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Abstract
Astrocytes orchestrate neural development by powerfully coordinating synapse formation and function and, as such, may be
critically involved in the pathogenesis of neurodevelopmental abnormalities and cognitive deficits commonly observed in
psychiatric disorders. Here, we report the identification of a subset of cortical astrocytes that are competent for regulating
dopamine (DA) homeostasis during postnatal development of the prefrontal cortex (PFC), allowing for optimal DA-
mediated maturation of excitatory circuits. Such control of DA homeostasis occurs through the coordinated activity of
astroglial vesicular monoamine transporter 2 (VMAT2) together with organic cation transporter 3 and monoamine oxidase
type B, two key proteins for DA uptake and metabolism. Conditional deletion of VMAT2 in astrocytes postnatally produces
loss of PFC DA homeostasis, leading to defective synaptic transmission and plasticity as well as impaired executive
functions. Our findings show a novel role for PFC astrocytes in the DA modulation of cognitive performances with relevance
to psychiatric disorders.

Introduction

Acquisition of higher cognitive functions (i.e., executive
functions) depends on the proper development and
maturation of the prefrontal cortex (PFC) in both humans
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and rodents [1]. In humans, executive functions develop
throughout childhood and adolescence, and the appropriate
maturation of the circuitry within PFC may play a key role
in this trajectory [2]. Consistent with this notion, impair-
ments in executive functions are central symptoms asso-
ciated with developmental neuropsychiatric disorders such
as schizophrenia and autism spectrum disorders [1], thus
suggesting that alterations in the development of synaptic
circuitries in the PFC play a central role in the pathophy-
siology of psychiatric disorders with shared deficits in
executive functions. This conceptual framing of psychiatric
disorders as 'circuit disruptions' [3] has stimulated analyses
of synaptic regulatory pathways that are dysregulated
among neuropsychiatric disorders with shared deficits in
executive functions. One molecular pathway notably high-
lighted is the formation and maturation of dendritic spines
whose structural plasticity is tightly coordinated with
synaptic function and plasticity [4] and whose morpholo-
gical abnormalities have been implicated in a number of
psychiatric and neurodevelopmental disorders [5, 6], parti-
cularly those that involved PFC.

During the postnatal development, PFC is under the
pressure of important neuromodulations notably by dopa-
mine (DA). Proper DAergic tone exerts a prominent action
in the formation and dynamics of dendritic spines [7] and in
controlling synaptic activity and plasticity [8] but also in
optimizing executive functions, including working memory
and behavioural flexibility [9, 10]. Not surprisingly, aber-
rant DA levels and inappropriate DAergic neuromodulation
of glutamatergic synapses are commonly observed in neu-
ropsychiatric disorders [11, 7]. In the PFC, DA innervation
and receptor expression are present early in development,
mature during adolescence and form stable patterns in
adulthood. This prolonged development timeline provides a
large window of 'critical period' during which potential
alterations in the mechanisms regulating DA homeostasis
can induce a variety of effects including altered spinogen-
esis and dysfunctional glutamatergic synapses [7, 12] and
cognitive dysfunctions [10]. Despite the importance of DA
in controlling the development and the functions of the
PFC, we are still largely ignoring the cellular mechanisms
regulating DA homeostasis and in particular the specific
roles that astrocytes may play.

Astrocytes are the most abundant glial cell type of the
mammalian brain and are now recognized as central cel-
lular elements controlling synapse formation and
maturation [13–16], but also the modulation of many
aspects of synapses physiology, network activity, and
cognitive functions [17–20]. Whether and how astrocytes
may contribute to the homeostasis of DA has never been
investigated in detail, although decades of research have
established that key enzymes for its metabolism: i.e.,
mitochondrial enzyme monoamine oxidase B (MAOB)

and cathecholamine O methyl transferase (COMT) are
mainly expressed in astrocytes [21, 22]. Most interestingly,
according to recent transcriptome analyses astrocytes
express genes encoding for proteins involved in mono-
amines transport and storage such as the plasma membrane
organic cation transporter 3 (OCT3) [21, 23–25], and,
intriguingly, also vesicular monoamine transporter 2
(VMAT2) [21, 25], an integral vesicular membrane protein
that in neurosecretory cells directly controls the efficient
uptake of cytosolic monoamines into intracellular vesicles
[26–28]. Although a novel mRNA splice variant of Dro-
sophila VMAT (DVMAT-B) has been found in a small
subset of glia in the lamina of the fly's optic lobe [29], to
date VMAT2 in mammals is thought to be expressed
exclusively in neurons. Here, by studying a possible role for
astrocytes in the homeostasis of brain monoamines we find
that a subset of cortical astrocytes (i.e., astrocytes located in
the frontal and prefrontal cortex- PFC) are endowed with
unique features of dopaminergic (DAergic) glial cells
insofar as they express VMAT2 together with two key
proteins for DA uptake and metabolism (i.e., plasma
membrane transporter OCT3 and catabolic enzyme MAOB)
and by taking up and metabolizing DA they control DA
homeostasis. Importantly, they acquire these DAergic fea-
tures during the period of postnatal development, when the
extracellular levels of DA are crucial for orchestrating
spines formation/maturation and thus the dynamic refine-
ment of neuronal circuit connectivity [12, 30]. We find
that plasma membrane OCT3 transporter provides
effective control of extracellular levels of DA and that
VMAT2 directly controls MAOB-dependent metabolism
capacity by sequestering DA from the cytoplasm. Indeed,
by using in vivo conditional gene inactivation we find
that lack of VMAT2-dependent DA storage in astrocytes
leads to an aberrant increase in the activity of MAOB and
of OCT3 transport and, consequently, to decreased extra-
cellular levels of DA. Unbalanced DA levels in the
PFC induce profound alterations of synaptic transmission
and plasticity, spine formation and maturation, as well as
of cognitive performances, that are reminiscent of
developmental psychiatric disorders. We further find that
viral-mediated replacement of VMAT2 in astrocytes and/or
systemic treatment with L-3,4-dihydroxyphenylalanine
(L-DOPA) prevent the onset of cognitive phenotypes,
thus providing a causal link between absence of VMAT2
in astrocytes, decreased levels of DA and onset of
cognitive deficits. As a whole, we show that, like
neurons, astrocytes are integral components of the cellular
pathways regulating DA homeostasis in the PFC, a
mechanism required for correct synapse patterning during
postnatal development and the appropriate maturation
of complex cognitive performances involving DA
modulation.
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Material and methods

FACS of astrocytes and semi-quantitative PCR

Glial fibrillary acidic protein/enhanced cyan fluorescent pro-
tein (GFAP-ECFP) [31], aldehyde dehydrogenase 1 family,
member L1/enhanced green fluorescent protein (ALDH1L1-
EGFP), creERT2XVMAT2XR26-tdTomato and creERT2XR26-
tdTomato transgenic reporter mice were used. Frontal cortex
were dissected from P40 old mice and samples were prepared
as previously described [21]. CFP, ECFP and EGFP or
tdTomato positive astrocytes were purified by fluorescence
activated cell sorting (FACS) using a MoFlo AstriosEQ High
speed cell sorter. Astrocytes were identified based on high
CFP, EGFP and tdTomato fluorescence (see Supplementary
Information for details). Total RNA from sorted cells was
isolated with RNeasy Mini Kit and the quantitative real-time
PCR was done on C1000T Thermal Cycler as already
described [32] (see Supplementary Information for details and
for primer sequences).

Tissue preparation, immunohistochemistry and
histology

Sprague Dawley rat (P30-40) aVMAT2cKO (P40), control
LoxTAM (P40) and R26EYFPlox/lox-hGFAPcreERT2 (P40)
were deeply anesthetized with sodium pentobarbitone (6mg/
100g body wt, i.p.) and immediately perfused intracardiacally
with fresh 4% paraformaldehyde in 0.1M phosphate-buffered
saline (pH 7.4). Brains were postfixed overnight, and then
equilibrated in 30% sucrose overnight a 4 °C. Sagittal sections
(30 μM) were cut at −20 °C using a cryostat and stored at
−80 °C (see Supplementary Information for details).

Lowycril embedding and postembedding
immunogold

Immunogold cytochemistry was carried out as described
[33] using PFC specimens from adult Wistar rats (P30-P40)
fixed by perfusion through the heart (4% formaldehyde and
0.1% glutaraldehyde). Brain sections were cryoprotected in
glycerol, frozen in liquid propane, freeze-substituted with
methanol, and embedded in Lowicryl HM20. Ultrathin
sections of 80 nm were cut from the blocks obtained.
The ultrathin sections were processed with the antibodies
according to an immunogold procedure previously descri-
bed elsewhere (see Supplementary Information for
details) [34].

Generation of aVMAT2cKO mice

aVMAT2cKO mice were generated by crossing the
hGFAPcreERT2 line expressing a tamoxifen (TAM)-

inducible cre recombinase transgene driven by the human
astrocytic glial fibrillary acidic protein (hGFAP) promoter
[35] with VMAT2lox/lox line containing cre-excisable loxP
sequences in the endogenous VMAT2 [36] to create
hGFAPcreERT2VMAT2lox/+(F1) mice. The F1 progeny
were then crossbred with VMAT2lox/lox mice to create
GFAPcreERT2VMAT2lox/lox (F2) and VMAT2lox/lox (F2)
mice (Supplementary Figures S2a–c). The F2 progeny
(namely CreLox) were injected with 100 mg kg−1 TAM or
oil as appropriate from P20 to P28 in accordance to Swiss
animal guidelines. The controls were VMAT2lox/lox

injected with TAM (namely control LoxTAM) and
CreLox mice injected with oil/ethanol vehicle (namely
control CreLoxOil). The mice used for all of the
experiments had a C57BL/6 background. (See Supple-
mentary Information for Maintenance, breeding and
genotyping).

Quantitation of brain monoamines

Monoamines and metabolites were quantified as described
previously [37] with some modifications (See Supplemen-
tary Information for details).

Stereotaxic surgery, virus injection and
microdialysis

aVMAT2cKO and control LoxTAM mice were anesthe-
tized with isoflurane, and mounted in a stereotaxic appara-
tus. The viruses used in all of the experiments (lentiVMAT2
and lentiEGFP) were injected bilaterally into the PFC
(AP+ 2.0 mm, L ± 0.4 mm, DV −2.5 mm) at a rate of 100
nL/min-1 using a Hamilton syringe and CMA400 pump and
allowed to incubate for 3–4 weeks before performing the
experimental tests (See Supplementary Information for
details).

Time course of dopamine uptake in primary
astrocytes

Primary astrocytes isolated from C57BL/6, LoxTAM and
aVMAT2cKO pups were prepared as previously described
[33, 38] (see Supplementary Information for details) and
seeded in a 96-well plate in the incubator at 37 °C and 5%
CO2. At the day of the experiment, cells were washed twice
with Krebs Ringer Hepes (KRH) buffer and then pre-
incubated for 60 min at 37 °C in KRH buffer in the presence
of reserpine (1 μM the presence of deprenyl (1 μM) or
vehicle. Afterwards, the cells were incubated for various
periods of time with 3 mM of DA using 150 nM of [3H]-D
dopamine (Dihydroxyphenylethylamine 3,4-[ring-2,5,6–3
H], 60 Ci/mmol) as a tracer (see Supplementary Information
for details).
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Quantification of DOPAC and DA in primary
astrocytes

(see Supplementary Information for details).

Electrophysiological slice recording

In all electrophysiological recordings, n indicates the
number of independent slices analyzed. Recordings were
performed on acute coronal sections of the prefrontal cortex
from P45-P60 mice in oxygenated (95% O2/5% CO2)
artificial cerebro-spinal fluid. (see Supplementary Informa-
tion for details).

Morphological analysis of dendrites and spines

Dendritic spine density and spine morphology was assessed
as previously described [39]. For spine and dendrites ana-
lysis we used two fluorescent transgenic mice
(aVMAT2cKO-Thy1EGFP and control LoxTAM-
Thy1EGFP) obtained by the crossbreeding of Thy1EGFP
[40] with aVMAT2cKO and VMAT2lox/lox, respectively.
Confocal microscopy analysis was performed with a Leica
confocal imaging system (TCS SP5) with a 40 × (1.8 NA)
or with 63x (2.8 NA) oil immersion objectives. (see Sup-
plementary Information for details).

Cognitive tests

The behavioural phenotyping and cognitive tests were
performed using aVMAT2cKO and control LoxTAM
mice at P45-P60 (see Supplementary Information for
details).

Statistical analysis

Samples size (n) have been indicated in the text (results)
and in supplementary materials and methods. They have
been based on pilot experiments and previous works.
Animals have been characterized in each experiments and
randomly allocated to groups. Investigators were blinded
to the groups during the experiments (where applicable).
All analyses were performed using GraphPad Prism
6.0 software. Then, a one-way ANOVA was performed
followed by Bonferroni’s posthoc tests or Tukey posthoc
test. For two sample comparisons, unpaired t-test was
used. For behaviour and electrophysiology procedures,
parametric tests were used: two-way ANOVA with repe-
ated measures followed by a posthoc Tukey’s HSD test.
All data showed similar variances and are presented as
mean ± SEM. Statistical significant was considered at the
p < 0.05.

Results

Astrocytes in the developing PFC are
immunopositive for the determinants of dopamine
metabolism

The presence of bona fide genes involved in the synthesis,
uptake, storage and degradation of DA was here investi-
gated in purified astrocytes micro-dissected, postnatal day
40 (P40) frontal cortex by means of FACS and GFAP-
ECFP [31] or ALDH1L1-EGFP [32] transgene reporter
mice. We detected significant levels of RNA for the plasma
membrane transporter OCT3, the metabolic enzyme MAOB
and the vesicular transporter VMAT2 (Fig. 1a, Supple-
mentary FigS1a), but could not find any signal for tyrosine
hydroxylase (TH), an enzyme that is essential for the pro-
duction of monoamines. Analysis of the purified ECFP- and
of EGFP-positive astrocytes (sorting to yield > 99% pure
positive cells) revealed background levels of the markers of
neurons, dendrites or oligodendrocytes (n= 11 mice, Sup-
plementary Figure S1b, c), thus validating the purity of the
cell extracts. Further validation was provided by the fact
that immunolabelling experiments performed with pre-
viously validated polyclonal antibody raised against OCT3,
MAOB, VMAT2, and TH (Supplementary Table 1) detec-
ted the presence of all of these proteins in vivo in peri-
adolescent rodents [P30-40] (Supplementary Figures S1d–f
Fig. 1b). The VMAT2 signal was readily recognizable in
the cell bodies and large processes of glutamine synthase
(GS)-positive astrocytes located in the frontal regions
(including the prefrontal cortex—PFC) (Fig. 1b), but the
signal was respectively weak or virtually absent in the
striatum (ST) and ventral tegmental area (VTA) (Fig. 1c).
These observations were confirmed by the similar results
obtained in P30 wt and BAC transgenic hemagglutinin
(HA)-tagged VMAT2 mice (Supplementary Figure S1g–h),
in which the expression of HA epitope-tagged VMAT2
revealed HA instead of VMAT2. Immunostaining for
VMAT2 and GS of specimens taken from mice at different
times during the first four postnatal weeks (P7, P14, P30)
showed moreover that VMAT2 signal in GS-positive
astrocytes arose in the second postnatal week (Supple-
mentary Figure S1i). Several studies have suggested that
transgenic reporter lines for ALDH1L1-EGFP can be used
to identify astrocytes in mature CNS . In fact, immunos-
taining analysis confirmed that ALDH1L1-EGFP positive
cells in PFC co-labelled extensively (95–98%) with GS
positive mature astrocytes (Supplementary Figure S1j).
Western blot (WB) analysis of brain tissues obtained from
wild-type (wt), VMAT2 knock-out (VMAT2−/−) and het-
erozygote VMAT2 (VMAT2+/−) mice [41] and immunos-
taining of VTA in wt and VMAT2−/− brain tissues at P5

Dysfunction of homeostatic control of dopamine by astrocytes in the developing prefrontal cortex leads. . . 735



confirmed that the detected VMAT2 signal was specific as
no signal was observed in the VMAT2−/− mice (n= 3 mice
each group for WB and n= 3 mice for immunostaining,
Supplementary Figures S1k–n). Consistent with these
findings, quantitative immunogold analyses confirmed that

a well characterized VMAT2 signal (Supplementary Fig-
ure S1o-q), was present in the layer 5 (L5) mPFC astrocytic
processes of P30 rats recognized for the expression of
GLT1/GLAST25 or GS (Fig. 1d; Supplementary Fig-
ure S1r), although the density of gold particles was about 3

Fig. 1 VMAT2 is enriched in astrocytes located in the frontal cortex.
a Representative image of the RT-PCR analysis and quantification of
the relative expression of OCT3, VMAT2, MAOB and TH mRNA in
FACS-sorted astrocytes in comparison with β-actin. The error bars
indicate the SEM. b Representative confocal images show VMAT2
immunolabelling (red) in mouse prefrontal cortex (PFC). Astrocytes
are stained with glutamine synthase (GS, green). The VMAT2 signal is
highlighted by white arrows in astrocytes and grey arrows in neuronal
fibres. Scale bars: 30 μm. High magnifications represent confocal
images showing VMAT2 immunolabelling (red) in the PFC of mouse
and rat (P30-40). Scale bars: 5 μm. c Confocal sections showing
VMAT2 (red) in the ST and VTA of rats; the astrocytes are stained
with GS (green). Note the absence of VMAT2 immunolabeling in the
GS-positive astrocytes of the VTA . In the ST, the VMAT2 signal in

astrocytes is highlighted by white arrows. Scale bars: 20 μm. d Elec-
tron microscopy sections show the immunogold labelling of VMAT2
in L5 of a P30 rat. On the left: immunogold particles for VMAT2 in a
dopaminergic axonal bouton making synapse with an asymmetric
synapse (synaptic triad). VMAT2, 10 nm gold particles . On the
right: immunogold particles for VMAT2 located in a peri-synaptic
astrocytic process. VMAT2, 10 nm gold particles . Scale bars: 250 nm.
Histograms show the average density of VMAT2 immunogold parti-
cles in astrocytic processes and axonal boutons in L5 of rat PFC. Note
that, although lower than that of dopaminergic boutons (−73%, n= 3),
the density of the VMAT2 immunogold particles is significantly
higher (+82%, n= 3) than the background calculated on mitochon-
dria. The error bars indicate the SEM
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fold less than in DAergic axons but still significantly above
background (+82%) calculated in mitochondria (n= 3 rats;
one-way ANOVA, Bonferroni’s post-test correction, *p <
0.05). Taken together, these findings indicate that OCT3,
VMAT2 and MAOB are present in PFC astrocytes and may
contribute to the regulation of DA homeostasis.

Conditional knock-out mice with the selective
deletion of VMAT2 in astrocytes

In order to investigate the role of VMAT2 in DA home-
ostasis, we generated an inducible knock-out mouse line in
which the protein could be specifically deleted in a tem-
porally controlled manner by crossing mice harbouring the
tamoxifen(TAM)-inducible creERT2 recombinase transgene
driven by the hGFAP promoter (hGFAPCre mice) [35, 42]
with mice containing cre-excisable loxP sequences in the
endogenous VMAT2 gene (VMAT2lox/lox mice) [36].

The progeny inheriting both alleles (CreLox, Supple-
mentary Figures S2a–c) and treated with TAM from P20 to
P28 presented the selective deletion of astrocyte VMAT2,
and are here referred to as aVMAT2cKO mice. The controls
were VMAT2lox/lox mice injected with TAM (control Lox-
TAM), and CreLox mice injected with the oil/ethanol
vehicle (control CreLoxOil). The aVMAT2cKO mice were
viable, their body weight was normal, and their overall
brain morphology did not reveal any gross anatomical dif-
ference or any sign of apoptosis or oxidative DNA damage
(Supplementary Figures S2d–f); staining with Nissl and
NeuN revealed a normal frequency of cells and normal
layering in the frontal cortex (Supplementary Figures S2g,
h), and the fact that WB analysis revealed no difference in
GFAP excluded any reactive gliosis (Supplementary Fig-
ure S2i). The specificity and efficacy of TAM-induced
astrocyte VMAT2 excision was confirmed in the fluorescent
CreERT2XR26-EYFP-reporter [43] and aVMAT2cKO mice
lines. Confocal microscopy revealed the expression of
EYFP in astrocytes in different brain areas, and showed
recombination in 63% of PFC astrocytes (n= 4 mice;
Figs. 2a, g); no recombination was detected in the astrocytes
of the oil-treated CreERT2XR26-EYFP mice (Fig. 2b) or in
neurons of the PFC (Supplementary Figure S2j, k) and
DAergic neurons of the VTA (n= 4 mice; Fig. 2c). Addi-
tionally, mRNA levels for VMAT2 were significantly
decreased in FACS-sorted astrocytes from fluorescent
double floxed CreERT2XVMAT2XR26-tdTomato mice with
respect to those purified from control CreERT2XR26-
tdTomato mice (−83.5 ± 2.5%, n= 3 mice, Student's
t-test, **p < 0.001; Fig. 2h) and recombination was absent
in neurons of whole brain, as confirmed by immunolabel-
ling or polymerase chain reaction (PCR) analysis of the
recombined stop sequence (n= 27 mice; Figs. 2i, j; Sup-
plementary Figures S2l-s). Immunostaining for VMAT2

confirmed the loss of the VMAT2 signal in PFC astrocytes
but not the DAergic projections (Figs. 2d, e) or VTA
DAergic neurons (Fig. 2f). Accordingly, there was a sig-
nificant reduction in VMAT2 protein expression in the PFC
(−30%) but not in the VTA of the aVMAT2cKO mice (n=
3 mice, Student's t test, ***p < 0.001; Fig. 2k), thus sup-
porting our observation that VTA astrocytes do not express
VMAT2 and ruling out any leakage of recombination to
neurons. Thus, aVMAT2cKO mice are a valid model for
investigating the role of astrocyte in the regulation of
monoamine levels in the postnatal brain.

Deletion of astrocyte VMAT2 disrupts DA
metabolism in the PFC

We next assessed potential changes of monoamine trans-
mission in aVMAT2cKO mice. In tissue homogenates of
the PFC obtained from aVMAT2cKO mice we found a
significant decrease in total DA content of ~38% in the PFC
but not the VTA (n= 6 mice each group, Student’s t- test,
***p < 0.001; *p < 0.05; Fig. 3a). Interestingly, this effect
was DA specific as there was no change in serotonin (5-HT)
or norepinephrine (NE) content; there was also no sig-
nificant alteration in the levels of DA and the other cate-
cholamines in the VTA, thus confirming that the astrocytes
in the VTA did not contain VMAT2. We also detected a
selective ~25% increase in its 3,4-dihydroxyphenylacetic
acid (DOPAC) metabolite, in line with the previously
reported increased cytosolic turnover of DA in VMAT2 full
knock out mice [44]. Further in vivo microdialysis analyses
confirmed that deleting astroglial VMAT2 led to a ~ 23 and
~ 33% reduction in extracellular DA levels in the PFC of
P25 and P40 mice, respectively (n= 6 mice, Student’s
t- test, *p < 0.05; Fig. 3b; n= 3 mice each group, per day,
Student’s t- test, ***p < 0.001; *p < 0.05; Fig. 3c). The
~30% decrease in tissue content of DA induced by deleting
VMAT2 from astrocytes and the concomitant increase in
the MAOB metabolite DOPAC suggested rapid metabolism
of the excess cytosolic DA that could not be stored in the
absence of VMAT2 (Fig. 3d). In line with these hypothesis,
we found a selective increase in MAOB activity in the PFC
of aVMAT2cKO mice in comparison with control mice
(about +57%; n= 5 mice each group, Student’s t- test, *p
< 0.05; Fig. 3e). We then investigated the importance of the
plasma membrane OCT3 transporter and MAOB activity in
regulating extracellular DA clearance by performing two
different series of experiments.

First, we examined the time course of DA accumulation
and of DA turnover (i.e., DOPAC/DA ratio) in primary
cultured astrocytes (wt) in the absence/presence of the
specific VMAT2 blocker reserpine (1 µM), and in primary
cultured astrocytes derived from control LoxTAM or
aVMAT2cKO mice (Figs. 3f–i). Curves in Supplementary
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Figure S3a show that astrocytes accumulated 3H (DA
3mM, 3H-DA 150 nM) in a time-dependent manner and
that the uptake was inhibited at all time points by the spe-
cific OCT3 inhibitor D22 (5 µM). In the absence of VMAT2

inhibitor reserpine, both 3H accumulation and DOPAC/DA
ratio reach the plateau in about 15 min (Figs. 3f, h), sug-
gesting that DA taken up by astrocytes accumulates into the
cytoplasm (as well as into organelles expressing VMAT2)
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thus stopping the uptake and, consequently the degradation
of DA into DOPAC. However, inhibition of VMAT2 with
reserpine significantly increases the cytosolic DA turnover
measured as DOPAC/DA ratio (Fig. 3h red curve, +77.7 ±
12%, +141.63 ± 19.23% and +276.56 ± 29.87% at 40, 50
and 60 min, respectively, two-way ANOVA F= 29.27, p <
0.001 followed by Bonferroni’s post-hoc correction, ***p <
0.001; *p < 0.05) and DOPAC levels increase over time
without reaching a plateau, suggesting that DA taken up by
astrocytes is continuously degraded, thus driving the uptake
activity. Consequently, the total amount of cytosolic 3H-
accumulation (i.e., 3H-DA taken up and 3H-DOPAC
resulted by degradation of 3H-DA, Fig. 3f) increases over
the time, does not reach a real plateau and is significantly
different from control at 40, 50 and 60 min (red curve;
29.40 ± 5.83 vs 9.86 ± 1.723 at 40 min, 28.89 ± 4.322 vs
10.71 ± 2.845 at 50 min, 31.44 ± 7.842 vs 9.78 ± 1.9776 at
60 min, two-way ANOVA F= 14.21, p < 0.001 followed

by Bonferroni’s post-hoc correction, ***p < 0.001). The
role of MAOB in the increase of intracellular DOPAC
levels and 3H accumulation (i.e., of total amount of DA
taken up by astrocytes), was highlighted by administrating
reserpine in the presence of deprenyl (Figs. 3f, h, blue
curves; 9.35 ± 2.317 vs 29.40 ± 5.83 at 40 min, 9.63 ± 3.233
vs 28.89 ± 4.322 at 50 min, 10.30 ± 1.995 vs 31.44 ± 7.842
at 60 min, two-way ANOVA F= 14.21, p < 0.001 followed
by Bonferroni’s post-hoc correction, ***p < 0.001; *p <
0.05). Similar results have been obtained by evaluating 3H-
accumulation and DA turnover in cultured cells derived
from aVMAT2cKO mice, where VMAT2 was genetically
deleted (Figs. 3g; 15.57 ± 2.071 LoxTAM, 31.29 ± 2.7
aVMAT2cKO, 13.66 ± 1.44 aVMAT2cKO+ deprenyl, one
way ANOVA F= 18.80, ***p < 0.001 followed by
Tukey’s post-hoc test; Fig. 3i 163.40 ± 4.67%
aVMAT2cKO, one way ANOVA F= 388.1, ***p < 0.001
followed by Tukey’s post-hoc test). Overall, these results
suggested that in the absence of VMAT2 the incessant
degradation of DA by MAOB, by keeping low cytosolic
concentrations of DA, droves the activity of the plasma
membrane OCT3 transporter and, consequently decreases
the extracellular levels of DA (Fig. 3d).

Second, we applied deprenyl (10 mg/kg, i.p.) and D22
(local application, 100 μM) [45] in control and
aVMAT2cKO mice, and measured extracellular DA levels
by means of in vivo microdialysis (Fig. 3j; Supplementary
Figure S3b). We found that both deprenyl and D22 sig-
nificantly increased the levels of DA by about 40% in
control LoxTAM mice, and completely restored to wild-
type levels when injected into aVMAT2cKO mice (n= 6
control mice; n= 4 aVMAT2cKO mice, one-way ANOVA
F= 14.74, p= 0.0001 followed by Tukey’s HSD posthoc
test, ***p < 0.001; *p < 0.05, Fig. 3j) thus providing strong
evidence that DA uptake and degradation by astrocytes
caused the reduction in extracellular DA levels observed in
the absence of VMAT2.

Finally, in order to confirm the prominent role of astro-
glial VMAT2 in modulating DA levels, we generated a
lentiviral vector that enabled the selective re-expression of
VMAT2 in astrocytes [46] and validated this expression
using a lentivirus bearing green fluorescent protein (GFP)
(n= 5 mice; Supplementary Figures S3c–h). The stereo-
tactic injection of the VMAT2 lentivirus in the PFC of P25
aVMAT2cKO mice induced the re-expression of VMAT2,
as demonstrated by means of WB analysis (Supplementary
Figure S3c) and, remarkably, fully rescued basal extra-
cellular DA levels in the PFC (n= 4 mice each group, one
way ANOVA F= 34, ***p < 0.0001 followed by Tukey’s
posthoc test; Fig. 3k). We concluded that astrocytic
VMAT2 is necessary to maintain proper DA levels in the
developing PFC.

Fig. 2 Selective and inducible deletion of astrocyte VMAT2 in
aVMAT2cKO mice. a–c Confocal sections show TAM-induced
recombination in the prefrontal cortex (PFC) and ventral tegmental
area (VTA) of CreERT2XROSA(R)26-EYFP mice reporter on (P40).
a EYFP immunolabelling (green, enhanced by anti-GFP immunos-
taining) is confined in the glutamine synthase (GS)-positive astrocytes
(red) in the PFC (P40); the nuclei are stained with DAPI (blue). The
efficacy of TAM-induced recombination in astrocytes is 63%, as
evaluated by the expression of EYFP in GS-positive cells. Scale bar:
50 μm. b EYFP immunolabelling (green) is not detectable in the PFC
of the CreERT2XR26-EYFP mouse treated with ethanol/oil (P40). The
astrocytes are stained with GS (red). Scale bar: 50 μm. c EYFP
immunolabelling (green) is confined to the VTA astrocytes of
recombined CreERT2XR26-EYFP mice (P40). Tyrosine hydroxylase
(TH, red) is used as a marker of DAergic neurons. Note that no
recombination occurs in the DAergic neurons, as shown by the
absence of EYFP immunolabelling in the TH-positive cell bodies.
Nuclei are stained with DAPI (blue). Scale bar: 50 μm. d and e Top:
Confocal sections (low magnification) of VMAT2 immunolabelling
(red) in the PFC of P40 control LoxTAM and recombined
aVMAT2cKO mice. Bottom: magnified images of VMAT2 immu-
nolabelling (red) in the PFC of recombined aVMAT2cKO and control
LoxTAM mice. Note that VMAT2 immunolabelling is no longer
detectable in the GS-positive cells of the recombined aVMAT2cKO
mice. Scale bars: 20 μm. f VMAT2 immunolabelling in the VTA of
control LoxTAM mice and recombined aVMAT2cKO (P40). Note
that VMAT2 immunolabelling in VTA neurons is not affected by
the TAM-induced recombination. Scale bars: 20 μm. g Table of
recombination efficiency in Rosa-EYFP mice. The recombination is
calculated in control LoxTAM-ROSA26-EYFP and CreERT2X-
ROSA26-EYFP mice (P40). h Representative image of semi-
quantitative PCR analysis of mRNA levels for VMAT2 measured in
FACS sorted astrocytes from control CreERT2XR26-tdtomato and
double floxed CreERT2XVMAT2XR26-tdtomato mice. i and j Semi-
quantitative PCR analysis of DNA isolated from FACS-sorted NeuN
positive (+) and negative (-) cells from recombined aVMAT2cKO
brains (P40). The histograms show the average number of arbitrary
units (AUs) of DNA amplified from NeuN+ neurons and other NeuN-
brain cells in recombined (grey) and unrecombined DNA (black). k
Western blot analysis of VMAT2 expression in the PFC and VTA of
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Fig. 3 Astrocyte VMAT2 deletion disrupts DA metabolism and leads a
decrease in dopamine levels in the PFC. a HPLC quantification of total
dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), homo-
vanillic acid (HVA), norepinephrine (NE) and serotonin (5-HT) (ng
per mg of protein) in the PFC and VTA of recombined aVMAT2cKO
and control LoxTAM mice (P40). The error bars indicate the SEM.
b Histograms show the average basal extracellular levels of DA cal-
culated in the extracellular perfusates of the in vivo microdialysis in
control LoxTAM and recombined aVMAT2cKO mice (P40). The
microdialysis probes were placed in the PFC, and DA levels (pg/μl)
were measured at baseline for 30 min. The error bars indicate the SEM.
c Histograms show the average basal extracellular levels of DA cal-
culated in the extracellular perfusates of the in vivo microdialysis of
control LoxTAM (grey) and recombined aVMAT2cKO mice (green)
at different time points after the first TAM injection. The microdialysis
probes were placed in the PFC, and DA levels (pg/μl) were measured
at baseline for 150 min. The error bars indicate the SEM. d Dia-
gram shows the contribution of astrocytic VMAT2 to DA metabolism.
e Histograms shows enzymatic activities of MAOA, MAOB and
COMT measured in PFC brain homogenates of control LoxTAM and
recombined aVMAT2cKO mice (P40). The error bars indicate the
SEM. f Dopamine accumulation in wt-derived primary cultured
astrocytes using [3H]-Dopamine. Curves represent time–dependent
specific accumulation of [3H]-Dopamine (black curve, 3 mM DA and
150 nM of [3H]-Dopamine as a tracer) in cultured astrocytes incubated
with reserpine (red curve) or reserpine plus deprenyl (blue curve). Note
that in the presence of reserpine the accumulation of [3H] is the sum of
[3H]-Dopamine and [3H]-DOPAC. The error bars indicate the SEM.

g Histograms shows [3H]-Dopamine accumulation in primary cultured
astrocytes derived from control LoxTAM and recombinant
aVMAT2cKO mice in the presence or in the absence of deprenyl
(1 μM). The error bars indicate the SEM. h Time-course effect of
reserpine (1 μM) and deprenyl (1 μM) on the intracellular levels of
DOPAC/DA ratio calculated in LoxTAM or aVMAT2cKO-derived
primary cultured astrocyte. Cultured astrocytes were incubated with
DA (3 mM) in presence or absence (black curve) of reserpine (red
curve) and reserpine plus deprenyl (blue curve) for 10, 20, 40, 50 and
60 min. Note that in the presence of reserpine there is an increased
accumulation of DOPAC. The error bars indicate the SEM. i Histo-
grams show intracellular levels of DOPAC in cultured astrocytes
derived from control LoxTAM and recombinant aVMAT2cKO mice.
Cultured astrocytes were incubated with DA (3 mM) in presence or
absence of deprenyl (1 μM) for 40 min. The error bars indicate the
SEM. j Graph shows the average levels of DA calculated in extra-
cellular perfusates of the in vivo microdialysis in control LoxTAM and
recombined aVMAT2cKO mice (P40) treated with deprenyl (10 mg/
kg, i.p.) or D22 (1,1-diethyl-2,2-cyanine iodide, 100 μM). The
microdialysis probes were placed in the PFC, and DA levels (pg/μL)
were measured at baseline for 30 min. The error bars indicate the SEM.
k Histograms shows the average levels of DA calculated in extra-
cellular perfusates of the in vivo microdialysis in the PFC of control
LoxTAM and recombined aVMAT2cKO mice locally infected with
astrocyte-targeted with lentiGFP or lentiVMAT2viruses, respectively
(P40). Data expressed as fold percentages of baseline levels. The error
bars indicate the SEM
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Taken together, the above results show that VMAT2 acts
in concert with OCT3 to control cytoplasmic storage and
metabolic capacity, and provide the first evidence that
astrocytes control DA homeostasis in the PFC.

Deletion of astroglial VMAT2 does not impair the
activity of DAergic neurons

We excluded the possibility of defects in neuronal DA
production or release in aVMAT2cKO mice with a series of
control experiments. We started by investigating TH, the

rate-limiting enzyme in neuronal DA biosynthesis. We did
not find any difference in the number of TH-positive pro-
jections in L2/3 and L5 of the mPFC of aVMAT2cKO and
control mice (Supplementary Figure S4a), and this was
confirmed by WB analysis (n= 4 mice, Student’s t test;
Supplementary Figure S4b). We also tested whether the
deletion of astroglial VMAT2 could have altered VTA
neuron activity by performing single-unit recordings to
monitor the in vivo firing rate of VTA DAergic neurons,
and did not find any significant differences in the frequency
of tonic and phasic spiking (n= 7 mice each group, n= 23

Fig. 4 Astrocyte VMAT2 deletion leads to synapse impairments. a Top:
Example traces shows superimposed fEPSP as stimulation intensity
increases. Calibration bars: 5ms, 0.5mV. Bottom: Graph shows the
maximum EPSP slope plotted against stimulus. The PFC slices prepared
from aVMAT2cKO mice (green) show enhanced basal synaptic trans-
mission with respect of control LoxTAM mice (grey) (P45-60). The
enhanced basal synaptic transmission in aVMAT2cKO mice is res-
cued with astrocyte-targeted lentiviral vectors encoding VMAT2 (lentiV-
MAT2) (orange) or with chronic treatment with L-DOPA/benserazide (20
mg/kg+ 12.5mg/kg) (pink). b Top: Example traces showing facilitation
at 50ms ISI. Calibration bars: 10ms, 0.5mV. Bottom: Graph shows
pooled paired-pulse ratios (slope2/slope1 x100 −100) plotted against the
inter-stimuli interval (ISI). The deletion of astrocyte VMAT2 leads to a
clear deficit in short-term facilitation, which indicates an increased prob-
ability of release. Note that the deficit is rescued by lentiVMAT2 (orange)
and L-DOPA (pink). c Top: Representative traces of the intracellular
recording of L5 pyramidal neurons. Bottom: Histograms showing that
mEPSC frequency is increased in mice lacking astrocyte VMAT2 (lower
left panel, green), whereas mEPSC amplitude remains unchanged. Note
that the increased mEPSC frequency is rescued by lentiVMAT2 (orange)
and L-DOPA/benserazide (pink) (lower right panel). d The administration
of tetanic stimulation (6 x 50Hz, 2 s) is indicated by an arrow and the

baseline by a dashed line. Representative traces showing responses before
(dashed line) and 60min after tetanus delivery (bold line). Calibration bars:
5ms, 0.2mV. LTP is significantly reduced in aVMAT2cKO mice 60min
after induction. Note that LTP is rescued by lentiVMAT2 (orange) and L-
DOPA/benserazide (pink). e Representative confocal images showing L5
PFC dendritic spines in recombined aVMAT2cKO-ThyEGFP (green),
recombined aVMAT2cKO-ThyEGFP+ lentiVMAT2 (orange), recom-
bined aVMAT2cKO-ThyEGFP+L-DOPA/benserazide (pink), and con-
trol LoxTAM-ThyEGFP mice (grey) (P40). Scale bar: 1 μm f Histograms
of spine density calculated in L5 of the PFC of recombined
aVMAT2cKO-ThyEGFP (green), recombined aVMAT2cKO-ThyEGFP
+ lentiVMAT2 (orange), recombined aVMAT2cKO-ThyEGFP+L-
DOPA/benserazide (pink), and control LoxTAM-ThyEGFP mice (grey) at
three developmental stages (P20, P28, P40) (n= 3 mice per group). The
error bars indicate the SEM. g–i Histograms showing the proportion of
thin and mushroom spines in L5 of the PFC of recombined
aVMAT2cKO-ThyEGFP (green), recombined aVMAT2cKO-ThyEGFP
+ lentiVMAT2 (orange), recombined aVMAT2cKO-ThyEGFP+L-
DOPA/benserazide (pink), and control LoxTAM-ThyEGFP mice (grey) at
three developmental stages (P20, P28, P40). The error bars indicate the
SEM
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LoxTAM and 17 aVMATcKO cells analysed. Firing rate
5.03 ± 0.57 vs 4.54 ± 0.47 Hz; unpaired student t-test, t38=
0.631, p= 0.531; Spikes in burst 35.36 ± 6.35 vs 28.78 ±
7.11%, unpaired student t-test, t38= 0.69, p= 0.49; coef-
ficient of variation 63.3 ± 5.85 vs 75.22 ± 9.64%, unpaired
student t-test, t38= 1.113, p= 0.27; Supplementary Fig-
ure S4c). Finally, we tested possible defects in neuronal DA
release in the PFC by optogenetically stimulating VTA DA
neurons while measuring the levels of DA in the extra-
cellular perfusates of the PFC by means of in vivo micro-
dialysis. To this end, a viral (AAV) vector carrying the gene
encoding channelrhodopsin-2 (ChR2) and yellow fluor-
escent protein (EYFP) [47] was stereotaxically introduced
in the VTA of control and aVMAT2cKO mice at P40
(Supplementary Figure S4d). ChR2-EYFP expression was
evident 15 days after the injection and was restricted to the
DA neurons, as shown by TH immunostaning (Supple-
mentary Figure S4e). In vivo, we stimulated VTA DA
neurons with high-frequency light trains to evoke phasic
DA neuron firing [48, 49] and found that the increased
extracellular levels of DA in the PFC were unaltered in
aVMAT2cKO with respect to control mice (n= 6 mice
each group, Student’s t test; p= 0.9159; Supplementary
Figure S4f).

Decreased DA levels by VMAT2 deletion in
astrocytes alters excitatory synaptic transmission
and plasticity in the PFC

During postnatal development, DA acting through DA
receptors regulates excitatory glutamatergic synapses [8, 30].
We therefore assessed the effects of insufficient extracellular
DA levels on excitatory synaptic transmission in the mPFC
of aVMAT2cKO mice by first analysing the properties of
the top-down PFC pathways thought to contribute to the
frontal cognitive processes that are crucially modulated by
DA [50].

We used field recordings to characterize basal intracor-
tical neurotransmission in L5 in response to stimulation of
the border of L2 [51]. Thus, typical field excitatory post-
synaptic potentials (fEPSPs) were evoked in L5 (Fig. 4a;
Supplementary Figure S5a) whose initial linear down-slope
can be used as an index of synaptic efficacy. Basal synaptic
transmission was assessed by recording the input/output (I/
O) curves vs. gradually increased stimulation intensities.
Analysis of the I/O revealed that synaptic efficacy was
significantly increased in aVMAT2cKO mice (n= 25) over-
control LoxTAM mice (n= 23, two-way ANOVA, ***p <
0.001; Fig. 4a) with no changes in cell excitability (Sup-
plementary Figure S5a; Supplementary Figures S5e, f).

To test the pre- vs. post-synaptic locus of this aberrant
electrophysiological signature in the aVMAT2cKO mice, we
next used paired-pulse protocol to assess pre-synaptic function

and short-term plasticity. Paired-pulse faciliatation (PPF) was
reduced in aVMAT2cKO mice (n= 25) in comparison with
control LOXTAM mice (n= 23, two-way ANOVA, ***p <
0.001; Fig. 4b; Supplementary Figure S5b), thus suggesting
that the probability of neurotransmitter release is increased
upon deletion of VMAT2 in astrocytes.

Such scenario was confirmed by whole cell patch clamp
recordings of miniature excitatory post-synaptic currents
(mEPSCs). Indeed, excitatory synapses onto L5 pyramidal
neurons showed a selective increased in the frequency but
not the amplitude of mEPSCs in the aVMAT2cKO mice
(n= 7 slices from 4 control LoxTAM mice: 1.54 ± 0.51, n
= 13 slices from 2 aVMAT2cKO mice: 3.47 ± 0.57, two-
way ANOVA, **p < 0.01; Fig. 4c; Supplementary
Figure S5d).

Because PFC neurons typically receive trains of inputs
from neighbouring cells in the gamma range of 30–80 Hz
during the delay period of working memory tasks, we
determined the effects of astrocytic VMAT2 deletion on
long-term synaptic plasticity in response to trains of inputs
within this physiological frequency range. In control Lox-
TAM mice, 50 Hz tetanic stimulation enhanced the excita-
tory synaptic response (fEPSP), resulting in long-term
potentiation (LTP) that reached ~60% of its initial level 50–
60 min after tetanisation. In contrast, the magnitude of
50 Hz LTP in aVMAT2cKO mice was significantly reduced
(+29.21 ± 4.46%, n= 21 vs +54.48 ± 6.55%, two-way
ANOVA, **p < 0.01; Fig. 4d; Supplementary Figure S5c).

As astrocyte-specific lentiVMAT2 injected in the mPFC
on P25 could restore the extracellular DA levels in the mPFC
of aVMAT2cKO mice, we investigated whether this approach
could also reverse the synaptic deficits we observed in
aVMAT2cKO mice. As shown in Fig. 4, the injection of the
lentiVMAT2 was able to rescue basal synaptic transmission
(fEPSPs, frequency of mEPSCs, n= 13 slices from
3 aVMAT2cKO+lentiVMAT2 mice, two-way ANOVA,
**p < 0.01) as well as short- and long-term plasticity in
aVMAT2cKO mice to control levels (n= 12 slices from
3 and n= 10 slices from 4 aVMAT2cKO+lentiVMAT2
mice, two-way ANOVA, *p < 0.01). The results thus confirm
the specific involvement of astrocyte VMAT2 in the regula-
tion of excitatory synaptic transmission and plasticity in
developing mPFC.

In order to address more directly the role of decreased
DA levels in the synaptic signature observed in
aVMAT2cKO mice, we performed two types of experi-
ments. We first chronically treated aVMAT2cKO mice with
levodopa (L-DOPA) 20 mg kg−1 i.p. from P20 to P40, the
main clinical relevant treatment that increases DA con-
centrations. As shown in Fig. 4, L-DOPA treatment not
only restored DA levels (Supplementary Figure S3b) but
also rescued all synaptic features in L5 of the mPFC (n= 9–
17 from 4 aVMAT2cKO+ L-DOPA mice for basal
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synaptic activity, short- and long-term plasticity, respec-
tively, two-way ANOVA, ***p < 0.001). Overall, these
findings show that astrocytic VMAT2 plays an important
role in the modulation by DA of excitatory activity in the
developing mPFC.

These changes are chronic and do not imply that acute
effects of DA are maintained in the chronically treated ani-
mals. Therefore, we next ask whether the normal DA phar-
macological modulation of fEPSPs is maintained despite
chronic manipulations. Bath application of high concentra-
tions of DA (100 µM) reduced fEPSPs in aVMAT2cKO mice
by 36.01 ± 7.07% (n= 8, Supplementary Figure S5g) thus
reaching control levels (I/O aVMAT2+DA vs I/O LoxTAM
p= 0.21, two-way ANOVA), and simultaneously restores
PPF (aVMAT2cKO: −9.86 ± 12.13%, aVMAT2cKO+DA:
73.26 ± 32.86% vs. control: 67.36 ± 25.94%) as well as LTP
(aVMAT2cKO+DA:+47.88 ± 11.52% vs LoxTAM control
mice, n= 6, Fig. 4 and Supplementary Figure S5g). These
observations confirmed that the normal modulation by DA of
neuronal network activity is maintained in the aVMAT2cKO
mice and suggest that the physiological features in these mice
are caused by the loss of DA inhibition. Positive DA neuro-
modulation is classically attributed to D1-type receptors acti-
vation whereas negative modulation relies on D2-type
receptors activation [8, 52]. As expected, application of the
broad-spectrum D1/D2 receptors antagonist fluphenazine (10–
30 µM) did not affect either synaptic transmission, PPF or
LTP (data not shown). We then tested the hypothesis that the
impaired physiological features in aVMAT2cKO mice were,
in fact, mediated by D2 receptors. Sulpiride (50 µM), a more
selective D2R antagonist [53, 54] induces a moderate but
significant increase of fEPSPs in wild-type (+32.88 ±
11.71%, n= 8), LoxTAM (+27.32 ± 12.04%, n= 6),
aVMAT2cKO+ L-DOPA (+34.38 ± 15.22%, n= 10) or
aVMAT2cKO+ lentiVMAT2 mice (+30.54 ± 6.30%, n= 6)
(Supplementary Figure S5h-l) after 40 min application. As a
consequence, blockade of D2R with sulpiride significantly
reduced PPF and LTP in all groups (Supplementary Fig-
ure S5h–l). These results revealed that normally astrocytic-
derived DA tonically suppresses excitatory synaptic
transmission by acting at D2R and that the impairments of
excitatory synapses activity upon deletion of VMAT2 in
astrocytes resulted from disinhibition of DA input onto pyr-
amidal cells.

Decreased DA levels by VMAT2 deletion in
astrocytes increases spine maturation in the
developing PFC

During the maturation of brain circuits that occurs after
birth, DA neuromodulation is essential for the development
of correct excitatory synaptic connections [30] . We thus
investigated whether the increased excitatory synaptic

transmission in L5 of the PFC of adolescent aVMAT2cKO
mice led to alterations in spine formation and maturation.
This was accomplished using a loss-of-function strategy to
evaluate the effects of astrocyte VMAT2 deletion by cross-
breeding Thy1EGFP fluorescent mice [40] with
aVMAT2cKO and control LoxTAM mice. The develop-
ment of dendritic spine structure in L5 pyramidal neurons
was visualized in the resulting fluorescent aVMAT2cKO-
Thy1EGFP and control LoxTAM-Thy1EGFP mice by
means of anti-GFP immunostaining during the period from
the start of TAM treatment on P20 to P40 (Fig. 4e). Before
(P20) and 8 days after TAM treatment (P28), the VMAT2-
deficient ThyEGFP mice showed normal dendritic spine
density in comparison with control mice, whereas the
dendritic spine density of L5 pyramidal neurons had sub-
stantially increased by P40 (n= 3 mice each group, one-
way ANOVA F= 14.67, p= 0.0004 followed by Tukey’s
HSD posthoc test, ***p < 0.001; Fig. 4f). Interestingly,
starting from P28, the absence of astrocyte
VMAT2 significantly increased the number of dendritic
spines with larger-diameter heads and short necks (n= 4
each group, one-way ANOVA followed by Tukey’s HSD
posthoc test, *p < 0.05; ***p < 0.001; Figs. 4g-i, Supple-
mentary Figures S5m–o), a characteristic of mushroom
spines [55] and mature synapses[56]. This alteration led to
more mushroom spines (+11.9%) and fewer thin spines
(−7.6%). In order to establish the link between decreased
DA levels in the absence of astrocyte VMAT2 and early
spine maturation, aVMAT2cKO-Thy1EGFP mice were
injected with lentiVMAT2 on P25 or chronically treated
with L-DOPA from P20 to P40. In line with the previous
findings, both in vivo manipulations were sufficient to
normalize spine formation and maturation (n= 3 mice each
group for spine density, n= 4 mice each group for spine
morphology, mushroom P28 one-way ANOVA F= 12.24,
p= 0.018, thin P28 one way ANOVA F= 34.73, p=
0.0005, mushroom P40 one way ANOVA F= 17.19, p=
0.0013, thin P40 one way ANOVA F= 13.68, p= 0.0026
followed by Tukey’s HSD posthoc test, *p < 0.05; ***p <
0.001; Figs. 4e-i; Supplementary Figures S5m, o). Taken
together, these findings are consistent with the proposed
role of DA in activity-dependent glutamatergic spine for-
mation during postnatal development [7, 12, 30], and
indicate that homeostatic control of DA by astrocytes is
necessary for the proper maturation of spines in the devel-
oping PFC.

Decreased DA levels by VMAT2 deletion in
astrocytes impairs working memory tasks and
behavioural flexibility

Altered dendritic spines density as well as insufficient DA
levels in the PFC cause deficits in executive functions
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[4, 10, 57, 58]. We therefore investigated whether the
excision of astrocyte VMAT2 and the consequent reduction
in PFC DA levels affects the working memory and cogni-
tive flexibility of aVMAT2cKO mice.

Two T-maze tasks were used to test working memory
(Fig. 5i). In the T-maze alternation task, task acquisition by
mice requires short-memory retention [59]. We found that
both aVMAT2cKO mice and controls reached the pre-set
criterion (correct choices in seven out of eight consecutive
trials) within 9 days of training, but the aVMAT2cKO mice
required significantly more trials to reach the criterion (n=
11 each group, two-way ANOVA F= 48.7, p= 0.006

followed by Bonferroni’s posthoc correction, **p < 0.01;
*p < 0.05; Fig. 5b). In the second test, the T-maze delayed
non-match-to-place task [60], each trial is divided into two
phases: in the sample phase, one of the two goal locations is
blocked by a wall and the mouse is directed towards a food
reward in the open location (i.e., the animal must encode the
location of the sample goal); in the delay phase, the mouse
is returned to the starting box and has to maintain the
sample goal in its working memory during a variable delay.
While alternating, the aVMAT2cKO mice made many more
errors than the control mice using both the 5 and 20 s inter-
trial intervals (n= 6 each group, Student’s t test, ***p <

Fig. 5 aVMAT2cKO mice have impaired cognitive performance.
a Event timeline of intra-peritoneal injections of tamoxifen (P20 -P28),
local infection with lentiVMAT2 (P25) and intra-peritoneal injection
of L-DOPA/benserazide (P20 −P40). b T-maze alternation task. The
graph shows the number of correct alternations of aVMAT2cKo
(green) and control LoxTAM mice (grey) (n= 11 in each group, P45-
60). The error bars indicate the SEM. c and d T-maze delayed non-
match-to-place (DNMTP). The histograms show the average number
of alternation errors made in a T-maze with 5 (c) and 20 s of delay
(d) by aVMAT2cKO (green) and control LoxTAM mice (grey). The
error bars indicate the SEM. e and f Same as in c and d for
aVMAT2cKO mice infected with lentiVMAT2 virus (orange) or
control GFP virus (green) (n= 6 in each group). Error bars represent
SEM. g and h Same as in c and d for aVMAT2cKO mice treated with

L-DOPA/benserazide (pink) or control saline (green). The error bars
indicate the SEM. i Representative scheme of T-Maze alternation task.
j Odour discrimination task. The histograms show the average number
of trials needed to reach the criterion (six consecutive correct trails) by
recombined aVMAT2cKO and control LoxTAM mice (n= 6 per
group, P45-60). OD1: discrimination learning; OD2: discrimination
repetition; Reversal: reversal of the rule. The error bars indicate the
SEM. k Same as in (i) for aVMAT2cKO mice infected with lentiV-
MAT2 (orange) or control GFP virus (green) (n= 6 per group). The
error bars indicate the SEM. l Same as in I for aVMAT2cKO mice
treated with with L-DOPA/benserazide (pink) or control saline (green)
(n= 6 per group). The error bars indicate the SEM. m Representative
scheme of odor discrimination task
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0.001; Figs. 5c, d), which suggested a deficit in working
memory.

As lentiVMAT2 and L-DOPA were able to restore
extracellular levels of DA in the PFC and rescue the func-
tional and morphological defects observed in glutamatergic
neurons, we also tested whether such in vivo manipulations
could improve the working memory deficiency of
aVMAT2cKO mice. In a different set of experiments,
aVMAT2cKO mice were injected with a lentivirus
expressing VMAT2 or GFP at P25 or chronically treated
with L-DOPA (20 mg kg−1 i.p.) or vehicle from P20 to P40
(Fig. 5a), and were then given the T-maze delayed non-
matching to position (DNMTP) task. As shown in Fig. 5 e–
h, working memory significantly improved, thus indicating
that normalizing extracellular DA levels by means of the re-
expression of astrocyte VMAT2 or treatment with L-DOPA
was sufficient to prevent the onset of cognitive deficits (n=
6 mice each group, Student’s t test, ***p < 0.001; *p <
0.05).

Subsequently, cognitive flexibility was assessed as a
reversal learning ability in aVMAT2cKO or control mice
respectively injected with a lentiVMAT2 or control len-
tiGFP virus given a two-choice odour discrimination task.
The mice were required to learn to discriminate two odours
in order to find a reward and, upon attaining the learning
criterion, the odour-reward contingency was reversed on the
second training day (Fig. 5m) [61]. Although they were not
impaired in acquiring the first odour discrimination,
aVMAT2cKO mice injected with lentiGFP required sig-
nificantly more trials than the control mice to achieve the
reversal learning criterion (n= 6 each group, Student’s
t-test, ***p < 0.001; Fig. 5j), which is consistent with a
deficit in acquiring the reversal of the rule. The restoration
of astrocyte VMAT2 in early adolescence (P25) reduced the
number of trials to control levels (n= 6, Student’s t test,
*p < 0.05; Fig. 5k).

We also evaluated the effect of restoring DA levels in the
reversal learning deficit by chronically treating the mice
with L-DOPA (20 mg kg−1 i.p.) or vehicle from P20 to P40.
As shown in Fig. 5l, the increased number of trials required
to reach the criterion was significantly rescued in the
aVMAT2cKO mice treated with L-DOPA in comparison
with those treated with vehicle, thus indicating that the
frontal cognitive deficits in the aVMAT2cKO mice were
due to a deficiency in DA during the postnatal maturation of
PFC circuits (n= 6 mice each group, Student’s t test, *p <
0.05).

Discussion

Although the recent RNA sequencing of purified astrocytes
from juvenile human and murine brain have revealed the

presence of VMAT2 in astrocytes [25], the physiological
role of mammaianl astrocytic VMAT2 has never been
investigated. We verified the presence of VMAT2 in
astrocytes and, using a loss-of-function genetic strategy,
examined whether and how a deficit in astrocyte VMAT2
may have an impact on brain physiology. An immunohis-
tochemistry survey of various brain areas revealed that
VMAT2 immunolabelling was particularly enriched in the
astrocytes of the frontal cortex (including the PFC) from the
second postnatal week, but almost absent in other DAergic
areas such as the ST and VTA, thus suggesting that astro-
cytic VMAT2 plays a specific functional role in frontal
cortical regions. In line with this, the ubiquitous deletion of
astrocyte VMAT2 caused an immediate imbalance of DA
homeostasis with a concomitant decrease in the extra-
cellular levels of DA specifically in the PFC. The decreased
DA levels and accompanying decrease in tonic DAergic
modulation enhanced excitatory transmission, hindered
synaptic plasticity, increased the number of mature dendritic
spines of L5 pyramidal neurons and affected the develop-
ment of cognitive processes associated with the PFC which
are frequently observed in many developmental psychiatric
disorders. The restoration of astrocyte VMAT2 or treatment
with L-DOPA in the initial period of DA imbalance was
sufficient to prevent the cognitive deficiencies.

Other astroglial genes involved in DAergic metabolism
included the plasma membrane low affinity transporter
OCT3 and metabolic enzyme MAOB. Indeed, DA home-
ostasis in the PFC shows particular features as this brain
region contains drastically less high-affinity dopamine
transporter (DAT) than the ST [62], and several studies
have shown that DA uptake through DAT plays a marginal
role in clearing extracellular levels of DA in the PFC [63].
In the presence of low concentrations of DAT, mature PFC
depends on secondary mechanisms such as the COMT and
MAO metabolic enzymes and, possibly, uptake by the
norepinephrine transporter in order to clear released DA
from extracellular space [10, 64–67]. Although, the reg-
ulatory systems mediating the extracellular clearance of DA
in the PFC during postnatal development is still largely
unknown and our study provide key findings advancing our
understanding of such homeostatic control.

First, we found that some of the determinants of DA
homeostasis (i.e., OCT3, VMAT2 and MAOB) are
expressed in the PFC and enriched in astrocytes during the
first 3 weeks of postnatal development. Earlier studies have
suggested that low-affinity DA uptake in the PFC may take
place through non-cognate transporters [68], and potential
candidates that could ensure low-affinity DA transport in
the PFC include the organic cation transporter (OCT) family
[69–72] and the plasma membrane monoamine transporter
(PMAT) [73] . Although they are mainly expressed in
neurons, OCT3 and PMAT have been reported in astrocytes
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of adult rodents [23, 70, 74], where they regulate the
extracellular clearance of amines including DA [75] . Both
transporters are highly sensitive to inhibition by the iso-
cyanine compound D22. Our data show that the local
administration of D22 increases extracellular DA levels in
the PFC of juvenile control mice, and completely restores
extracellular DA levels in the absence of astrocyte VMAT2,
thus indicating that the low-affinity plasma membrane
transporter OCT3 may play a particular crucial role in the
extracellular clearance of DA especially during postnatal
development.

Secondly, we found that the ability of astrocytes to
control DA homeostasis depends on the presence of
VMAT2. Panel 3d illustrates our hypothesis; in normal
condition, DA entering via OCT3 goes into the cytoplasm
and into intracellular organelles with a VMAT2-dependent
mechanism. Numbers of studies have shown that catecho-
lamine stores exist in a highly dynamic state, with passive
outward leakage of catecholamines (including DA) coun-
terbalanced by inward active transport under the control of
VMAT2 and that such a leakage from internal stores
represents a key determinant of catecholamine metabolism
and turnover [76]. The passive leakage of catecholamines
from internal stores occurs because the organelles do not
exist in a static state but are, instead, often highly dynamics
and fusogenics [76]. Thus, in the presence of VMAT2 the
ratio between cytosolic and stored catecholamines is kept
constant by the activity of degradation enzymes (MAOB or
COMT) that works in tandem with VMAT2 to maintain a
correct equilibrium between vesicular and free cytosolic
catecholamine levels in order to avoid abnormal catecho-
lamine metabolism [77]. In the absence of VMAT2 activity
(i.e., deletion of the protein or transport inhibition with
reserpine), the passive leakage of catecholamines from
internal stores is lost and 100% of catecholamine leaking
into cytoplasm is rapidly metabolized by enzymes without a
real accumulation in the cytoplasm [77]. Our results suggest
that in astrocytes VMAT2 acts in concert with OCT3 to
provide effective control of metabolic capacity of astro-
cytes. Indeed, in the absence of a VMAT2-dependent
control of cytosolic levels of extracellular DA taken up by
the plasma membrane transporter is promptly metabolized
by MAOB without a real accumulation in the cytoplasm
[77], thus decreasing the cytosolic concentrations of DA
and consequently driving the activity of the plasma mem-
brane transporter. This explanation is fully supported by
findings indicating that the level of the MAOB metabolite
DOPAC is significantly increased when VMAT2 is phar-
macologically inhibited by reserpine (Fig. 3h) or genetically
deleted in aVMAT2cKO mice (Fig. 3i). The inhibition of
MAOB increases the cytoplasmic levels of DA and restore
normal OCT3 uptake, thus increasing extracellular levels of
DA to normal levels in aVMAT2cKO mice. Astrocytes, like

all eukaryotic cells, contain secretory organelles and express
exocytic machinery to promote the fusion of organelles with
plasma membrane [78, 79]. Thence, we cannot exclude that
the role of astrocytic VMAT2 in the regulation of extra-
cellular levels of DA may also arise from a direct release of
DA-containing organelles. It is still widely debated whether
and how astrocytes release chemical transmitters in vivo
[80], therefore the functional relevance of a direct release of
DA from astrocytes in the brain physiology will require
further investigations.

Third, we found that relatively modest increase in the
metabolism of DA and the concomitant decrease in
extracellular DA levels in the PFC in the absence of
VMAT2 can have significant effects on cognitive perfor-
mances thus highlighting the cognitive consequences of
postnatal DA deficiency. In line with recent data showing
the effect of DA on the activity-dependent formation of
spines in juvenile mice [30], we found a close temporal
relationship between a significant decrease in PFC DA
levels at P25 and accelerated spine maturation from P28 in
mice whose astrocyte VMAT2 had been conditionally
deleted. In the absence of astroglial VMAT2, recordings of
excitatory synapses onto L5 pyramidal neurons showed an
increase in the frequency of mEPSCs due to an increased
probability of presynaptic release and, consistently, the
spines in PFC L5 became larger than those observed in
controls, thus indicating that an essential function of
astrocytic control of DA homeostasis is to maintain the
efficacy of excitatory synapses during PFC development.
The effect of the lack of astrocyte-controlled DA meta-
bolism on synaptic strength is consistent with accelerated
synaptic development, and suggests that appropriate DA
tone acts as a developmental repressor and may account for
the neotenic traits of the PFC. Indeed, the development and
maturation of cortical areas innervated by DA such as the
PFC are slower than that of other cortical areas [81, 82] .
This increase in synaptic activation may also be associated
with an increase in activity-dependent plasticity mechan-
isms that promote the spine maturation classically asso-
ciated with LTP and consequently reduce the dynamic
range of further synaptic enhancement. Accordingly, we
found that LTP formation was compromised in
aVMAT2cKO mice. The essential role of astrocytic
VMAT2 in the control of spine formation and maturation,
may also arise from the cells’ ability to regulate DA
metabolism within the neuropil and thus directly maintain
proper dopaminoception [83] . Indeed, an additional pos-
sibility is that proper DA levels may directly regulate
formation and maturation of spines. This interpretation is
supported by the observation that the over-activation of D2
receptors, which are primarily concerned with background
DA [84], leads to a significant reduction in spine density
[12, 85] . It may therefore be hypothesized that the
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decrease of DA observed in our aVMAT2cKO mice
relieves tonic repression by D2 receptors activation during
PFC development, as in the case of the hippocampus [12].
As previously reported [53, 86], the increase in basal
excitation appears sufficient to disrupt synaptic plasticity
and behaviour. The dysregulation of dendritic spine shape,
size and number, and therefore of synaptic structures and
functions in the PFC, accompanies a large number neu-
rodevelopmental disorders [1], including autism and schi-
zophrenia [4], and we found that it is concomitant with the
appearance of deficits in long-term synaptic plasticity and
cognition.

The defect in executive functions observed in VMAT2-
deficient mice is explained by hypoDAergic state caused by
the lack of control in DA homeostasis by astrocytes. Indeed,
when DA levels were restored in the defective astrocytes
(by re-expressing VMAT2 in astrocytes or by chronically
treating mice with L-DOPA) both the synaptic activity and
plasticity and cognitive performance were completely res-
cued. The fact that the deletion of VMAT2 and subsequent
decrease in DA causes excessive developmental neural
excitation strongly suggests a neural network that is resis-
tant to experience-dependent refinement, and therefore
prone to cognitive and behavioural deficits. Rescuing
astroglial VMAT2 and DA levels in the critical postnatal
period during which spines are subject to DA regulation
[12, 30] corrects the cognitive abnormalities in VMAT2-
deficient mice, and therefore suggests that defective
synaptic structures and functions developed in the third
postnatal week may crucially contribute to dysregulating
PFC neural networks and promote the genesis of cognitive
deficits.

In conclusion, our findings advance our understanding of
the genesis of cognitive impairments reminiscent of psy-
chiatric disorders and provide a new framework that
includes astrocytes at the core of the mechanisms under-
lying the DAergic modulation of executive functions.
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