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Abstract. The effect of Landau damping is often calculated based on a Gaussian beam
distribution in all degrees of freedom. The stability of the beam is however strongly dependent
on the details of the distribution. The present study focuses on the change of bunch distributions
caused by the decoherence of the excitation driven by an external source of noise, in the presence
of both amplitude detuning and a transverse feedback. Both multiparticle tracking simulations
and theoretical models show a similar change of the distribution. The possible loss of Landau
damping driven by this change is discussed.

1. Introduction
In synchrotrons, the beam is kept stable partially by Landau damping due to the tune spread
within each bunch. The stability diagram in plane j ∈ {x, y} is calculated from [1]

1

∆Qcoh,j
= −

∞∫
0

dJx

∞∫
0

dJy
Jj

dΨ(Jx,Jy)
dJj

Q−Qj(Jx, Jy)
, (1)

where ∆Qcoh,j , Jj and Qj are the coherent tune shift, action and tune, respectively, in plane j,
Q ∈ (−∞,∞), and Ψ is the distribution. The stability can be changed significantly by a small
change of the distribution [2, 3, 4, 5]. In a recent experiment in the LHC, Landau damping
was lost due to a noise driven diffusion [6]. Here we will introduce an analytical theory that
explains how the distribution changes after an initial offset, due to the combined effects of a
tune spread and a transverse feedback. The goal is to find how the distribution changes, and
how the stability diagram evolves as a result.

2. Theory
The calculation consists of 4 steps: (i) Derive an expression for the change of the action for
each particle after a kick, taking into account the balance between the tune spread and the
transverse feedback; (ii) Consider the change of action as a Wiener process with a drift, and
derive the Fokker-Planck equation for the particle density distribution of the bunch [7]; (iii)
Solve the Fokker-Planck equation to get the time evolution of the distribution; (iv) Calculate
numerically the stability diagram with PySSD [8], as the distribution evolves. This approach
has the advantage that it is modular, each step can be modified if necessary. Furthermore, the
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4-step calculation may be applied to various sources of tune spread. Here we shall discuss the
case when the tune spread is caused by Landau octupoles.

2.1. Transverse Feedback and Decoherence
We apply normalized, canonical coordinates [9]

x = 1√
βε0

X =
√

2J cos(φ) ,

p = − 1√
βε0

(
αX + β dX

ds

)
= −
√

2J sin(φ) ,
(2)

where X is the offset from the design orbit, s is the position in the beamline, α and β are Twiss
parameters, ε0 is the initial beam emittance and φ is the canonical conjugate of J .

If a bunch is kicked by ∆p = k, the action changes to

Jk = J0 + k
√

2J0 sin(φ0) + 1
2k

2 , (3)

where J0 and φ0 are the action and phase of the particle prior to the kick. There exists an
expression for the subsequent emittance growth, when there is both a transverse tune spread
and a transverse feedback, and we will take a similar approach [10]. We refer to the centroid of
the bunch as z = 〈x〉+ i〈p〉, where the angle brackets signify the average over the distribution.
The tune of the centroid is Qc, and its transverse offset will each turn be reduced by a factor g,
called the gain. Assuming a perfect, immediate feedback, the initial centroid offset z0 = ik will
after n turns be

zn = z0 ·e−i2πQcn ·
(
1− g

2

)n n→∞−−−→ z0 ·e−i2πQcn ·e−
g
2
n , (4)

with a damping time of τ = 2/g turns. It is assumed that the reduction of the centroid amplitude
due to the tune spread is negligible compared to that of the transverse feedback.

The position of an individual particle, with a constant tune of Qc + ∆Q, is referred to as
y = x+ ip. After many turns, when the centroid tends to the origin in the limit ng � 1, the
position will become

yn = e−i2π(Qc+∆Q)n

(
r0+z0 ·

(
1− g

2

) (
1− ei2π∆Q

)
1−

(
1− g

2

)
ei2π∆Q

)
, (5)

where r0 = x0 + ip0 is the position prior to the kick, and y0 = r0 + z0 is the position just after
the kick z0. The change of the action in the limit ∆Q� 1, ng � 1 is thus

∆J =
k2

2

(
1− g

2

)2
4π2∆Q2(g

2

)2
+
(
1− g

2

)
4π2∆Q2

+ k
√

2J0

(
1− g

2

) cos(φ0)
(g

2

)
2π∆Q+ sin(φ0)

(
1− g

4

)
4π2∆Q2(g

2

)2
+
(
1− g

2

)
4π2∆Q2

=1
2k

2L2 + k
√

2J0 [M cos(φ0) +N sin(φ0)] (6)

=1
2k

2L2 + k
√

2J0

√
M2 +N2 cos

(
φ0 − atan

(
M
N

))
,

where L, M and N are factors that depend on ∆Q and g. The first term of Eq. (6) is an average
growth equal to the result in [10], while the second term is a spread based on the phase of the
particle. Equation (6) simplifies to Eq. (3) minus J0 in the limit g � ∆Q, and to 0 in the limit
g � ∆Q.
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2.2. Fokker-Planck Equation in Action
When one kick k becomes a coherent white noise source, the change of action in Eq. (6) can be
considered a stochastic process, described by the Fokker-Planck equation [7]

∂tΨ = −∂J (UΨ) + ∂2
J (JDΨ) , (7)

with drift and diffusion coefficients

U(J,Ψ) =

∫ ∞
−∞

∆

τ
ϕ(∆; J,Ψ)d∆ , (8a)

D(J,Ψ) =
1

J

∫ ∞
−∞

∆2

2τ
ϕ(∆; J,Ψ)d∆ , (8b)

where τ is the time interval between each kick, and ∆ is the change of action. The normalization
of D by J is convenient in the following. This has been derived by Taylor expanding the Master
equation [11, 12]. The details could not fit here.

The probability distribution for the change of action after a kick, derived from Eq. (6), can
be written as

ϕ(∆; J,Ψ) =
F (k)dk

π

√
2Jk2(M2+N2)−

(
∆− 1

2k
2L2
)2 , (9)

where F (k) is the probability distribution of the kicks, with a standard deviation, σk, and an
assumed mean of zero. The coefficients U and D are thus

U(J,Ψ) = U0 =
σ2
k

2τ
·
(
L2
)
, (10a)

D(J,Ψ) =
σ2
k

2τ
·
(
M2 +N2

)
. (10b)

In the limit ∆Q� 1 one finds that M2 +N2 = L2. The Fokker-Planck Equation takes the form

∂tΨ = ∂J [J∂J (DΨ)] . (11)

In the derivation of Eq. (11), the tune offset ∆Q was assumed constant for each particle
individually. In general ∆Q depends on J , which is not constant. From considering the actual
process, we postulate a time reversal symmetry at the microscopic level, that the probability of
going from Ja to Jb is equal to the probability of going back, or ϕ(Jb − Ja; Ja) = ϕ(Ja − Jb; Jb).
By doing a Taylor expansion of ϕ as in [12], assuming small kicks k, the drift coefficient changes
to

U(J,Ψ) = D + J∂J(D) . (12)

The second term cancels a term in Eq. (11), which becomes the standard diffusion equation

∂tΨ = ∂J [JD∂J (Ψ)] . (13)

For later reference and discussion, we combine Eq. (11) and Eq. (13), by use of a parameter
α ∈ {0, 1}, as

∂tΨ = ∂J [JD∂J (Ψ)] + (1−α) · ∂J [J∂J(D)Ψ] . (14)
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2.3. Solving the Fokker-Planck Equation
The next step is to solve Eq. (14). If g = 0, this is the diffusion equation with a constant
diffusivity D0 = σ2

k/2τ . In another extreme limit, g � ∆Q and ∆Q→ 0, ∂tΨ = 0, and the
distribution will not change.

In the interesting regime, when there is a balance between the feedback and the detuning,
we require a numerical solver. An original code has been written, implemented with the finite-
volume-method to ensure mass conservation, and using scipy.integrate.solve ivp to achieve
the time integration [13]. The boundary at J = 0 has to be reflective. In the results that will
be presented, the boundary at JMax = 24.5 is absorbing, representing an aperture. The centroid
tune, Qc, is kept constant.

2.4. Decoherence from Landau Octupoles
The Landau octupoles in the LHC cause a tune spread in both transverse planes, relative to the
average, given by

∆Qx,y = ax,y ·(Jx,y − 〈Jx,y〉) + by,x ·(Jy,x − 〈Jy,x〉),
ax,y = 520 · Ioct · εx,y,0 , (15)

bx,y = −380 · Ioct · εy,x,0 ,

where aj and bj are detuning coefficients dependent on the octupole current, Ioct, and geometrical
emittance [14]. In a simplified model when b = 0, L2 takes the shape in Fig. 1.
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Figure 1. Action dependence of L2 for a damper gain g = 0.01 and different values for the
octupole detuning coefficient ax, in the simplified case where bx = 0.

3. Results
We will repeatedly study a toy configuration with a = 5× 10−3, b = 0 and g = 0.2. All
values are in the horizontal plane. The subscript x has been omitted, since there is no
dependence on vertical phase space. A macroparticle simulation has been run. Simulations
of this process require >106 macroparticles to reduce the numerical stochastic cooling, a
small ratio σ2

k/g to keep the centroid amplitude low, and >106 turns for the distribution to

change. The distribution is plotted as a function of r =
√

2J in Fig. 2a after T turns such that
σ2
k ·T = [0, 1, ..., 8]·25/6 turns. The time is scaled to hours of operation of the LHC, with a noise

of σk = 5.77× 10−4, comparable to the noise in a recent experiment in the LHC [6].
A stochastic process with kick strength solely dependent on the parameters before the kick,

is modelled by Eq. (14) with α = 0. A simulation was run with a centered incoherent noise of
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(a) Realistic macroparticle simulation.
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(b) Solution of Eq. (14) with α = 0, and a macroparticle
simulation with incoherent noise of variance σ2

k ·L2.
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(c) Solution of Eq. (14) with α = 1.

Figure 2. Distribution evolution with a = 5× 10−3, b = 0, g = 0.2 and equivalent noise
σk = 5.77× 10−4.

variance σ2
k ·L2 over T turns. The distribution, predicted by the Fokker-Planck-solver and the

simulation after σ2
k ·T = [0, 1, 2, 3]·25/6 turns, are shown to have a perfect agreement in Fig. 2b.

These curves are significantly different from the first 4 curves in Fig. 2a, showing clearly that
α = 0 in Eq. (14) is not representing the beam dynamics well.

The distribution evolution calculated with α = 1 is presented in Fig. 2c. This evolution is
in comparison quite close to the macroparticle simulation. An edge develops at r =

√
2 ≈ 1.4,

where ∆Q = 0. The evolution of multiple edges in the simulation can be a numerical artefact.
There is also a small nonzero diffusion across the edge due to the centroid oscillation, which is
not included in the new theory.

The evolution of the stability diagram, corresponding to the distribution evolution in Fig. 2c,
has been calculated with PySSD, and is presented in Fig. 3. The tune spread is calculated with
Eq. (15), using Ioct = 400 A and a normalized emittance of 2 µm at 6.5 TeV. Both diagrams
show an increased stability at large real coherent tune shifts, due to the population of the tails
at Jx > 5. The horizontal stability diagram eventually cuts into the stability diagram calculated
with half the octupole current for the initial distribution, due to the increased gradient and
curvature of Ψ at Jx ∼ 1.
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(a) Horizontal plane.
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(b) Vertical plane.

Figure 3. Evolution of stability diagrams for Ioct = 400 A, corresponding to the evolution in
Fig. 2c. The dashed black lines are the stability diagrams for Ψ(t = 0) at Ioct = 200 A.

4. CONCLUSION
We have shown that a coherent white noise, combined with a transverse feedback and an
amplitude dependent detuning, causes an amplitude dependent diffusion, which changes the
distribution. The Fokker-Planck equation has here been used to model this process on long
time scales. Macroparticle simulations can also be used, and have been run to compare to the
new theory, but require high numbers of macroparticles and turns to study the relevant cases.
With detuning due to Landau octupoles, a Gaussian distribution evolves towards a rectangular
distribution. Simultaneously, the stability diagram changes. The example configuration studied
in this paper show that this can allow instabilities to evolve at more than twice the predicted
required octupole current, depending on the mode, over time scales of hours. The stability also
increased for large real coherent tune shifts. To study the impact in the LHC, the model will be
extended to include wakefields and tune dependence on the vertical action.
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