the primary aim of this study was to propose and test different methods

based on foot-worn MIMU to detect HC and identify the LL. Furthermore, magnets fixed on

the hurdles were tested as a complementary method to detect HC. As a secondary aim of this

study, the changes throughout the race of contact time, flight time, running speed, and step

frequency were analyzed to explore the relationship between the athlete’s caliber and racing

strategy.
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8.2 Materials and Methods

8.2.1 Protocol

In this study, 16 athletes (n = 10 males (age: 22 ± 4 years, height: 183 ± 2 cm, weight: 69 ± 6 kg,

time: 57 ± 3 s), n = 6 females (age: 23 ± 3 years, height: 165 ± 4 cm, weight: 55 ± 2 kg, time: 64 ±

3 s)) volunteered to perform one 400 m hurdles race equipped with IMUs. The measurement

took place during an outdoor competition with participants aiming for a qualification, thus

running at their maximum speed. The athletes were equipped before the warm-up session

to not disturb their preparation routine, and the sensors were collected at the end of the

race. Moreover, each of the 10 hurdles in the second lane was equipped with two magnet

bars (Figure 8.1). In 400 m hurdling, the distance (DH ) in between two hurdles is 35 m. The

distance (DH ) between the starting line and the first hurdle is 45 m, and the distance between

the last hurdle and the finish line is 40 m, hence DH = {45, 35, . . . , 35, 40} with dim(DH ) = 11

intervals. The study was conducted in accordance with the Declaration of Helsinki, and the

protocol was approved by the local Ethics Committee. All subjects gave their written informed

consent for inclusion in the study.

8.2.2 Instrumentation

Each participant was equipped with one shoe-mounted inertial measurement unit (IMU)

(Physilog 41, Gait Up SA, Lausanne, Switzerland, weight: 19 g, size: 50 × 37 × 9.2 mm) affixed

on the dorsum of the foot with aDH esive tape (Figure 8.1). The left and right foot IMUs were

synchronized using radio frequencies. The configuration included an accelerometer at 500 Hz

(±16g operating range), a gyroscope at 500 Hz (± 2000 °/s operating range) and a magnetometer

at 71Hz (±1000 µT operating range). The magnets were constructed by vertically stacking 8

small neodymium magnets (S-20-10-N, Supermagnete, Uster, Switzerland) spaced by 5 mm

into a 12 cm long stick. The magnets were fixed on each side of the hurdle at the top of the

vertical poles (Figure 8.1). We aimed for the magnets to be as close of possible to the foot-worn

magnetometers when passing over the hurdle. Finally, the video of each race was recorded at

25 frames/s and used for verification purposes in this study (leading leg identification and

the number of steps per interval manually labeled). All the subsequent data processing tasks

described in this manuscript, the implementation of the HC and LL detection algorithms, and

the analysis of the results were performed using the MATLAB software (R2018b, MathWorks,

Natick, MA USA) and required no external libraries.

8.2.3 Data processing

Preprocessing, Calibration, and Segmentation

The accelerometer and gyroscope sensors were calibrated, as described in (Ferraris et al.,

1995). The magnetometer offset, sensitivity, and axis-misalignment were corrected using

1Datasheet available in the Appendix.
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Figure 8.1 – One participant clearing a hurdle with two shoe-mounted IMUs and one magnet
bar on each of the vertical poles of the hurdle.

the method proposed in (Bonnet et al., 2009) with calibration data recorded on-site the day

of the event. The angular velocity and acceleration signals were low-pass filtered using a

2nd-order Butterworth filter with a cut-off frequency at 70 Hz. Functional calibration of the

IMUs was performed as described in (Falbriard et al., 2018): we used a standing period to

define the functional frame (FF) vertical axis, the first component resulting from the principal

component analysis (PCA) of the angular velocity during running to define the mediolateral

axis of the foot, and we set the anterior-posterior axis orthogonally to the first two (Figure 8.2).

The accelerometer, gyroscope, and magnetometer data were then expressed in the FF.

We defined the start of the race as the time tst ar t , which occurred 200 ms before the first

manually detected acceleration peak measured when the athlete was still in the starting blocks.

The 200 ms offset corresponds to the estimated response-time of the participants (Brosnan

et al., 2017), and the acceleration peak to the instant when the athlete starts pushing on the

starting blocks. The races were then segmented using tst ar t and the official race time (Tr ace )

of the participants.

Temporal Analysis and Orientation Estimation

The stepwise temporal analysis was carried out as in (Falbriard et al., 2018) with minor adap-

tations to improve the robustness of event detection (i.e., mid-swings, initial contact, and

terminal contact). The performance of the detection algorithm was indeed affected by the

noise generated by the hurdle clearance movements, the adaptation steps occurring before
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Figure 8.2 – The orientation of the IMU technical frame (blue), the foot functional frame
(red) and global frame (green) when standing. Rcal i b is the rotation matrix obtained by the
functional calibration.

and after the hurdle, and by the high running speeds. Since initial (IC) and terminal contact

(TC) generate high-frequency oscillations in the acceleration signal, we restrained the search

window for IC and TC events using the envelope of the signal. We computed the envelope

using two successive wavelet transforms. First, we applied a high-pass filter (Fc = 100 Hz) on

the acceleration norm, which preserved only the high-frequency oscillations at IC and TC.

We then rectified the signal and applied a low-pass filter (Fc = 5 Hz). Although the successive

filters resulted in a low amplitude signal, the shape of the envelope preserved two peaks where

the high-frequency oscillations of IC and TC occurred. Features detection within these IC and

TC limits was carried out as in (Falbriard et al., 2018), and the detection results of each trial

were visually inspected to ensure that the algorithm correctly detected IC, TC, and mid-stance

(MS) at each step. Note that MS corresponds to the event where the angular velocity in the

sagittal plane of the foot is minimum.

We obtained the 3D orientation of the foot using strap-down integration (Favre et al., 2006)

and a drift correction method based on the assumption that the global frame (GF) and the FF

were aligned at MS (Figure 8.2). Hence, the orientation of the foot between two successive

strides i and i+1 was computed in the GF set at MS(i). Furthermore, the inclination of the foot

in the starting-blocs was found using the orientation of the gravitational acceleration in the FF.

Two Euler angles were extracted from the quaternion notation in the ZYX order: (1) the pitch

angle (θ) defined as the rotation in the sagittal plane, and (2) the yaw angle (ψ) defined as the

rotation in the horizontal plane.

8.2.4 Hurdle Clearance Detection

Three methods have been implemented to detect HC and identify LL; (1) MAG: using the

magnetometer signal, (2) TEMP: using the temporal events, and (3) ORIENT: using the foot

orientation (i.e., pitch and yaw angles). For each of these methods, both a unipedal (i.e.,

one foot-worn IMU) and a bipedal (i.e., one IMU on each foot) configuration were tested.
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Figure 8.3 – Flow chart of the proposed hurdle clearance detection method. We defined the
inputs as follows: a the accelerometer data, ω the gyroscope data, m the magnetometer data,
Tr ace the official race duration, θ the pitch angle, and ψ the yaw angle of the foot. Initial
contact (IC), terminal contact (TC), mid-stance (MS), stride time (STR), swing phase duration
(SW), step duration (STP), and flight phase duration (FLY) result from the temporal analysis.
Hurdle clearance (HC) detection results are shown as HCX X and leading leg detection results
as LLX X , where XX describes the detection method.

Each method was developed independently of the two others and used different parameters.

Because the total number of hurdles (Nhur dl es) and the distance between the hurdles (DH )

were fixed, these parameters were considered as inputs of the system. The general flow chart

of the methods is described in Figure 8.3.

MAG: Magnets and Magnetometer Based Detection

This method assumes that the two magnets affixed on each side of the hurdle (Figure 8.1)

locally increased the magnitude of the magnetic field. The HC detection, therefore, consisted

of finding peaks on the filtered magnetometer norm (Figure 8.4).

We computed the upper envelope of the magnetometer norm using spline interpolation over

local maxima separated by at least 0.5 s (maximum step frequency reported in (Hanon & Gajer,

2009)). The envelop signal was then normalized by its mean to facilitate the comparison of

the peak absolute values between the two feet. Unipedal HC detection involved finding the

Nhur dl es highest peaks separated by at least τ second (Eq. 8.1) on m̂r i g ht and m̂le f t for the

right and left leg, respectively:

τ= min(DH )/Vmax (8.1)
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Figure 8.4 – Block diagram of the MAG method. In this figure, mle f t and mr i g ht represent the
magnetometer norm of the left and right foot, Nhur dl es the number of hurdles to detect and τ
the minimum time difference between two consecutive HC.

where DH is the set of interval length and Vmax , the maximum running speed considered.

As min(DH ) = 35 m and Vmax was set at 11.67 m/s (42 km/h), which is slightly faster than

the average speed of the current 100m sprint World Record, τ was set at 3s. The times of

the Nhur dl es highest peaks were then labeled as HCML and HCMR for the left and right leg,

respectively, with dim(HCML) = dim(HCMR ) = Nhur dl es . We obtained the bipedal detection

results, namely HCMB , by combining HCML and HCMR using to the following rules:

1. If |HCML(i )−HCMR ( j )| < 0.4 s, i and j ∈ {1, . . . , Nhur dl es}, then 0.5∗(HCML(i )+HCMR ( j ))

was added to HCMB . Here, we assumed that if two HC events occurred within a short

period (i.e., 0.4s = average flight time in (Salo et al., 1997)) and were detected on the left

and right foot distinctively, then these events were likely to correspond to a true HC. As

we could not predict which of the left or right event was more accurate, we defined the

time of the true HC event as the average of the left and right foot events.

2. The i and j indices not considered in step 1 were recursively added to HCMB until

di m(HCMB ) = Nhur dl es . The greatest peaks were added first if they were minimum τ =

3s away from all the HC already in HCMB . Finally, the results were sorted in their order

of appearance within the race.

Leading leg identification was only possible for the bipedal detection (LLMB ), where we

assumed that the leg with the earliest magnetic peak was the LL.

TEMP: Temporal Event-Based Detection

This method supposes that the HC strides have longer phase duration in comparison to

regular running strides. The phases considered were stride time (STR), swing phase duration
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(SW), step duration (STP), and flight phase duration (FLY) with the time series estimated as in

Eq. 8.2 - 8.5:

ST R(i ) = IC (i +2)− IC (i ) (8.2)

SW (i ) = IC (i +2)−TC (i ) (8.3)

ST P (i ) = IC (i +1)− IC (i ) (8.4)

F LY (i ) = IC (i +1)−TC (i ) (8.5)

Note that the estimation of these four temporal parameters required the detection of different

events and necessitated different sensor configurations (Table 8.1). Since IC is more precisely

detected than TC in running (Falbriard et al., 2018), we decided to keep STR and STP in the

analysis, although SW and FLY offer narrower windows for HC detection (i.e., SW and FLY

occur within STR and SPT, respectively). Moreover, STP and FLY parameters both require a

bipedal configuration while STR and SW can be estimated from a single IMU.

Parameters Detection required
IC TC Configuration

STR yes no Unipedal
SW yes yes Unipedal
STP yes no Bipedal
FLY yes yes Bipedal

Table 8.1 – Features and configurations required in order to estimate, for each step/stride, the
parameters used to detect hurdle clearance.

To remove the trend induced by fatigue (Hanon & Gajer, 2009), we subtracted the moving

average from the STR, SW, STP, and FLY time series using a window of length K (K equal to 60

steps for STP and FLY and 30 strides for STR and SW). For each parameter, the indices of the

Nhur dl es highest peaks (i.e., the longest phase durations), separated by at least τ =3 s, were

defined as ik where k = 1. . . Nhur dl es . Eq. 8.6 - 8.9 show how the exact times of the HC were

obtained based on the selected ik periods of each parameter:

HCST R (k) = 0.5× (IC (ik )+ IC (ik +2)) (8.6)

HCSW (k) = 0.5× (T C (ik )+ IC (ik +2)) (8.7)
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HCST P (k) = IC (ik +1)+0.74× (IC (ik +2)− IC (ik +1)) (8.8)

HCF LY (k) = TC (ik +1)+0.65× (IC (ik +2)−T C (ik +1)) (8.9)

In the unipedal cases (Eq. 8.6 - 8.7), we used a 0.5 factor because the exact time point of the HC

event depends on the location of the IMU (i.e., on the leading leg or the trailing leg) (Figure 8.5).

In Eq. 8.8 - 8.9, the 0.74 and 0.65 coefficients were based on the results of previous research

(Čoh et al., 2008; Lafortune, 1988; Mclean, 1994). In these studies, the last ground contact

time before HC lasted for approximately 25% of the total step duration. Furthermore, hurdle

clearance occurred after 65% of the total HC distance, so if the speed is considered constant,

65% of flight time. The 0.74 factor of Eq. 8.8 was found using the two coefficients mentioned

above (Eq. 8.10):

0.74 = r ound(0.25+0.65× (1−0.25)) (8.10)

Here the round() function rounds to the nearest two digits to the right of the decimal point.

Finally, for LL identification using the STP and FLY parameters (LLST P and LLF LY ), we defined

as the trailing leg the side where HC was detected.

Leading	leg
IC(ik) TC(ik) IC(ik+2) TC(ik+2)

Trailing	leg
IC(ik+1) TC(ik+1)

SW(ik)

SW(ik +1)

FLY(ik+1)

STP(ik+1)

STR(ik)

STP(ik)

FLY(ik)

Figure 8.5 – A sequence of temporal events for the leading and trailing leg. IC events are shown
with circles, TC events with diamonds. HC events are shown with two parallel vertical bars,
ground contact with a solid horizontal line, and SW with a horizontal dashed line. In green,
the flight phase within which HC detected from MAG, TEMP, and ORIENT method would be
classified as correctly detected.

ORIENT: Orientation based Detection

In the hurdle clearing stride, the kinematics of the leading leg differ from those of the trailing

leg (Tidow, 1991). Indeed, a large positive pitch angle (θle f t , θr i g ht ) was expected for the

leading leg during HC and large yaw angle (ψle f t , ψr i g ht ) for the trailing leg. So, regardless of

the IMU location (leading or trailing leg), it should always be possible to detect the HC events

and determine the LL using only the pitch and yaw angles.
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Figure 8.6 – Flow chart of the ORIENT method. In the figure, the pitch and yaw signal are
represented by θle f t , θr i g ht and ψle f t , ψr i g ht , respectively. Nhur dl es is the number of hurdles
to detect and τ the minimum time difference between two consecutive HC. Hurdle clearance
(HC) detection results are shown as HCX X and leading leg detection results as LLX X , where
XX describes the detection method.

The general behavior of the ORIENT method is depicted in Figure 8.6. First, this method

searched for positive peaks on the pitch and yaw angles of each foot independently (unipedal).

The best HC candidates obtained in unipedal configuration (HCOL , HCOR ) were later com-

bined to get the bipedal detection results (HCOB ).

In unipedal configuration, we first found within each stride the local maxima on the pitch and

yaw angles (i.e., separated by at least 0.5 s as for the magnetometer). We then kept the timing

of the Nhur dl es highest peaks separated by at least τ (=3 s). These peaks were then stored as

candidate HC events in HCθL , HCψL , HCθR , and HCψR for the left foot pitch angle (θle f t ),

left foot yaw angle (ψl e f t ), right foot pitch angle (θr i g ht ), and right foot yaw angle (ψr i g ht ),

respectively. As a result, di m(HCθL) = di m(HCψL) = di m(HCθR ) = di m(HCψR ) = Nhur dl es .

Since an HC event produces a local maximum either on the pitch or on the yaw angle of the

same foot, only Nhur dl es elements in HCθL ∪HCψL and HCθR ∪HCψR sets were considered

as true HC events. To select the best HC candidates among all the elements in HCθL ∪HCψL

and HCθR ∪HCψR , we normalized the absolute values of the peaks as in Eq. 8.11 - 8.12 (only

the equations for the left foot are shown):

θ̂(HCθL) = (θ(HCθL)−MθL)/IθL (8.11)

ψ̂(HCψL) = (ψ(HCψL)−MψL)/IψL (8.12)

Here, MθL is the median of the left foot pitch angle over the entire trial, MψL the median of

the yaw angle, IθL the interquartile range (IQR) of the pitch angle, and IψL the IQR of the yaw
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angle. The elements in θ̂(HCθL)∪ ψ̂(HCψL) are then sorted in descending order and added

to HCOL recursively provided that each element in HCOL is separated by at least by τ (=3 s).

As a result, we defined HCOL as the set of the HC events obtained for the left foot (i.e., the

best HC candidates among HCθL and HCψL). The same method was applied for the right

foot to obtain HCOR (Figure 8.6). Finally, HCOL and HCOR were combined to get the bipedal

detection results, with a selection process similar to the magnetometer:

1. If |HCOL(i )−HCOR ( j )| < 0.4 s, i and j ∈ {1, . . . , Nhur dl es}, then 0.5∗ (HCOL(i )+HCOR ( j ))

was added to HCOB . Here, we assumed that if two HC events occurred within a short

period (i.e., 0.4s = average flight time in (Salo et al., 1997)) and were detected on the left

and right foot distinctively, then these events were likely to correspond to a true HC. As

we could not predict which of the left or right event was more accurate, we defined the

time of the true HC event as the average of the left and right foot events.

2. The i and j indices not considered in step 1 were recursively added to HCOB until

di m(HCOB ) = Nhur dl es . The greatest peaks were added first if they were minimum τ =

3s away from all the HC already in HCOB . Finally, the results were sorted in their order

of appearance within the race.

Lastly, we used the following rule to detect the LL: the leg for which an HC event corresponded

to a peak in the pitch angle was labeled as the leading leg. The results were kept in three LL

identification sets: LLOL and LLOR for unipedal detection of the left and right leg and LLOB

for bipedal configuration.

8.2.5 Data Analysis

Ideally, the time when the athlete’s center of mass cleared the hurdle should be used as a

reference for HC time. However, due to the lack of synchronization between the camera and

the IMUs, this reference was not available. Instead, we considered the time of HCF LY (65% of

flight phase) as the reference HC time (HCr e f ) if it occurred inside of the flight phase of an HC

observed on video. Note that the LL at each HC was manually labeled using the video.

The HC detected using the TEMP, ORIENT, and MAG methods were considered correctly

detected if it occurred inside the flight phase of a reference HCr e f . Note that for HCST R and

HCSW (TEMP methods in unipedal configuration), an HC was considered correctly detected

if HCr e f occurred inside of a stride of HCST R or inside of a swing of HCSW (Figure 8.5). These

two exceptions were necessary as the system could not identify the LL solely based on the STR

and the SW parameters. We evaluated the performance of the proposed systems by computing

the mean, SD, the minimum, and the maximum number of correctly detected HC per trial.

Moreover, the mean ± SD of the differences in HC detection time (∆tHC ) between HCr e f and

HC detected from TEMP, ORIENT, and MAG methods were measured. Finally, all the correctly

detected HC were collected, and the percentage of correctly identified LL was calculated

regardless of the athlete.
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As one of the goals of this study was to provide feedback to the participants and trainers,

we extracted key performance features from the races (Amara et al., 2019; Otsuka & Isaka,

2019), such as contact time (CT), flight time (FLY), step frequency (STF) and speed (SPE).

Moreover, we obtained the speed using the distance between the hurdles (DH ) and the time

difference between two consecutive HC. The potential detection errors of IC and TC (Falbriard

et al., 2018) combined with a ±10% error on the 65% reference threshold (Eq. 8.9) provided

a confidence interval on the estimated speed. To assess how CT, STF, FLY, and SPE changed

during the race, we extracted the mean of these parameters for the 11 intervals of the 15

races. We then grouped the results per interval and computed the inter-subjects mean and

SD for each interval. Note that the first and last two steps of each interval were removed as

these may be affected by the landing and takeoff phases. Also, we used a one-way ANOVA

on the intra-interval means, with a significance level at 0.05 (*) and 0.01 (**), to assess any

significant statistical differences between the second interval and the subsequent ones. The

second interval was preferred to the first one as the latter was affected by the acceleration

phase at the start of the race. Moreover, the intra-interval means of CT, STF, SPE, and FLY were

expressed relative to the mean of the second interval (Eq. 8.13 - 8.16), and the evolution of

these parameters during the race presented using boxplots:

AvC T (k) = mean(C T (tk ))

mean(C T (t2))
(8.13)

AvST F (k) = mean(ST F (tk ))

mean(ST F (t2))
(8.14)

AvSPE(k) = mean(SPE(tk ))

mean(SPE(t2))
(8.15)

AvF LY (k) = mean(F LY (tk ))

mean(F LY (t2))
(8.16)

where k is the interval index (here k = 3. . . 11), and tk corresponds to the steps between interval

k and k+1.

8.3 Results

In total, we analyzed the races of 15 athletes. One athlete had to be removed from the data set

due to an instrumentation error. Such collection led to 300 HC for the evaluation in unipedal

configuration (i.e., foot considered independently) and 150 HC for the assessment of bipedal

configuration. According to the video-based validation of the HC detected in HCF LY , all the

150 HC were correctly detected, with the correct number of steps in each interval and the

correct leading leg identified. The results of the MAG, TEMP, and ORIENT detection methods

are compared in Figure 8.7, where the processed signals and detected peaks are illustrated for

both unipedal and bipedal configurations.
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Figure 8.7 – Detection results obtained by MAG (top), TEMP (middle), and ORIENT (bottom)
methods for one trial. The magnetometer graphs show the calibrated magnetic field intensity
(CMFI) in percent of the Earth’s magnetic field. The column on the left shows the detection
results in unipedal configuration and on the right for bipedal detection. The vertical grey
dashed lines represent the reference HC events.

Table 8.2 compares the HC detection results in terms of correctly detected HC per trial and the

mean ± SD of ∆tHC . In unipedal configuration, LL detection accuracy is shown exclusively for

the ORIENT method as the other methods cannot perform such analysis. Also, LL identifica-

tion and ∆tHC statistics were computed on the correctly detected HC, hence the different N

values for each method in Table 8.2.

Figure 8.8 presents the relative changes for the average speed (AvSPE ), contact time (AvC T ),

step frequency (AvST F ), and flight time (AvF LY ) throughout the race. These are expressed

relative to the speed, contact time, step frequency, and flight time (Eq. 8.13 - 8.16) estimated

in the second interval (i.e., 45-80 m). As the vertical color bar on the right side of the figures

indicates, the values of the slowest athletes are shown in blue, and the fastest in orange - the

boundary performances (i.e., the fastest and the slowest athlete) are shown with dashed lines.
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Methods HC detection per trial Correct HC / ∆tHC (ms) LL accuracy
mean SD min max Total HC mean SD % (Total)

Unipedal
MAG 4.63 2.76 0 9 139 / 300 -12 100 -
TEMPSTR 9.97 0.18 9 10 299 / 300 -138 106 -
TEMPSW 10 0 10 10 300 / 300 -78 104 -
ORIENT 9.53 0.82 7 10 286 / 300 -47 96 99.7 (285)
Bipedal
MAG 7.33 1.76 2 9 110 / 150 15 94 39.1 (43)
TEMPSTP 10 0 10 10 150 / 150 2 4 100 (150)
TEMPFLY 10 0 10 10 150 / 150 0 0 100 (150)
ORIENT 9.6 0.91 7 10 144 / 150 -42 33 99.3 (143)

Table 8.2 – Hurdle clearance and leading leg detection results for both unipedal and bipedal
configurations. In total, 15 trials with each Nhur dl es = 10 hurdle clearances were available.

Table 8.3 presents inter-subject mean and SD of the average CT, FT, STF, and SPE in each

interval. The results from the one-way ANOVA test are shown for the intra-interval mean

contact time, flight time, step frequency, and speed. On average, 18 steps (min = 11, max = 20)

were available per interval. Finally, Figure 8.9 presents an overview of the average speed (blue)

and the number of steps (orange) within each HC interval of a single athlete. The blue vertical

lines represent the confidence interval of the average speed values, and the blue horizontal

dashed line shows the average speed during the race. Also, we used R (right) and L (left) letters

to indicate the side of the leading leg at each HC (vertical grey dashed lines). Such a graph

provides an example of the type of feedback that can be instantly extracted using the proposed

HC detection method.

A

Figure 8.8 - Cont.
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B

C

D

Figure 8.8 – Evolution of AvSPE (a), AvC T (b), AvST F (c), and AvF LY (d) between the third
and the last interval. The y-axis values are expressed relative to the average values obtained
within the second interval (45 to 80 m). The orange to blue gradient is used to differentiate
the athletes according to their performance time, with the boundary performances (slowest
and fastest athlete) being illustrated with dashed lines. For better visibility of individual data
points, a small scatter was introduced in the x-direction.
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Interval Distance, m
CT, ms FLY, ms STF, Hz SPE, ms−1

mean SD mean SD mean SD mean SD

1 0-45 110 7 154 11 3.8 0.15 6.73 0.44
2 45-80 104 8 160 10 3.81 0.11 7.77 0.64
3 80-115 110 9 165 10 3.65* 0.13 7.41 0.61
4 115-150 113 9 167 10 3.59** 0.11 7.24 0.55
5 150-185 115 10 171 10 3.51** 0.1 7.05* 0.57
6 185-220 118** 10 169 7 3.5** 0.11 6.88** 0.56
7 220-255 120** 10 170 8 3.46** 0.11 6.72** 0.63
8 255-290 125** 11 170 9 3.4** 0.09 6.5** 0.64
9 290-325 127** 10 173* 11 3.35** 0.13 6.28** 0.61
10 325-360 129** 12 172* 13 3.33** 0.11 6.34** 0.59
11 360-400 128** 10 170 10 3.36** 0.11 6.34** 0.54

Table 8.3 – Inter-subject mean and SD of the average contact time (CT), flight time (FLY), step
frequency (STF), and speed (SPE) within each interval. The results from the one-way ANOVA
test, which compared the mean statistics between the second interval and the subsequent
ones, are shown with significance level at 0.05 (*) and 0.01 (**).

Figure 8.9 – Average speed, number of steps, and leading leg analysis for each interval between
hurdles within a single race. The average speed between all HC is shown with blue squares and
the confidence interval with vertical solid lines. The blue horizontal dashed line corresponds
to the average race speed. Also, the number of steps is depicted with orange circles and the
leading leg at each HC (vertical grey dotted line) with R (right), or L (left).
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8.4 Discussion

The primary aim of this study was to evaluate the performance of three different MIMU-based

methods in detecting HC events and identifying the leading leg in 400 m hurdles. In the

unipedal configuration, the best HC detection results were obtained using the TEMP method

and the swing phase duration (Table 8.2). This method was able to detect all the 300 HC

available in the data set.

In contrast to the SW parameter, the ORIENT method delivered a slightly lower HC detection

accuracy (95.3%), with one trial detecting only seven hurdles. The ORIENT method relies on

the HC technique used by the athletes. It assumes a large pitch angle for the leading leg and a

large yaw angle for trailing leg at HC (Figure 8.7). Its detection accuracy thus may decline the

lower the performances, e.g., for beginners. However, ORIENT was the only method capable

of identifying the leading leg in unipedal configuration and showed a high 99.7% accuracy

with only one misclassification among all the 286 correctly detected HC.

The MAG method did not provide a reliable detection in unipedal configuration, with only

46.3% accuracy (Table 8.2). Closer inspection of the signals showed that most of the non-

detected HC were caused by the absence of a peak in the raw data. A possible explanation for

these results resides in the fact that the detectable distance between the foot-worn magne-

tometer and a hurdle depends on the setup of the magnet bars. As the weight of the hurdles is

regulated, the number of vertically stacked magnets was limited, and so was the detectable

distance. Also, fixing the magnets on the top bar of the hurdles would have reduced the

foot-to-magnet distance but was not feasible in this study for practical reasons. Finally, the HC

technique of the athlete may affect the detection results as an efficient technique minimizes

the distance between the athlete center of mass and a hurdle. Although the results improved

in the bipedal configuration (73.3%), this method remains the least accurate compared to the

two others.

In the bipedal configuration, the flight time and step duration (TEMP method) provide a 100%

accurate detection of HC and the ORIENT method 96% accuracy. These observations can

be generalized to the identification of the leading leg in the bipedal configuration. Based on

these findings, flight time seems to be the best indicator for both HC and LL identification

and should be preferred to the step duration as it provides a narrower window around HC

events (Figure 8.5). Yet, if only one foot-worn IMU is available, the swing phase duration in

combination with the foot pitch and yaw angles also provides accurate detection for HC and

LL.

A note of caution is due here since previous researches have shown that the vertical speed

varies during the flight phase (Przednowek et al., 2014) and that the 65%–35% ratio used

in this study may change among athletes (Čoh et al., 2008; Lafortune, 1988; Mclean, 1994).

The estimated time of HC and the average speed between two hurdles must, therefore, be

presented with an appropriate confidence interval (Figure 8.9). In future investigations, it

would be interesting to investigate if: (1) the pitch angle of the leading leg and the yaw angle
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of the trailing leg can be used conjointly to estimate the exact moment the athlete’s center of

mass clears the hurdle and (2) if instrumented magnetic hurdles with the magnet placed on

the horizontal bar could be used to estimate the distance between the hurdle and the foot.

The secondary aim of this study was to investigate the evolution of contact time, running speed,

flight time, and step frequency throughout the race. As shown in Figure 8.8 and Table 8.3,

contact time increased, and speed decreased with the distance covered. A significant rise

(p < 0.01) was found for contact time starting from the sixth interval in comparison to the

second interval. However, the rate of these changes did not appear to be associated with the

performances of the athlete as the slowest and fastest participants presented similar rates of

change.

The running speed was significantly reduced as the distance covered increased, starting with

the fifth interval (p < 0.05) and increasing (p < 0.01) from the sixth interval. As for the contact

time, no association between the change in running speed during the race and athlete caliber

was evident. These results support the evidence from previous studies (Hanon & Gajer, 2009;

Nummela et al., 1992), who also observed a significant increase in contact time and a decrease

in running speeds for 400-m sprints. Note that the average and SD of step frequency measured

in this study (3.52 ± 0.19) are comparable with those of national-level hurdlers presented

in (Otsuka & Isaka, 2019). We also observed that the step frequency significantly decreased

starting from the third interval.

Interestingly, flight time did not follow the same trend, and no clear pattern emerged from

data analysis. Although the average flight time increased as the race progressed, only intervals

9 and 10 provided significant differences. This observation suggests that the flight time is less

affected by fatigue than the contact time. However, a measure of stride length would be useful

in future studies to further investigate the evolution of spatiotemporal variables as a function

of fatigue during 400 m hurdle races.

Finally, Figure 8.9 presents the example of a report which was provided to the athletes and

trainers. Such a graph showcases the potential of the proposed system and the type of feedback

that can be provided during field training. Overall, this research offers new insight into the

performance of different wearable methods for detecting HC and will contribute to a deeper

understanding of the discipline by providing a tool for researchers, athletes, and trainers.

8.5 Conclusions

This study showed that foot-worn inertial and magnetic sensors, combined with magnets bars,

can be used to detect hurdle clearing events in 400-m hurdle. The results showed that both

unipedal and bipedal configuration can provide reliable detection. When the sensor is placed

on one foot (unipedal configuration), the swing phase duration was capable of detecting

100% of the hurdle clearances. When combined with the pitch and yaw angles of the foot,

the unipedal configuration can correctly identify the leading leg with an accuracy of 99.7%.
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These results were even improved to a 100% accuracy in both HC detection and leading leg

identification when using flight phase duration in bipedal configuration (a sensor at each foot).

Moreover, this study also showed that the use of additional magnets/magnetometer does not

improve the detection results of the system. Finally, this study showcased the potential benefit

of using foot-worn IMUs and validated algorithms in 400-m hurdle races as they can provide

helpful feedback about the race and continuously assess the changes in spatiotemporal

parameters.
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Abbreviations

Acronyms Definition

AvC T (k) Average CT within the kth interval expressed relatively to AvC T (2)

AvF LY (k) Average FLY within the kth interval expressed relatively to AvF LY (2)

AvSPE(k) Average SPE within the kth interval expressed relatively to AvSPE(2)

AvST F (k) Average STF within the kth interval expressed relatively to AvST F (2)

CMFI Calibrated magnetic field intensity

CT Contact time

DH Distance between the hurdles

FF Functional frame

FLY Flight phase duration

GF Global frame

HC Hurdle clearance

HCF LY HC detection results of the FLY parameter in the TEMP method

HCMB Bipedal HC detection results of the MAG method

HCML Left foot HC detection results of the MAG method

HCMR Right foot HC detection results of the MAG method

HCψL Left foot HC detection results based on ψle f t in the ORIENT method

HCψR Right foot HC detection results based on ψr i g ht in the ORIENT method

HCOB Bipedal HC detection results of the ORIENT method (HCOL and HCOR )

HCOL Left foot HC detection results of the ORIENT method (HCθL and HCψL)

HCOR Right foot HC detection results of the ORIENT method (HCθR and HCψR )
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HCr e f Reference HC time

HCST P HC detection results of the STP parameter in the TEMP method

HCST R HC detection results of the STR parameter in the TEMP method

HCSW HC detection results of the SW parameter in the TEMP method

HCθL Left foot HC detection results based on θle f t in the ORIENT method

HCθR Right foot HC detection results based on θr i g ht in the ORIENT method

IC Initial contact

IMU Inertial measurement unit

LL Leading leg

LLF LY Bipedal LL detection results of the TEMP method using the FLY parameter

LLMB Bipedal LL detection results of the MAG method

LLST P Bipedal LL detection results of the TEMP method using the STP parameter

ml e f t Magnetometer signal recorded on the left foot

m̂l e f t Preprocessed magnetometer signal from the left foot

mr i g ht Magnetometer signal recorded on the right foot

m̂r i g ht Preprocessed magnetometer signal from the right foot

MAG Magnetometer based method for HC and LL detection

MIMU Magnetic inertial measurement unit

MS Mid-stance

Nhur dl es Total number of hurdles

ORIENT Orientation based method for HC and LL detection

ψ Yaw angle

ψ̂ Normalized yaw angle

ψl e f t Yaw angle measured on the left foot

ψr i g ht Yaw angle measured on the right foot

SPE Speed

STF Step frequency

STP Step duration

STR Stride time

SW Swing phase duration

τ Minimum time difference between two consecutive HC

Tr ace Official race time of a participant

Tst ar t Time of the start of the race

∆THC Differences in HC detection time

TC Terminal contact

TEMP Temporal parameter-based method for HC and LL detection

θ Pitch angle

θ̂ Normalized pitch angle

θle f t Pitch angle measured on the left foot

θr i g ht Pitch angle measured on the right foot

Vmax Maximum running speed considered (42 km/h)
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9 General Discussion

9.1 Main contributions

The objective of this thesis was to expand the scope of running analysis through the design

of a new wearable assessment device. The proposed system, based on foot-worn inertial

sensors, uses lab-validated algorithms to quantify the temporal parameter of gait, estimate

the fixed-frame orientation of the foot, and measure the overground running speed. It was

validated against gold-standard reference systems, and its applicability tested in real-world

and unconstrained conditions (marathon, trail running, and 400-m hurdling).

As introduced in the first part of this thesis (Part I, Introduction and Background), the exact

relationship between the spatiotemporal parameters of gait and performances, or injuries,

remains an open discussion among researchers. Hence, the proposed system does not have

the pretentiousness to provide such a diagnostic. Instead, it provides scientists with new

opportunities to monitor running in real conditions and over long periods. The system is

non-invasive, lightweight, comfortable, and, as Part III revealed, can be introduced in different

competition settings without disturbing the users.

The technical validation studies presented in Part II reveal the performance and limitations of

the proposed methods. Characteristics such as bias and precision are essential to select the

appropriate instrumentation for a given study; the precision (i.e., random error) of the system

should be lower than any significant change in the measured parameters. Otherwise, these

changes considered significant would disappear within the noise of the device.

However, as discussed in Part I, some of the methods reported in the literature are either

not validated against gold-standard reference systems or derived from walking analysis with-

out considering running-specific adaptations. Furthermore, the systems are often tested in

controlled environments, such as on a level treadmill, and rarely accounted for the variety

of settings that wearable sensors can undergo in real-world situations. In comparison, the

current thesis (Part III) also tested the limitations of the proposed methods outdoor, in un-

constrained environments, and for different types of running events: marathon, trail running,
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and 400 meters hurdling.

The current thesis was organized into four parts, and each part was subdivided into different

chapters. Part I introduced running and discussed the relevant temporal, kinematic, and

kinetic parameters investigated in the literature (Chapter 1). It also briefly discussed the

history of running assessments and provided evidence of growth in the number of participants.

Chapter 2 then examined the current state-of-the-art in running assessment methods, starting

with the gold-standard systems and followed with body-worn inertial sensors. On the latter

subject, the performances and challenges associated with inertial sensing units in running

were introduced.

Part II, focused on the technical description and validation of three novel methods for (1)

temporal events detection and gait phases estimation, (2) measure the orientation of the foot

by estimating and reducing the orientation drift, and (3) estimate the running speed using

three different approaches. We showed that, in order for foot-worn inertial sensors to provide

an accurate and precise evaluation of the running, the system must consider the underlying

mechanics of the foot and adapt to the different landing techniques.

Part III tested the designed algorithms in three real-world applications (marathon race, ultra-

marathon mountain race, and 400 meters hurdling event) and proposed amelioration when

necessary. The system was able to observe trends in the average step height and vertical

velocity in trail running, revealed statistically significant changes starting around the 25km

of a marathon race and was able to detect the timing of hurdles crossings and to identify

the leading leg. Moreover, the system was able to provide fast and relevant feedback to the

track-and-field coaches of the hurdling study.

9.1.1 Part II – Algorithms development and validation

In Chapter 3, we validated against a force platform the performance of several algorithms to

detect running temporal events and estimate inner-stride phases duration. The results showed

that the two minimum values of the pitch angular velocity before and after a mid-swing event

provided the best estimation of initial and terminal contact of the foot. The maximum vertical

acceleration before a mid-swing event also provided a good estimation of terminal contact,

and its accuracy seemed less associated with the running speed. Moreover, we showed that

the ground contact time, flight time, step and swing time can be estimated with an inter-trial

median ± IQR bias less than 15 ± 12 ms and the inter-trial median ± IQR precision less than

4 ± 3 ms. Besides, this chapter also described an automatic functional calibration method

based on the motion of the foot during running. Such calibration method improves the user

experience by reducing the tedious calibration movements to a short ( 3 seconds) standing

period. As additional results , we proposed a decision tree structure to automatically assign

body-worn sensors to the thorax, the sacrum, the left shank, the right shank, the left foot,

or the right foot. The proposed classification method achieved an accuracy of 99.4% in the

distinction between the upper vs. lower body sensors, 95% accuracy between the trunk and
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sacrum sensors, 97.3% accuracy between the foot and shank sensors, 79.6% accuracy between

the left and right foot-worn sensors, and 88.2% between the left and right shank-worn sensors.

Hence, the current method provides a quasi-plug-and-play calibration method.

In Chapter 4, we introduced and validated a new method to estimate and correct the ori-

entation drift estimation based on a foot-worn IMU using a two-segment model of the foot

for drift removal. The validation compared sagittal and frontal plane angles obtained from

an optical motion-tracking system with our inertial sensors-based estimation. The pitch

angle at mid-stance was estimated with low errors (inter-trial median ± IQR of 0.4 ± 3.8° and

an inter-trial precision median ± IQR of 3.0 ± 1.8°). According to the results of a previous

study (Altman & Davis, 2012), we argued that the performance of the proposed system should

provide an acceptable classification of the foot strike pattern. Finally, as additional results,

we discussed the accuracy of the foot strike pattern and pronation assessment using video

cameras.

In Chapter 3 and Chapter 4, we showed that the accuracy of the proposed methods was affected

by the running speed and suggested that, if known, the speed could be used to improve the

system. Hence, in Chapter 5, we proposed and evaluated three different methods for real-

world running speed estimation: direct speed estimation, training-based linear model, and a

personalized model. The direct estimation of the foot velocity was sensitive to the changes in

ground incline and confirmed the hypothesis that the techniques derived from walking can

not be generalized to running due to the inaccurate measures of the accelerometer during

the flight phase. We also showed that the linear model performed best when we averaged its

output over a few steps and proposed 4 steps as an acceptable trade-off between performance

(bias: 0.00 ± 0.11 m/s; precision: 0.12 ± 0.06 m/s) and time-resolution. Lastly, we presented the

results from the personalized model and concluded that the inter-subject bias and precision

could be improved, given intermittent access to some reference speed data.

Overall, the methods described in Part II led to the development of a collection of task-specific

algorithms. The algorithms are interconnected in the sense that each plays an essential role

in the subsequent ones. For instance, the automatic functional calibration developed in this

thesis first needs to ensure that the IMU is actually located on foot, hence the importance of

the automatic IMU-to-segment assignment. Similarly, initial and terminal contact events are

detected the sagittal plane angular velocity signals and therefore depend on the quality of the

functional calibration. Such comments also hold for the importance of temporal analysis in

drift correction and drift correction in the estimation of the running speed.

9.1.2 Part III – Real-world applications

In Chapter 6, we tested the proposed methods during a marathon race and showed that the

spatiotemporal parameters can be measured continuously throughout the race and provide

relevant information about the mechanical alteration occurring as the distance increases. The

main challenge we faced with the marathon was the presence of walking bouts within the
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race. These bouts need to be removed from the analysis, and a simple speed-based threshold

showed inconsistencies, especially in 6 to 8 km/h range. We, therefore, added criteria based

on the duty factor. The analysis suggested the presence of two breaks on the running patterns

during the race: a first occurring after approximately 25 km, and the second occurring after

35 km. Apart from the changes in contact time and flight phase duration, the continuous

assessment of the foot strike angle provided new insight into its slowly decreasing pattern,

which was not possible from the video-based analyses (Hasegawa et al., 2007).

In Chapter 7, we showed that the temporal analysis algorithms presented in Chapter 3 can be

extended to IMUs located at the ankle joint and that these algorithms were able to investigate

the effects of altitude and distance on the main spatiotemporal gait parameters during an

extreme mountain ultra-marathon. In trail running, the racing conditions are frequently

changing: the slope from uphill to down running, the surface from concrete to grass and rocky

mountain trail, and the weather from warm and sunny to cold and humid. These challenging

environments can potentially affect the foot kinematics and, consequently, also the robustness

of temporal events detection. For instance, when trail participants are dealing with uneven

surfaces, they adapt their gait according to the obstacles on the ground, possibly changing

their step frequency very rapidly and causing misdetections in the analysis. Hence, to increase

the time-resolution of cycle detection, we updated the sliding estimation method of the step

frequency and added some timing-based criteria to check for missing steps. Moreover, over 20

hours of running, the attachment of the IMU sensors tends to loosen. We observed this issue

in the kinematic data and improved the algorithms by adding an episodic recalibration of the

sensors. This realignment of the IMUs’ technical frame was only possible when the participants

stopped running. Moreover, we showed that barometers could be used in conjunction with

inertial sensors to estimate the average vertical speed.

Chapter 8 showed that the proposed algorithms can assess the spatiotemporal changes of

gait and detect hurdle clearing events in a 400-m hurdling event. Compared to the previous

applications, 400-m hurdling exhibit running patterns closer to sprinting, with higher running

speed and a tendency to forefoot strike. The speed did not affect the detection thresholds set

for treadmill running (i.e., set during the validation), but the jumping movements required to

clear the hurdles did. Hence, we used the envelope of the high-frequency oscillations to narrow

the search window around initial and terminal contact, and thus improved the robustness of

step detection. The results showed that the method based on the duration of the flight phase

was able to detect hurdle clearance and identify the leading leg with 100% accuracy. Moreover,

by combining the swing phase duration with the orientation of the foot, we achieved, in

unipedal configuration, 100% accuracy in hurdle clearance detection, and 99.7% accuracy in

the identification of the leading leg. In addition, we also provided examples of performance

feedback and provided a general analysis of the changes in spatiotemporal parameters among

participants. Overall, this research might contribute to a deeper understanding of hurdling

by providing a tool for researchers, athletes, and trainers. Today, the majority of the track

and field coaches use a stopwatch to monitor the time at the hurdles and visually count the

number of steps between the hurdles; such a method can be inaccurate and it only allows to
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monitor one athlete at the time.

The variety of applications in which the system was evaluated revealed a need for a few

adaptations. Although the primary purpose of the algorithms remained unchanged, these

improvements constitute a critical step in making the system reliable in the wild. The need was

rather directed toward more robust detection and lower sensitivity to abrupt artifacts in the

data. While these issues can be avoided in-lab, they could become a reason of failure in-field.

To summarize, we provide the list of improvements we implemented for the real-world studies

– Detection and suppression of the walking bouts in conjunction with a threshold on the

running speed.

– Sliding window based estimation of the step frequency to improve the resolution of the

step detection algorithm.

– Automatic and episodic recalibration of the technical frame with the functional frame

of the foot.

– Improved step detection algorithm based on the high-frequency accelerations around

initial and terminal contact, to cope with irregular jumping movements.

– Detection of hurdle crossing events in 400 meters hurdling events.

– Identification of the leading leg in 400 meters hurdling events.

In addition to the applications mentioned above, the algorithms proposed in Part II were also

employed in two other research studies. Here, we briefly present the content and outcome of

these studies and explain the contributions of our methods.

– The automatic functional calibration method described in Chapter 3 was used in a study

published in the journal Footwear Science (C. Meyer et al., 2018). The objective of the

study was to investigate the influence of perceived footwear comfort on the variability of

running kinematics as a potential surrogate measure of comfort. Functional calibration

was performed in post-processing using the running data from thirty-six recreational

athletes in five different running shoes on an indoor track. For each trial, the algorithm

was able to compute all the transformation matrices that aligned the shoe-worn IMU

technical frame whit the functional frame of the foot.

– The spatiotemporal evaluation methods presented in Chapters 3 and 4 were used in a

study published in the journal Current sports medicine reports (Muniz-Pardos et al.,

2018). Although preliminary in nature, this study illustrated the unique capacity of

wearable devices to assess real-time running economy and foot mechanics in the field.

The algorithms were used to analyze the real-world measurements of 8 Kenyan athletes

and 4 adolescents.
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9.2 The proposed system in the industry

To make the outcome of this thesis available for any user, most methods presented in this thesis

were transferred into a commercialized product designed by Gait Up S.A. in the framework of

an academic-industry agreement (CTI and Innosuisse grants). The product development was

split into three sub-projects: (1) the design and implementation of a user interface, (2) the

creation of a private web architecture to store and process the data, and (3) the adaptation

of the validated algorithms into performance-efficient programming language (C++). I was

involved in the latter two stages.

A first version of the system was designed as an Android application capable of quickly record-

ing and analyzing running data wirelessly sent from two IMU units. The server architecture

was designed such that the generated reports and raw data could be kept and reused in later

times, for these reports to be recomputed after an update of the running analysis algorithms.

The meta-information associated with a report (e.g., client size, shoe type, date) was also

stored for further analysis. The cloud architecture was comprised of four elements: a public

web API, a private web API, a document-oriented database, and storage units for the raw

binary files. These elements were built using the latest technologies so that the cloud archi-

tecture and performances can be scaled in the future if needed. This version of the running

analysis system won the first prize at the 2015/2016 Wearable Technologies Innovation World

Cup in Sports & Fitness (Figure 9.1).

Today, the product evolved into a fast and precise system for stride-by-stride analysis of the

running technique. Hence the algorithms of this thesis are now commercially available to

coaches, shoe retailers, and athletes.

Figure 9.1 – WT Innovation World Cup award attributed to Gait Up S.A. for the running analyzer
system. Source www.gaitup.com.
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9.3 Limitations

The lab validation is a crucial step towards accurate and precise wearable systems. It allows

comparing the system’s performance with state-of-the-art devices for a variety of gait param-

eters. However, this controlled environment introduces some limitations in the methods,

which only real-world testing can reveal. Outdoor applications provide useful insight into

the robustness of the system, particularly about its capacity to perform in the presence of

motion artifacts, such as sensors’ attachment loosening, uneven surfaces, or intermittent

non-running-related movements. Here, we discuss the limits observed both in-lab and in

real-world conditions for the methods presented in this thesis.

Temporal event detection introduced in Chapter 3 was validated for level running, so the

performance of the proposed algorithms can not be extended to uphill or downhill running.

Even though we would expect the kinematics features used for initial and terminal contact to

work on an inclined ground surface, the exact error of these features can not be extrapolated;

for level running, we used the pitch angular velocity to detect the midswing events and find the

timing of initial and terminal contact events. Since the range of motion in the sagittal plane of

the lower-limbs is affected by the running slope (Vernillo, Giandolini, et al., 2017), the detection

algorithms might require some adaptations to achieve comparable performance than for level

running. Moreover, the accuracy of the initial and terminal contact was affected by the running

speed. Since this study recorded running speeds between 10 to 20 km/h, the results reported

in Chapter 3 are relevant within this range of velocities. For speed below 10 km/h, the less

dynamic movement of the foot would probably lead to a higher overestimation of the timing

of terminal contact. In contrast, initial contact error would remain roughly identical (Figure

3.3). At a certain extend, the subject would switch to walking, and the performance of these

features (i.e., the local minimum of the pitch angular velocity) can be found in (Mariani et

al., 2013). However, at speeds higher than 20 km/h, the results suggest that the bias of gait

phases decreases as the running speed increases (Figure 3.4). Hence, by extrapolation of the

linear trend, it is reasonable to assume that the bias would be relatively low. Correction of the

bias based on the running speed would require a measure of the instantaneous speed to apply

the right correction at each step. Hence the need for a reliable estimation of the overground

speed in the system (Chapter 5). Finally, the footstrike pattern might lead to inter-subject

differences in the detection performance of initial contact since the pitch angular velocity is

used to detect the event.

The ground incline might also affect the orientation drift correction method proposed in

Chapter 4. To model the drift, we hypothesized that the forefoot segment remained flat on the

ground surface during a fraction of the stance phase, so we set its acceleration parallel to the

gravity vector (i.e., perpendicular to the ground surface). However, this assumption is incorrect

for uphill and downhill running; the orientation of the gravity vector depends on the ground

incline. As shown in Chapters 6 and 7, the barometer can be used to estimate the ground

incline, but whether the estimation is reliable enough for drift correction remains an open

question. Consequently, the results reported in Chapter 4 can not be extended to inclined
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running. Additionally, the automatic estimation of the sensor placement on the rear-foot

was performed using two phases. The goal of the first phase was to remove the horizontal

plane acceleration of the treadmill from the rearfoot acceleration. Theoretically, this first

iteration should not be needed for overground running. Still, it is currently not possible to

assess whether reducing to a single iteration would affect the error of the model. Also, the

current model does not include a correction of the heading, but its structure could be adapted

to include magnetometer-based heading estimation for field studies. Based on the above,

further research in applied settings should be carried to assess the performance of the drift

correction method proposed in Chapter 4.

As we observed with the marathon and ultra-trail measurements, the tracking of the time by

the sensors can vary after an extended period of utilization. This issue is called jitter and,

in short, occurs when the internal clock of an IMU records the time at a different rate than

another device. Hence, even if two IMUs are synchronized at the start, they may experience

a time difference of several milliseconds after a few minutes of recording. In research, jitter

is usually compensated by recording the same movement simultaneously on the different

sensors (e.g., shanking the IMUs while holding them in your hand) and interpolating the

timestamps of each sensor to match the timing of movement. Although this procedure is

adequate for research, it might not be applicable for long term measurements or when the

participants are handling the start and stop of the sensors (e.g., typical in cohort studies).

The issue with long-term measurements is the following: if the one of the foot-worn IMU

stops before the end of the race (e.g., because of a discharged battery), then the post-race

synchronization can not be recorded on both devices and jitter can not be removed. It is

important to note that step duration and flight time are both affected by jitter. Flight time

and step duration require the time of initial and terminal contact measured from both foot-

worn IMUs. Therefore, when jitter occurs, the duration of these temporal parameters will be

underestimated for one leg and overestimated for the other, which, in turn, leads to an inter-

step variability increasing with the measurement duration. To avoid this issue, researchers

should always prefer IMU devices with radio frequencies synchronization, which is not the

case for all the commercially available devices.

As we mentioned previously, rapid changes in the step frequency and the presence of walking

bouts can affect the performance of the temporal analysis method of Chapter 3. This method

was validated using 30 seconds trials at constant-speed, where the stride frequency was

roughly constant. Hence, the 5-second window we implemented for midswing detection

performed adequately, whereas this time resolution was to low for the ultra-trail and hurdling

applications. Even though we improved this functionality, these adaptations were explicitly

set for each study and might not generalize to other applications.

Sensor attachment also revealed to be an essential component for the proposed method

to work correctly. We obtained the validation results reported in this thesis using IMUs

firmly fixed on the dorsum of the shoe, therefore, reducing the effect of sensor wobbling to a

minimum. Moreover, once the sensor was attached it did not change its orientation relative
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to the orientation of the foot. Thus, functional calibration was applied once for each trial,

and this high fidelity in the sensor orientation allowed the proposed method to distinguish

between the kinematics for each functional axis consistently. For instance, we showed that

the two minimum values of the pitch angular velocity were the most stable features to detect

initial and terminal contact. In real-world applications, however, sensor fixation is more

challenging. For instance, firmly taping the sensors on the shoe is not possible in trail-running

as the different surfaces and environments (e.g., rocks, snow) are likely to deteriorate the tape.

Clips can be a good alternative, but the level of motion artifacts depends on the tightness of

the shoelaces, which, throughout long-distance races, can start to loosen. In hurdling, athletes

were particularly concerned about the fixation of the sensors and preferred using the tape.

Such limitations were also reported in a recent review (Camomilla et al., 2018) about the in-

field utilization of body-worn inertial sensors. Overall, the best solution seems to re-evaluate

the quality of the sensors’ calibration sporadically. The method proposed in this thesis can

perform this re-evaluation but requires a short standing period. Although this was possible

in trail running, it could not be applied in the marathon study (i.e., participants did not stop

running).

There is evidence that real-time feedback can help reduce the types of lower extremity loading

associated with stress fractures when real-time visual feedback is provided to the runners

(Crowell et al., 2010). The methods presented in Part II could be used in quasi-real-time but

would require a device capable of storing at least 3 seconds of accelerometer and angular

velocity measurements. This limit depends on the smallest time resolution that the stride

detection algorithm can achieve, but can not be shorter than one stride. Moreover, if the

algorithms are embedded in a single measurement unit, flight time, and step duration can not

be measured with the current methods.

Finally, the methods presented in this thesis were explicitly designed for foot-worn sensors.

Even though we could apply the functional calibration and temporal analysis to inertial sensors

located on the shank during trail running, the actual accuracy of initial contact and terminal

contact detection can not be extrapolated from Chapter 3 for shank-worn sensors. Moreover,

the drift correction method of Chapters 4 and 5 was based on a two-segments model of the

foot. Using foot-worn sensors can be a limiting factor in some applications. For instance, it

might not be possible to use such sensors configuration to assess the running biomechanics in

soccer, as it could interfere with the ball contact. Nevertheless, the miniaturization advents in

MEMS could solve this problem and allow shoe manufacturers to include the sensors directly

in the sole. In such a configuration, the proposed method could be used in a wide range of

applications.

9.4 Future developments

In addition to the improvements required by the current limitations of the methods presented

in this thesis (e.g., occasional recalibration of the sensors, high-resolution stride detection,
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uphill, and downhill running testing), several other features could significantly improve the

system. Here, we introduce some ideas for future developments and research through the

following topics: (1) integration of other sensors, (2) modeling of the running power, and (3)

extension to other applications.

9.4.1 Integration of other sensor data

In this thesis, we have used the measurement from a barometer to estimate the elevation

speed (Chapters 5 and 6) and, through multiplication with the running speed, obtained the

ground inclination. We did not evaluate the error of the slope estimation but suggest that it

might become necessary for further investigation of outdoor running. Hence, we propose the

following improvements to the method discussed in Chapter 5. Instead of using the continuous

barometer measurements, which are affected by the changes in air pressure during the period

of swing, we propose to use the detection results from the temporal method and consider the

mean barometric pressure during the stance phase. This process would result in a time series

with one barometric measure per period of stance, and it is this time series, which should then

be resampled and lowpass filtered to obtain the vertical velocity. With a reliable measure of the

ground incline, we could further improve the orientation drift model and set the theoretical

acceleration of the forefoot according to the slope.

Also, the current orientation drift correction method (Chapter 4) is not accounting for the

changes in the azimuth. Hence, testing the effectiveness of several sensor fusion methods

could significantly improve the overall usability of the system in-field. It is common to used

magnetometers as an external source of information to account for the change in heading

direction (Bergamini et al., 2014; Madgwick et al., 2011; Sabatini, 2006). Similar to gravity, the

Earth’s magnetic field provides a sufficiently constant vector field to derive the azimuth from

the magnetometer’s measurements. However, magnetometers are sensitive to ferromagnetic

objects, making their utilization more challenging indoor, especially for sensors close to the

ground, such as for foot-worn MIMU.

9.4.2 Modeling the running power

In running, the notion of mechanical work dates back to the early work of Fenn (W. O. Fenn,

1930; Wallace O. Fenn, 1930), where the author attempted to explain the metabolic cost of

running by quantifying the mechanical work. Cavagna et al. (Cavagna et al., 1964) later

extended the calculation of Fenn (Wallace O. Fenn, 1930) to a broader range of running speeds.

In level running, different methods have been proposed to measure the total amount of work

produced by the body and thus derive the mechanical power. Two distinct types of work have

been identified: the external work, which sustains the motion of an individual’s center of

mass relative to the surrounding, and the internal work, which sustains the motion of the

limbs relative to the center of mass. Currently, the instrumentation used to estimate power

in running is primarily based on force plates and camera-based motion tracking systems.
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Power-meters have been used for decades in cycling and are recognized as relevant tools for

amateurs and professionals to optimize their training effort. In cycling, the power is directly

measured from sensors integrated to the bike. In comparison, estimating the real-world power

in running based on body-worn inertial sensors relies on indirect measurements. A model of

running biomechanics is necessary to combine the relevant features obtained by the sensors.

Based on the methods proposed in this thesis, temporal parameters, foot orientation, and

overground speed are already available for the prediction of power. However, a method to

estimate the ground reaction forces, a crucial component of the mechanical work, has yet to

be implemented.

Although some studies (Sheerin et al., 2019) have proposed the tibial peak acceleration at

landing as a proxy measurement for the impact forces, their methods were not able to reliably

estimate the continuous profile of the ground reaction force and might not generalize to

foot-worn accelerometers. Recently, however, Clark et al. (Clark et al., 2017) suggested that the

vertical ground reaction force could be estimated from temporal and kinematic features, such

as flight time, vertical acceleration of the lower limb during landing, and ground contact time.

Since the model requires highly accurate spatiotemporal input, it has never been tested with

inertial sensors. Given the results of the current thesis, it would be interesting to evaluate the

model of Clark et al. (Clark et al., 2017) using IMU-based inputs against a reference force plate

in level, uphill, and downhill running. For inclined running, it might be necessary to modify

the model according to the observations by (Dewolf et al., 2016), which stated that adding a

damper should be included in the model for downhill running, and a motor for uphill running.

By applying a validation method similar then described in Chapter 5 (i.e., feature selection and

linear modeling), we designed and tested a model, 34 participants, to estimate the positive

peak power in the anteroposterior direction of running. The algorithms were based on foot-

worn inertial sensors and reached 14% precision and 2% accuracy for the whole population.

Further, considering the specific running gait style of each individual, the general algorithm

was personalized by adding a few data (5%) of each subject in the training phase. The perfor-

mance of the personalized algorithm reached 5% precision and 0% accuracy for peak power

estimation. The results of the personalized algorithm are encouraging and demonstrate the

potential for improvements in the general algorithm. Several solutions have already been

identified, such as adding new features, using non-linear models, or grouping the participants

based on their technique and adapt the model accordingly. Moreover, we obtained the current

results using foot-worn inertial sensors only, hence adding other sensors could contribute to

improving the performances.

9.4.3 Relevance in other applications

The algorithms proposed in this thesis can have a variety of applications. In addition to

running performance analysis, such as presented in Chapters 6-8, the system could be used

for long term monitoring of the training load, for rehabilitation, or shoe fitting. For example,
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an athlete recovering from a lower-limb injury might only be allowed back to the competition

if the spatiotemporal parameters of the injured leg match those of the sound leg. However, to

determine which parameter of gait best indicates such asymmetry will require further study.

Also, shoe retailers could instrument their customers with the proposed system and use it to

select the right footwear. As we introduced in Chapter 1, the notions of “preferred movement

path,” and “habitual motion path” (B. M. Nigg et al., 2017; Trudeau et al., 2019) have recently

emerged as a new alternative for the selection of the appropriate footwear, and the methods

developed in this thesis could instrument such analysis.

Moreover, running occurs in a variety of team sports, such as soccer, rugby, football, or baseball.

Thus the system designed in this thesis could be extended to these events. They could monitor

the gait of athletes throughout a game or training, and report to the staff sudden changes in a

player’s gait patterns as it might indicate the emergence of an injury or an advanced state of

fatigue. For instance, rugby suffers from a high incidence of traumatic brain injuries, and these

injuries can have different degrees of severity. In some cases, traumatic brain injuries are not

directly visible from the sideline, and concussed players might remain in the game, risking the

dangerous consequences of undergoing additional impacts to the head. However, concussions

have shown (Ling et al., 2015) to affect the balance and coordination of individuals. Hence,

inertial sensors placed into the sole of the rugby shoes, combined with the methods proposed

in the current thesis, might be sensitive enough to detect an unusual asymmetry in the running

gait of a concussed player and report this observation to the clinical staff.
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LSM6DS3H

iNEMO inertial module:
 always-on 3D accelerometer and 3D gyroscope

Datasheet - production data

Features
 Power consumption: 0.85 mA in combo normal 

mode and 1.1 mA in combo high-performance mode 
up to 1.6 kHz.

 “Always-on” experience with low power 
consumption for both accelerometer and gyroscope

 Interface flexibility: selectable SPI (3/4-wire) or I2C 
with the main processor

 Auxiliary SPI (3-wire) to support OIS applications
 EIS/OIS support
 Accelerometer ODR up to 6.66 kHz
 Gyroscope ODR up to 3.33 kHz
 Smart FIFO
 ±2/±4/±8/±16 g full scale
 ±125/±250/±500/±1000/±2000 dps full scale
 Analog supply voltage: 1.71 V to 3.6 V 
 Independent IOs supply (1.62 V) 
 Compact footprint, 2.5 mm x 3 mm x 0.83 mm
 SPI/I2C serial interface data synchronization feature
 Embedded temperature sensor
 ECOPACK®, RoHS and “Green” compliant

Applications
 EIS and OIS for camera applications
 Collecting sensor data
 Motion tracking and gesture detection
 Pedometer, step detector and step counter
 Significant motion and tilt functions
 Indoor navigation
 IoT and connected devices
 Vibration monitoring and compensation

Description
The LSM6DS3H is a system-in-package featuring a 3D 
digital accelerometer and a 3D digital gyroscope 
performing at 1.1 mA (up to 1.6 kHz ODR) in high-
performance mode and enabling always-on low-power 
features for an optimal motion experience for the 
consumer.

The LSM6DS3H supports main OS requirements, 
offering real, virtual and batch sensors with 4 kbyte 
FIFO + flexible 4 kbyte (FIFO or programmable) for 
dynamic data batching.

The LSM6DS3H gyroscope supports both OIS/EIS 
applications. The device can be connected to the 
camera module through a dedicated auxiliary SPI 
(Mode 3) while flexibility for the primary interface is 
available (I2C/SPI).

ST’s family of MEMS sensor modules leverages the 
robust and mature manufacturing processes already 
used for the production of micromachined 
accelerometers and gyroscopes.

The various sensing elements are manufactured using 
specialized micromachining processes, while the IC 
interfaces are developed using CMOS technology that 
allows the design of a dedicated circuit which is 
trimmed to better match the characteristics of the 
sensing element.

The LSM6DS3H has a full-scale acceleration range of 
±2/±4/±8/±16 g and an angular rate range of 
±125/±250/±500/±1000/±2000 dps.

High robustness to mechanical shock makes the
LSM6DS3H the preferred choice of system designers
for the creation and manufacturing of reliable products.

The LSM6DS3H is available in a plastic land grid array 
(LGA) package.

 

LGA-14L  
(2.5 x 3 x 0.83 mm) typ.

Table 1. Device summary

Part number Temp. 
range [°C] Package Packing

LSM6DS3H -40 to +85
LGA-14L 

(2.5 x 3 x 0.83 mm)

Tray

LSM6DS3HTR -40 to +85 Tape & 
Reel

www.st.com
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4 Module specifications

4.1 Mechanical characteristics
@ Vdd = 1.8 V, T = 25 °C unless otherwise noted.

Table 3. Mechanical characteristics  
Symbol Parameter Test conditions Min. Typ.(1) Max. Unit

LA_FS Linear acceleration measurement 
range

±2

g
±4

±8

±16

G_FS
Angular rate
measurement range

±125

dps

±250

±500

±1000

±2000

LA_So Linear acceleration sensitivity(2)

FS = ±2 0.061

mg/LSB
FS = ±4 0.122

FS = ±8 0.244

FS = ±16 0.488

G_So Angular rate sensitivity(3)

FS = ±125 4.375

mdps/LSB

FS = ±250 8.75

FS = ±500 17.50

FS = ±1000 35

FS = ±2000 70

LA_SoDr Linear acceleration sensitivity 
change vs. temperature

from -40° to +85° 
delta from T=25° ±1 %

G_SoDr Angular rate sensitivity change 
vs. temperature

from -40° to +85° 
delta from T=25° ±1.5 %

LA_TyOff Linear acceleration typical zero-g 
level offset accuracy(4) ±40 mg

G_TyOff Angular rate typical zero-rate 
level(4) ±10 dps

LA_OffDr Linear acceleration zero-g level 
change vs. temperature ±0.5 mg/ °C

G_OffDr Angular rate typical zero-rate 
level change vs. temperature ±0.05 dps/°C
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Rn
Rate noise density
in high-performance mode(5) 6 mdps/Hz

RnRMS Gyroscope RMS noise 
in low-power mode(6) 120 mdps

An Acceleration noise density 
in high-performance mode(7)

FS= ±2 g 90 μg/Hz

FS= ±4 g 90 μg/Hz

FS= ±8 g 110 μg/Hz

FS= ±16 g 180 μg/Hz

RMS Acceleration RMS noise 
in normal/low-power mode(8)

FS= ±2 g 1.7 mg(RMS)

FS= ±4 g 2.0 mg(RMS)

FS= ±8 g 2.7 mg(RMS)

FS= ±16 g 4.4 mg(RMS)

LA_ODR Linear acceleration output data 
rate

12.5
26
52
104
208
416
833

1666
3332
6664 Hz

G_ODR Angular rate output data rate

12.5
26
52
104
208
416
833

1666
3332(9)

Vst

Linear acceleration
self-test output change(10)(11) FS = 2 g 90 1700 mg

Angular rate
self-test output change(12)(13) FS = 2000 dps 150 700 dps

Top Operating temperature range -40 +85 °C

1. Typical specifications are not guaranteed.

2. Linear acceleration sensitivity after factory calibration test and trimming.

3. Angular rate sensitivity after factory calibration test and trimming.

4. Values after soldering.
5. RND (rate noise density) mode is independent of the ODR and FS setting. 

Table 3. Mechanical characteristics  (continued)
Symbol Parameter Test conditions Min. Typ.(1) Max. Unit
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6. Gyro noise RMS is independent of the ODR and FS setting. 

7. Noise density in HP mode is the same for all ODRs. 

8. Noise RMS in Normal/LP mode is the same for all the ODR RMS related to BW = ODR /2 (for ODR /9, typ value can be 
calculated by Typ *0.6)

9. To enable this ODR, refer to CTRL4_C (13h).

10. The sign of the linear acceleration self-test output change is defined by the STx_XL bits in CTRL5_C (14h), Table 60 for all 
the axes. 

11. The linear acceleration self-test output change is defined with the device in stationary condition as the absolute value of:
OUTPUT[LSb] (self-test enabled) - OUTPUT[LSb] (self-test disabled). 1LSb = 0.061 mg at ±2 g full scale.

12. The sign of the angular rate self-test output change is defined by the STx_G bits in CTRL5_C (14h), Table 59 for all the 
axes. 

13. The angular rate self-test output change is defined with the device in stationary condition as the absolute value of:
OUTPUT[LSb] (self-test enabled) - OUTPUT[LSb] (self-test disabled). 1LSb = 70 mdps at ±2000 dps full scale.
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LPS22HB

MEMS nano pressure sensor: 260-1260 hPa absolute
 digital output barometer

Datasheet - production data

Features
 260 to 1260 hPa absolute pressure range
 Current consumption down to 3 μA
 High overpressure capability: 20x full-scale 
 Embedded temperature compensation 
 24-bit pressure data output
 16-bit temperature data output
 ODR from 1 Hz to 75 Hz
 SPI and I²C interfaces
 Embedded FIFO
 Interrupt functions: Data Ready, FIFO flags, 

pressure thresholds
 Supply voltage: 1.7 to 3.6 V
 High shock survivability: 22,000 g
 Small and thin package 
 ECOPACK® lead-free compliant

Applications
 Altimeters and barometers for portable devices
 GPS applications
 Weather station equipment
 Sport watches

Description
The LPS22HB is an ultra-compact piezoresistive 
absolute pressure sensor which functions as a 
digital output barometer. The device comprises a 
sensing element and an IC interface which 
communicates through I2C or SPI from the 
sensing element to the application.

The sensing element, which detects absolute 
pressure, consists of a suspended membrane 
manufactured using a dedicated process 
developed by ST. 

The LPS22HB is available in a full-mold, holed 
LGA package (HLGA). It is guaranteed to operate 
over a temperature range extending from -40 °C 
to +85 °C. The package is holed to allow external 
pressure to reach the sensing element.

          

HLGA-10L 
(2.0 x 2.0 x 0.76 mm)

Table 1. Device summary
Order code Temperature range [°C] Package Packing

LPS22HBTR -40 to +85°C HLGA-10L Tape and reel

www.st.com
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3 Mechanical and electrical specifications

3.1 Mechanical characteristics
VDD = 1.8 V, T = 25 °C, unless otherwise noted.

          

Table 3. Pressure and temperature sensor characteristics
Symbol Parameter Test condition Min. Typ.(1) Max. Unit

Pressure sensor characteristics

PTop Operating temperature range -40 +85 °C

PTfull Full accuracy temperature range 0 +65 °C
Pop Operating pressure range 260 1260 hPa
Pbits Pressure output data 24 bits

Psens Pressure sensitivity 4096
LSB/
hPa

PAccRel Relative accuracy over pressure
P = 800 - 1100 hPa
T = 25 °C

±0.1 hPa

PAccT Absolute accuracy over temperature

Pop
T = 0 to 65 °C
After OPC(2)

±0.1

hPa
Pop
T = 0 to 65 °C
no OPC (2) 

±1

Pnoise RMS pressure sensing noise(3) with embedded 
filtering 0.0075 hPa 

RMS

ODRPres Pressure output data rate(4)

1 
10
25
50
75

Hz

Temperature sensor characteristics

Top Operating temperature range -40 +85 °C
Tsens Temperature sensitivity 100 LSB/°C
Tacc Temperature absolute accuracy  T = 0 to 65 °C ±1.5 °C

ODRT Output temperature data rate(4)

1
10
25
50
75

Hz

1. Typical specifications are not guaranteed.

2. OPC: One-Point Calibration, see RPDS_L (18h), RPDS_H (19h).

3. Pressure noise RMS evaluated in a controlled environment, based on the average standard deviation of 50 measurements 
at highest ODR and with LC_EN bit = 0, EN_LPFP = 1, LPFP_CFG = 1.

4. Output data rate is configured acting on ODR[2:0] in CTRL_REG1 (10h).
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Physilog® is a Swiss-made wearable standalone measurement unit containing inertial sensors.  

The technology was born 10 years ago out of translational research collaborations between 

Lausanne’s University Hospital (CHUV) and the Swiss Institute of Technology of Lausanne (EPFL). 

Physilog® provides objective and quantitative assessment of movement disorders and 

performance. 

   

Physilog® 4, the latest Physilog® generation, was designed in 2013 by Gait Up. The Physilog® 4 

Silver, comes with 10D sensing capabilities, USB charging and wireless functionalities. Physilog® 

4 Gold has one more recording channel: either GPS, Bluetooth, Droplet or ECG module. In 2015, 
Physilog® sensors have been worn by more than 5000 subjects worldwide and have been 

validated for various applications in scientific publications.  

 

  

Physilog®4 Datasheet 

Rev. 2.6 
Release date: 25.02.2016 



 
 

Gait Up S.A. 
EPFL Innovation Park, Bâtiment C 
CH-1015 Lausanne 

 tel. +41 79 101 19 90 
           mail. contact@gaitup.com 

 web. www.gaitup.com 
 

 
 

 
SENSOR SPECIFICATIONS 

Electrical characteristics 

* Depending on Physilog® model and configuration, see autonomy table below 

 

Mechanical Characteristics 

 

 

 

 

 

 

 

 

Internal Storage 4 Gb – Physilog® Silver: 9 days at 200Hz 

Battery Rechargeable Lithium Ion Polymer 
Battery life op to 23 hours* 

Supply Voltage DC      min: 4.2V – max: 6V 
min: 125mA – max: 250mA 

Port Micro-USB for charging and data transfer 

Operating Temperature From -40°C to 45°C 

Dimensions 50 x 37 x 9.2 mm 
Anatomical curved shape 

Weight 19 grams (including battery) 

Button Start/Stop membrane switch with dual-
color LED 

Material ABS plastic (same as LEGO®) 

Fixation Double side Velcro or optional buckles 
with elastic straps 
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Physilog® 4 Silver Characteristics 

Physilog® 4 sensors do not need yearly recalibration. 

 

 

 

Physilog® 4 Gold options 

In addition to the 10D sensing of the Physilog® 4 Silver, the Physilog® 4 Gold has one more 
channel which can be used for either GPS, Droplet or ECG option. A wireless version of the 
Physilog® 4 using Bluetooth exists for real time applications. 

 
 GPS module 

A GPS module for outdoor localization can be added to the Physilog® 4. 
This option is available with or without an external antenna. The 
external antenna allows a more accurate and reliable localization. GPS 
data can be exported to csv using the Research ToolKit described below. 
The latitude, longitude, elevation and time of each measurement point 
are given in the csv file. 
Antenna specifications: 

• Size: 48x40x13mm 

• Weight: <105g 

 

  

Sensor Specifications 

10 D Measurement 

3D  Accelerometer 3D Gyroscope 
3D 

Magnetometer 
Barometer 

Measure 
Linear 

acceleration 
Angular 
Velocity 

Magnetic field 
strength 

Atmospheric 
pressure 

Programmable range of 
measurement 

±2g, ±4g, ±8g 
and ±16g 

±250, ±500, 
±1000, and 
±2000°/sec 

±1000 µT 
10 mBar to 
1200 mBar 

Sampling rate 
Programmable from 1 to 500 Hz (Magnetometer: max. 50Hz, 

Barometer: max. 100Hz) 

Wireless Synchronization 
Radio frequency synchronization – as many Physilog® sensors as 

you wish 



5
High Quality Motion Sensor

Our latest generation Physilog® is a compact and versatile 
wearable device for sensing movement of any kind. 
Benefit from 18 years of R&D, collaboration and trust with top 
clinics, researchers and industrial partners, for applications in 
health monitoring, sports, entertainment and more.
For applications in science : www.gaitup.com/science

	 Waterproof and dust resistant

	 Multi-standard wireless connectivity 

	 Long-term motion recording and on-board processing 

	 microUSB  port for rapid file transfer and universal charging

Unique features

Software Accessories

Certifications

Specifications

>	Free SDKs for accessing raw data and 3D angles
>	Free companion App to sync, check battery, and program sensors
>	Free MATLAB/Python/C/C++ routines to sync, stream, read, plot 
>	Professional applications for  Gait and Running
>	On-demand custom algorithm libraries and OEM/licencing
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Medical CE class 1 pending, ISO 13485 certified

(IEC 60950, IP64 RT&TE, FCC, IC) 

CONTACT US	 sales@gaitup.com
LEARN MORE	 www.gaitup.com
PURCHASE ONLINE	 shop.gaitup.com

SWISS
MADE

>	Rubber clip (for shoe laces/belt)
>	Elastic Velcro® straps
>	Bio-compatible patches (for skin)
>	Transport case 
>	microUSB < > USB cables
>	External sync. with lab systems

Component	 Manufacturer	 Remarks

Ambient Sensor	 STMicroelectronics	 Barometric altitude from 260 to 1260 hPa

		  Temperature sensor accuracy of +/-1.5°C

Internal Memory	 Apacer	 Class 10 microSD Card, 8Gb

Micro-USB interface	 Amphenol FCI & Microchip	 Waterproof IP64 , with dedicated chip for fast data 

              		  transfer. High-speed USB 2.0

Plastic Enclosure	 ABS Polylac® PA-757	 Biocompatible with bi-color LED and 8mm button
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Microcontroller	 Nordic Semiconductors	 ARM® Cortex® M4 with floating-point for on-board      

                                                                                   	 processing

Battery	 Renata	 Lithium Ion Polymer Accumulators 3.7V 140mAh

Operating Temperature		  From -20° to 45° C
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