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Résumé
L’une des principales limites de l’intelligence artificielle est son incapacitè à s’adapter aux

situations inconnues. L’apprentissage automatique (ML, de l’anglais “Machine learning”),

qui apprend a partir des données, est notablement sensible à cela. Le ML s’appuie sur des

observations pour apprendre des règles implicites sur les entrées et les sorties de l’algorithme

ainsi que les relations entre elles dans le but de résoudre une tâche. Par conséquence, les

algorithmes de ML apprennent en observant une version incomplète et nécessairement biaisée

du monde. A cause de cela, les méthodes de ML rencontrent des difficultés pour décider comment

utiliser correctement leurs connaissances acquises lorsque le monde change. L’adaptation de

domaine, le paradigme suivi dans cette thèse, est une branche de la recherche en ML qui cherche

à résoudre le problème susmentionné. Sous l’adaptation de domaine, un problème de ML doit

être adapté lorsque des changements de domaine — ou des changements dans la nature des

données — se produisent. Cette thèse aborde le problème de l’adaptation de domaine dans le

contexte particulier des applications visuelles, dans le but ultime de réduire autant que possible

le besoin d’intervention humaine durant l’entraînement des méthodes de ML. Nous étudions le

problème de l’adaptation de domaine en suivant deux angles différents.

Une première idée consiste à exploiter la structure existante des images. Malgré les différences

visuelles, les informations structurelles relatives au contenu sémantique de l’image sont souvent

préservées dans des images d’origines différentes. Nous présentons une méthode permettant

d’exploiter ces correspondances visuelles — même lorsque la correspondance est imparfaite —

basée sur l’apprentissage à instances multiples, afin d’ajuster les paramètres d’un modèle de ML

à de nouveaux domaines. Nous introduisons également une méthode de ML auto-supervisée qui

agrège les éléments visuels conformément à une carte de fréquentation consensuelle. Comme ces

cartes sont de bons remplacements non supervisés pour les annotations réelles, nous les utilisons

comme signal de supervision. De plus, nous proposons une architecture U-Net à deux flux qui

traite simultanément différents domaines. Il combien régularisation des paramètres, adaptation

de la distribution et signal auto-supervisé issu des cartes consensuelles, afin de combler l’écart

de performance entre les modèles fonctionnant avec des domaines d’image différents.

La deuxième idée va au-delà des informations brutes sur l’image et transforme plutôt les images

en représentations compactes latentes préservant la sémantique de l’image. Pour cela, nous

introduisons des réseaux multiflux : un paradigme de recherche d’architecture de réseau neuronal

qui attribue différentes capacités de réseau à différents domaines d’image afin d’extraire des

représentations latentes robustes non liées à un domaine. Dans le paradigme de réseaux multiflux,

des portes entraînables, qui sont spécifiques aux différents domaines, modulent la contribution

de différentes opérations à l’encodage. Les résultats finaux sont des représentations latentes de

différents domaines qui ne souffrent pas du changement de domaine.

Nos résultats dans la segmentation d’images biomédicales, la classification d’objets et la détection

d’objets, valident le large éventail d’applicabilité des méthodes présentées dans cette thèse.

Mots-clès Adaptation de domaine, apprentissage par transfert,

apprentissage à instances multiples, apprentissage auto-supervisée,

recherche d’architecture de réseau neuronal, imagerie biomédicale.
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Abstract

One of the main limitations of artificial intelligence today is its inability to adapt to unforeseen

circumstances. Machine learning (ML), due to its data-driven nature, is particularly susceptible

to this. ML relies on observations in order to learn implicit rules about the inputs, outcomes,

and relationships among them, so as to solve a task. An unfortunate consequence of learning

based on observations, however, is that ML algorithms learn by observing a partial, inevitably

skewed version of the world. As a result, ML methods experience difficulties deciding how to

properly use their learned experience when the world as they know it changes.

Domain adaptation, the paradigm followed in this thesis, is an area of ML research that tackles

the above problem. In the domain adaptation setup, a ML problem must be adapted when

domain shifts—or changes in the nature of the data—occur. This thesis tackles the domain

adaptation problem in the particular context of visual applications, with the ultimate goal of

reducing as much as possible the need for human intervention in training ML methods for

visual tasks. We study the domain adaptation problem from two different fronts.

A first idea is to harness the existing structure of the images. Despite visual differences, struc-

tural information related to the semantic content of the image is often preserved in images

from different origins. We present a method to leverage those visual correspondences—even

when the match is imperfect—based on Multiple Instance Learning, so as to adjust param-

eters of a ML model to new domains. We also introduce a self-supervised ML method that

aggregates visual correspondences into a consensus heatmap. As such heatmaps are good

unsupervised proxies for real annotations, we use them as supervisory signal. In addition, we

propose a two-stream U-Net architecture that processes different domains simultaneously.

The two-stream U-Net combines parameter regularization, distribution matching, and the

self-supervised signal from the consensus heatmaps, to bridge the performance gap between

models operating on different image domains.

The second line of reasoning looks beyond the raw image information and instead maps

images to compact latent representations that preserve image semantics. For this, we introduce

multiflow networks: a neural Network Architecture Search paradigm that assigns different

network capacity to different image domains to extract domain-agnostic latent representations.

In the multiflow formalism, domain-specific learnable gates modulate the contribution of

different operations to the encoding. The end results are latent encodings from different

domains that do not suffer from the domain shift.

Our results in biomedical image segmentation, object classification, and object detection,

validate the wide range of applicability of the methods introduced in this thesis.

Keywords Domain adaptation, transfer learning, multiple-instance learning,

self-supervised learning, neural architecture search, biomedical imaging.
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CHAPTER 1Introduction

The field of computer vision seeks to enable computers to understand images.

For humans, understanding images comes naturally. Since we are born, we are exposed to

vast amounts of visual information in an almost continuous stream, and this information

is presented to us in a particular context and combined with other stimuli. This, in turn, al-

lows us to create complex models of the world and to successfully use them to predict and

make decisions based on new visual information. More extraordinarily, we easily adapt our

understanding of the world to new situations from limited or indirect visual input.

Computers, on the other hand, typically require explicit instructions and are, so far, inca-

pable of creating general and adaptive models of the world. Even programs based on artificial

intelligence—arguably designed with this in mind—cannot cope with sudden changes in their

input in a way that even remotely matches ours.

Despite this, computers succeed where humans fall short: massive, parallel, rapid, sleepless

processing. As more and better algorithms, devices, and techniques are continuously develo-

ped, and as more and larger corpora of images are generated by the day, computer-automated

image analysis is not only a sensible course of action, for most modern applications it is the

only practical one.

In the last decades, computer vision has moved from being mostly an academic subject to

becoming an integral part of a large number of disciplines and activities, including art, enter-

tainment, sports, security, manufacturing, medicine, space exploration, agriculture, meteorol-

ogy, and robotics. Beyond that, surprising areas such as urban planning, ecology, and banking,

have also recently found fresh, unforeseen applications for computer vision.

There are two main reasons for this computer vision surge. The first has to do with infra-

structure: more powerful hardware, larger throughput, larger storage, omnipresence and low

cost of consumer cameras, and the internet. The second reason is software; in particular, the

development of large-scale processing methods based on machine learning.

Machine learning algorithms, as powerful as they are, have difficulties readjusting to unfamiliar

scenarios too. Granting computer vision methods based on machine learning the power to

adapt to new situations is the motivation for this dissertation.

1



Chapter 1. Introduction

1.1 Machine learning

Machine learning (ML) techniques, generally speaking, identify patterns to relate inputs to

outputs; those patterns are subsequently used for either describing particular qualities of the

input or generating predictions on different inputs. ML is a powerful paradigm with applica-

tions in virtually all disciplines that drive the world today. ML is also a thriving area of research

which intersects with other scientific branches such as natural language processing, computa-

tional biology, computer vision, and speech recognition. This thesis will focus exclusively on

ML for computer vision.

ML differs from other previous techniques used in computer vision, in that the decisions

of what patterns to identify from images and how to combine and use such patterns is not

explicitly stated, but learned from examples. In the most simple scenario, known as supervised

ML, a program is fed with annotated examples—images and their corresponding expected

response—and a training process finds the right configuration for the program to compute

an output as similar as possible to its expected response. By repeating this multiple times for

different images, the program generally learns implicit rules to generate the expected response

from the input image. With these rules internalized, the program is then able to compute

coherent responses when presented with new images.

1.1.1 Annotating examples

Training a supervised ML algorithm requires providing a so-called supervisory signal, most

commonly in the form of annotated examples, as mentioned above. These annotated examples

reflect the understanding of a human about the task, and are therefore, in most of the cases,

obtained manually, with an annotator deciding the accepted or expected output given an

image. Figure 1.1 shows examples of annotations for different problems.

In a simple scenario such as object classification, the annotations—or labels—are simply which

object is in a picture, from a predefined pool of possible objects. Other tasks require much

more careful annotations. Problems in biomedical imaging, such as characterizing tissues

from magnetic resonance imaging (MRI) acquisitions, require providing the algorithm with

examples of specific region boundaries where different parts of the tissue are found. The

former type of annotations can be obtained quickly, easily, and with little to no ambiguity.

The latter, however, requires extremely well trained professionals, and long hours of labor in

front of a computer. Manually annotating images can also be prone to subjective criteria that

might cause annotations from different people to disagree, and make it difficult to establish

a ground truth about the expected output.

To make matters worse, most ML algorithms are complex and require annotated data in large

amounts to successfully generalize beyond the training images.

As annotating training examples is difficult, expensive, time-consuming, tedious, and error-
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Binary object classification Cardiac MRI segmentation

Image Annotation Image Annotation

A duck

Not a duck

Figure 1.1 Different tasks require simpler or more complex annotations. For a simple binary
classification task (left), all is required is to flag an image as being the object of interest or not. For
more complex tasks, such as semantic segmentation of the heart (right) (Zhang et al., 2018b), the
annotator must accurately identify particular regions within the image that belong to different
parts of the object to segment, shown here with different colors.

prone, there is substantial interest in reducing the need for annotating data, or even eliminat-

ing it altogether. Proposing solutions to this problem is the central topic of this dissertation.

Chapter 2 offers an overview of current techniques in this direction.

1.1.2 The same distribution assumption

While it is true that learning-based computer vision methods effectively remove the need

for manually-crafted image descriptions and models, at the same time they introduce a strict

dependency on the training examples. It is now a requirement of the training process to provide

images and annotations that fairly represent the relevant aspects of the images according to

the task to perform. Those training examples must also be abundant enough to successfully

drive the learning process.

We now state more formally the training of a supervised ML method. We define the trai-

ning data as a set Dtrain = {(Xi , yi );1 ≤ i ≤ N } of N examples, each composed of an image Xi

and a label yi associated to it. In particular, we assume that the examples are sampled from

a joint probability distribution, (Xi , yi ) ∼ P (X,Y), defined for a particular joint space X ×Y of

images and labels.

A model, in this context, is a function f with some parameters Θ that is meant to reproduce

the relationship between the example images and labels, that is,

f (Xi ;Θ) ≈ yi ∀(Xi , yi ) ∈ Dtrain , (1.1)

3



Chapter 1. Introduction

and training the model means finding the right Θ—the configuration under which the model

best approximates the desired output—by inspecting all Xi and yi from the training set. The

ultimate goal of the model is to learn the underlying rules to relate the input with the output

in the general case, that is, given a different set of examples Dtest = {(X j , y j ) ∼ P (X,Y)}—known

as a test set—drawn from the same distribution P (X,Y) as the training set, the model should be

able to recover all the y j by using only the image information X j and the learned parametersΘ.

1.1.3 Domain shift

Under the same distribution assumption, a supervised ML model is expected to work appro-

priately when Dtrain and Dtest are sampled from a common distribution. As a consequence,

models trained on images from a given origin cannot be expected to perform well on images

from a different origin. The processing defined by the parametersΘ, learned by the model to

map images to their outputs, is particular for the training image domain. Processing images

from a different origin will therefore demand new annotations and retraining. This violation

of the same distribution assumption is known as domain shift. Figure 1.2 depicts this issue.

The main source of domain shift occurs when the semantics of the image domains are shared,

but the representation is so different that it is safe to consider them separate domains alto-

gether. Consider, for example, a model that classifies animals in photographs. Suppose we

train a model on photographs of animals and their names. If, after training, we present the

model with drawings of animals from preschoolers, the model will not guess the species of

the drawn animal correctly, as the drawings will most likely not resemble any of the images

analyzed during training.

As a secondary source of domain shift, systematic shifts in the sampling process can make the

training data under- or overrepresent the statistics of the image domain1. Back to our example,

suppose that, during training, the only images of dogs that are presented to the model come

from the two most popular dog breeds—Labrador Retriever and German Shepherd. Once the

model is trained, if it is presented with a picture of a Chihuahua, it is very likely that the model

will not predict having seen a dog, but rather a rat2.

In practice, more subtle domain shifts also affect prediction. One example that we will study

in detail is Electron Microscopy imaging of subcellular structures. In such image acquisitions,

slight differences in the configuration of the microscopes, or the sample treatment, although

not extremely apparent visually, can cause enormous differences in the predictive capabilities

of a model.

1Some experts do not consider sampling bias as domain shift, but rather as a different problem altogether. For
the purposes of this thesis, we still consider sampling bias as a source of domain shift, since, in practice, both shifts
in representation and sampling disrupt ML models in a similar way.

2—and justifiably so.
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Image Target response
Expected Predicted

Reference domain

New domain

Figure 1.2 Visual domain shift. On an image coming from the same doman as the training
data (top), a model successfully predicts the expected output. The same model cannot predict as
expected on an image from a new, different domain (bottom), because of the domain shift.

1.2 Reducing annotation

As annotating and training are major bottlenecks for effective ML, there is increasing interest

and ample research on how to reuse information encoded in trained models, how to train

better and with fewer annotations, how to annotate in a smart way, and how to combine

related ML models, in order to avoid or reduce the annotation workload.

These are some popular related paradigms:

• Semi-supervised learning techniques leverage small amounts of annotated data in con-

junction with other statistics found in an abundant pool of unlabeled data.

• Multitask learning methods simultaneously consider annotated examples from separate

image domains and tasks for training, constraining the private operations per domain

to share common characteristics, arguably requiring less task-specific training data.

• Meta-learning ideas revolve around creating mechanisms to extract general information

about tasks, that can be reutilized for novel tasks.

• Active learning methods minimize the labeling requirements by choosing which exam-

ples are the most beneficial to annotate and include in the training set.

• Transfer learning methods aim to find shared semantics between a reference image

domain and a new image domain and leverage those to modify—or transfer—some

aspect of the model or the data, to perform well on the new image domain.

• Domain adaptation is a specific kind of transfer learning in which the task to solve is the

same on both domains3. As this is the main approach that we follow in this dissertation,

we provide a more comprehensive definition next.

3There seems to be disagreement in the community about the terms transfer learning and domain adaptation,
and their strict meanings. In practice they are often used interchangeably.
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1.3 Domain adaptation

While most of the above ideas lessen the effects of domain shift in an indirect, implicit manner,

domain adaptation tackles the domain shift directly.

The main aspect that differenciates domain adaptation from other techniques, in particular

from general transfer learning, is the constraint to operate on the same task. In this context,

the task of a model is the purpose for which the model is conceived, or the problem it aims to

solve. In other words, we want to learn the same aspect of the problem, but from two or more

different image domains.

Under this constraint, we assume that the two problems share a common label space Y , and

that semantically we want to obtain the same information from the model output from two im-

age domains which are different from one another. This is arguably a more tractable scenario,

because the differences between the two problems are abscribed to the image domains only.

The term domain adaptation suggests that some aspect of the model changes from one image

domain to the other. In the most common setup, we are presented with annotated training

examples from a reference domain—the source domain, D s = P (Xs ,Y)—where it is possible

to perform standard supervised training as explained in Section 1.1.2. The challenge is then

to use the source domain D s and trained model f s to obtain a different, adapted model f t ,

which should output suitable values when exposed to data coming from another domain—the

target domain, D t = P (Xt ,Y)—exhibiting domain shift, that is, P (Xs) 6= P (Xt ).

Formally, we define two models operating on different domains,

f s(X s
i ;Θs) ≈ y s

i (X s
i , y s

i ) ∼ D s , (1.2)

f t (X t
i ;Θt ) ≈ y t

i (X t
i , y t

i ) ∼ D t , (1.3)

with corresponding terms from either domain, and a shared label space. We can tune f s with

supervision from an annotated training set D s
train = {X s

i , y s
i }, but we do not have access to the

equivalent set of examples from the target domain. At best, we can access unlabeled samples

from the target domain {X t
i } ∼ Xt .

Some common ways to address this include:

• Modifying the target domain images, or some representation of them, so as to resemble

those of the source domain.

• Finding target domain images for which it is reasonable to “guess” their labels.

• Crafting source and target domain models so that their corresponding parameters can

influence one another.

We offer a more thorough description of these strategies in Chapter 2.
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1.3.1 Applications

Domain adaptation mostly favors ML applications that both are data-intensive and for which

annotated training examples are difficult to come by. We provide some notable examples of

real-world applications below.

Biomedical imaging

Image analysis is instrumental for healthcare and biomedical research. It also extends to

revolutionary fields like human-computer interfaces (Hinterberger et al., 2004). Biomedical

image modalities include X-ray, ultrasound, tomography, magnetic resonance, and electron

microscopy. Each modality exhibits particular idiosyncracies, which in turn require specific,

non-trivially transferable expertise to interpret. Unsurprisingly, this implies that automating

their analysis is extremely challenging.

A concrete ML problem, depicted in Figure 1.3, is semantic segmentation of the heart (Suri,

2000). The goal is to identify regions that belong to different cardiac structures automatically.

Accurate segmentations enable practicioners to evaluate cardiac performance, model heart

mechanics, measure cardiac stress, detect deformities, and assist in catheterization. Segment-

ing heart imaging, however, is as difficult as it is useful. Qualities of the image change with the

patient, the condition, the orientation, the modality employed, the settings of the capturing

device, and the skill of the operator. This translates into an inconsistent procedure with enor-

Magnetic resonance imaging Computerized tomography scan

Image

Annotation

Figure 1.3 Cardiac semantic segmentation for different image modalities. Cardiac structures
shown in the example (Dou et al., 2018), such as the ascending aorta (yellow), left ventricle blood
cavity (green), and left ventricle myocardium (blue), follow similar shapes in different acquisitions,
as seen from the segmentations (bottom), but the visual contrast between modalities is large (top).
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mous qualitative variance. Moreover, the task itself is not perfectly well defined; it is ambiguous,

even for an expert, where exactly the structure boundaries are located in the image.

Despite their current limitations, semantic segmentation, as well as other ML algorithms, is

extensively used in medicine and research. Domain-adaptive models make it possible to

better utilize preexisting annotated data for new scenarios, hence alleviating the need for

manual annotations and extending the reach of automatic image analysis with ML even further.

In Chapters 3 and 4, we propose two such models, for adaptation between Electron Microscopy

domains, applied to the segmentation of subcellular structures.

Autonomous vehicles

Autonomous vehicles use imagery captured from the surroundings to estimate the positions,

sizes, and relative locations of specific objects (detection), understanding the layout of the

scene and its precise outlines (segmentation), and predicting moving object trajectories (track-

ing). As it is unrealistic to provide examples for all possible situations that a vehicle can en-

counter, domain adaptation is paramount for the general deployment of autonomous vehicles.

A common way to provide source domains for domain adaptation comes from simulations,

video games, and other techniques that generate scenes automatically, as shown in Figure 1.4.

Here, the objects and actions on a scene are synthesized and hence known beforehand. It

is then easy and safe to simulate all sorts of example situations for training—especially dan-

gerous ones—which would otherwise be infeasible or irresponsible to collect in real life. The

GTA5 Cityscapes

Image

Annotation

avg labeling time per frame: 7s avg labeling time per frame: 90+ min

Figure 1.4 Autonomous vehicles can benefit from domain adaptation by leveraging annotated
synthetic domains. One example is adaptation from the video game Grand Theft Auto V, where
annotations are easy to collect (Richter et al., 2016), to real-world scenarios like the ones found in
the Cityscapes dataset (Cordts et al., 2016), where annotating takes orders of magnitude longer.
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idea of using artificial training data is showcased in Chapter 5. We apply domain adaptation

to the detection task in drones—crucial for avoiding mid-air collisions—where we leverage

synthetically-generated images of drones for weakly-supervised training.

Other applications

Sports. Action recognition—or identifying actions of a subject from succesive estimations

of their poses in video frames over short time periods—can be used to automate strategy

analysis in sports. Figure 1.5 provides an example of this. Domain adaptation can translate

this analysis to different sports and activities (FarajiDavar et al., 2011; Jamal et al., 2018). Other

related problems, such as crafting smart personal trainers to assist players or enthusiasts to

perfect their movements and technique (Huber et al., 2017; VAY Sports, 2019), can also benefit

from action information encoded in different domains.

Figure 1.5 Action recognition via ML (Bagautdinov et al., 2017) in an olympic volleybal match.

Forgery detection. Image manipulation software is widely used; manipulated images are

shared easily over the internet; generative deep network algorithms are becoming better and

better at producing convincingly real images and videos. For all those reasons, there is an

increasing need for assessing the authenticity of visual content, as shown in Figure 1.6.

Domain adaptation has been applied to the image edition detection scenario (Cozzolino et al.,

2018; Rössler et al., 2019), where models trained on synthetic image editions can inject their

knowledge into target domain models to solve the problem on a real image-doctoring domain.

Input Detected anomaly Real anomaly Real (hidden to algorithm)

Figure 1.6 Given an altered input image, forgery detection algorithms (Huh et al., 2018) can
identify regions that have been edited in (Detected anomaly), which largely coincide with the
actual edition (Real anomaly).
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1.4 Thesis contributions

A central question at the heart of most domain adaptation methods is what can we find in

common between domains to guide the adaptation. This thesis explores two possible answers

to this question, stated below, which in turn unfold into a number of domain adaptation

methods. We validate these methods in different tasks in biomedical and natural images.

— Leveraging shared image semantics. As a first vehicle for domain adaptation, we consider

the special case of structured annotations, such as the ones provided for segmentation tasks.

In this case the labels exhibit local features that describe and relate to the semantics of the

segmented object—which we presume are transferable to new domains. Two complementary

observations govern our analysis. First, that by comparing context and visual hints, humans

are robust to the domain shift; we attempt to emulate this trait. Second, that local structures

present in the annotations are similar between domains.

We propose in Chapter 3 an algorithm that exploits these remarks under a Multiple Instance

Learning formulation. We achieve solid performance when adapting simple models for seg-

mentation of Electron Microscopy images using this method. We revisit and further develop

these ideas for deep neural networks based on a special architecture, the two-stream U-Net,

in Chapter 4. By combining such architecture with the consensus heatmap—a spatial en-

coding of the correspondences between image domains—we achieve an additional boost in

segmentation performance.

— Learning shared image semantics. In a different basis for domain adaptation, instead

of exploiting known shared semantics, we aim to learn them. The core idea is based on the

popular strategy of projecting images from different domains onto a common latent represen-

tation. The two-stream U-Net of Chapter 4 implements such a criterion to assist adaptation.

In addition, we propose a general-purpose framework, predicated on the observation that

different image domains exhibit different complexities, and may require being processed by

models with different capacity to arrive to the shared latent space.

The materialization of these observations—the domain-adaptive multiflow network (DAMNet),

described in Chapter 5—corresponds to a dynamic architecture learning strategy. The spe-

cific operations that images from different domains undergo in a DAMNet is decided during

training. DAMNets are backed by a large perfomance gain compared to other techniques, as

extensively demonstrated in image classification and object detection tasks.

Broad-view insights. The reference data and model parameters obtained or obtainable from

the source domain influence and bias domain adaptation. This thesis gives two core insights

about the effects of this bias. First, that domain adaptations that strongly preserve and enforce

the bias towards the source domain benefit from exploiting known domain semantics, such

as shared structure in the annotations. Second, that modulating this bias automatically—for

example by allowing different domains to undergo different but related operations—results in

more flexible models that acknowledge and embrace the domain shift, and are more effective

for extracting shared semantics from different domains.
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1.5 Thesis outline

• In Chapter 1. Introduction we have established the conceptual framework and summa-

rized the contributions of this thesis.

• Chapter 2. Related work is a short review of methods related and relevant to this work.

• Chapter 3. Visual correspondences and Multiple Instance Learning presents an algo-

rithm based on finding correspondences between different images and combining them

in an unsupervised way. We focus on the segmentation problem in Electron Microscopy

images of cerebral tissue. This work appears in Bermúdez-Chacón et al. (2016, 2019).

• In Chapter 4. Consensus heatmaps and the two-stream U-Net, we build upon the pre-

vious formalism and propose a domain-adapting deep network architecture and a mech-

anism to infer soft labels from interdomain correspondences, where they are used for

unsupervised segmentation of Electron Microscopy images. This chapter presents pub-

lished work from Bermúdez-Chacón et al. (2018, 2019).

• Chapter 5. Domain-adaptive multiflow networks proposes a powerful, general tech-

nique for learning multi-domain deep network architectures. We evaluate the method

over different domain adaptation tasks in unsupervised settings on natural images. The

contents of this chapter are based on the findings appearing in Bermúdez-Chacón et al.

(2020).

• Lastly, in Chapter 6. Concluding remarks, we offer a discussion of the thesis in general,

closing remarks and possible avenues of research inspired by this work.
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CHAPTER 2Related work

As motivated in the previous chapter, this thesis proposes several strategies for reducing anno-

tation efforts via domain adaptation methods.

We present here some related techniques proposed in the literature to tackle the general

problem of reducing training and annotating effort. Then, we present the state-of-the-art in

domain adaptation and contrast it with the ideas proposed in this thesis.

2.1 Working with limited annotations

Fine-tuning. Fine-tuning is perhaps the simplest and most widely-used technique to jump-

start training. The idea is to use parameters from the source domain model as initial conditions

for those of the target domain, and, under supervision, resume training on the target data.

When the source domain is abundant and rich, and the source model is expressive enough,

fine-tuning is known to be much more effective than training from scratch with limited training

examples (Donahue et al., 2014; Hoffman et al., 2013; Lin et al., 2017).

Some insights about the effects of fine-tuning have been both empirically and formally es-

tablished. Cireşan et al. (2012) employs a fine-tuning schedule that progressively unfreezes

and retrains deep layers of neural networks, which accelerates training. Yosinski et al. (2014)

provides a method to quantify the effects of fine-tuning layers at different levels in neural

networks.

Fine-tuning has been extensively applied in natural (Girshick, 2015; Yanai and Kawano, 2015;

Campos et al., 2017; Kornblith et al., 2019) and biomedical imaging (Tajbakhsh et al., 2016;

Zhou et al., 2017), natural language processing (Devlin et al., 2018; Eisenschlos et al., 2019), and

robotics (Nagabandi et al., 2018).

Semi-supervised learning. Semi-supervised learning exploits relationships between unla-

beled examples, along with a small amount of annotated examples, to guide the training.

Popular techniques are based on diffusing labels along edges of a graph connecting neighbor-

ing examples in feature space (Zhu and Ghahramani, 2002; Zhou et al., 2004). Other methods

exploit properties of the density of the underlying feature distribution, such as low- (Chapelle
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et al., 2006) or high-density regions (Ratsaby and Venkatesh, 1995). Another idea—so called

Learning by Association—is to learn a latent encoding from labeled and unlabeled data where

class assignments and similarities between examples across domains are consistent (Häusser

et al., 2017b).

Gradient-based unsupervised methods are often adapted to the semi-supervised setting by

adding terms to the optimization criterion that consider the additional supervised signal (Rozant-

sev et al., 2019; Tran, 2019). The method that we present in Chapter 4 uses this tactic.

Weakly-supervised learning. For some problems, obtaining approximate manual annota-

tions can sometimes be done easily, or even carried out without user intervention. Leveraging

the signal that those approximate annotations carry is known as weakly-supervised learn-

ing (Zhou, 2017).

For example, recognizing multiple faces from news pictures given their caption, where the

labeling is ambiguous, is addressed by Zeng et al. (2013); their method encodes relationships

between pictures and face identities into an optimizable low-rank matrix. Koziński et al. (2018)

is another example of this; it assists the 3D segmentation with 2D annotations by exploiting the

visual hull imposed by the maximum intensity projections of the annotations. Similarly, Tekin

et al. (2017) proposes learning neural networks that fuse operations working on different

modalities—images and 2D pose annotations for 3D pose estimation in their case—at a given,

learnable depth. Rad et al. (2018) also leverages multimodality information, by exploiting a

depth channel generated synthetically to assist 3D annotations for pose estimation. Yet another

way to use approximate annotations is to infer example prototypes present on the data, so as

to denoise labels (Jiangfan et al., 2019).

One field that has seen huge benefits from weak supervision is biomedical image analysis,

where obtaining fine-grained annotations is particularly problematic. Anirudh et al. (2016)

uses single pixel locations for lung nodule detections in 3D CT scans. Rajchl et al. (2017) infers

segmentations from bounding boxes alone. Hu et al. (2018) exploits approximate segmentation

labels to guide 3D deformable registration in medical procedures. Mahapatra et al. (2013); Feng

et al. (2017) solve the segmentation problem by relating image-level annotations to specific

regions given by superpixels. Wang et al. (2018) uses image-level labels and coarse spatial

annotations for lung cancer image classification.

One particularly common weakly-supervised strategy consists in assigning labels to sets of

examples describing a feature of the set as a whole. This fuzzy-labeling technique, known as

Multiple Instance Learning (MIL), circumvents the need for labeling each example individually.

Example applications are found in Xu et al. (2012a,b, 2014), which uses image-level labels

to infer patch-level segmentations for histopathology image segmentation, and Zhu et al.

(2017), which applies a similar strategy to mammogram classification, The method introduced

in Chapter 3 establishes visual correspondences across domains following a MIL formulation,

applied to segmentation of Electron Microscopy images.
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Active learning. The premise of active learning is to analyze unlabeled input and determine

a minimum, often increasing set of examples that, if annotated, would benefit the training

process the most (Settles, 2010). Active learning has been successfully applied to a variety of

tasks in biomedical imaging (Gala et al., 2014; Mosińska et al., 2017; Yang et al., 2017; Zhou

et al., 2017) and natural image processing (Vijayanarasimhan and Grauman, 2011; Top et al.,

2011; Vijayanarasimhan and Grauman, 2014).

Multi-task learning. Concurrently training a model for multiple tasks on a dataset is known

as multi-task learning (Zhang and Yang, 2017). Under multi-task learning, parts of the model

observing different aspects of the training data and extracting different outputs collaborate

among themselves. By doing so, the model learns to extract more general shared semantics that

improve performance for all tasks—inclusive those for which training data is scarce. Multi-task

learning often uses abundant annotated data for the different tasks at training.

A prime example of this is the multi-headed architecture of Doersch and Zisserman (2017),

which uses a common feature extractor and then forks into specific network streams for classi-

fication, detection, and depth prediction tasks.

Meta-learning. Meta-learning, or learning to learn, aims at creating models that encode

general characteristics from different tasks that are conceptually related to each other; its

goal is to easily adapt to new tasks from few examples. Meta-learning is a wide area and the

approaches are diverse.

In Hoffman et al. (2014), classifiers are trained on subsets of the labels, for both classification

and bounded object detection, to learn general encodings applicable to unseen classes. Ha et al.

(2017); Rebuffi et al. (2017) train a network to predict the parameters of another depending on

the domain.

The methods of Vinyals et al. (2016); Santoro et al. (2016) combine neural networks with

memory modules where new tasks can be compared with tasks seen before. Snell et al. (2017)

extracts prototypes related to clusters that can be reused in new tasks that partially overlap

with the training tasks.

Other techniques follow different approaches. Andrychowicz et al. (2016) offers a strategy to

optimize the design of optimization algorithms itself; their method yields update steps suitable

for families of related problems. Finn et al. (2017) presents a technique to compute good initial

parameters for a new task by interpolating parameters learned on other tasks.
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2.2 Domain adaptation

Domain adaptation assumes the existence of a reference domain where a supervised model

can be obtained. Domain adaptation methods thus seek to homologate some shared aspect of

the task on both source and target domains, so that they are compatible (Csurka, 2017; Wang

and Deng, 2018). We detail the main approaches next.

2.2.1 Reweighting feature distributions

A popular idea for linking source and target domain models regards the features of the source

and target examples as probability distributions that can be related to one another. The ob-

servation is that, under some circumstances, it is possible to approximate one probability

distribution with another via a reweighting scheme. The following equation captures this

intuition:

PD t (x) = PD t (x)

PD s (x)
PD s (x) = w(x)PD s (x), (2.1)

that is, the target domain density can be expressed as that of the source domain, reweighted

by the likelihood ratio w(x) = PDt (x)
PDs (x) .

The TrAdaBoost algorithm (Dai et al., 2007) exploits this idea to adapt AdaBoost (Freund and

Schapire, 1995), which reweights misclassifications, to the domain shift scenario. TrAdaBoost

leverages annotations from the source domain alongside a small set of target domain examples

with labels. An improvement over this idea for unsupervised adaptation, presented in Habrard

et al. (2013), learns a model, common for both domains, that predicts correctly on the anno-

tated source domain, while also maximizing decision boundary margins on the target domain.

Matching distributions by reweighting in a reproducing kernel Hilbert space was also studied

in Pan et al. (2008); Gretton et al. (2009). Garcke and Vanck (2014) finds the weights that

minimize the empirical Kullback-Leibler divergence between PD t (x) and w(x)PD s (x).

Heimann et al. (2013) approximates the likelihood ratios from the output probabilites of an aux-

iliary classifier that is trained to predict the domain from which examples are taken. A similar

strategy is used in Zhang et al. (2018a) for adversarial training in a deep network.

2.2.2 Corresponding examples

When some target domain supervision exists, an intuitive idea is to find examples between do-

mains with known shared semantics. For object recognition, for example, Saenko et al. (2010)

applies a kernel-based transformation of the target domain features such that source and

target representations are similar for similar objects, and dissimiar for objects from different

categories. Other methods based on correspondences find coinciding low-dimension projec-

tions for both domains (Zhai et al., 2010) for pose estimation, or constrain the alignment of

manifolds learned with deep neural networks, for classification of medical images (Guerrero

et al., 2014), and object detection in videos (Donahue et al., 2013).
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2.2.3 Manifold alignment

Features extracted from images are assumed to lie on a low-dimensional manifold. One popu-

lar domain adaptation technique, when there is limited access to target domain annotations,

is to align the projections of source and target domain features onto those manifolds. The

intuition is that, if the source and target manifolds coincide, any operation performed on the

source domain, possibly under supervision, should also apply to the target domain.

Using a small annotated set of target domain examples to infer the manifold alignment was

proposed in Wang and Mahadevan (2011). The methods of Fernando et al. (2013, 2015) work in

the unsupervised setting; they use principal components as criteria for the alignment. Other

methods exploit different aspects of the manifold configuration to guide the alignment, such

as feature correlation (Kuss and Graepel, 2003; Sun et al., 2016; Sun and Saenko, 2016) and

mutual information (Memisevic et al., 2011).

2.2.4 Representation learning

Similar to the above strategy, representation learning attempts to homologate the source and

target domain representations. The idea in this case is to provide mechanisms to guide the

extraction of the domain representations.

A common strategy for this is to favor representations that are quantifiably close from one

another. Maximum-Mean Discrepancy (MMD) (Pan et al., 2008) is a popular metric to quantify

divergence between representations (Sejdinovic et al., 2013). MMD measures the disagreement

between distribution moments in a reproducing kernel Hilbert space. It has been successfully

used for domain adaptation (Pan et al., 2010), and extended to neural networks (Tzeng et al.,

2014; Long et al., 2015; Csurka et al., 2017a; Rozantsev et al., 2018). Our work in Chapter 4 also

uses MMD to assist learning common representations.

Other similar strategies use different terms to constraint the learned representation, such as

metrics of smoothness (Donahue et al., 2013), class-wise structure preservation, and affin-

ity (Yao et al., 2015).

Decompositions of the representations into private and shared subspaces is a general tech-

nique that, by construction, takes the domain shift into account. Damianou et al. (2012) finds

a factorization of the latent space into private and shared subspaces per domain, where the

domains are different image modalities—color and depth corresponding images, in their paper.

Bousmalis et al. (2016) proposes an encoding-decoding network architecture, with private and

shared streams, that learns specific and common latent representations per domain.

Constraining the search process itself is another strategy followed in the literature. This is done,

for example, by enforcing the learned representations to follow a geodesic path (Gopalan et al.,

2011; Gong et al., 2012; Zheng et al., 2012; Baktashmotlagh et al., 2013).

Other representation learning strategies include reconstruction methods based on autoen-

coders (Chen et al., 2012; Kan et al., 2015; Clinchant et al., 2016; Csurka et al., 2017b), methods
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that enforce bijective associations between source and target examples of the same class (Häusser

et al., 2017a,b), and strategies to bias the learning towards representations that produce struc-

turally similar responses between source and target tasks (Tsai et al., 2018). The methods

introduced in Chapter 4 follow the latter approach.

2.2.5 Adversarial training

All strategies above attempt to obtain domain-agnostic encodings of source and target domains.

Their mechanisms explicitly favor predefined criteria for a specific task and set of conditions.

Recent works have instead attempted to infer the appropriate encodings implicitly, by making

use of adversarial training.

The most common idea to incorporate adversarial training into the encoding extraction is to

make use of an auxiliary domain classifier—a network that identifies, given an encoding, to

which domain the original example belongs. Adversarial training will attempt to deceive the

domain classifier into believing that target domain encodings come from the source domain.

As a result, the feature encoding process will produce representations for both domains that

are, to the domain classifier, indistinguishable from one another.

A referent method of this type is that of Ganin and Lempitsky (2015). Their formulation adds to

the above idea a particular operation—the Gradient Reversal Layer—that enables adversarial

training to be incorporated into gradient based optimization techniques. Many modern do-

main adaptation methods use this idea as part of their pipelines (Tzeng et al., 2017; Rozantsev

et al., 2018, 2019). The multiflow method that we introduce in Chapter 5 also leverages this

idea to obtain domain-agnostic encodings.

A conceptually similar formulation, based also on confusing a domain classifier, is presented

in Hoffman et al. (2018). Their method, named CyCADA, converts source images to the visual

style of the target domain, applies the adversarial idea to confuse a classifier observing the

encodings, and attempts to fool a second classifier that directly observes the transformed

images. In a similar fashion, Tsai et al. (2018) uses a discriminator network to encourage the

output segmentations, rather than the encodings, to be similar.

Many other recent methods include an adversarial term as part of their adaptation. DIRT-T (Shu

et al., 2018), in addition to the adversarial step, implements strategies to leverage the cluster

assumption for classification—that decision boundaries should cross low-density regions of

the marginal input distribution. Saito et al. (2017, 2018), in addition to the regular domain

classifier criterion, incorporate other adversarial criteria that discourage target features to lie

on regions of the source domain distribution with low support.

Having laid out the conceptual framework for this dissertation in Chapter 1, and the main

related ideas and implementations from the literature in this chapter, we now delve into the

details of our researched strategies and findings.
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CHAPTER 3Visual correspondences

and Multiple Instance Learning

This chapter introduces an unsupervised domain adaptation strategy that exploits the pres-

ence of image regions that are structurally similar across different domains. The initial input

of this method is an existing model, pretrained to perform segmentation on a reference source

domain, and whose parameters are then tuned for data coming from a new target domain.

In order to do this paratemer tuning, we aggregate visual correspondences—motifs that are

visually similar between different image domains—to infer the appropriate adaptation of the

model parameters, via a Multiple Instance Learning formulation. In particular, we examine

the annotations of an existing acquisition to determine pivot locations that characterize the

reference source domain segmentation, and use a patch matching algorithm to find candidate

visual correspondences coming from the new image domain. Domain adaptation happens

when the model learns to assign the same class identities to source domain locations and their

respective target domain visual correspondences. We validate the effectivity of this method in

the problem of neuron organelle segmentation from Electron Microscopy images, where this

strategy allows us to obtain high-quality segmentations on new images that are qualitatively

consistent with results obtained under full supervision, but with no need for new annotations.

3.1 Visual correspondences

The method presented in this chapter performs domain adaptation by leveraging similitudes

across domains found directly in the image channels. It is motivated by the fact that, despite

the domain shift, key structural regions belonging to the object to segment are often readily

identifiable by visual inspection, regardless of the domain from which the images come. To

emulate this behavior we make use of a simple pattern matching algorithm based on Norma-

lized Cross-Correlation. The patch matching algorithm detects regions on a target image that

most resemble a selected location from the source image. We name those regions the visual

correspondences of the source domain location.

Given a signal I —which can be either a 2D image or a 3D volume—and an image patch, or

template, T , the Zero-Normalized Cross-Correlation (NCC) is a spatial response of the same
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Chapter 3. Visual correspondences and Multiple Instance Learning

dimensions as the image, computed at each location x, as

NCC(I ,T )x =
1

n

∑
x′,u′

(
Ix′ −µx

)(
Tu′ −µT

)
σIx ·σT

, (3.1)

where the indices x′ cover a neighborhood around x of the same size as the template, their

corresponding template locations are given by u′, µx is the mean intensity of the image re-

gion around x of the same size as the template, µT is the mean intensity of the template,

and σIx and σT are the corresponding standard deviations; finally, n represents the number of

locations, either pixels or voxels, contained in the template.

The NCC value, which is within the [−1,1] range, quantifies how similar every location from the

image I is to the template T , by aggregating pixel correlations at every corresponding location

on a sliding-window manner. As the operation is performed on patches whose intensities are

locally normalized, the resulting value is relatively robust to changes in contrast and illumina-

tion between images. Image regions with large corresponding NCC values are visually similar

to the template, and so finding peaks in the NCC response is a general patch matching method

used in diverse computer vision applications (Lewis, 1995; Briechle and Hanebeck, 2001; Tsai

and Lin, 2003; Zhao et al., 2006).

In our formulation, we expect to relate a specific location in a source domain image I s to

a number of locations from a target domain image I t that resemble their source location.

Our patch matching strategy consists in defining a neighborhood around the desired source

domain location x, which we denote as I s [[x]], and extract such neighborhood to be used as

the template patch T of Equation 3.1. Then NCC is applied between the entire target domain

image and this template. The size of such neighborhood depends on the image resolution and

size of the texture cues found in the images, and is therefore problem-specific.

The NCC response between a source domain location and a particular target domain location

measures the quality of the match, which we expect to correlate with the agreement between

class identities: the higher the NCC, the more likely it is that the target domain location and

the reference source domain location share the same class.

Since possible matches could potentially appear at arbitrary orientations in the target domain

image, we apply NCC on rotated versions Tφ of the source domain patch, and preserve the

NCC value of the best-scoring orientation at each location.

We therefore define the visual correspondence score NCC∗ as

NCC∗(I ,T )x = max
φ

NCC(I ,Tφ)x , (3.2)

and conversely, the best orientation φ∗ as

φ∗(I ,T )x = argmax
φ

NCC(I ,Tφ)x . (3.3)
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





Figure 3.1 Visual correspondences between Electron Microscopy acquisitions. Patch match-
ing from a location belonging to the object to segment (left)—a synapse in this example—finds
similar regions in a different image (right). Despite general differences in contrast, brightness,
noise, and other artifacts, most of those regions—denoted by a check mark—do correspond to
synapses in the second image.

For 2D patches, we take those orientations to be n uniformly spaced rotations, φi = 2πi /n,

with n a hyperparameter of the method. For the 3D scenario, in order to define an evenly dis-

tributed set of orientations, we only consider orientations that are described by rays pointing

to the vertices of platonic solids (Gilbert, 1828) centered at the origin, as described in Table 3.1,

and as such we limit ourselves to a number of either 1, 4, 6, 8, 12, or 20 orientations.

An additional geometric consideration is that, in order to guarantee that we can extract the

required neighborhood around a location under any orientation, we need to avoid locations

close to the border of the image. In particular, for a D-dimensional neighborhood of side w

centered at a location x, we require a slack of at least w
p

D units—voxels or pixels—to achieve

this. This defines a margin around the image of
⌈ w

2

p
D

⌉
units that we choose to exclude from

the possible source domain locations to use as reference for patch matching.

By applying non-maximum suppression on the visual correspondence score NCC∗, we obtain

sparse local maxima locations—specific coordinates of pixels or voxels on the target domain

that score better than its neighbors. Out of these locations, those with visual correspondence

score below a defined threshold are removed. The remaining high-scoring and locally isolated

locations define the positions of the target domain visual correspondences for the given source

domain location.

Table 3.1 Orientations defined by the vertices of platonic solids.

Sides Vertices Name Vertex coordinates*

4 4 Tetrahedron (1,1,1), (1,−1,−1), (−1,1,−1), (−1,−1,1)
6 8 Hexahedron (±1,0,0), (0,±1,0), (0,0,±1)
8 6 Octahedron (±1,±1,±1)
12 20 Dodecahedron (±1,±1,±1), (0,± 1

ϕ ,±ϕ), (± 1
ϕ ,±ϕ,0), (±ϕ,0,± 1

ϕ )

20 12 Icosahedron (0,±1,±ϕ), (±1,±ϕ,0), (±ϕ,0,±1)

*ϕ is the golden ratio 1+p5
2 ≈ 1.618.
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Chapter 3. Visual correspondences and Multiple Instance Learning

3.1.1 Sampling representative locations

Finding visual correspondences to each and every source domain location, however, would be

prohibitively expensive, especially in volumetric data. Furthermore, exhaustively examining

all source domain locations would result in redundancies, since locations close to one another

will have almost the same correspondences. It would also result in spurious computations,

since regions with scarce texture will not be semantically informative and are best left unvisited.

Hence, we opt for a more principled way to define source domain locations that are useful for

our task.

We devise a relevance sampling scheme that enables us to infer informative image locations,

while at the same time assigning different sampling weights to different regions of the source

images. Instead of randomly sampling from all possible locations from the source image,

we use these weights to bias the sampling towards promising locations. These locations are

defined differently for the foreground and background, or in other words, whether or not they

belong to the object to segment, as discussed below. Since we are interested here in obtaining

locations that characterize the object to segment, we operate mostly on the image annotations,

which are what defines the segmentation masks that encode the known semantics of the

source domain image.

Sampling from the foreground

Our main criterion for foreground location relevance is the context it provides. We are therefore

interested in texture-rich regions near the border of the structures to segment, where we can

observe from the surrounding context both the patterns that belong to the structure and the

interface between the structure and the background. We also want to favor locations that are

at a minimum distance from one another, so that, once we extract patches around them, such

patches tend not to overlap.

To select locations that fulfill these requirements, we discretize the segmentation map by

defining a grid of a fixed coarseness given by the size of the patches that we want to use for NCC

template matching, as shown in Figure 3.2. The foreground structures are then divided into

pieces that can occupy a part or the whole of a cell imposed by the grid. Since the boundaries

of the annotations are often ambiguous, we define a small exclusion margin around the border

of the annotated structure, which in practice is done by applying an erosion operation on the

label mask. Our candidate sampling locations are the centroids of each division of the structure,

after boundary removal. We assign them sampling weights that are inversely proportional to

the distance between the selected locations and the nearest structure border, after accounting

for the exclusion margin.
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3.1. Visual correspondences

Figure 3.2 Relevant positive locations.
From the annotations of an object of interest, after exclud-
ing a small ignore region (outlined in gray), we select the
centroids of regions imposed by a regular grid as relevant
locations. Their relevance, or sampling weight, represented
by the area of the blue circles, is inversely proportional to
the distance to the boundaries of the original annotation.
An equivalent formulation in 3D is used for volumetric an-
notations.

Sampling from the background

We combine two different criteria for background location relevance. First, we want to sample

locations that are close to the structures to segment, so that we obtain enough evidence to

tell foreground and background apart, in the same spirit as for the foreground. Second, we

also want locations from areas that may be confusing or ambiguous for patch matching, that

is, that may be visually similar to the foreground and therefore likely to match a structure of

interest instead of the background.

Including those failure modes of patch matching in the set of selected background locations

will provide the subsequent domain adaptation method with evidence to distinguish difficult

cases. This is particularly important to avoid being overly confident in visual matching.

Implementing the first requirement is analogous to the foreground sampling explained above.

To implement the second, we use the same patch matching strategy—namely finding candi-

date matches under different orientations via NCC—but this time between image locations

labeled as foreground and background within the same source domain image. The goal of this

process is to identify background locations that look like foreground to NCC. Locations known

to belong to the background that score high are the potentially confusing ones and should be

included in the set of relevant background locations.
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3.2 Visual correspondences and domain adaptation

Applying the sampling procedure outlined in Section 3.1.1 to a source domain image yields a set

of source domain locations that we regard as relevant to describe the objects to segment and

the background. We aggregate both foreground and background selected source domain loca-

tions into a set of relevant locations Rs = {xs
1, . . . ,xs

N } with known labels {y s
1, . . . , y s

N }, y s
i ∈ {0,1}.

For each location xs
i , the set of Ki target domain visual correspondences Ct

i = {xt
i ,1, . . . ,xt

i ,Ki
}

is determined as described in Section 3.1. In practice, however, we hold a fixed number of K

best-scoring correspondences, and hence drop the subindex in the remainder of the chapter.

In an ideal scenario, where the visual correspondences—which come from the target domain

image—indeed share the same class identities as their respective source domain locations, we

could adjust the parameters of a model f (x;Θs), with parameters Θs learned on the source

domain, to a new set of parameters Θ̂t that make f (x;Θ̂t ) predict the assumed class identities

for locations on the target domain, as

Θ̂t = argmin
Θt

1

|Rs |
∑

xs
i ∈Rs

1∣∣Ct
i

∣∣ ∑
xt∈Ct

i

∥∥ f (xt ;Θt )− y s
i

∥∥ . (3.4)

In other words, we would assume that we have a labeled set in the target domain, and would

perform supervised training.

3.2.1 Multiple Instance Learning formulation

Evidently, the situation described above is unrealistic, as it requires that the patch matching

algorithm always yield target domain locations that correspond in class identity to their source

domain locations. One way to mitigate this problem is to select only a reduced number of best

correspondences, according to their matching score. This still, however, does not guarantee

that the correspondences be correct. We overcome this uncertainty in the class identity of the

matches by using a Multiple Instance Learning (MIL) approach.

The key idea behind MIL is to optimize one single value coming from a set of examples that

are semantically related among themselves. MIL is a natural formulation for problems where

different versions of objects exist, individual labeling of each version is costly, and a single

response per object is sufficient (Carbonneau et al., 2018).

A classical example, coming from computational chemistry, is the problem of deciding if a

particular molecule is a good drug candidate, given several potential molecule configurations

and their corresponding measured effects (Dietterich et al., 1997). In this scenario, if any one of

the configurations produces desirable effects, the whole set of configurations—known as a bag

in the MIL formalism—is labeled as positive, meaning that the molecule becomes a candidate

for further research. If none of the configurations does, the bag is labeled as negative and the

molecule is dropped from the study. In other words, the learning process acts at the bag level

instead of on individual instances and only one response per bag is needed.

24



3.3. Application: Boosted decision trees for Electron Microscopy

We adapt this idea to our visual correspondence problem, by collecting all correspondences

to different source domain locations into bags. Correspondences to a location labeled as

foreground are placed in a bag labeled as positive, as we expect some of the correspondences

to belong to the object in the target domain image. By contrast, correspondences to locations

labeled as background are placed in a negative bag that we expect not to contain the object of

interest.

In this way, we adapt Equation 3.4 for MIL, as

Θ̂t = argmin
Θt

1

|Rs |
∑

xs
i ∈Rs

softmin[`i ,1, . . . ,`i ,K ] , (3.5)

where

`i , j = L
(

f (xt
i , j ;Θt ), y s

i

)
(3.6)

is a classification loss function. The softmin function of Equation 3.5 is where MIL aggregates

the responses coming from the different elements in the bags into a single value. Our softmin

is an adaptation of the log-mean-exponential function (Pinheiro and Collobert, 2015), of the

form

softmin[x1, . . . , xN ] =−1

r
ln

1

N

N∑
i=1

exp(−r xi ) , (3.7)

where r is a parameter, adjusted via grid search, that controls the behavior of our softmin:

increasing values of r will bring the softmin function closer to a real minimum function.

3.3 Application: Boosted decision trees for Electron Microscopy

The above sections are formulated for the general case of an arbitrary source domain model.

As a particular instantiation of our method, we enable boosted decision trees (BDT) for unsuper-

vised domain adaptation, in the context of semantic segmentation of organelles on Electron

Microscopy (EM) 3D images.

BDTs are ensemble models that use decision trees as its weak learners, each of which is learned

via gradient boosting (Dai et al., 2007). In its general form, the ensemble is given by

f (x) =
Nd∑

d=1
αd fd (x) . (3.8)

In other words, a number of Nd weak learners are trained for inference one at a time, and both

the relative weights αd and the parameters of the weak learner fd are learned at the same time

via the gradient boosting algorithm (Dai et al., 2007).

BDTs have proven well suited for segmentation of EM images (McDonald and Sheehan, 2004;

25



Chapter 3. Visual correspondences and Multiple Instance Learning

Becker et al., 2012; Becker, 2016; Oguz et al., 2017). One of the most successfull implementations

for EM segmentation is that of Becker et al. (2012), which uses decision stumps—decision

trees of depth 1 each—as weak learners, in conjunction with context cues. Context cues are

features extracted at each location of the image, that describe such location in terms of different

measurements obtained from its surrounding context. In particular, the context cue algorithm

learns to identify “boxes” of specific sizes, and at a specific offset with respect to the location

to describe—or more precisely, with respect to its computed normal plane—and integrates

the values of spatial filters, such as intensity, gradient magnitude, and laplacians, inside those

boxes. Context cues attempt to compensate for common challenges in EM segmentation, such

as lack of quality, low image resolution, presence of artifacts, and arbitrary tissue orientation,

by considering not only the pixels or voxels within the object to segment, but also other image

characteristics that might occur frequently in the object’s surroundings.

Following the formulation of Becker et al. (2012), given a set of context cues {x̂1, . . . , x̂C }, de-

scribing each image location x, the BDT model based on decision stumps, for a single image

domain, is given by

f (x;Θ) =
Nd∑

d=1
αd sign(x̂cd −τd ) , (3.9)

that is to say, the output value of each weak learner at a given location x corresponds to whether

or not some single context cue x̂cd , chosen by boosting, is above some learned value τd .

In order to enable the BDT model for domain adaptation with our MIL approach, we update its

model parameters for the target domain. The relative weights of the weak learners αd measure

the importance of each decision to the whole model, and are directly related to how informa-

tive a particular context cue is to the problem at hand. As we expect and require that the same

spatial description of a location be preserved across domains, we preserve those model param-

eters across image domains. The remaining parameters, namely the thresholds τs
d to apply to

each context cue, are the ones to undergo adaptation via MIL and visual correspondences.

Our goal then is to learn a new set of thresholds Θ̂t = {τt
1, . . . ,τt

Nd
} for the target domain. Fol-

lowing the MIL idea of Section 3.2.1, we express the learning problem as

Θ̂t = argmin
τt

1,...,τt
Nd

∑
xs

i ∈Rs

softmin[`i ,1, . . . ,`i ,K ] , (3.10)

where `i , j = L
(

f (xt
i , j ;Θt ), y s

i

)
, the model f is that of Equation 3.9, and the loss function L is

the Huber loss,

Lδ(y, ŷ) =
1

2 (y − ŷ)2 if
∣∣y − ŷ

∣∣≤ δ
δ
∣∣y − ŷ

∣∣− 1
2δ

2 otherwise
. (3.11)
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3.3. Application: Boosted decision trees for Electron Microscopy

3.3.1 Threshold learning regularization

We learn the new thresholds one at a time via gradient boosting (Friedman, 2002). In addition,

as the correspondences provide only a limited number of examples for training, we regularize

the training by using the original source domain thresholds τs
d as priors for the adjusted target

domain thresholds τt
d , so as to prevent overfitting.

In order to do so, we estimate probability distributions for both the source and target domain

thresholds, by assuming that they follow normal distributions, τ(·)
d ∼ N (µ(·)

τd
, (σ(·)

τd
)

2
), and by

estimating their distribution parameters by bootstrap resampling (Efron, 1982). For the source

domain, we learn multiple values for each τs
d from random subsamples of the training data,

and then estimate the mean and variance from these values. Similarly, for the target domain,

we randomly sample subsets of the source-target matches, and minimize Equation 3.10 for

each subset. From these multiple estimates of τt
d we can compute the required means and

variances.

Finally, we take as the learned target domain parameters τt
d = argmaxτ p(τs

d = τ)p(τt
d = τ).

In this way, p(τs
d ) acts as a prior over the target domain thresholds: if the target domain

correspondences produce high variance estimates, the distribution learned in the source

domain acts as a regularizer.

3.3.2 Datasets

We evaluate our method on the problem of mitochondria and synapse segmentation on Elec-

tron Microscopy volumetric images. In particular, the volumes we use are Focussed Ion Beam

Scanning Electron Microscope (FIB-SEM) acquisitions, which were each obtained from brain

tissue coming from different mouse specimens.

All image volumes consist of a series of parallel cross-sections (slices) imaged at an isotropic

resolution. Details on the images and example patches extracted from them are shown in Ta-

ble 3.2.

As training annotations, manually-produced segmentation maps are provided. Those seg-

mentation maps are handcrafted in a slice-by-slice fashion, and provide a binary voxel-wise

labeling at every location as either the voxel belonging to the object to segment or not.

3.3.3 Evaluation metric

The adapted model computes a prediction of the class identities at every target domain loca-

tion xt , as ŷ t = f t (xt ). In order to evaluate the performance of our method, we measure the

aggregated agreement between corresponding expected and predicted annotations, y t and ŷ t ,
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Table 3.2 Electron Microscopy datasets description.

Synapses Mitochondria

Dataset Hippocampus Striatum Cerebellum Somatosensory cortex

Resolution 5nm (isotropic) 5nm (isotropic) 6.2nm (isotropic) 6.2nm (isotropic)

Dimensions 1027×987×219 750×564×750 1024×653×165 853×506×496

Image
(Example region

of size 300×400)

Annotations

in terms of their Jaccard index, also known as Intersection over Union, expressed as

J (Y t , Ŷ t ) =
∑

y t∈Y t 1[y t = 1∧ ŷ t = 1]∑
y t∈Y t 1[y t = 1∨ ŷ t = 1]

. (3.12)

To avoid overpenalizing at the locations that are close to the boundary of the objects to segment,

for which the annotations are subject to high uncertainty, we consider an ignore zone around

the object boundaries. We obtained the appropriate value of 4 voxels for this parameter via

grid search. The locations within this region are not considered in the evaluation.

3.3.4 Experimental setup

We extract visual correspondences for patches of 35 × 35 × 35 voxels, centered around each

reference source domain location, as explained in Section 3.1. Such patch dimensions, which

are problem and resolution dependent, should capture enough contextual information for the

visual correspondences process to yield suitable correspondence candidates, as shown in Fig-

ure 3.3. For both the synapse and mitochondria segmentation problems, we use the relevance

sampling scheme of Section 3.1.1 to obtain a set of 300 relevant locations extracted from the

structure of interest, and 600 extracted from the background. We threshold the NCC scores
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Figure 3.3 Example visual correspondences for Electron Microscopy datasets. Central slices
of visual correspondences across two different domains, for the mitochondria (top) and synapse
(bottom) EM datasets, and their corresponding NCC scores. High-scoring matches that do not
conclusively correspond to the source domain object are highlighted in red.

at 0.2 to eliminate low-quality candidate visual correspondences. Such value is determined

by manually removing spurious correspondences and inspecting at what threshold they stop

occurring.

3.3.5 Baselines

We evaluate our method against the following related strategies:

No adaptation. We use the model trained on the source domain directly for prediction on

the target domain, to show the need for domain adaptation.

Histogram matching. We change the gray levels in the target stack prior to feature extrac-

tion to match the distribution of intensity values in the source domain. We apply the classifier

trained on the source domain on the modified target stack, to rule out that a simple transfor-

mation of the images would suffice.

Best TD match. For each source example, we assume that the best match found by NCC is a

true correspondence, which we annotate with the same label. A classifier is trained on these

labeled target examples.

Subspace alignment (SA). We test the method of Fernando et al. (2013)—one of the very

few state-of-the-art domain adaptation approaches directly applicable to our problem. It

first aligns the source and target PCA subspaces and then trains a linear SVM classifier. We

also tested a variant that uses an AdaBoost classifier on the transformed source data to check

if introducing non-linearity helps.
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3.3.6 Results

As quantitative evaluation, we report the obtained Jaccard indices (Equation 3.12) for all the

methods in Table 3.3.

Effect of the number of correspondences

In order to understand how sensitive adaptation is to the number of potential correspondences,

we apply our method under different values of K , and present a summary of the results in Fig-

ure 3.4. It shows that our method is robust to a wide range of K , with the best performance

obtained for K between 3 and 15. This confirms the importance of using MIL over simply

choosing the highest ranked correspondence. However, too large a K is detrimental, since the

ratio of right to wrong candidates then becomes lower. From these results we decide on a fixed

value of K = 8 for all our experiments.

Comparison against related methods

Table 3.3 offers a quantitative comparison of our approach to the baselines mentioned in Sec-

tion 3.3.5. Note that we significantly outperform them for both datasets studied. We conjecture

that the inferior performance of SA (Fernando et al., 2013) is because our features are highly

correlated, making PCA a suboptimal representation to align both domains. The training time

for the baselines was around 30 minutes each. Our method takes around 35 minutes for trai-

ning. Finding correspondences for 10000 locations takes around 24 hours when parallelized

over 10 cores, which corresponds to around 81 seconds per source domain patch. While our

approach takes longer overall, it yields significant performance improvement with no need for

user supervision. All the experiments were carried out on a 20-core Intel Xeon 2.8GHz.

In Figure 3.5 we provide qualitative results by overlaying on a single target domain slice seg-

mentation results with and without our domain adaptation. For mitochondria segmentation,

our method predicts objects that are structurally similar to the expected ones. For synapse seg-

mentation, our approach both successfully removes spurious detections and correctly predicts

the existence of small structures that would have been missed otherwise.
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Figure 3.4 Jaccard indices for different numbers of candidate correspondences K , for the
synapse (left) and mitochondria (right) datasets. Using either a very small or a very large number
of candidate correspondences causes a decrease in predictive power, due to overconfidence of the
matching algorithm, or confusion of the Multiple Instance Learning optimization.
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3.4. Conclusion

Table 3.3 Jaccard indices for our method and the baselines of Section 3.3.5.

No
adaptation

Histogram
matching

TD
only

SA (Fernando et al., 2013) Ours
+ Linear SVM + AdaBoost

Synapses 0.22 0.32 0.39 0.13 0.39 0.57
Mitochondria 0.50 0.39 0.57 0.24 0.59 0.62
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Figure 3.5 Example segmentations obtained with our method for the synapses and mitochon-
dria Electron Microscopy datasets, overlaid on one slice of the target domain stacks. In both cases,
we display from left to right the results obtained without domain adaptation, with domain adap-
tation, and the ground truth.

3.4 Conclusion

This chapter introduced an unsupervised domain adaptation method based on the automated

discovery and exploitation of interdomain visual correspondences. One-to-many correspon-

dences between domains are handled by a Multiple Instance Learning formulation that adjusts

model parameters for a target dataset, circumventing the need for explicit manual annotations.

Results provided on unsupervised segmentation of neural organelles demonstrate the effec-

tiveness of this method.

One limitation of this approach is that the computation of visual correspondences, performed

independently for each of the selected source domain locations, finds only a small, sparse set of

locations on the target domain as their correspondences, which is used to guide the parameter
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Chapter 3. Visual correspondences and Multiple Instance Learning

adaptation. In the next chapter, we will explore how to incorporate structural information in a

way that is more consistent with the structure of the source domain annotations, in order to

obtain a larger set of training examples.

In addition, this method is based on adapting the parameters of simple boosted decision trees

models. Adapting larger, more expressive models, such as deep neural networks, is likely to

result in overfitting, due to the increased number of parameters and few examples to tune

them. More aggressive regularization strategies to constrain the adaptation are proposed in

the next chapter in order to alleviate this.
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CHAPTER 4Consensus heatmaps

and the two-stream U-Net

This chapter improves on the idea of visual correspondences, presented in Chapter 3, to build

a better-informed set of interdomain correspondences, and introduces a deep-learning frame-

work that enables cooperation between models acting on different domains. In particular, the

method presented here aggregates candidate correspondences by a voting scheme and uses

them to construct a consensus heatmap—a map of how frequently locations on a new image

are matched to relevant locations from the original one. High-scoring regions of the heatmap

are highly correlated to regions where the object to segment appears, and are thus used as

soft labels to be incorporated in deep domain adaptation pipelines. We introduce one such

pipeline—the two-stream U-Net—and provide empirical evidende that orchestrating both

ideas results in a high-quality unsupervised segmentation strategy.

4.1 Consensus heatmaps

One of the main assumptions when using visual correspondences, as introduced in Chapter 3,

is that pattern matching via NCC is a sensible way to establish correspondences. In particular,

we assume that visual correspondences found by NCC should induce semantic correspon-

dences, and hence class identities between specific source and target domain locations could

be also expected to correspond, at least in general. The Multiple Instance Learning formulation

detailed in Section 3.2.1 is an attempt to relax this dependence. A second assumption is that

the information encoded in those correspondences can be used to adapt model parameters

so that they are effective for segmentation on the target domain. However, modern machine

learning techniques, for example those based on deep learning, involve a staggering number

of parameters, and information coming from visual correspondences—which is scarce and

sparse—does not provide sufficient constraints for the parameter adaptation problem to be

solved in an effective way in such scenarios.

A better approach consists in collecting evidence coming from all the visual correspondences

at once. This can be done by keeping track of, for each target domain location, how many

times and with what certainty it has been found as a visual correspondence for different source
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Chapter 4. Consensus heatmaps and the two-stream U-Net





Figure 4.1 Aggregating visual correspondences. Different source domain locations (left) choos-
ing the same target domain location (right) as their candidate visual correspondence provides a
strong evidence that such target domain location belong to the object to segment. The quality of
the patch matching score, hinted here by the size of the checkmarks, allows for a weighted vote
scheme that considers how confident the patch matching was.

domain locations. The resulting tally, known as the consensus heatmap, highlights popular

regions commonly matched to locations belonging to the structure of interest in the source

domain.

In other words, as illustrated in Figure 4.1, if the original visual correspondences formulation

establishes a one-to-many relationship between source and target domain locations—one

location from the source domain points to many target domain correspondences—the consen-

sus heatmap establishes a many-to-one relationship instead. This is more desirable because,

since the class identities of source domain locations are known, having many source domain

locations agreeing to one particular target domain location is a stronger evidence that its class

is shared with that of the source locations.

Consensus heatmaps are motivated by the following two considerations:

1. The visual correspondences of different source domain locations labeled as foreground

tend to be high-scoring locations that are often found close to one another in the target

domain. The equivalent applies to locations labeled as background. Therefore, if we

consider all visual correspondences for all sampled source domain locations at once, we

can expect to observe clusters of high-scoring target domain locations. In other words,

different source domain locations will often be assigned the same or neighboring regions

as their visual correspondences. Therefore, if a particular region of the target domain

image is selected by many source domain samples of the same class—either foreground

or background—it is likely to correspond to the same class as well.

2. The patch matching used to establish visual correspondences considers source domain

patches under different orientations and chooses the best. When a source domain region

matches a target domain region under a specific orientation, it is reasonable to expect

that their segmentations should also match, under the same orientation. Therefore,
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4.1. Consensus heatmaps

the local segmentations from the source domain, at the given location and under such

orientation, should give us an idea of the expected local segmentations on the target

domain at the location of the visual correspondence.

These two observations taken together suggest that we can aggregate the information provided

by all visual correspondences into one single response—the consensus heatmap—that unifies

them, considers structure found in the annotations, and improves reliability. We now describe

the heatmap generation algorithm in more detail and then how to use the heatmaps to train

models.

4.1.1 From visual correspondences to heatmaps

A consensus heatmap is essentially a numerical score at each target domain location, that

quantifies our belief that such location belong to either the structure of interest or the back-

ground, given the aggregated evidence coming from visual correspondences. Each visual

correspondence between domains contributes to the scoring at the particular location and

its neighborhood, according to the quality of its NCC match. This can be understood as a

weighted voting scheme—aggregating the evidence makes regions consistently voted as being

of a particular class stand out. Conversely, it tends to discount locations where the evidence

is inconclusive, either because of their lack of support due to few or low-quality matches, or

because of contradictory votes coming from both foreground and background regions.

Building the consensus heatmap

Building the consensus heatmap entails the following steps:

1. Initialize the heatmap as a response of the same dimensions as the target domain image,

with zeroes everywhere.

2. Sample source domain locations as outlined in Section 3.1.1.

3. Find all visual correspondences to those locations as explained in Section 3.2.

4. For all visual correspondences, increase or decrease the consensus heatmap at and

around the location of the match, according to the class at the source domain location.

5. Discard values at locations that have not being visited often enough, or with small abso-

lute value.

A detailed pseudocode of the algorithm is presented in Algorithm 1. Visualizations of the

process at each step are shown in Figure 4.2.

We have investigated two strategies to assign consensus score values to target domain locations.

Both rely on placing values at and around locations that produce visual correspondences, ac-

cording to the local source domain annotation, guided by the local labels under the orientation

35



Chapter 4. Consensus heatmaps and the two-stream U-Net
M

ito
ch

on
dr

ia
S

yn
ap

se
s

(a) (b) (c) (d) (e) (f)

Figure 4.2 The responses aggregated from all correspondences for a target domain image (a)
are used to build a heatmap (b). A threshold is then applied to discard the regions that have low
aggregated NCC (c). Different regions of the heatmap can aggregate responses from a different
number of source domain locations (d). We assign labels (e) only for the regions that are supported
by a minimum number of votes. This labeling largely overlaps with the actual labels (f).

that produces the best match. We now introduce them and discuss how we combine them to

generate the heatmaps.

Mixture of Gaussians. We assign values indicating that a given target domain location x

belong to the structure of interest as a mixture of Gaussian responses, as

HG (X t ; Rs)x =
∑

xs
i ∈Rs

∑
xt

j∈Ct
i

Sxt
j
·N (x−xt

j ,Σi , j ) , (4.1)

i.e., we place Gaussian density centered around the target domain locations xt
j that were iden-

tified as visual correspondences to the source domain reference voxels xs
i , with a weight Sxt

j

given by the quality of the match, that is, S = NCC∗(X t , X s
[
[xs

i ]
]
). The parameters of the co-

variances Σi , j are estimated so as to approximate the shape of the pixels or voxels labeled as

positive in the neighborhood of the source domain location and under the orientation that

produced the match.

Label overlay. Analogously, we explore using a mixture model that exploits the label struc-

ture in a more direct way; instead of using the structure of the annotations only to estimate

parameters, we use it as a mask to determine scoring locations.

Here, the value of the heatmap obtained from the set of visual correspondences for each target
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4.1. Consensus heatmaps

Algorithm 1: Consensus heatmap construction

input :A source domain image X s

Source domain annotations Y s

A target domain image X t of dimensions w ×h ×d
A set of relevant source domain locations Rs

A threshold controlling the minimum background support τlow

A threshold controlling the minimum foreground support τhigh

A minimum match count τC

Output: The consensus heatmap H
1 H ← zeros(w ×h ×d) // The consensus heatmap

2 C ← zeros(w ×h ×d) // Match count at each location

3 for xs
i ∈ Rs do // selected source domain locations

4 ■← X s
[
[xs

i ]
]

// extract patch from X s around xs
i

5 ä← Y s
[
[xs

i ]
]

// extract patch from Y s around xs
i

6 S ← NCC∗(X t ,■) // Best NCC score, Equation 3.2

7 Φ←φ∗(X t ,■) // Best orientation, Equation 3.3

8 for xt ∈ Ct
i do // locations of visual correspondences

9 3← rotate(ä,Φxt ) // reorient local labels to orientation of the match

10 C ← add_at(C, 3, xt ) // increase count at and around location of the match

11 H ← add_at(H, Sxt ·3, xt ) // place rotated labels, scaled by their match score

12 H
[

H > τlow & H < τhigh
]← 0 // discard values at locations with low aggregated NCC support

13 H [ C < τC ] ← 0 // discard values at locations with few votes

14 return H

domain location x is given by

HL(X t ; Rs)x =
∑

xs
i ∈Rs

∑
xt

j∈Ct
i

Sxt
j
·1[x ∈ oi , j ] , (4.2)

where oi , j is a binary mask obtained by extracting the source domain labels at and around xs
i ,

rotating them to the orientation of the match, and overlaying them at the location of the

match. In other words, we place a uniform response around the matching locations according

to oi , j , and scaled to the quality of the match Sxt
j
. Figure 4.4 depicts the construction of this

mask. Successively overlaying the local labels of the regions that produced the match with

this procedure highlights the popular matching neighborhoods in a way that preserves the

original structure of the object of interest. Since the sampling protocol of Section 3.1.1 favors

patches near the border of the target object, the corresponding labels will often include details

describing the outline of the object, which we expect to be similar across domains.

Combining the models

The above two models serve different purposes. The mixture of Gaussians is suitable for general

modeling with limited regards to the structure of the annotations; the Label-driven model is
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Chapter 4. Consensus heatmaps and the two-stream U-Net

(a) (b) (c) (d) (e) (f)

NCC

NCC

NCC

Source domain
patches

Target domain
patch

(g)

Figure 4.3 Heatmap construction by mixture of Gaussians. Source domain patches (a), after
reorientation (b), find a common target domain location (c) as their visual correspondence. Their
corresponding annotations, under the same orientation (d), are used to infer the shapes of Gaus-
sian responses (e) that, when aggregated, will approximate the expected target annotations (f).

strongly bound to the structure of the labels, and disregards responses that do not comply

with it. As visual correspondences can be obtained for both foreground and background, and

since the annotations provide structural information of the foreground, we use the first scoring

scheme to assign values to matches with the background, and the second one for matches with

the structure of interest. We then combine both formulations into our consensus heatmap,

H(X t ; Rs) = HL(X t ; Rs
(+))−HG (X t ; Rs

(−)) , (4.3)

where we have separated the selected source domain locations into the sets containing lo-

cations labeled as foreground Rs
(+) and background Rs

(−). Large positive or negative values

therefore indicate how certain we are that a voxel at a given location belong to the foreground

or background, respectively.

4.1.2 Refining correspondences with heatmaps

As they aggregate information from many correspondences, we expect our heatmaps to be

more dependable than individual correspondences. We can replace the raw NCC scores at-

tached to the correspondences by their heatmap values and use these values to rank them. This

is beneficial for removing spurious correspondences that score high in terms of their NCC but

whose classes do not coincide with their reference source domain locations. A qualitative evalu-

ation of using consensus heatmaps instead of the raw NCC values for ranking correspondences

is provided in Figure 4.5.

38



4.2. The two-stream U-Net

(a) (b) (c) (d) (e) (f)
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Figure 4.4 Label-driven heatmap construction. Source domain patches (a), after reorienta-
tion (b), find a common target domain location (c) as their visual correspondence. Their cor-
responding annotations, under the same orientation (d), are aggregated into a mask (e) that will
approximate the expected target annotations (f).

4.1.3 Heatmaps as soft annotations

As high-confidence regions from the consensus maps largely coincide with the expected labels

on the target domain, we select those locations by establishing a lower and an upper threshold

on the heatmaps. We label as background the regions that fall below the lower threshold τlow,

and as foreground the regions that score above the upper threshold τhigh. From those potential

regions, we accept as true annotations only the voxels that aggregate responses from at least

a minimum number of source domain locations τC. Locations that have not been voted by

at least that number of source domain locations, as well as those whose heatmap values are

between the rejecting thresholds, are regarded as unannotated.

The protocol above already gives us a partially annotated set of target domain locations where

we could train a predictor. Doing so, however, would most likely lead to model overfitting.

Instead we propose to use those partial annotations, which are obtained in an unsupervised

fashion, as input to an arbitrary supervised or semisupervised domain adaptation method, to

turn it into an unsupervised one. We introduce one such model next.

4.2 The two-stream U-Net

The U-Net, introduced in Ronneberger et al. (2015), is a deep convolutional network architec-

ture originally created for biomedical image segmentation, but which has proven very effective

for a wide range of applications beyond its original domain (Mosińska et al., 2018; Wang et al.,

2019; He et al., 2019). The architecture, outlined in Figure 4.6, comprises a succession of convo-

lutional and pooling layers that enables it to encode the image at multiple levels of granularity,

upscaling layers that apply the inverse spatial operations—so as to recover a segmentation
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Figure 4.5 Refined correspondences via consensus heatmap.
Central slices of visual correspondences across two different domains, for the mitochondria (top)
and synapse (bottom) datasets. For each dataset, the top row contains the best scoring locations,
in terms of their NCC score, and the bottom row contains the best scoring locations in terms of
their consensus heatmap score. Scoring values are shown under each image. The occurrence of
high-scoring matches that do not conclusively correspond to the source domain object, highlighted
in red, is largely avoided by using the consensus heatmap instead of NCC as the ranking criterion.

map of dimensions similar to the original—and skip connections that allow for combinations

of features across encoding and decoding layers.

Albeit powerful, out-of-the-box the U-Net suffers from the domain shift problem, and cannot

successfully segment images with different characteristics as those used for training. We pro-

pose a strategy to overcome this limitation, based on co-regularization and weight sharing

between two U-Nets acting concurrently on different image domains.

4.2.1 General structure

Our proposed model, depicted in Figure 4.7, consists of two streams—two independent U-

Nets f s( · ; Θs) and f t ( · ; Θt ) with their own sets of parametersΘs andΘt , each specialized for

each image domain—with identical structure. As the structure is the same for both streams,

all weights from the source domain stream have a corresponding weight on the target domain

one. During training, we feed images to each stream coming from its associated domain only.

Each stream outputs the predicted segmentation map for its domain, as a spatial response

that contains, for each location, the probability that the pixel or voxel at that location belong
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Fig. 1. U-net architecture (example for 32x32 pixels in the lowest resolution). Each blue
box corresponds to a multi-channel feature map. The number of channels is denoted
on top of the box. The x-y-size is provided at the lower left edge of the box. White
boxes represent copied feature maps. The arrows denote the different operations.

as input. First, this network can localize. Secondly, the training data in terms
of patches is much larger than the number of training images. The resulting
network won the EM segmentation challenge at ISBI 2012 by a large margin.

Obviously, the strategy in Ciresan et al. [1] has two drawbacks. First, it
is quite slow because the network must be run separately for each patch, and
there is a lot of redundancy due to overlapping patches. Secondly, there is a
trade-off between localization accuracy and the use of context. Larger patches
require more max-pooling layers that reduce the localization accuracy, while
small patches allow the network to see only little context. More recent approaches
[11,4] proposed a classifier output that takes into account the features from
multiple layers. Good localization and the use of context are possible at the
same time.

In this paper, we build upon a more elegant architecture, the so-called “fully
convolutional network” [9]. We modify and extend this architecture such that it
works with very few training images and yields more precise segmentations; see
Figure 1. The main idea in [9] is to supplement a usual contracting network by
successive layers, where pooling operators are replaced by upsampling operators.
Hence, these layers increase the resolution of the output. In order to localize, high
resolution features from the contracting path are combined with the upsampled

Figure 4.6 Original U-Net (Ronneberger et al., 2015)

to the background or foreground. Those responses may be subsequently binarized to obtain

the final segmentation.

4.2.2 Parameter regularization and sharing

Our first strategy to relate both streams is to link weights coming from corresponding layers.

For a given pair of corresponding source-target weights, we can decide either to learn a single

value that is to be shared between the two streams, to constrain one of the parameters so that

it does not deviate arbitrarily from the other, or to not relate them at all and allow them to vary

freely during training. The first and the third options are straightforward to implement, as they

represent keeping two references pointing to the same vector of weights during training, and

keeping two disjoint vectors of parameters with no further consideration, respectively. For the

second case, we build on the weight regularization of Rozantsev et al. (2019), where the target

domain weights are enforced to follow a linear relationship with those of the source domain.

We define a set of layers Ω from the source domain stream where we want to apply weight reg-

ularization. On all such layers f s
j , j ∈Ω, parametrized by weights θs

j , and their corresponding

target domain layers, parametrized by θt
j , we define the weight regularization term rW as

rW = 1

|Ω|
∑
j∈Ω

∥∥∥a jθ
s
j +b j −θt

j

∥∥∥2

2
, (4.4)
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parameter regularization feature regularizationparameter sharing

Figure 4.7 Our reference deep learning model, a two-stream U-Net (Bermúdez-Chacón et al.,
2018), consists of individual streams that process images in each domain. The parameters of
corresponding layers in both streams are co-regularized. Our approach enables this architecture
to work in the unsupervised scenario.

with scalar model parameters a j and b j to be learned jointly with the network weights during

training. This effectively binds the pairs of parameters by encouraging the target domain

parameters to restrict their deviation from the source domain ones.

4.2.3 Feature regularization

The target domain stream should predict the segmentations for images coming from the

target domain. However, often we do not have enough—or any—annotations on the target

domain to guide the training and adjust the target stream parameters in a supervised fashion.

One common strategy to compensate for this is to add terms to the loss function that ensure

that the predictions keep consistency with what we expect. In the two domain scenario, we

achieve this consistency by encoding images from both domains into representations that are

similar. As we have annotations in the source domain, we therefore aim to make target domain

image encodings similar to the supervised source domain ones. In order to do so, we apply a

regularizer to penalize differences between the distributions of the final feature maps f s
o and

f t
o produced by the two streams, that is, the representation preceding the classifier layer.
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4.2. The two-stream U-Net

We evaluated two such standard regularization terms.

The first one corresponds to the Minimum Mean Discrepancy (MMD, Gretton et al. (2007))

between the source and target features, and can be expressed as

r MMD
o =

∥∥∥∥∥ 1

N s M

N s∑
i=1

∑
x∈M

φ( f s
o (X s

i ; Θs)x)− 1

N t M

N t∑
i=1

∑
x∈M

φ( f t
o (X t

i ; Θt )x)

∥∥∥∥∥
2

H
, (4.5)

where x sums over the spatial positions M on the output feature maps, M = |M|, and φ(·) is a

mapping to a reproducing kernel Hilbert space. The MMD can in fact be expressed in terms of

a kernel function, as

r MMD
o =∑

i , j
x,y

k

(
f s

o (X s
i )x, f s

o (X s
j )

y

)
(N s M)2 −2

∑
i , j
x,y

k

(
f s

o (X s
i )x, f s

o (X t
j )

y

)
N s N t M 2 +∑

i , j
x,y

k

(
f s

o (X t
i )x, f s

o (X t
j )

y

)
(N t M)2 (4.6)

and in practice we use the Radial Basis Function as the kernel k.

The second regularizer we evaluated is based on the correlation alignment method of Sun et al.

(2016). Let C s
o be the correlation matrix of the final source feature map f s

o (X s
i ,Θs), and C t

o be

the equivalent matrix for the target domain. We then write

r corr
o ( f s

o , f t
o ) = ‖C s

o −C t
o‖2

F . (4.7)

This expression is more permissive than the MMD formulation, because instead of attempting

to align the entire distributions in kernel space, it enforces agreement between distribution

orientations only, and can be more beneficial in case of larger domain shifts.

4.2.4 Segmentation scoring

We pose the segmentation problem as a binary classification of whether pixels from the image

belong to the object of interest or not. For binary classification, the most commonly used loss

function is the binary cross-entropy (Shen, 2005). However, the most popular metric to assess

segmentation quality is the Jaccard index, or Intersection over Union (IoU), introduced in the

previous chapter in Equation 3.12. An alternative way to express the Jaccard index for {0, 1}

binary labels is

J (Ŷ ,Y ) =
∑

i yi ·1[ŷi = yi ]∑
i yi +∑

i
(
1− yi

) ·1[ŷi = 1− yi ]
. (4.8)

The Jaccard Index is not differentiable and hence cannot be directly used when performing
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training with backpropagation. We therefore introduce a differentiable, “soft” version of it

Jsoft(Ŷ ,Y ) =
∑

i yi · s(ŷi , yi )∑
i yi +∑

i (1− yi ) · s(ŷi ,1− yi )
, (4.9)

based on approximating the indicator function. Here, s(·, ·) is some similarity metric that

outputs values close to 0 if the values differ, and to 1 if they are equal.

In particular, we use the Radial Basis Function s(a,b) = exp(−‖a −b‖2/σ) as similarity metric.

The parameter σ controls how close to a true indicator function the soft formulation is. Since

the differences between expected and predicted labels are bounded to the [0, 1] range, if we

want to approximate the indicator function with the RBF to a certain tolerance ε, we should

set σ=− 1
lnε . This ε is a hyperparameter of the method and we set it to 0.001. Other similarity

metrics can also be adapted and used in an analogous way. In addition, adapting other pop-

ular count-based metrics akin to the Jaccard index, such as the F1 score and the Matthews

correlation coefficient, following differentiable formulations equivalent to Equation 4.9 is

straightforward.

We then write the segmentation loss function as

Ly (y, ŷ) = 1− Jsoft(y, ŷ) , (4.10)

which approximates the difference between the Jaccard index of our predictions and the one

that would be obtained for perfect segmentations.

4.2.5 Loss function

The segmentation loss functions from the source domain Ls
y , and for the target domain Lt

y —in

case there exists annotated data—are combined with the weight regularizers rW and the output

layer regularizer ro into a joint loss function, as

L = λs
y Ls

y + λt
y Lt

y + λWrW + λoro (4.11)

with relative weights λs
y ,λt

y ,λW, and λo for the different components. This loss function is then

minimized by backpropagation via gradient-based optimization methods.

4.3 Evaluation

Below, we first discuss the details of our experimental setup and then present our results for

both unsupervised and semi-supervised domain adaptation.

44



4.3. Evaluation

4.3.1 Datasets

We evaluate our method for the synapse and mitochondria segmentation datasets introduced

in Chapter 3.

4.3.2 Experimental setup

Each stream from our two-stream U-Net architecture follows the design of Ronneberger et al.

(2015) (Figure 4.6), which performs 2D image encoding by four levels of downscaling. In order

to simplify the selection of the setΩ of corresponding layers between streams to be regularized,

we divide them into three groups: layers that perform encoding, layers that operate on the

encoded representation, and layers that perform decoding. We found that we obtained the

best performance when regularizing the encoding layers and sharing the parameters from

all the rest, by evaluating all possible combinations of layer groups and layer regularization

strategies of Section 4.2.2 under supervised cross-validation. As output layer regularizer ro we

found the formulation based on correlation alignment to be more beneficial for our method

on the evaluated datasets.

As our network uses partial annotations inferred from computed consensus heatmaps, which

in turn utilize most of the machinery used to find the visual correspondences of Chapter 3,

we apply the same setup as described in the experimental evaluation of Section 3.3.4, so as

to make our experiments comparable. In particular, our patch matching works on templates

of shape 35× 35× 35, and we use the same 300 foreground and 600 background locations

from the source domains to compute the heatmaps. We accept or reject soft annotations by

using τlow = −0.5 and τhigh = 0.5 in Algorithm 1. We tune the parameters of our network for

2000 epochs by using the Adam optimizer (Kingma and Ba, 2015) with a learning rate of 10−4.

We evaluate the following experiments:

Consensus heatmap-based MIL. (CH-MIL) This is the approach of Chapter 3 that relies on

Multiple Instance Learning to directly use the visual correspondences to refine classifier

parameters learned on the source domain so that they work for the target domain, but top

correspondences are chosen here by looking at the Consensus Heatmap score rather than

the raw NCC to eliminate the weaker ones, as explained in Section 4.1.2.

Two-stream U-Net. (2U-Net) The two-stream U-Net described in Section 4.2, used with full

source domain supervision and limited target domains supervision, for the semi-supervised

domain adaptation scenario.

Heatmap-based two-stream U-Net. (CH-2UNet) The two-stream U-Net of Section 4.2, us-

ing the thresholded heatmaps as partial annotations to provide a supervisory signal in the

target domain, as described in Section 4.1.3. We take as initial parameter values for the target

domain stream those learned in the source domain stream under full supervision.

45



Chapter 4. Consensus heatmaps and the two-stream U-Net

4.3.3 Unsupervised domain adaptation

We compare the results obtained with our methods against those of the following baselines

that can also operate without manual annotations in the target domain:

Boosted decision trees. (SD-BT) An ensemble of decision trees trained by gradient boost-

ing on data from the source domain is applied to the target domain as is.

U-Net. (SD-UNet) A U-Net (Ronneberger et al., 2015) trained on the source domain is ap-

plied to the target domain as is.

Subspace Alignment + Boosting. (SSAB) Align the source and target domain PCA subspaces

and find a decision boundary by boosting (Fernando et al., 2013).

Correspondence-based MIL (CB-MIL). This is the approach introduced in Chapter 3.

Shared latent space + Boosting. (SLSB) Learn mappings for both source and target domains

onto a shared space, where a boosting classifier determines the pixel-wise class assign-

ments (Becker et al., 2015).

Deep correlation alignment. (CorAl) Align the correlations of the data from different layers

in a deep network (Sun et al., 2016).

Deep domain confusion. (DDC) Align distribution of target and source representations us-

ing Maximum Mean Discrepancy (MMD) metric (Tzeng et al., 2014).

Domain-adversarial network. (DAN) Use adversarial training to learn a deep neural net-

work so that the target domain’s encoding is indistinguishable from the source domain’s

one (Javanmardi and Tasdizen, 2018).

For completeness, we also evaluate full supervision (Full TD), that is, using a large amount of

annotated training data to train a U-Net on the target domain, which can be thought of as an

upper bound of what an unsupervised method can possibly achieve for the specific network

architecture.

Results

We present a quantitative comparison of the methods in Table 4.1. Overall, our CH-2UNet ap-

proach yields the best results on both datasets, closely approaching Full TD. Our CB-MIL and

CH-MIL methods also outperform all the baselines, including the deep learning ones, despite

ours using handcrafted features (Becker et al., 2012). This demonstrates the benefits of lever-

aging appearance-based correspondences to provide some level of weak supervision in the

adaptation process. Note that CH-MIL yields higher Jaccard indices than CB-MIL, which shows

the importance of re-ordering the correspondences according to our consensus heatmaps.
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Table 4.1 Quantitative segmentation results (Jaccard indices) for different unsupervised domain
adaptation methods. Methods introduced in this chapter are presented in bold.

SD-BT SD-UNet SA+B CorAl DDC DAN CB-MIL CH-MIL CH-2UNet Full TD

Synapses 0.222 0.257 0.135 0.310 0.481 0.565 0.571 0.580 0.660 0.751

Mitochondria 0.500 0.505 0.590 0.481 0.543 0.598 0.618 0.625 0.742 0.806
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Figure 4.8 Qualitative segmentation results for unsupervised domain adaptation. Example
segmentations obtained from different methods.

4.3.4 Semi-supervised domain adaptation

None of the techniques discussed above uses manual annotations in the target domain. How-

ever, there are also techniques that can leverage small amounts of data in the target domain.

They include the following:

Fine-tuning boosting decision trees. (FT-BT) Retrain the parameters of an ensemble of de-

cision trees trained with gradient boosting on the source domain model, using a small quan-

tity of annotated data from the target domain.

Fine-tuning U-Net. (FT-UNet) Retrain the parameters of a U-Net (Ronneberger et al., 2015)

trained on the source domain model, using a small quantity of annotated data from the

target domain.

Shared latent space + Boosting. (SLSB) Same as in the unsupervised scenario, but leverag-

ing the target annotations when training the boosting classifier (Becker et al., 2015).

Deep domain confusion. (DDC) Same as in the unsupervised scenario, but leveraging the

target annotations when training the deep network (Tzeng et al., 2014).

Domain-adversarial network. (DAN) Same as in the unsupervised scenario, but leveraging

the target annotations when training the deep network (Javanmardi and Tasdizen, 2018).
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Chapter 4. Consensus heatmaps and the two-stream U-Net

To compare against those, we provide annotations for10% of randomly selected non-contiguous

slices from the target domain stacks. For CB-MIL and CH-MIL, we modify our formulation by

adding a supervised classification loss term for the target domain that considers those existing

annotations. For CH-2UNet, we take the selected target domain annotations and replace the

corresponding slices on the thresholded heatmaps.

We report our results in Table 4.2. Note that, as in the unsupervised case, our CH-2UNet

approach is the top-performer for both datasets, with the gap between our results and the

Full TD upper bound being reduced even further. By comparing our approach with the 2UNet

baseline, which corresponds to a version of our approach without consensus heatmaps, we

note that, while the benefits of heatmaps is imperceptible in the Synapse case, they do improve

segmentation accuracy in the Mitochondria one.

Table 4.2 Quantitative segmentation results (Jaccard indices) for different domain adaptation
methods under a small amount of supervision. Methods introduced in this chapter are presented
in bold.

SD-BT SD-UNet FT-BT FT-UNet DDC DAN SLSB CB-MIL CH-MIL 2U-Net CH-2UNet Full TD

Synapses 0.222 0.257 0.197 0.441 0.603 0.662 0.670 0.664 0.691 0.723 0.723 0.751

Mitochondria 0.500 0.505 0.574 0.698 0.610 0.661 0.634 0.697 0.708 0.746 0.751 0.806
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Figure 4.9 Qualitative segmentation results for semi-supervised domain adaptation. Example
segmentations obtained from different methods.

4.3.5 Experiments under large domain shift

We further validate our method for datasets exhibiting larger visual differences. As shown in

Figure 4.10, we take the source domains to be the same mouse striatum and cerebellum vol-

umes for mitochondria and synapse segmentation as before and as explained in Section 4.3.1.

As target domains, we now use the publicly available drosophila dataset 1. It comprises 20 fully

1https://github.com/unidesigner/groundtruth-drosophila-vnc
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Mitochondria Synapses

House mouse
(Mus musculus)

8 cm

Fruit fly
(Drosophila melanogaster)

3 mm

Figure 4.10 Example patches from source (Mouse) and target (Drosophilia) domains under a
large domain shift.

annotated 2D slices of dimensions 1024×1024 each, acquired from a Serial Section Scanning

Electron Microscope, at a resolution of 4.6nm.

The results of a transductive evaluation in this scenario are presented in Table 4.3. As the source

and target domain acquisitions come from such unrelated species, they exhibit significant dif-

ferences, which are both visually apparent and evident from the extremely poor performance

of models trained on the source domain. As expected, the increase in domain shift results in a

consistent drop in performance for all methods compared to scenarios with smaller domain

differences, especially for synapse segmentation, which is significantly more difficult than mi-

tochondria segmentation. However, the behavior of our method is largely consistent with the

reported results of Section 4.3.3, and exhibits a clear qualitative improvement when compared

with all the other domain adaptation techniques, which demonstrates that our method can

handle large domain shifts and is more robust at doing so than the alternatives.

Table 4.3 Quantitative segmentation results (Jaccard indices) for different domain adaptation
methods under supervision, for a large domain shift. Methods introduced in this chapter are
shown in bold.

SD-UNet FT-UNet DAN SLSB 2U-Net CH-2UNet Full TD

Synapses 0.114 0.380 0.443 0.409 0.521 0.558 0.686

Mitochondria 0.154 0.402 0.452 0.492 0.577 0.608 0.747
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4.4 Conclusion

This chapter introduced a technique to aggregate visual correspondences, so as to turn sparse

visual matches into a dense consensus heatmap, which extracts and encodes important struc-

tural information by weighted-voting for promising locations and their surroundings. In addi-

tion, we have introduced the two-stream U-Net, a general-purpose deep network architecture

for domain adaptation, which not only shows good performance in a semi-supervised setting,

but also greatly benefits from the partial, soft-annotated data coming from the consensus

heatmaps for unsupervised adaptation.

As demonstrated from our results, the weak supervision coming from the consensus heatmaps

successfully bridges a large part of the performance gap between unsupervised and fully-

supervised training. As consensus heatmaps are learned in an unsupervised fashion, we believe

that, as shown for the two-stream U-Net, other supervised and semi-supervised domain adap-

tation methods can be easily converted into unsupervised ones by using consensus heatmaps

as supervisory signal.

In addition, our experimental validation of the two-stream U-Net in the semi-supervised learn-

ing scenario, even without the use of consensus heatmaps, suggests that such architecture

responds well to scenarios with low supervision. This makes it a good candidate to be incor-

porated into other semi-supervised pipelines. One possible such scenario is, for example, by

alternating labeling and refinement in an Active Learning setting.

The techniques introduced in this chapter, as well as those from the previous one, can be seen

as self-supervised methods, in that explicit human annotations are not required, but soft labels

are inferred from our understanding of the problem and used as supervisory signal. The result-

ing domain adaptation methods make limited use of the data from the source domain, either

for pretraining, as in Chapter 3, or for parameter regularization, as in this chapter, where each

stream of the two-stream U-Net is only exposed to data from a single domain. Furthermore, the

processing on both domains uses the same architecture, disregarding potential asymmetries

in the complexities of the domains. As the soft target domain signal might still be insufficient

for successfull adaptation, we explore in the next chapter a more general strategy that allows

data coming from both domains to directly influence all model parameters, and also adapts

the specific network architecture for each domain.

Another obvious limitation of the approaches presented both in this chapter and in Chapter 3

is that, as they are designed with the segmentation problem in mind, they heavily depend

on the structure of the annotations, and as such, will not be directly applicable for problems

in image understanding with unstructured labels. The method presented in next chapter

introduces a more general network architecture design paradigm that does not suffer from

this shortcoming.
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CHAPTER 5Domain-adaptive

multiflow networks

Image domains can vary in complexity, and processing them with a machine learning algo-

rithm can be more or less difficult depending on the domain. In this chapter, we present a

dynamic network architecture for domain adaptation that acknowledges this fact, and learns

to selectively assign either different or shared operations per domain, according to its compu-

tational requirements. The core idea is to replace groups of contiguous layers with different

sets of parallel operations—or flows—and let the training decide the best combination of those

flows in a domain-specific fashion via trainable gates. This domain-adaptive multiflow net-

work is significanlty more flexible than traditional approaches that either share a single set of

operations or perform regularization on corresponding source and target domain parameters.

That gained flexibility not only translates into improved performance for diverse visual tasks,

including classification, segmentation, and tracking, but also enables seamless integration of

arbitrarily many domains when available, and under varying levels of supervision.

5.1 Motivation

The methods introduced in previous chapters exploit Multiple Instance Learning and param-

eter regularization to leverage a supervisory signal—visual correspondences and consensus

heatmaps—in order to perform domain adaptation. While effective for the showcased appli-

cations, they are still dependent on the quality and quantity of the supervisory target domain

signal and can lead to overfitting when it is scarse or to bias when the soft annotations do not

represent the target domain well enough.

An underlying issue with both approaches, and which is prevalent as well in many other popu-

lar techniques, is that the transformations that both domains undergo are conceptualized as

either exclusive per domain or completely shared between domains. The former occurs in the

two-stream U-Net when different, identical network streams process one domain each. In the

latter, one hopes to either learn a single sequence of operations that encode the domains into

the same representation, or—as in the Boosted Decision Trees method of Chapter 3—to be

able to correct the parameters governing those operations so that they work on different data.
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Chapter 5. Domain-adaptive multiflow networks

In either case, the adaptation depends strongly on the target domain supervision, and the role

of the source domain is relegated to pretraining or regularization. More importantly, those

strategies assume that both domains require the same computation; in real domain adaptation

scenarios, however, it is often the case that some domains are simpler or more complex than

others—synthetic images and images taken “in-the-wild”, to name an example—and hence

possibly require simpler or more complex processing.

The idea that we propose in this chapter is that, for effective domain adaptation, it is more

convenient to allow all available domains to influence the value of the network parameters for

all layers at early stages of the training, and as training progresses, to modulate the degree to

which different layers specialize to different domains. In other words, we propose a paradigm

where different domains are assigned different computation, and where the specific set of

operations to which a domain is subjected, that is, the specific architecture per domain, is

decided dynamically as part of the training. Our formulation reflects the intuition that source

and target domain networks should be similar because they solve closely related problems, but

should also perform domain-specific computations to offset the domain shift, and to prevent

negative transfer.

Our instantiation of this idea, which we call a domain-adaptive multiflow network (DAMNet), is

an architecture and training protocol for learning a common representation between different

domains; that is to say, we dynamically learn suitable network architectures per domain so

that their data arrives to the same latent representation from potentially different processing,

and once under such representation, regular deep architectures can perform the desired task

in a domain-agnostic fashion.

More concretely, a DAMNet is a multiflow architecture that sends the data through multiple

network branches in parallel. What gives it the necessary flexibility are trainable gates that

are tuned to modulate and combine the outputs of these branches, as shown in Figure 5.1.

Assigning to each domain its own set of gates allows the global network to learn what set of

computations should be carried out for each one. As an additional benefit, and in contrast to

previous strategies for unsharing the source and target streams (Rozantsev et al., 2018, 2019),

the suggested formulation naturally extends to the availability of more than two domains,

under different levels of supervision.

5.2 Multiflow networks

5.2.1 Single domain

A standard feed-forward neural network can be thought of as a sequence of N f operations f (i )(·),

1 ≤ i ≤ N f , each transforming the output of the previous one. Given an input image X , this can

be expressed as

X (0) = X

X (i ) = f (i )(X (i−1)) .
(5.1)
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Target Domain
(unlabeled)
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Figure 5.1 A domain adaptive multiflow network is a sequence of computational units f (i ),
each of which processes the data in parallel flows, whose outputs are then aggregated in a weighted
manner by a gate to obtain a single response. To allow for domain-adaptive computations, each
domain has its own set of gates, one for each computational unit, which combine the flows in
different ways. As a result, some computations are shared across domains while others are domain-
specific.

As a general convention, each operation f (i ) can represent either a single layer or multiple

ones. Our formulation extends this definition by replacing each f (i ) by multiple parallel com-

putations, as shown in Figure 5.2. More specifically, we substitute each operation f (i ) with

a computational unit { f (i )
1 , . . . , f (i )

Ki
} consisting of Ki parallel flows. In general, each flow en-

capsulates an arbitrary sequence of operations, which could potentially differ from flow to

flow.

Given this definition, we write the output of each computational unit as

X (i ) = Σ̂
(

f (i )
1 (X (i−1)), . . . , f (i )

Ki
(X (i−1))

)
, (5.2)

where Σ̂(·) is an aggregation operator that combines the outputs from different flows into a sin-

gle response. Such aggregation can be defined in many ways. It could be a simple summation

or averaging that gives all outputs equal importance or, at the opposite end of the spectrum, a

multiplexer that selects a single flow and ignores the rest. The only practical restriction that

should be imposed is that the resulting aggregation be of dimensions consistent with what the

next computational unit expects.
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Figure 5.2 A computational unit f (i ) is an ag-
gregation of the outputs of parallel computations,
or flows, f (i )

j .
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To cover the range between the two alternatives above, we introduce learnable gates that enable

the network to determine what relative importance the different flows should be given. Our

gates perform a weighted combination of the flow outputs. Each gate is controlled by a set of

Ki activation weights {φ(i )
j }Ki

j=1, and a computational unit returns

X (i ) =
Ki∑

j=1
φ(i )

j · f (i )
j (X (i−1)) . (5.3)

If ∀ j ,φ(i )
j = 1, the gate performs a simple summation. If φ(i )

j = 1 for a single j and 0 for the

others, it selects the output of flow j , ignoring the rest, and hence behaves as a multiplexer.

The activation weights φ(i )
j enable us to modulate the computational graph of network block

f (i ). To bound them and encourage the network to either select or discard each flow in a

computational unit, we write them in terms of sigmoid functions with adaptive steepness, that

is,

φ(i )
j = 1

1+exp
(
−π(i ) · g (i )

j

) , (5.4)

where the g (i )
j s are learnable unbounded model parameters, and π(i ) controls the plasticity of

the activation—the rate at which φ(i )
j varies between the binary values 0 and 1 for block i .

During training, we initially setπ(i ) to a small value, which enables the network to explore differ-

ent gate configurations. We then apply a cooling schedule on our activations, by progressively

increasing π(i ) over time, so as to encourage the gates to reach a firm decision.

Note that this formulation does not require
∑Ki

j=1φ
(i )
j = 1, that is, we do not require the aggre-

gated output X (i ) to be a convex combination of the flow outputs f (i )
j (X (i−1)). This is delib-

erate because allowing the activation weights to be independent from one another provides

additional flexibility for the network to learn general additive relationships such as residual

mappings.

Finally, a multiflow network is the concatenation of multiple computational units, as shown

in Figure 5.1.

Some minor considerations must be taken into account when designing multiflow architec-

tures. For the aggregation within each unit f (i ) to be possible under our gating strategy, the

f (i )
j s’ outputs must be of matching shapes. Furthermore, as mentioned above, and as in stan-

dard networks, two computational units can be attached only if the output shape of the first

one matches the input shape of the second. Lastly, although it would be possible to define

computational units at any point in the network architecture, in practice, we take them to

correspond to groups of layers that are semantically related. For example, a succession of

convolutions, pooling and non-linear operations would be grouped together into a single

computational unit under this scheme.

54



5.2. Multiflow networks

5.2.2 Domain-adaptive multiflow networks

We first discuss how we turn our multiflow networks described above into DAMNets when

there are only two domains. We then extend this formulation to the multi-domain case.

Two domains

Our ultimate goal is to perform domain adaptation, that is, to leverage a large amount of

labeled images, Xs = {X s
1 , . . . , X s

N } with corresponding annotations Ys = {y s
1, . . . , y s

N }, drawn from

a source domain, to train a model for a target domain, whose data distribution is different and

for which we only have access to unlabeled images Xt = {X t
1 , . . . , X t

M }.

To this end, we extend the gated networks of Section 5.2.1 by defining two sets of gates, one

for the source domain and one for the target one. Let {(φs)(i )
j }Ki

j=1 and {(φt )(i )
j }Ki

j=1 be the corre-

sponding source and target activation weights for computational unit f (i ), respectively. Given

a sample, X d coming from a domain d ∈ {s, t }, we take the corresponding outputs of the i -th

computational unit to be

(X d )(i ) =
Ki∑

j=1
(φd )(i )

j · f (i )
j

(
(X d )(i−1)

)
. (5.5)

Note that under this formulation, the domain identity d of the sample is required in order to

select the appropriate (φd )(i ). Aside from that, the mechanics of the network remain intact

with respect to Section 5.2.1.

The concatenated computational units fDAMN = f (1)◦ f (2)◦. . .◦ f (N f ) forming the DAMNet

encode sample X d from domain d into a feature vector X z = fDAMN(X d ,d). Since gates for

different domains are set independently from one another, the outputs of the flows for each

computational unit are combined in a domain-specific manner, dictated by the activation

weights (φd )(i )
j , even though the flows themselves are shared.

Domain adaptation happens by enforcing the encodings on both domains, fDAMN(X s , s)

and fDAMN(X t , t ), to follow a common distribution, the mechanics of which are explained

below. Then, a small network fout operates directly on the encodings and returns the desired

output ŷ = fout(X z), thus subjecting the encodings for all samples to the same set of operations.

In this way, the samples are encoded to a common space regardless of their original domain,

but arrive to it through potentially different computations, which are bound to their domains.

Figure 5.3 depicts this process. It makes it unnecessary to predefine independent network archi-

tectures for each stream (Zoph and Le, 2017; Liu et al., 2018; Pham et al., 2018) or to have each

stream learn its own weights as in Tzeng et al. (2017); Rozantsev et al. (2019). More concretely,

the network can learn to share weights for computational unit f (i ) by setting (φs)(i )
j = (φt )(i )

j , ∀ j .

It can also learn to fully untie the weights by having AS
i ∩ AT

i =;, where AS
i and AT

i denote the

set of non-zero activations in the two domains. Finally, it can learn to use more computation
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Figure 5.3 Domain-specific computations. The top row shows the computational graph for the
source domain, and the bottom row for the target one, for the same network. While both domains
share the same computational units, their outputs are obtained by different aggregations of their
inner operations. For example, in the first unit, the source domain does not use the middle two op-
erations, whereas the target domain does. By contrast, both domains exploit the fourth operation.
In essence, this scheme adapts the amount of computation that each domain is subjected to.

for one domain than for the other by setting (φs)(i )
j > 0 for two different flows f (i )

j while having

only a single non-zero (φt )(i )
j , for a particular computational unit f (i ).

Avoiding flow sharing. The above formulation treats all flows for each computational unit

as potentially sharable between domains, and exposes all flows to data coming from both

domains. However, we can identify cases where it is desirable not to share at all. One example

of this are batch-normalization layers, which accumulate and update statistics of the data over

time, even during the forward pass, and are then best exposed to a single domain to learn

domain-specific statistics. We solve this by introducing computational units with two flows,

whose gates are fixed, yet domain specific, and configured to act as multiplexers to relay input

from a single domain to each flow.

Multiple domains

The formulation outlined above extends naturally to more than two domains, by assigning

one set of gates per domain. This enables us to exploit annotated data from different source

domains, and even to potentially handle multiple target domains simultaneously. In this gen-

eralized case, we introduce governing sets of gates with activations φd1 , . . . ,φdD for D different

domains. They act in the same way as in the two-domain case and the overall architecture

remains similar.
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5.2. Multiflow networks

Training

When training our models, we jointly optimize the gate parameters (g d )(i )
j , from Equation 5.4,

along with the other network parameters, using standard back-propagation. To this end, we

make use of a composite loss function, designed to encourage correct classification of an-

notated examples and to align the distributions of all domains, using labeled and unlabeled

samples. This loss can be expressed as

LDAMNet = 1

|`|
|`|∑

n=1
Ly (yn , ŷn)+ 1

|`∪u|
|`∪u|∑
n=1

Ld (dn , d̂n) , (5.6)

where ` and u are the sets of labeled and unlabeled samples, respectively, coming from all the

domains, and where we assumed, without loss of generality, that the samples are ordered.

The first term in this loss, Ly (y, ŷ), compares the ground-truth and predictions, and varies with

the problem at hand. For object classification, for example, it is the standard cross-entropy,

which compares the true class probabilities yn with the predicted ones ŷn = fout(X z), where,

as discussed in Section 5.2.2, X z = fDAMN(X d ,d) is the feature encoding of sample X from

domain d . Notice that there is no distinction here between source and target domains, which

means we can seamlessly incorporate different degrees of supervision from both source and

target domains.

For the second term of our loss function, which encodes distribution alignment, we rely on

the domain confusion strategy of Ganin and Lempitsky (2015), which is commonly used in

existing frameworks. Specifically, for D domains, we make use of an auxiliary domain classifier

network fd that predicts a D-dimensional vector of domain probabilities d̂ given the feature

vector X z. Following the gradient reversal technique of Ganin and Lempitsky (2015), we express

the second term in our loss as

Ld (d, d̂) =−
D∑

i=1
di log(d̂i ) , (5.7)

where d is the D-dimensional one-hot encoding of the ground-truth domain, di indicates the

i -th element of d, and d̂ = fd (R(X z)), with R the gradient reversal pseudofunction of Ganin and

Lempitsky (2015) that enables to incorporate adversarial training directly into back-propagation.

That is, with this loss, standard back-propagation trains jointly the domain classifier to discrim-

inate the domains and the feature extractor fDAMN(·) to produce features that fool this classifier.

The outline of the strategy, as proposed in the original paper, is presented in Figure 5.4.

Pruning. When training is complete and the gates have reached a stable state, the flows

whose activations are close to zero are deactivated. This prevents the network from performing

computations that are irrelevant and allows us to obtain a more compact network to process

the target data.
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input

feature extractor

feature

gradient
reversal

layer

label predictor
domain classifier

domain label

class label

loss

forwardprop backprop (and produced derivatives)

loss

Figure 5.4 Incorporating adversarial domain adaptation directly into backpropagation (Ganin
and Lempitsky, 2015).

5.2.3 Relationship to neural architecture search

DAMNets effectively implement dynamic, custom architectures per domain for feature extrac-

tion. The field of neural architecture search is ample and an active niche of research (Elsken

et al., 2019). Its applications to domain adaptation, however, have not been exhaustively ex-

plored. Nevertheless, we provide here a concise review of the current tendencies in neural

architecture search, and comment on the similitudes and differences with out DAMNets.

As the performance of a neural network is tightly linked to its structure, there has been a recent

push towards automatically determining the best architecture for the problem at hand. While

neural architecture search techniques (Zoph and Le, 2017; Liu et al., 2018, 2019; Pham et al.,

2018; Zoph et al., 2018; Real et al., 2019; Noy et al., 2019) aim to find one fixed architecture for

a given dataset, other works have focused on dynamically adapting the network structure at

inference time (Graves, 2016; Ahmed and Torresani, 2017; Shazeer et al., 2017; Veit and Belongie,

2018; Wu et al., 2018). In particular, in Ahmed and Torresani (2017); Shazeer et al. (2017); Veit

and Belongie (2018); Bhatia et al. (2019), gates were introduced for this purpose.

DAMNets also regulate computation via gates; their role, however, is substantially different:

first, we work with data coming from different domains, whereas these gated methods, with

the exception of Bhatia et al. (2019), were all designed to work in the single-domain scenario.

Second, and more importantly, these techniques aim to define a different computational path

for every test sample. By contrast, we seek to determine the right computation for each domain.

Another consideration is that we freeze our gates for inference while these methods must

constantly update theirs. We believe this to be ill-suited to domain adaptation, particularly

because learning to adapt the gates for the target domain, for which only unlabeled data is

available, is severely under-constrained. This lack of supervision may be manageable when

one seeks to define operations for a whole domain, but not when these operations are sample-

specific.

58



5.3. Evaluation

5.3 Evaluation

We now evaluate our method on standard benchmark datasets, and compare its performance

against different related methods.

5.3.1 Baselines

Since we rely on the domain confusion loss to train our model, we treat the domain-adversarial

neural network (DANN) method of Ganin and Lempitsky (2015), where it was first introduced,

as a baseline.

To demonstrate the benefits of our approach over simply untying the source and target stream

parameters, we compare our approach against the Residual Parameter Transfer (RPT) method

of Rozantsev et al. (2019), which constitutes the state of the art in doing so. Note that RPT also

relies on the domain confusion loss, which makes our comparison fair. In addition, we report

the results of directly applying a model trained on the source domain to the target, without

any domain adaptation, which we refer to as “No DA”. We also provide the oracle accuracy of a

model trained on the fully-labeled target domain, referred to as “On TD”.

5.3.2 Implementation details

We adapt different network architectures to the multiflow paradigm for different adaptation

problems. For all cases, we initialize our networks’ parameters by training the original versions

of those architectures on the source domains, either from scratch, for simple architecures, or

by fine-tuning weights learned on ImageNet (Deng et al., 2009), for very deep ones. We then

set the parameters of all flows to the values from the corresponding layers. We perform this

training on the predefined training splits, when available, or on 75% of the images, otherwise.

For simplicity, we use for all computational units as many flows as we have domains, all flows in

a computational unit share the same architecture, and the initial values of the gate parameters

are defined so as to set the activations to 1
Ki

, for each of the Ki flows at each computational

unit. This prevents our networks from initially favoring a particular flow for any domain.

To train our networks, we use Stochastic Gradient Descent with a momentum of 0.9 and a

variable learning rate defined by the annealing schedule of Ganin and Lempitsky (2015) as

µp = µ0

(1+α·p)β
, where p is the training progress, relative to the total number of training epochs,

µ0 is the initial learning rate, which we take to be 10−2, and α= 10 and β= 0.75 as in Ganin

and Lempitsky (2015). We eliminate exploding gradients by `2-norm clipping. Furthermore,

we modulate the plasticity of the activations at every gate as training progresses by using the

relative training progress as the plasticity parameter π(i ) = p. As data preprocessing, we apply

mean subtraction, as in Ganin and Lempitsky (2015). We train for 2000 epochs, during which

the network is exposed to all the image data from the source and target domains, but only to

the annotations from the source domain(s).
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Our “On TD” oracle is trained on either the preset training splits, when available, or our defined

training data and evaluated on the corresponding test data. For the comparison to this oracle

to be meaningful, we follow the same strategy for our DAMNets. That is, we use the unlabeled

target data from the training splits only and report results on the testing splits. This protocol

differs from that of Rozantsev et al. (2019), which relied on a transductive evaluation, where all

the target images, training and test ones, were seen by the networks during training.

5.3.3 Digit recognition

We use several common digit recognition datasets for our evaluation.

The well-studied MNIST (LeCun et al., 1998) dataset consists of black and white images of

handwritten digits from 0 to 9. All images are of size 28×28 pixels. We train and evaluate on

the standard training and testing splits of 60,000 and 10,000 examples, respectively.

The MNIST-M (Ganin and Lempitsky, 2015) dataset is synthetically generated by randomly

replacing the foreground and background pixels of random MNIST samples with natural

images. Its image size is 32×32, and we use the standard training and testing splits of 59,001

and 9,001 images.

The Street View House Numbers dataset (SVHN) (Netzer et al., 2011) consists of natural scene

images of numbers acquired from Google Street View. Its images are also of size 32×32 pixels,

and its preset training and testing splits are of 73,257 and 26,032 images, respectively. The SVHN

images are centered at the desired digit, but contain clutter, visual artifacts, and distractors

from its surroundings. Examples from the three datasets are shown in Figure 5.5.

Figure 5.5 Examples from digit recognition datasets.

0 1 2 3 4 5 6 7 8 9

MNIST

MNIST-M

SVHN

Setup

As discussed in Section 5.2, our method is general and can work with any network architecture.

To showcase this, we apply it to the LeNet and SVHNet architectures (Ganin and Lempitsky,

2015), which are very simple convolutional networks, well suited for small images. Follow-

ing Ganin and Lempitsky (2015), we employ LeNet when using the synthetic datasets MNIST
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and MNIST-M as source domains, and SVHNet when SVHN acts as source domain. We extend

these architectures to multiflow ones by defining the computational units as the groups of

consecutive convolution, pooling and non-linear operations defined in the original model. For

simplicity, we use as many flows within each computational unit as we have domains, and

all flows from a computational unit follow the same architecture. The multiflow LeNet and

SVHNet architectures reflecting the scope of each computational unit are shown in Figure 5.6

and Figure 5.7, respectively, for the two-domain case.
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Figure 5.6 Multiflow LeNet. This architecture is based on the one used by DANN (Ganin and
Lempitsky, 2015).
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Results

The results of our digit recognition experiments are provided in the top portion of Table 5.1.

In addition to the traditional two-domain setup, we also report results when using two fully-

annotated source domains simultaneously. Note that Rozantsev et al. (2019) does not apply to

this setting, since it was designed to transform a single set parameters from source to target.

Altogether, our method consistently outperforms the others. Note that the first two rows

correspond to the combinations reported in the literature. We believe, however, that the

SVHN→MNIST adaptation scenario is quite artificial, since, in practice, one would typically

annotate simpler, possibly synthetic images and aim to use real ones at test time. We therefore

also report synthetic→SVHN cases, which, as can be seen both from the results and from the

aspect of the domain examples, are much more challenging.

The multi-source version of our method, in particular, achieves a significant boost over the

baselines in this scenario. We ascribe this to the fact that images coming from the MNIST-M

dataset show similar characteristics to both MNIST and SVHN, and so the flows have more in-

centive to learn transformations to encompass a wider range of image appearances, especially

those that more resemble the target domain, from the supervised signal. To further demon-

strate the potential of our approach in this setting, we replaced its backbone with the much

deeper ResNet-50 network, which we detail in the next section, and applied it on upscaled

versions of the images. As shown in the row indicated by a ?, this allowed us to achieve an

accuracy close to 80%, which is remarkable for such a difficult adaptation task.

5.3.4 Object recognition

We now turn to the task of object recognition, for which we use several domain adaptation

benchmark datasets. These datasets are described below.

Office (Saenko et al., 2010) is a multiclass object recognition benchmark dataset, aggregating

images of 31 categories of objects commonly found in office environments. It contains

color images from three different domains: 2,817 images of products scraped from Amazon,

498 images acquired using a DSLR digital camera, and 795 images captured with a webcam.

The images are of arbitrary sizes and aspect ratios.

Backpack Bicycle
Bike

helmet Bookcase Bottle Calculator Chair
Desk
lamp Computer

File
cabinet Headphones

Amazon

DSLR

Webcam
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The full list of object classes is:

backpack bike bike_helmet bookcase bottle calculator desk_chair

desk_lamp desktop_computer file_cabinet headphones keyboard laptop_computer letter_tray

mobile_phone monitor mouse mug paper_notebook pen phone

printer projector punchers ring_binder ruler scissors speaker

stapler tape_dispenser trash_can

Office-Home (Venkateswara et al., 2017) comprises a larger corpus of color, arbitrarily-sized

images from 65 different classes of objects commonly found in office and home environ-

ments, coming from four different domains. It contains 2,427 images extracted from paint-

ings (Art), 4,365 clipart images (Clipart), 4,439 photographs of products (Product), and

4,357 pictures captured with a regular consumer camera (Real world).

Alarm
clock Backpack Battery Bed Bicycle Bottle Bucket Calculator Calendar Candle Chair Clipboard Computer

Art

Clipart

Product

Real
world

The full list of object classes is:

Alarm_Clock Candles Exit_Sign Helmet Mouse Printer Sneakers TV

Backpack Chair Fan Kettle Mug Push_Pin Soda Webcam

Batteries Clipboards File_Cabinet Keyboard Notebook Radio Speaker

Bed Computer Flipflops Knives Oven Refrigerator Spoon

Bike Couch Flowers Lamp_Shade Pan Ruler Table

Bottle Curtains Folder Laptop Paper_Clip Scissors Telephone

Bucket Desk_Lamp Fork Marker Pen Screwdriver ToothBrush

Calculator Drill Glasses Monitor Pencil Shelf Toys

Calendar Eraser Hammer Mop Postit_Notes Sink Trash_Can

VisDA 2017 (Peng et al., 2018) includes images of diverse sizes from 12 different categories,

coming from two different domains: 55,368 synthetic grayscale renders of 3D models, and

152,397 photographs of the real-world objects. It is larger than the other two datasets, and

exhibits a more significant domain shift.

Aeroplane Bicycle Bus Car Horse Knife Motorcycle Person Plant Skateboard Train Truck

Real

Synthetic

The full list of object classes is

aeroplane bicycle bus car horse knife motorcycle person plant skateboard train truck
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Figure 5.8 Multiflow ResNet-50. This architecture is adapted from the original ResNet-50 (He
et al., 2016). We preserve the groupings described in the original paper (He et al., 2016). N denotes
the number of classes in the dataset.
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Setup

As backbone network to process all of the above datasets, we use a ResNet-50 (He et al., 2016),

with the bottleneck layer modification of Rozantsev et al. (2019). While many multiflow configu-

rations can be designed for such a deep network, we choose to make our gated computational

units coincide with the layer groupings defined in He et al. (2016), namely conv1, conv2_x,

conv3_x, conv4_x, and conv5_x. The resulting multiflow network is depicted by Figure 5.8. We

feed our DAMNets images resized to 224×224 pixels, as expected by ResNet-50.

Results

The results for the three object recognition datasets are provided in the 2nd to 4th portions of

Table 5.1. Our approach outperforms the baselines in all cases.

For the Office dataset, DAMNet achieves a noticeable improvement over the baselines in cases

where the source domain is Amazon, which would typically correspond to a real application

scenario, where one obtains labels from Amazon automatically. In cases where Amazon is the

target domain, we still outperform the baselines, albeit by a smaller margin. We believe this

to be due to the relatively small amount of labeled data in DSLR and Webcam. This is further

evidenced by our larger improvement in the multi-source scenario, where DSLR and Webcam

are both used as source domains. Note that the domain shift between those two datasets is

small and the adaptation between them is essentially saturated, with all methods achieving

equally good performance.

On Office-Home, the gap between DAMNet and the baselines is more consistent across the

different pairs, thus reflecting the more balanced nature of the data. Note that, here, because

of the relatively large number of classes, the overall performance is lower than on Office. Im-

portantly, our results show that, by leveraging all synthetic domains to transfer to the real one,

our approach reaches an accuracy virtually equal to that of using full supervision on the target

domain.

The VisDA17 dataset shows the largest visual shift among all datasets, which makes it remark-

ably difficult for domain adaptation. Our method is again the best performer on both adapta-

tion scenarios, albeit by a smaller margin.

Gate dynamics

To understand the way our networks learn the domain-specific flow assignments, we track the

state of the gates for all computational units over all training epochs. In Figure 5.9, we plot

the corresponding evolution of the gate activations for the DSLR+Webcam→Amazon task on

Office.
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Table 5.1 Domain adaptation results. We compare the accuracy of our DAMNet approach
with that of DANN (Ganin and Lempitsky, 2015) and of RPT (Rozantsev et al., 2019), for image
classification tasks commonly used to evaluate domain adaptation methods. As illustrated for
all datasets in Sections 5.3.3 to 5.3.5, different source and target domain combinations present
various degrees of domain shift, and some combinations are clearly more challenging than others.
Our DAMNets yield a significant accuracy boost in the presence of large domain shifts, particularly
when using more than one source domain.

Datasets Source(s)→Target No DA DANN RPT DAMNet On TD

Digits

MNIST→MNIST-M 52.25 76.66† 82.24 88.80 96.21

SVHN→MNIST 54.90 73.90† 78.70† 81.30 99.26

MNIST→SVHN 25.57 31.69 34.72 37.95 89.23

MNIST-M→SVHN 27.49 37.43 37.90 39.41 89.23

MNIST + MNIST-M→SVHN 33.52 44.16 n/a 51.83 89.23

MNIST + MNIST-M→SVHN? 22.88 49.02 n/a 79.45 96.07

Office

Webcam→DSLR 93.60 99.20† 99.40† 99.62 95.20

Amazon→DSLR 32.80 79.10† 82.70† 84.14 95.20

DSLR→Webcam 90.45 97.70† 98.00† 98.11 98.49

Amazon→Webcam 34.67 78.90† 81.50† 85.28 98.49

Webcam→Amazon 41.42 62.80† 63.60† 65.67 85.11

DSLR→Amazon 34.47 63.60† 64.70† 64.82 85.11

DSLR + Webcam→Amazon 45.82 64.86 n/a 68.87 85.11

Office-Home

Art→Product 37.03 58.50 54.51 59.30 87.66

Clipart→Product 36.67 70.50 63.18 77.50 87.66

Clipart→Art 29.65 47.93 47.32 51.24 64.42

Real world→Art 50.91 57.68 51.90 60.74 64.42

Art→Real world 53.12 56.40 52.15 59.90 77.80

Clipart→Real world 43.03 57.90 55.05 62.70 77.80

Product→Real world 46.42 62.30 62.16 65.00 77.80

Clipart + Product→Real world 53.39 70.53 n/a 72.25 77.80

Art + Clipart + Product→Real world 58.72 72.00 n/a 77.65 77.80

VisDA 2017
Synthetic→Real 35.46 59.90 61.10 61.40 84.72

Real→Synthetic 51.12 83.10 82.15 85.20 99.34

UAV-200 Synthetic→Real∗ 0.377 0.715 0.743 0.792 0.858

†Accuracy reported in Ganin and Lempitsky (2015) and Rozantsev et al. (2019)
?Evaluated with a ResNet-50

∗Results reported as Average Precision
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Chapter 5. Domain-adaptive multiflow networks

Note that our DAMNet leverages different flows over time for each domain before reaching a

firm decision. Interestingly, we can see that, with the exception of the first unit, which performs

low-level computations, DSLR and Webcam share all flows. By contrast, Amazon, which has

a significantly different appearance, mostly uses its own flows, except in two computational

units. This evidences that our network successfully understands when domains are similar

and can thus use similar computations.

5.3.5 Object detection

We evaluate our method for the detection of drones from video frames, on the UAV-200

dataset (Rozantsev et al., 2018), which contains examples of drones both generated artificially

and captured from real video footage. In particular, it aggregates 200 images of real drones

and around 33,000 synthetic ones, as well as around 190,000 patches obtained from the back-

ground of the video, which do not contain drones, used as negative examples. All examples are

of size 40×40 pixels. We evaluate performance on a validation set comprising 3,000 positive

and 135,000 negative patches.

Real

Synthetic

Background

Setup

Our domain adaptation leverages both the synthetic examples of drones, as source domain,

and the limited amount of annotated real drones, as target domain, as well as the background

negative examples, to predict the class of patches from the validation set of real images. We

follow closely the supervised setup and network architecture of Rozantsev et al. (2019), which

performs object detection by classifying image patches as either containing a drone or not.

As in Rozantsev et al. (2019), we use AdaDelta as optimizer, cross-entropy as loss function,

and average precision as evaluation metric. Our multiflow computational units are defined as

groupings of successive convolutions, non-linearities, and pooling operations. The details of

the architecture are provided in Figure 5.10.

Results

Our method considerably surpasses all the others in terms of average precision, as shown

on the last section of Table 5.1, thus validating DAMNets as effective models for leveraging

synthetic data for domain adaptation in real-world problems.
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Figure 5.10 Multiflow architecture for drone detection. This architecture is a multiflow exten-
sion to the one used by Rozantsev et al. (2019).

5.4 Conclusion

In this chapter, we have introduced a domain adaptation approach that allows for adaptive, sep-

arate computations for different domains. Our framework relies on computational units that

aggregate the outputs of multiple parallel operations, and on a set of trainable domain-specific

gates that adapt the aggregation process to each domain. Our experiments have demonstrated

the benefits of this approach over the state-of-the-art weight untying strategy; the greater

flexibility of our method translates into a consistently higher accuracy.

We believe that the benefits of DAMNets come from three different qualities of our proposed

paradigm. First, aside from the exceptional case of batch normalization, there are no private

operations per domain; this drives the parameters to be learned from all available data, and

as a result the operations are encouraged to be domain-agnostic if no other forces are at play.

Second, the domain-specific learnable gates determine the specific combination of the above-

mentioned operations, defining the actual capacity of the network per domain, which can

reflect differences in domain complexities. Third, the resulting dynamic architecture avoids

restricting all domains to share the same computational graph, which could include operations

that are irrelevant or even harmful for the target domain; providing a mechanism that enables

the training to conveniently ignore or downweight aspects of the source domain helps avoid

negative transfer.
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CHAPTER 6Concluding remarks

Adapting to new information is one of the major bottlenecks in ML. This thesis has introduced

specific methods and general insights, in an effort to grant adaptability to ML models for visual

applications. We quickly recapitulate the main ideas introduced in this thesis, and how they

are used to tackle domain adaptation.

6.1 Leveraging semantics from structure

6.1.1 Visual correspondences

Finding the same structure between images in source and target domains imposes an an-

notated target domain set, where one can borrow the class identities from source to target.

Visual correspondences are a relaxation of this. Structures that look similar across domains are

candidates to be true semantic correspondences.

A Multiple-Instance Learning optimization accounts for the fact that such relaxation is imper-

fect. The optimization finds new, adapted parameters for a model pretrained on the source

domain. Under the new parameters, the model adapts appropriately for the target domain. We

show this by adapting Boosted Decision Tree classifiers. The results in Electron Microscopy

segmentation showcase the value in exploiting structure, and serve as a conceptual base for

further work.

6.1.2 Consensus heatmaps

Visual correspondences—which are locations on the target domain—often cluster around

particular regions. The consensus heatmap tracks this behavior, by showing which target do-

main locations are commonly matched to foreground and background. Consensus heatmaps

appropriately describe subcellular structures in Electron Microscopy images.

Extreme-scoring regions of the consensus heatmap often coincide with the expected segmen-

tation map. Those regions can be used as a supervisory target domain signal. A first use of

consensus heatmaps is to rank visual correspondences, which experimentally improves their

reliability. In addition, thresholded heatmaps are used directly as partial annotations for the

two-stream U-Net.

71
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6.2 Learning semantic representations

6.2.1 Two-stream U-Net

The two-stream U-Net architecture is a deep network architecture composed of two semi-

independent streams, one processing source domain images and one processing target domain

images, loosely connected by their corresponding parameters and outputs. It is an adaptation

of the popular U-Net for the domain adaptation scenario.

The two-stream U-Net encodes images at different levels of granularity in order to extract a

semantic representation suitable for inference. Corresponding operations between streams

are encouraged to be related via parameter co-regularization. Predictions are also enforced

to preserve similarities across domains. The two-stream U-Net optimizes a custom loss func-

tion tailored for segmentation under class imbalance. Semantic segmentations of Electron

Microscopy imaging obtained with the two-stream U-Net are comparable with segmentations

by humans and do not require user annotations.

6.2.2 Multiflow networks

Multiflow networks define alternative computations—or flows—and combine them so as to

obtain a latent representation of an image. In the multi-domain scenario, the same flows

are used for each domain, but combined in a different way for each domain. The result is a

network with operations with different degrees of sharing between different domains. This

enables different domains to effectively use different network capacities.

The domain-adaptive aspect of the network comes from the training process. Initially, all flows

are exposed to all data, and to all available supervision. Trainable gates, particular for each

domain, select the relative contribution of each flow to the encoding. Over time, flows either

specialize for one domain, or perform general computation to be shared between domains.

Results in object classification and object detection highlight the benefits of domain adaptation

with multiflow networks.

6.3 Some general insights

6.3.1 Model adaptation bias

In traditional ML, regularization techniques are commonly used to bias the solution of an

ill-posed problem towards those that exhibit some desirable properties. The most common

use of regularization is to combat overfitting. As domain adaptation is in general also an

underconstrained problem, it benefits from such biases as well. In particular, as the name

suggests, in domain adaptation there exists the notion of a reference problem—that on the

source domain—which is subsequently adapted to the target domain.
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t

θs

θt

t

θs

θt

t

Figure 6.1 Parameter evolution under dif-
ferent paradigms.
Parameters for the source and target domain
are represented by θs and θt , respectively.

Top: Source domain parameters can be frozen
and used as initial values for those of the target
domain.

Middle: Parameter regularization between
source and target enforces that, over time, the
model parameters acting on both domains
relate to each other.

Bottom: Adaptive regularization controls the
divergence of parameters between source and
target models over time.

The domain adaptation algorithms introduced in this thesis follow different approaches with

regards to how the source domain influences adaptation. We distinguish the following three

scenarios, depicted in Figure 6.1:

a) The source domain model serves as initial condition for the target domain model.

b) The parameters from the source domain model serve as a reference from which the target

domain model is prevented from arbitrarily diverge.

c) The amount of divergence between source and target domain parameters changes over

time as optimization sees fit.

In the first scenario, the adaptation algorithm does not observe any source domain data,

and the parameters pre-learned on the source domain are modified for the target domain.

The method presented in Chapter 3—which adapts parameters in a Boosted Decision Tree

model—operates under this setup. It is effective because the models are simple, and have few

parameters; in addition, our formulation includes an additional regularizer, by treating the

source domain parameters as priors to estimate the target domain ones.

In the second scenario, the effects of the source domain acting as a reference become more

pronounced over time. The two-stream U-Net introduced in Chapter 4 works in this way. As

the network learns on both domains, it enforces that the learned parameters on the target
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domain follow a constrained transformation with respect to those on the source. In this case,

again, we incorporate additional regularizations to help constraining the parameter tuning.

In the last case—which our multiflow networks of Chapter 5 follow—all parameters are influ-

enced by data from both domains, to different extents. The supervised signal from the source

domain always has some degree of influence on the learning of all parameters. Operations

for the source domain, especially at the beginning of the training, are encouraged not only

to perform the source domain task well, but also to be beneficial for the extraction of latent

representations for the target domain.

Data availability, computational resources, and the expected degree of domain shift, are ex-

amples of criteria to use when deciding what model bias paradigm to use for a given domain

adaptation problem. For example, when the supervisory signal from the source domain is no

longer available, using the source domain parameters as initial conditions might be the only

option. When the domain shift is small, sharing and regularizing weights might be enough.

When multiple annotated domains are available, exposing all parameters to the available

supervision is more robust.

On the other hand, the methods presented have clear limitations and should be used with

caution. Removing the influence of the source domain, in the first case, is not enough sig-

nal to tune the sheer number of parameters in modern neural networks. Forcing the same

architecture and related weights, as in the second case, may lead to negative transfer under

large domains shifts. Providing an overparametrized network with alternative operations from

which to choose, as in the third scenario, may be prohibitively expensive; deciding a particular

flow assignment over other is, at the moment, not formally justified and might also affect the

learning.

6.3.2 Negative transfer

The models introduced in this thesis are structurally different. The boosted decision trees model

of Chapter 3 proposes a fixed architecture and adapts its parameters. The two-stream U-Net

of Chapter 4 has independent streams for each domain, but the structure of those streams is

identic. The multiflow networks of Chapter 5 result into architectures for source and target

domains that are different altogether.

We believe that the success of the multiflow paradigm resides precisely in not adapting all

aspects of the source domain problem to the target domain, but rather in selecting what

computations to share and what to keep private. Acknowledging and embracing domain

differences in this way helps avoiding negative transfer.
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6.4 Future research directions

The findings presented in this thesis serve as starting point for exploration of new ideas related

to domain adaptation.

The domain-adaptive multiflow networks of Chapter 5 can be seen as an implementation of

Neural Architecture Search (NAS). The application of NAS to the domain adaptation problem is

a largely unexplored area. As discussed in Section 6.3.2, domain adaptation benefits from using

different computations per domain. Following more principled ways to construct dynamic

architectures based on NAS, for example by combining them with the reinforcement learning

formalism of Baker et al. (2017), is a promising way to promote domain adaptation.

As we saw in Section 6.3.1, the regularization coming from the network structure is determinant

for domain adaptation. In multiflow networks, the resulting network architecture is dynami-

cally determined. By enforcing the optimization to favor flows and combinations of flows with

desirable properties—low architecture complexity or uncorrelated outputs, for example—the

resulting model will perform smart model selection.

Another exciting avenue of research is the learning of hierarchical representations. Image

contents are often hierarchically structured into components and subcomponents. We hy-

pothesize that the multiflow formalism can be extended to consider this. In a hierarchical

multiflow network, different flows can themselves be computational units, with their own

domain-specific gates. Hierarchical multiflow networks could therefore arrive to the latent

encoding by combining partial encodings. Relating partial encodings to partial semantics

would allow to synthesize the latent representation in a way that considers image parts and

their relationships (Lee and Seung, 1999; Felzenszwalb and Schwartz, 2007; Felzenszwalb et al.,

2008; Collins et al., 2018; Gonzalez-Garcia et al., 2018). We believe that this decomposition of

the image semantics can be beneficial for domain adaptation, as the model would be able to

choose what partial semantics to share between domains.
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