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Abstract

This paper aims at an accurate and efficient computation of effective
quantities, e.g., the homogenized coefficients for approximating the solu-
tions to partial differential equations with oscillatory coefficients. Typical
multiscale methods are based on a micro-macro coupling, where the macro
model describes the coarse scale behaviour, and the micro model is solved
only locally to upscale the effective quantities, which are missing in the
macro model. The fact that the micro problems are solved over small
domains within the entire macroscopic domain, implies imposing artifi-
cial boundary conditions on the boundary of the microscopic domains.
A naive treatment of these artificial boundary conditions leads to a first
order error in ε/δ, where ε < δ represents the characteristic length of
the small scale oscillations and δd is the size of micro domain. This er-
ror dominates all other errors originating from the discretization of the
macro and the micro problems, and its reduction is a main issue in to-
day’s engineering multiscale computations. The objective of the present
work is to analyse a parabolic approach, first announced in [A. Abdulle,
D. Arjmand, E. Paganoni, C. R. Acad. Sci. Paris, Ser. I, 2019], for
computing the homogenized coefficients with arbitrarily high convergence
rates in ε/δ. The analysis covers the setting of periodic microstructure,
and numerical simulations are provided to verify the theoretical findings
for more general settings, e.g. random stationary micro structures.

Keywords: resonance error, Green’s function, effective coefficients, correctors, nu-
merical homogenization
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1 Introduction

Multiscale problems involving several spatial and temporal scales are ubiquitous
in physics and engineering. We mention for example, stiff stochastic differential
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equations (SDEs) in biological and chemical systems, oscillatory physical sys-
tems, partial differential equations (PDEs) with multiscale data resonance, e.g.,
mechanics of composite materials, fracture dynamics of solids, PDEs with oscil-
lating parameters, see Ref. 3,18,27,30,35 and the references therein. A common
computational challenge in relation with such multiscale problems is the pres-
ence of small scales in the model which should be represented over a much larger
macroscopic scale of interest. One rather classical way of overcoming this issue
is to analytically derive macroscopic equations from a given microscopic model,
and then solve the resulting macroscale equation at a cheaper computational
cost. However, such derivations often come together with some simplifying as-
sumptions, making the accuracy of the macroscopic model questionable once
the restrictive assumptions are relaxed. In contrast, multiscale numerical meth-
ods result in models with improved accuracy and efficiency as they rely on a
coupling between microscopic and macroscopic models, combining the efficiency
of macroscopic models with the accuracy of microscopic ones. Inexact couplings
may afflict such methods by the so-called resonance error, Ref. 3,28. Reducing
such an error is a common problem of modern multiscale methods designed over
the last two decades.

This paper concerns the numerical homogenization of elliptic partial dif-
ferential equations with multiscale coefficients, whose oscillation length scale
(denoted by ε) is much smaller than the size of the domain Ω ⊂ Rd, which is
bounded and convex. Our model problem is the following ε-indexed family of
elliptic equations on Ω{

−∇ · (aε(x)∇uε) = f in Ω

uε = 0 on ∂Ω.
(1)

Here aε(x) ∈ [L∞(Ω)]
d×d

is symmetric, uniformly elliptic and bounded, i.e.,
∃α, β > 0 such that

α |ζ|2 ≤ ζ · aε(x)ζ ≤ β |ζ|2 , ∀ζ ∈ Rd, a.e. x ∈ Ω, ∀ε > 0. (2)

The well-posedness of the original problem (1) is then well-known for any f ∈
H−1(Ω). As ε→ 0, the solution of (1) can be approximated, by the solution of
the so-called homogenized equation:{

−∇ ·
(
a0(x)∇u0

)
= f in Ω

u0 = 0 on ∂Ω,
(3)

where the coefficients a0
ij (and hence the solution u0) no longer oscillate at the

ε-scale. By using the concepts of G-convergence for the symmetric case, Ref.
41, or H-convergence for the non-symmetric case, Ref. 37, one can show that
the homogenized problem (3) is the limit for ε→ 0 of a subsequence of problems
(1). In general, we do not have explicit formulae for evaluating the homogenized
tensor, unless certain structural assumptions on aε(x) are made. For example,
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if aε(x) = a(x/ε) is periodic, then the homogenized tensor a0 is given by

ei · a0ej =

 
K

ei · a(x)
(
ej +∇χj(x)

)
dx, i, j = 1, . . . , d, (4)

where K := (−1/2, 1/2)d is the unit cube in Rd, and the functions {χi}di=1 are
the solutions of the so-called cell problems:{

−∇ ·
(
a(x)∇χi

)
= ∇ · (a(x)ei) in K,

χi K-periodic.
(5)

In (4) and (5) we have used the substitution y = x
ε , mapping a sampling domain

of size εd to the unit cube K. For simplicity of notation, we will again denote
by x (instead of y) the variable on the unit cube. We refer to Ref. 14,17,31 for
further technical details.

When the period of the microstructure is not known exactly or the periodic-
ity assumption is relaxed (e.g., if a is random stationary ergodic or quasi-periodic
tensor), the formula (4) breaks down. In this case, (4) may be replaced by

ei · a0
Rej =

 
KR

ei · a(x)
(
ej +∇χjR(x)

)
dx, i, j = 1, . . . , d, (6)

where KR := (−R/2, R/2)d, and1{
−∇ ·

(
a(x)∇χiR

)
= ∇ · (a(x)ei) in KR

χiR(x) = 0 on ∂KR,
(7)

and the homogenized coefficient a0 is given by

a0 = lim
R→∞

a0
R.

Assume for a moment that the tensor a is K-periodic and that periodic BCs are
imposed in (7), then the homogenized tensor a0 will be equal to a0

R only when
R is an integer. When R is not an integer, there will be a difference between
χR and χ on ∂KR, which results in a so-called resonance error, Ref. 5, 19,202,

eMOD :=
∥∥a0

R − a0
∥∥
F
≤ C 1

R
, (8)

where ‖·‖F denotes the Frobenius norm for a tensor. Note that the first order
rate is valid also when the problem (7) is equipped with periodic BCs. From
a computational point of view, this first order decay rate of the error is the
efficiency and accuracy bottleneck of numerical upscaling schemes, i.e., in order
to reduce the resonance error down to practically reasonable accuracies, one

1In (7), the choice of the boundary condition (BC) is not unique, and the homogeneous
Dirichlet BCs can be safely replaced e.g., by periodic BCs without any change in (8).

2We denote the resonance error by eMOD, as in Ref. 5.
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needs to solve the problem (7) over large computational domains KR, possibly
on each quadrature point of a macro computational domain (see Ref. 5, 19),
which becomes prohibitively expensive. Our central goal is then to design micro
models which reduce the resonance error down to desired accuracies without
requiring a substantial enlargement of the computational domain KR. In what
follows, we provide a review of existing strategies, some of which improve the
decay rate of the resonance error.

1.1 Existing approaches for reducing the resonance error

Over the last two decades, several interesting approaches have been proposed
to reduce the resonance error. These strategies can be classified in two classes:
a) Methods which reduce the prefactor (but not the convergence rate) in (8),
b) Methods which improve the convergence rate.

a) Methods reducing the prefactor only:
One of the very first approaches to reduce the prefactor is based on the idea

of oversampling, see Ref. 28. In oversampling, the cell problem (7) is solved
over KR, while the computation of the homogenized coefficient takes place in an
interior domain KL ⊂ KR. Another attempt is based on exploring the combined
effect of oversampling and imposing different BCs (Dirichlet, Neumann and
periodic) for (7), see Ref. 43. It has been found that the periodic BCs perform
better than the other two. Moreover, the Dirichlet BCs tend to overestimate
the effective coefficients, while Neumann BCs underestimate them. Clearly, the
use of these strategies becomes questionable if one is interested in practically
relevant error tolerances, since there is still a need for substantially enlarging
the computational domain KR before reaching a satisfactory accuracy.

b) Methods improving the convergence rate:
Several methods which rely on modifying the cell problem (7), while still

retaining a good approximation (with higher order convergence rates in 1/R)
of the homogenized coefficient have been developed in the last few years. In
Ref. 15, an approach with weight (filtering) functions in the very definition
of the cell problem, as well as in the averaging formula, is proposed. While
the method has arbitrarily high convergence rates in a one-dimensional setting,
the convergence rate in dimensions d > 1 has been proved to be 2. Numerical
simulations demonstrate the optimality of the second order rate in dimension
d > 1.

Another promising strategy, proposed in Ref. 25, is to add a small zero-th
order regularization term to the cell problem (7) so as to make the associated
Green’s function exponentially decaying. The effect of the boundary mismatch
will then decay exponentially fast in the interior of KL ⊂ KR. However, the
method will suffer from a bias (or systematic error) due to added regularization
term, which limits the convergence rate to fourth order. Moreover, numerical
simulations in Ref. 25 show that the method requires very large values of R
to achieve the optimal fourth order asymptotic rate. In Ref. 26, Richardson
extrapolation is used to increase the convergence rate to higher orders at the
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expense of solving the cell problem several times with different regularization
terms.

An interesting idea, proposed in Ref. 8, 10, is to solve a second order wave
equation onKR×(0, T ), instead of the elliptic cell problem (7), see also Ref. 9 for
an analysis in locally-periodic media. Thanks to the finite speed of propagation
of waves, this approach leads to an ultimate removal of the error due to inaccu-
rate BCs if KR is sufficiently large; i.e., the boundary values will not be seen in
an interior region KL (where the averaging takes place) if R > L +

√
‖a‖∞T .

Hence, size of the computational domain should increase linearly with respect to
the wave speed

√
‖a‖∞, which increases also the computational cost. Moreover,

solving a wave equation is computationally more challenging than solving an el-
liptic PDE since an accurate discretization requires a more refined resolution
per wave-length, implying a more refined stepsize for temporal discretization
due to the presence of CFL condition in typical time-stepping methods for the
wave equation such as the leap frog scheme.

The goal of this paper is to provide a rigorous analysis of yet another ap-
proach, announced in Ref. 4, based on parabolic cell problems which results
in arbitrarily high convergence rates in 1/R. The parabolic approach adopted
here is inspired by Ref. 36 and can be classified under category b), but with
significant advantages from a computational point of view in comparison to the
above mentioned strategies (see the discussions in the numerical results sec-
tion). Moreover, this approach can be directly used in typical upscaling based
multiscale formalisms such as the Heterogeneous Multiscale Methods (HMM)
Ref. 2, 5, 7, 19, and the equation free approaches Ref. 32, as well as Multiscale
Finite Elements Methods (MsFEM) Ref. 28,29, which are used to approximate
either the homogenized solutions to (1) or directly approximating the oscillatory
response uε in (1).

The paper in structured as follows: in Section 2 we collect our notations
and provide some definitions that will be used to present a new approximation
scheme for the homogenized tensor. The main results of the present work are
reported in Section 3. Section 4 is devoted to the analysis of the modelling
error, where arbitrary high order convergence rates are proved. In Section 5,
numerical examples are given to verify our theoretical findings. Finally, in Sec-
tion 6 the computational cost of the parabolic method is analysed theoretically
and compared to the classical elliptic scheme.

2 Notations and definitions

We will use the following notations throughout the exposition:

• The Sobolev space W k,p(Ω) is defined as

W k,p(Ω) := {f : Dγf ∈ Lp(Ω) for all multi-index γ with |γ| ≤ k}.
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The norm of a function f ∈W k,p(Ω) is given by

‖f‖Wk,p(Ω) :=


(∑

|γ|≤k
´

Ω
|Dγf(x)|p dx

)1/p

(1 ≤ p <∞)∑
|γ|≤k ess supΩ|Dγf | (p =∞).

• The space H1
0 (Ω) is the closure in the W 1,2-norm of C∞c (Ω), the space of

infinitely differentiable functions with compact support in Ω. The norm
associated with H1

0 (Ω) is

‖f‖2H1
0 (Ω) := ‖f‖2L2(Ω) + ‖∇f‖2L2(Ω).

An equivalent norm, making use of the Poincaré inequality is given by

‖f‖H1
0 (Ω) := ‖∇f‖L2(Ω).

We will use this second notation for the H1
0 -norm.

• We use the notation 〈f, g〉L2(Ω) :=
´

Ω
fg dx to denote the L2 inner product

over Ω.

• The space Hdiv is

Hdiv(Ω) := {f : f ∈ [L2(Ω)]d and ∇ · f ∈ L2(Ω)}.

The norm associated with Hdiv is

‖f‖2Hdiv(Ω) := ‖f‖2L2(Ω) + ‖∇ · f‖2L2(Ω).

• The space W 1
per(K) is defined as the closure of{

f ∈ C∞per(K) :

ˆ
K

f dx = 0

}
for the H1-norm. Thanks to the Poincaré-Wirtinger inequality, an equiv-
alent norm in W 1

per(K) is

‖f‖W 1
per(K)

= ‖∇f‖L2(K) .

• The space L2
0(K) is defined as

L2
0(K) =

{
f ∈ L2(K) :

ˆ
K

f dx = 0

}
.

It is an Hilbert space with respect to the L2-inner product.

• Let f belong to the Bochner space Lp(0, T ;X), where X is a Banach space.
Then the norm associated with this space is defined as

‖f‖Lp(0,T ;X) :=

(ˆ T

0

‖f‖pX dt

) 1
p

.
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• Cubes in Rd are denoted by KL := (−L/2, L/2)d. In particular, K is the
unit cube (−1/2, 1/2)d.

• By writing C, we mean a generic constant independent of R,L, T which
may change in every subsequent occurrence.

• Boldface letters are to distinguish functions in multi-dimensions, e.g., f(x)
is to mean a function of several variable (x ∈ Rd, d ≥ 2), while f(x) will
be a function of one variable (x ∈ R).

• We will use the notation
ffl
D
f(x) dx to denote the average 1

|D|
´
D
f(x) dx

over a domain D.

Definition 2.1 (Definition 3.1 in Ref. 25). We say that a function µ : [−1/2, 1/2]→
R+ belongs to the space Kq with q > 0 if

i) µ ∈ Cq([−1/2, 1/2]) ∩W q+1,∞((−1/2, 1/2))

ii)
´ 1/2

−1/2
µ(x) dx = 1,

iii) µk(−1) = µk(1) = 0 for all k ∈ {0, . . . , q − 1}.

In multi-dimensions a q-th order filter µL : KL → R+ with L > 0 is defined by

µL(x) := L−d
d∏
i=1

µ
(xi
L

)
,

where µ is a one dimensional q-th order filter and x = (x1, x2, . . . , xd) ∈ Rd.
In this case, we will say that µL ∈ Kq(KL). Note that filters µL are considered
extended to 0 outside of KL.

Filters have the property of approximating the average of periodic functions
with arbitrary rate of accuracy, as stated in the following lemma (see Ref. 25
for a proof).

Lemma 2.1 (Lemma 3.1 in Ref. 25). Let µL ∈ Kq(KL). Then, for any K-
periodic function f ∈ Lp(K) with 1 < p ≤ 2, we have∣∣∣∣ˆ

KL

f(x)µL(x) dx−
 
K

f(x) dx

∣∣∣∣ ≤ C ‖f‖Lp(K) L
−(q+1),

where C is a constant independent of L.

Remark 2.1. The result of Lemma 2.1 was proved in Ref. 25 for K-periodic
f ∈ L2(K) and, then, extended to the case f ∈ Lp(K), 1 < p < 2.

Definition 2.2. We say that a ∈ M(α, β,Ω) if aij = aji, a ∈ [L∞(Ω)]d×d and
there are constants 0 < α ≤ β such that

α|ζ|2 ≤ ζ · a(x)ζ ≤ β|ζ|2, for a.e. x ∈ Ω,∀ζ ∈ Rd.

We write a ∈Mper(α, β,Ω) if in addition a is a Ω-periodic function.
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Throughout the exposition, we assume that ui and vi, i = 1, . . . , d, are the
solutions of the following problems:

∂ui

∂t
−∇ · (a(x)∇ui) = 0 in KR × (0,+∞)

ui = 0 on ∂KR × (0,+∞)

ui(x, 0) = ∇ · (a(x)ei) in KR,

(9)

and 
∂vi

∂t
−∇ · (a(x)∇vi) = 0 in K × (0,+∞)

vi(·, t) K-periodic,∀t ≥ 0

vi(x, 0) = ∇ · (a(x)ei) in K.

(10)

The well-posedness of (9) and (10) are well-known (see, e.g., Ref. 34), and
are summarized below.

Proposition 2.1. Let a ∈M(α, β,KR) and ∇ · (a(x)ei) ∈ L2(KR). Then, (9)
has a unique weak solution ui such that

ui ∈ L2([0,+∞), H1
0 (KR)), ∂tu

i ∈ L2([0,+∞), H−1(KR)).

It follows that ui ∈ C([0,+∞), L2(KR)), and there exists a constant C > 0 such
that the following bound holds true:∥∥ui∥∥

L∞([0,+∞),L2(KR))
+
∥∥ui∥∥

L2([0,+∞),H1
0 (KR)) ≤ C ‖∇ · (a(x)ei)‖L2(KR) .

Moreover, ui is Hölder continuous in KR × (0, T ].

Proposition 2.2. Let a ∈ Mper(α, β,K) and ∇ · (a(x)ei) ∈ L2
0(K). Then,

(10) has a unique weak solution vi such that

vi ∈ L2([0,+∞),W 1
per(K)), ∂tv

i ∈ L2([0,+∞),W 1
per(K)′).

It follows that vi ∈ C([0,+∞), L2(K)), and there exist constants C > 0 such
that the following bounds hold true:∥∥vi∥∥

L∞([0,+∞),L2(K))
+
∥∥vi∥∥

L2([0,+∞),W 1
per(K)) ≤ C ‖∇ · (a(x)ei)‖L2(K) .

Moreover, vi is Hölder continuous in K × (0, T ].

Here, the space W 1
per(K)′ is the dual space of W 1

per(K) (a characterization
of this space can be found in Ref. 17). With a slight abuse of notation, in the
coming sections the functions vi will indicate both the solution of (10) on the
cell K and its periodic extension to the whole Rd. Finally, we define the bilinear
form B : W 1

per(K)×W 1
per(K) 7→ R through the formula

B[u, v] =

ˆ
K

∇u · a(x)∇v dx. (11)
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If a ∈Mper(α, β,K), the bilinear form B[·, ·] is continuous and coercive and
there exists a non-decreasing sequence of strictly positive eigenvalues {λj}∞j=0

and a L2-orthonormal set of eigenfunctions {ϕj}∞j=0 ⊂W
1
per(K) such that

B[ϕj , w] = λj〈ϕj , w〉L2(K), ∀w ∈W 1
per(K). (12)

3 Main results

The starting point of the analysis is the following new formula for the approxi-
mation of the homogenized coefficient a0 in (3)

ei · a0
R,L,Tej =

ˆ
KL

ei · a(x)ejµL(x) dx− 2

ˆ T

0

ˆ
KL

ui(x, t)uj(x, t)µL(x) dx dt,

(13)
where {ui}di=1 are the solutions of the parabolic problems (9). Note that the
parabolic solutions {ui}di=1 are solved over KR, from which it follows the depen-
dency of a0

R,L,T on the parameter R, while the averaging is taking place over
the domain KL ⊂ KR. The aim of this section is two-fold: first, in Subsec-
tion 3.1, we will recall a result which is proved in Ref. 4, where the equivalence
between the approximate homogenized coefficient (13) (when T =∞), and the
approximation (6) based on elliptic cell problems (when χiR is supplied with ho-
mogeneous Dirichlet BCs) is shown. Next, in Subsection 3.2, we will present our
main statement in Theorem 3.2, which states that if T is chosen optimally, then
we obtain arbitrarily high convergence rates for the difference between a0

R,L,T in

(13) and the exact homogenized coefficient a0 in (4), when a ∈Mper(α, β,K).

3.1 Equivalence between the standard and parabolic ho-
mogenized coefficients

Assume that the elliptic solutions χiR in (7) are supplied either with periodic or
homogeneous Dirichlet BCs. By symmetry of a(x), we can rewrite (6) as:

ei · a0
Rej =

 
KR

ei · a(x)ej dx−
 
KR

∇χiR(x) · a(x)∇χjR(x) dx.

Theorem 3.1 provides an alternative expression for the second integral, which
will be referred to as the correction part of the homogenized tensor, based on
the use of parabolic problems over infinite time domain. We refer to Ref. 4 for
a rigorous proof.

Theorem 3.1. Let a(x) ∈M(α, β,KR), ui ∈ C([0,+∞), L2(KR)) be the weak
solution of (9) and χiR ∈ H1

0 (KR) be the weak solution of (7). Then, for
1 ≤ i, j ≤ d, the following identities hold

χiR =

ˆ +∞

0

ui(·, t) dt in H1
0 (KR), (14)
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1

2

ˆ
KR

∇χiR(x) · a(x)∇χjR(x)dx =

ˆ +∞

0

ˆ
KR

ui(x, t)uj(x, t)dx dt. (15)

Theorem 3.1 implies that if T = ∞ (and µL = L−d in KL with R = L) in
(13), then the parabolic formulation does not lead to any gain in the first order
convergence rate in (8) due to the equivalence relation above. It is important
to notice that we do not need the periodicity assumption on the tensor a for
deriving the equivalence. Moreover, the same result holds true if we substitute
the homogeneous Dirichlet condition with the periodic boundary conditions,
under the periodicity assumption for the tensor a. Then we have the following
corollary:

Corollary 3.1. Let a(x) ∈Mper(α, β,K). Let vi ∈ C([0,+∞), L2
per(K)) solve

(10). Then

ei · a0ej =

 
K

ei · a(x)ej dx− 2

ˆ +∞

0

 
K

vi(x, t)vj(x, t) dx dt. (16)

3.2 High order convergence rates and optimal choices for
T and L

As stated in the Subsection 3.1, the consequence of the equivalence between the
parabolic model and the standard elliptic model is that the first order conver-
gence rate of the resonance error in (8) remains unchanged. In this subsection,
we summarize our main result which states that we are able to achieve arbitra-
rily high convergence rates for the resonance error

eMOD :=
∥∥a0

R,L,T − a0
∥∥
F
,

upon choosing the parameters T and L optimally.

Theorem 3.2. Let the coefficient matrix a(·) satisfy the following conditions:

i) a(·) ∈Mper(α, β,K),

ii) a(·)ei ∈ Hdiv(KR), i = 1, . . . , d,

iii) a(·) ∈
[
C1,γ(KR)

]d×d
for some 0 < γ ≤ 1.

Let KR ⊂ Rd for d ≤ 3 and R ≥ 1. Let a0
R,L,T and a0 be defined, respectively, as

in (13) and (4), with ui satisfying (9) for any i = 1, . . . , d. Let µL ∈ Kq(KL),

with 0 < L < R−3/2 and T ≤ 2c
d+1 |R− L|

2
, with c = 1/(4β). Then, there exists

constants λ0(α, d) and C > 0 independent of R, L or T (but it may depend on
d, a(·) and µL(·)) such that

∥∥a0
R,L,T − a0

∥∥
F
≤ C

[
L−(q+1) + e−2λ0T +

1

T

(
R√
T

)d−1

e−c
|R−L|2

T
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+

(
T

|R− L|2

)3−d

e−2c
|R−L|2

T

]
. (17)

Additionally, If ∇ · (a(·)ei) ∈ W 1
per(K), then there exists a constant C > 0

independent of R, L or T (but it may depend on d, a(·) and µL(·)) such that

∥∥a0
R,L,T − a0

∥∥
F
≤ C

[
L−(q+1) + e−2λ0T +

1

|R− L|

(
R√
T

+ 1

)d−1

e−c
|R−L|2

T

+
1

|R− L|2

(
R2

T

)
e−2c

|R−L|2
T

]
. (18)

The choice
L = koR, T = kTR,

with 0 < ko < 1 and kT =
√

c
2λ0

(1 − ko) results in the following convergence

rate in terms of R∥∥a0
R,L,T − a0

∥∥
F
≤ C

[
R−(q+1) + e−

√
2λ0c(1−ko)R

]
, (19)

for a constant C > 0 independent of R, L or T .

Remark 3.1. Note that the exponent in the exponential term
√

2λ0c ≈
√
α/β

depends on the contrast ratio.

Later in the analysis, it will be clear that the main idea of limiting T ≈ R
is to exploit the mild dependence of the parabolic solutions ui on the boundary
conditions, which is the case if parabolic solutions are evolved over a sufficiently
short time. Second, the use of filtering functions µL is to achieve high order
convergence rates for the averages of oscillatory functions, which is another
essential component in achieving high order rates for the resonance error. In
what follows, we focus on proving Theorem 3.2.

4 Error analysis

In this section we prove the bound stated in Theorem 3.2. The proof can be
outlined as follows:

Step 1: We exploit the fact that the exact homogenized coefficient a0 in (4) is
equal to (16), and we decompose the error into four terms

ei · (a0
R,L,T − a0)ej =

ˆ
KRL

ei · a(x)ejµL(x) dx−
 
K

ei · a(x)ej dx︸ ︷︷ ︸
I1
ij
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+2

ˆ T

0

ˆ
KL

vi(x, t)vj(x, t)µL(x)dx dt− 2

ˆ T

0

ˆ
KL

ui(x, t)uj(x, t)µL(x)dx dt︸ ︷︷ ︸
I2
ij

+2

ˆ T

0

 
K

vi(x, t)vj(x, t)dx dt− 2

ˆ T

0

ˆ
KL

vi(x, t)vj(x, t)µL(x)dx dt︸ ︷︷ ︸
I3
ij

+2

ˆ +∞

0

 
K

vi(x, t)vj(x, t)dx dt− 2

ˆ T

0

 
K

vi(x, t)vj(x, t)dx dt︸ ︷︷ ︸
I4
ij

. (20)

Step 2: Estimation of the averaging errors I1
ij and I3

ij by means of Lemma 2.1.

Step 3: Estimation of the truncation error I4
ij by means of the exponential

decrease in time of
∥∥vi(·, t)∥∥

L2(Y )
.

Step 4: Estimation of the boundary error I2
ij by means of upper bounds for the

fundamental solution of the parabolic problem and integration over finite
time intervals [0, T ].

The coming subsections will be devoted to the derivation of upper bounds for
I1
ij , I

2
ij , I

3
ij and I4

ij .

4.1 Bounds for I1
ij and I3

ij

The two error terms studied in this subsection originate from the fact that we are
approximating the averages of periodic functions by a weighted average over a
bounded domain. For such a reason, these errors will be referred to as averaging
error for a (I1

ij) and for vi (I3
ij). The Corollary 4.1 is a direct consequence of

Lemma 2.1, and therefore the proof is omitted.

Corollary 4.1. Let a ∈Mper(α, β,K) be periodically extended over KL. Then,
there exists C1 > 0, independent of L, such that∣∣I1

ij

∣∣ ≤ C1L
−(q+1), i, j = 1, . . . , d.

Before providing a convergence result for I3
ij we recall the following property

about product rule in Sobolev spaces (see Ref. 16 for a proof).

Lemma 4.1. Let u, v ∈ W 1,p(Ω) ∩ L∞(Ω), with 1 ≤ p ≤ +∞. Then, uv ∈
W 1,p(Ω) ∩ L∞(Ω) and the product rule for derivation holds:

∂

∂xi
(uv) =

∂u

∂xi
v + u

∂v

∂xi
, i = 1, . . . , d.

12



Lemma 4.2. Let a(·) satisfy conditions i) and ii) of Theorem 3.2, let vi ∈
L2([0,+∞),W 1

per(K)) be the K-periodic solution of (10) and µL ∈ Kq(KL).
Then, there exists C3 > 0, independent of L, such that∣∣I3

ij

∣∣ ≤ C3L
−(q+1).

Proof. By applying Lemma 2.1 to function 2vivj we get:∣∣I3
ij

∣∣ ≤ ˆ T

0

C
∥∥vi(·, t)vj(·, t)∥∥

Lp(K)
L−(q+1) dt, (21)

with 1 < p ≤ 2. Following the proof of Lemma 2.1 (see Appendix A, Ref. 25),
we deduce that, for any q ≥ 2 one can also choose p = 1 in the inequality above.
Therefore, by the use of Cauchy–Schwarz and Hölder inequalities, I3

ij can be
estimated as∣∣I3

ij

∣∣ ≤ ˆ T

0

C
∥∥vi(·, t)vj(·, t)∥∥

L1(K)
L−(q+1) dt

≤ CL−(q+1)

ˆ T

0

∥∥vi(·, t)∥∥
L2(K)

∥∥vj(·, t)∥∥
L2(K)

dt

≤ CL−(q+1)
∥∥vi∥∥

L2([0,+∞),L2(K))

∥∥vj∥∥
L2([0,+∞),L2(K))

.

The result follows by choosing

C3 := C
∥∥vi∥∥

L2([0,+∞),L2(K))

∥∥vj∥∥
L2([0,+∞),L2(K))

.

In the case q ∈ {0, 1} we cannot utilize any more the L1-norm of the product.
In view of (21), with the choice p = 3/2, it follows that∣∣I3

ij

∣∣ ≤ ˆ T

0

C
∥∥vi(·, t)vj(·, t)∥∥

L3/2(K)
L−(q+1) dt

≤
ˆ T

0

C
∥∥vi(·, t)vj(·, t)∥∥

W 1,1(K)
L−(q+1) dt

≤
ˆ T

0

C
∥∥vi(·, t)∥∥

W 1
per(K)

∥∥vj(·, t)∥∥
W 1

per(K)
L−(q+1) dt

≤ CL−(q+1)
∥∥vi∥∥

L2([0,+∞),W 1
per(K))

∥∥vj∥∥
L2([0,+∞),W 1

per(K))
,

where the first inequality is a direct application of Lemma 2.1, the second in-
equality follows from the continuous inclusion of W 1,1(K) in L3/2(K), the third
inequality comes from the embedding W 1

per(K) ⊂ W 1,1(K) and the validity of

Lemma 4.1 for functions vi which implies:∥∥vi(·, t)vj(·, t)∥∥
W 1,1(K)

≤ C
∥∥vi(·, t)∥∥

W 1
per(K)

∥∥vj(·, t)∥∥
W 1

per(K)
.

Finally, the last inequality is the Chauchy-Schwarz inequality. The result follows
by choosing

C3 := C
∥∥vi∥∥

L2([0,+∞),W 1
per(K))

∥∥vj∥∥
L2([0,+∞),W 1

per(K))
.
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4.2 Bound for I4
ij

In this subsection we derive an a-priori estimate for the truncation error, which
originates from the restriction of the time integral in (13) on the finite interval
[0, T ]. As it will be clearer from the coming analysis, the time truncation is
essential for improving the convergence rate of the resonance error, as large
values of T result in a pollution of the correctors. First of all, we recall the
following lemma on the exponential decay in time of

∥∥vi(·, t)∥∥
L2(K)

.

Lemma 4.3. Let vi ∈ C([0,∞), L2(K)) be the solution of (10) and let λ0 > 0
be the smallest eigenvalue of the bilinear form B introduced in (11). Then∥∥vi(·, t)∥∥

L2(K)
≤ e−λ0t

∥∥vi(·, 0)
∥∥
L2(K)

, a. e. t ∈ [0,+∞).

Proof. The weak formulation of (10) reads: Find vi ∈ L2([0,+∞),W 1
per(K)),

∂tv
i ∈ L2([0,+∞),W 1

per(K)′) such that(
∂tv

i, w
)

+B[vi, w] = 0, ∀w ∈W 1
per(K),

vi(·, 0) = ∇ · (aei) ∈ L2
0(K).

By using w = vi(·, t), the second line becomes

1

2

d

dt

∥∥vi∥∥2

L2(K)
= −B[vi, vi].

Let {λj}j=0 and {ϕj}j=0 be, respectively, the eigenvalues and eigenfunctions of

B and let us denote v̂ij := 〈vi, ϕj〉L2(K). By orthogonality of the eigenfunctions
and Parseval’s identity, it holds

B[vi, vi] =

∞∑
j=0

λj
∣∣v̂ij∣∣2 ≥ λ0

∞∑
j=0

∣∣v̂ij∣∣2 = λ0

∥∥vi∥∥2

L2(K)
.

Then, by coercivity of the bilinear form B and use of the above inequality,
we get∥∥vi∥∥

L2(K)

d

dt

∥∥vi∥∥
L2(K)

=
1

2

d

dt

∥∥vi∥∥2

L2(K)
= −B[vi, vi] ≤ −λ0

∥∥vi∥∥2

L2(K)
.

So, the following differential inequality is derived:

d

dt

∥∥vi∥∥
L2(K)

≤ −λ0

∥∥vi∥∥
L2(K)

.

As proved in Ref. 21,
∥∥vi(·, t)∥∥

L2(K)
is absolutely continuous in time, and the

result is obtained by Gronwall’s inequality.

Remark 4.1. It is easy to prove that λ0 ≥ α
C2

P
, where the Poincaré constant

for a convex domain K is CP = diam(K)
π , see Ref. 39.
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Lemma 4.4 (Truncation error). Let vi ∈ C([0,+∞), L2(K)) solve (10), and
let

I4
ij := 2

ˆ +∞

T

 
K

vi(x, t)vj(x, t)dx dt.

Then, there exist C4 > 0, independent of T , such that∣∣I4
ij

∣∣ ≤ C4e
−2λ0T , (22)

where λ0 is the smallest eigenvalue of B.

Proof. We start by applying the Cauchy-Schwarz inequality on L2(K):∣∣I4
ij

∣∣ ≤ 2

|K|

ˆ ∞
T

∥∥vi(·, t)∥∥
L2(K)

∥∥vj(·, t)∥∥
L2(K)

dt. (23)

Then, we plug the result of Lemma 4.3 into (23):∣∣I4
ij

∣∣ ≤ 2

|K|

ˆ ∞
T

e−2λ0t
∥∥vi(·, 0)

∥∥
L2(K)

∥∥vj(·, 0)
∥∥
L2(K)

dt

≤ 1

|K|
∥∥vi(·, 0)

∥∥
L2(K)

∥∥vj(·, 0)
∥∥
L2(K)

1

λ0
e−2λ0T .

The results follows by choosing

C4 =
1

λ0 |K|
∥∥vi(·, 0)

∥∥
L2(K)

∥∥vj(·, 0)
∥∥
L2(K)

=
1

λ0 |K|
‖∇ · (a(·)ei)‖L2(K) ‖∇ · (a(·)ej)‖L2(K) .

4.3 Bound for I2
ij

From the definition,

I2
ij :=

ˆ T

0

ˆ
KL

(
uiuj − vivj

)
µL dx dt, (24)

one can notice that the source of the error I2
ij is the mismatch between ui and

vi on the boundary ∂KR. Therefore, we refer to such an error as the boundary
error. The boundary error converges to zero at an exponential rate, as stated
in Lemma 4.5.

Lemma 4.5. Let a(·) satisfy conditions i), ii) and iii) of Theorem 3.2 and let
I2
ij be defined by (24). Then, there exist constants C, c > 0, independent of R,
L and T such that

∣∣I2
ij

∣∣ ≤ C
 1

T

(
R√
T

)d−1

e−c
|R−L|2

T +

(
T

|R− L|2

)3−d

e−2c
|R−L|2

T

 .
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Additionally, If ∇ · (a(·)ei) ∈ W 1
per(K), then there exist constants C, c > 0,

independent of R, L and T such that

∣∣I2
ij

∣∣ ≤ C [ 1

|R− L|

(
R√
T

+ 1

)d−1

e−c
|R−L|2

T +
1

|R− L|2

(
R2

T

)
e−2c

|R−L|2
T

]
.

The proof of Lemma 4.5 directly follows from Propositions 4.1 and 4.2. We
need Definitions 4.1 and 4.2 in order to define a boundary error function which
will be used in the estimation of I2

ij .

Definition 4.1 (Boundary layer). Let us define a sub-domain KR̃ ⊂ KR, where

R̃ is defined to be the largest integer such that R̃ ≤ R−1/2. The boundary layer
is defined as the set ∆ := KR \KR̃. We observe that |∆| = Rd− R̃d ≤ 2dRd−1.

Definition 4.2 (Cut-off function). A cut-off function on KR is a function
ρ ∈ C∞(KR, [0, 1]) such that

ρ(y) =

{
1 in KR̃

0 on ∂KR
and |∇ρ(y)| ≤ C on ∆,

where the subdomain KR̃ and the boundary layer ∆ are defined according to
Definition 4.1.

R

R̃L

KR

KL

∆

Figure 1: Scheme of the sampling domain KR and its subsets KL, KR̃ and ∆.

Let us define the boundary error function θi ∈ L2
(
[0,+∞), H1

0 (KR)
)

through
the relation θi := ui − ρvi. For the analysis it is fundamental that ρ = 1 in KR̃

and that L < R̃. By the definition of θi, we write

I2
ij =

ˆ T

0

ˆ
KL

[
vivj

(
ρ2 − 1

)
+ θivj + viθj + θiθj

]
µL dx dt.

One readily notice that the first term in the integral vanishes on the integration
domain, since ρ2(x) = 1 for all x ∈ KR̃ ⊃ KL. So, we have to study the integrals

I2,b
ij :=

ˆ T

0

ˆ
KL

viθjµL dx dt, and I2,c
ij :=

ˆ T

0

ˆ
KL

θiθjµL dx dt. (25)
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As both integrals depend on the values that the functions θi take over the
averaging domain KL, we need to provide pointwise estimates for θi(x, t) on
KL × [0, T ]. This is done in subsection 4.3.1 by the use of the fundamental
solution of problem (9).

4.3.1 Estimates for θi

Here, we derive an upper bound for θi on KL × [0, T ]. By definition and linearity
of the correctors problem, the function θi satisfies the problem:

∂θi

∂t
−∇ · (a(x)∇θi) = −∇(1− ρ(x)) · a(x)∇vi −∇ ·

[
a(x)∇(1− ρ(x))vi

]
(26)

in KR × (0,+∞), with boundary and initial conditions

θi = 0 on ∂KR × (0,+∞),
θi(x, 0) = vi(x, 0)(1− ρ(x)) in KR.

(27)

As the integrals in (25) are performed over a subset KL of the domain KR of
(26), we are not really interested in estimating the norm of θi over the whole
KR, but rather on KL. Thus, thanks to the use of fundamental solution for
problem (26) and (27), we will derive a-priori pointwise estimates for θi(x, t), for
(x, t) ∈ KL × (0, T ). The legitimacy of pointwise estimates for θi is guaranteed
by the fact that ui and vi are Hölder continuous functions for t > 0, and so is
θi. Hence, for t > 0, the pointwise values of θi(x, t) is meaningful. Moreover,
since θi(x, 0) = 0 in KL, θi(x, t) is bounded in KL × [0,+∞).

Usually, the existence of a fundamental solution for equations like (26) and
(27) and the derivation of its properties are done for parabolic problems in non-
divergence form with Hölder continuous coefficients Ref. 23, 33. In this setting
it is possible to prove pointwise bounds (of the type of (61)) on the spatial (up
to second order) and time (up to first order) derivatives of the fundamental
solution. The existence result can be extended to the case of equations in
divergence form with discontinuous coefficients, under the only assumption of
uniform ellipticity, see Ref. 11. In this weaker setting it is possible to prove the
well-known Nash-Aronson estimate on the fundamental solution, but there is no
prove, to the best of authors’ knowledge, of the existence of similar bound for
the derivative. Therefore, we need to assume C1,γ-regularity for a(·) in order
to be able to write the equation in non-divergence form and use the results of
Ref. 23,33.

We will denote by Γ(x, t; ξ, τ) ∈ C0,γ(KR × (τ,+∞)) the fundamental solu-
tion of the parabolic operator with homogeneous Dirichlet boundary conditions

L(x,t) : L2([τ,+∞), H1
0 (KR)) 7→ L2([τ,+∞), H−1(KR))

u 7→ ∂tu−∇x · (a(x)∇xu) ,

i.e. Γ(x, t; ξ, τ) satisfies

L(x,t)Γ(x, t; ξ, τ) = 0, (x, ξ, t) ∈ KR ×KR × (τ,+∞), (28a)
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g(x) = lim
t→τ+

ˆ
KR

Γ(x, t; ξ, τ)g(ξ) dξ, ∀g ∈ C(KR). (28b)

Subscript (x, t) in (28a) is to indicate that the differentiation is operated with
respect to the x- and t-variables. Equation (28b) can be interpreted as the
fact that the initial condition (given that the initial time instant is t = τ) for
the fundamental solution is Γ(x, τ ; ξ, τ) = δ(x − ξ), the Dirac’s delta function
centred at ξ. In the same way, one can define the adjoint operator, given the
symmetry of a, as

L∗(y,s) : L2((−∞, τ ], H1
0 (KR)) 7→ L2((−∞, τ ], H−1(KR))

u 7→ −∂su−∇y · (a(y)∇yu) .

The fundamental solution of L∗(y,s) is denoted by Γ∗(y, s; x, t) and satisfies

L∗(y,s)Γ
∗(y, s; ξ, τ) = 0, (y, ξ, s) ∈ KR ×KR × (−∞, τ),

g(y) = lim
s→τ−

ˆ
KR

Γ∗(y, s; ξ, τ)g(ξ) dξ, ∀g ∈ C(KR).

A well-known result is that the differential problems

L(x,t)u = f and L∗(y,s)v = f̂

are well-posed only for t > τ and s < τ , respectively, where τ is the time of the
initial (resp. final) condition. Thus, we formally define

Γ(x, t; ξ, τ) = 0, for t < τ, Γ∗(y, s; ξ, τ) = 0, for s > τ.

A central property of the two fundamental solutions is

Γ(x, t; y, s) = Γ∗(y, s; x, t), for s < t. (29)

The identity between two fundamental solution is proved in Theorem 17, §3.7
Ref. 23 for the case of Hölder continuous coefficients, but it can be extended
to the discontinuous case by following the same proof, as done in Ref. 13.
Pointwise a-priori estimates for Γ are derived in Ref. 12, following the results
obtained in Ref. 38. Such estimates can be extended to the derivatives of the
fundamental solution under additional regularity assumptions, see, e.g., Ref.
23,33. The solution of (26) can be written as

θi(x, t) =

ˆ
KR

Γ(x, t; y, 0)vi(y, 0)(1− ρ(y)) dy

−
ˆ
KR

ˆ t

0

Γ(x, t; y, s)∇y(1− ρ(y)) · a(y)∇yv
i(y, s) ds dy

+

ˆ
KR

ˆ t

0

∇yΓ(x, t; y, s) · a(y)∇y(1− ρ(y))vi(y, s) ds dy, (30)

for any t > 0. Now, we provide a lemma for rewriting (30) in the form of
boundary flux integral.
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Lemma 4.6. Let a(·) satisfy conditions i) and ii) of Theorem 3.2, θi be the
weak solution of (26) and let vi be Hölder continuous in KR × (0,+∞). Then,
for any (x, t) ∈ KL × (0,+∞),

θi(x, t) =

ˆ
∂KR

ˆ t

0

n · a(y)∇yΓ(x, t; y, s)vi(y, s) ds dσy, (31)

where n denotes the unit vector orthogonal to ∂KR pointing outward.

From now on we will distinguish two cases in the derivation of the estimates,
based on the regularity of the initial condition vi(·, 0) = ∇ · (a(·)ei), i.e. on the
regularity of the tensor a(·).

Lemma 4.7. Let a(·) satisfy conditions i), ii) and iii) of Theorem 3.23, let θi ∈
C([0,+∞), L2(KR)) be the solution of (26), and let vi ∈ L2((0,+∞),W 1

per(K))

be the solution of (10). Then, there exist a constant C̃ > 0, independent of R
and L such that

sup
x∈KL

∣∣θi(x, t)∣∣ ≤ C̃ Rd−1

|R− L|
∥∥∇vi∥∥

L2((0,t),L2(K))

[
1

t
+

1

2c |R− L|2

] d−1
2

e−c
|R−L|2

t ,

(32)
for c = 1/4β.

Otherwise, if vi ∈ C
(
[0,+∞)W 1

per(K)
)
, then

sup
x∈KL

∣∣θi(x, t)∣∣ ≤ C̃Rd−1
∥∥vi(·, 0)

∥∥
W 1

per(K)
e−λ0t

ˆ t

0

1

s(d+1)/2
e−c

|R−L|2
s eλ0s ds,

(33)

where λ0 > 0 is the smallest eigenvalue of the bilinear form B.

Lemmas 4.6 and 4.7 are proved in A.

4.3.2 Term I2,b

Proposition 4.1. Let the hypotheses of Lemma 4.7 be satisfied. Moreover,
let vi ∈ C([0,+∞), L2(K)), θi ∈ L∞(KL × [0,+∞)), let I2,b

ij be defined as
in (25) and let L/R be constant. Then, there exist constants C2,b, C

′
2,b, c > 0

independent of R, L, T such that∣∣∣I2,b
ij

∣∣∣ ≤ C2,b

|R− L|
∥∥vi∥∥

L2([0,+∞),W 1
per(K))

(
R√
T

+ C ′2,b

)d−1

e−c
|R−L|2

T , (34)

Otherwise, if vi(·, 0) ∈W 1
per(K) and T ≤ 2c

d+1 |R− L|
2

then there exist constants
C2,b, c > 0 independent of R, L, T such that∣∣∣I2,b

ij

∣∣∣ ≤ C2,b

T

∥∥vi(·, 0)
∥∥
W 1

per(K)

(
R√
T

)d−1

e−c
|R−L|2

T . (35)

3The assumption of Hölder continuity of ∂kaij(x) is to ensure the correctness of (61).
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Proof. Applying Hölder inequality on the space integral, we obtain:∣∣∣∣∣
ˆ T

0

ˆ
KL

vi(x, t)θj(x, t)µL(x) dx dt

∣∣∣∣∣ ≤
ˆ T

0

ˆ
KL

∣∣vi(x, t)θj(x, t)µL(x)
∣∣ dx dt

≤
ˆ T

0

∥∥vi(·, t)∥∥
L2(KL)

∥∥θj(·, t)∥∥
L∞(KL)

‖µL‖L2(KL) dt.

By assumption, µL ∈ L∞(KL) ⊂ L2(KL) with continuous inclusion, and

‖µL‖L2(KL) ≤ |KL|1/2 ‖µL‖L∞(KL) ≤ CµL
−d/2.

Next, we estimate
∥∥vi(·, t)∥∥

L2(KL)
. Since vi, we have for integer L∥∥vi(·, t)∥∥

L2(KL)
= Ld/2

∥∥vi(·, t)∥∥
L2(K)

,

while, for non-integer L∥∥vi(·, t)∥∥
L2(KL)

≤ dLed/2
∥∥vi(·, t)∥∥

L2(K)
.

Finally, we recall the exponential decay of
∥∥vi(·, t)∥∥

L2(K)
and we derive the

estimate:∣∣∣∣∣
ˆ T

0

ˆ
KL

vi(x, t)θj(x, t)µL(x) dx dt

∣∣∣∣∣ ≤
≤ Ld/2

∥∥vi(·, 0)
∥∥
L2(K)

ˆ T

0

e−λ0t
∥∥θj(·, t)∥∥

L∞(KL)
dtCµL

−d/2

≤ Cµ
∥∥vi(·, 0)

∥∥
L2(K)

ˆ T

0

e−λ0t
∥∥θj(·, t)∥∥

L∞(KL)
dt. (36)

Case vi(·, 0) ∈ L2(K): We use (32) in Lemma 4.7 to bound the last integral in
(36):

ˆ T

0

e−λ0t
∥∥θj(·, t)∥∥

L∞(KL)
dt ≤

≤ C̃ Rd−1

|R− L|
∥∥vi∥∥

L2([0,+∞),W 1
per(K))

ˆ T

0

e−λ0t

[
1

t
+

1

2c |R− L|2

] d−1
2

e−c
|R−L|2

t dt

≤ C̃

λ0

Rd−1

|R− L|
∥∥vi∥∥

L2([0,+∞),W 1
per(K))

[
1

T
+

1

2c |R− L|2

] d−1
2

e−c
|R−L|2

T

=
C̃

λ0

∥∥vi∥∥
L2([0,+∞),W 1

per(K))

1

|R− L|

[
R2

T
+

R2

2c |R− L|2

] d−1
2

e−c
|R−L|2

T ,
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where we bounded the integral by the L1 − L∞ Hölder inequality. Then, by
posing

C2,b =
CµC̃

λ0

∥∥vi(·, 0)
∥∥
L2(K)

, and C ′2,b =
1√

2c(1− L/R)
, with 0 < L/R < 1,

we get (34).
Case vi(·, 0) ∈W 1

per(K): We can use the estimate (33) to bound the last integral

in (36):

ˆ T

0

e−λ0t
∥∥θj(·, t)∥∥

L∞(KL)
dt

≤ C̃
∥∥vi(·, 0)

∥∥
W 1

per(K)
Rd−1

ˆ T

0

e−2λ0t

ˆ t

0

s−(d+1)/2e−c
|R−L|2

s eλ0s ds dt

= C̃
∥∥vi(·, 0)

∥∥
W 1

per(K)
Rd−1

ˆ T

0

ˆ T

s

e−2λ0t dt s−(d+1)/2e−c
|R−L|2

s eλ0s ds,

(37)
by Fubini’s theorem. We bound the double integral in time as

ˆ T

0

ˆ T

s

e−2λ0t dt s−(d+1)/2e−c
|R−L|2

s eλ0s ds ≤ 1

2λ0

ˆ T

0

s−(d+1)/2e−c
|R−L|2

s e−λ0s ds

≤ 1

2λ0

(
max
s∈[0,T ]

s−(d+1)/2e−c
|R−L|2

s

)ˆ T

0

e−λ0s ds

≤ 1

2λ2
0

T−(d+1)/2e−c
|R−L|2

T ,

under the assumption that T ≤ 2c
d+1 |R− L|

2
. Thus we get the final bound

ˆ T

0

e−λ0t
∥∥θj(·, t)∥∥

L∞(KL)
dt ≤ C̃

2λ2
0

∥∥vi(·, 0)
∥∥
W 1

per(K)

(
R√
T

)d−1
1

T
e−c

|R−L|2
T ,

and the proof is complete by taking

C2,b =
CµC̃

2λ2
0

∥∥vi(·, 0)
∥∥
L2(K)

.

Remark 4.2. The estimates provided in Proposition 4.1 for regular initial con-
dition are subjected to the final time constraint T ≤ 2c

d+1 |R− L|
2
. If such a

condition is not satisfied, then the convergence rate of the resonance error is
deteriorated as the solution is polluted by the boundary error for longer times.
The proof of this result is out of the scope of the present paper.
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4.3.3 Term I2,c

Here, we provide estimates for the term I2,c
ij of (25). This term decays faster

than I2,b
ij and can be considered negligible.

Proposition 4.2. Let the hypotheses of Lemma 4.7 be satisfied. Moreover, let
vi ∈ C([0,+∞), L2(K)), θi ∈ L∞(KL × [0,+∞)), let I2,c

ij be defined as in (25)
and let L/R be constant. Then, there exist a constants C2,c, c > 0 independent
of R, L, T such that

∣∣∣I2,c
ij

∣∣∣ ≤ C2,c

|R− L|2
∥∥vi∥∥2

L2([0,+∞),W 1
per(K))

(
R2

T

)d−1

e−
2c|R−L|2

T . (38)

Otherwise, if vi ∈ C([0,+∞),W 1
per(K)), then, there exist constants C2,c, c > 0

independent of R, L, T such that

∣∣∣I2,c
ij

∣∣∣ ≤ C2,c

∥∥vi(·, 0)
∥∥2

W 1
per(K)

(
T

c |R− L|2

)3−d

e−2c
|R−L|2

T . (39)

Proof. From the positivity of µL and the fact that its integral is equal to one,
we derive the inequality∣∣∣∣∣
ˆ T

0

ˆ
KL

θi(x, t)θj(x, t)µL(x) dx dt

∣∣∣∣∣ ≤
ˆ T

0

sup
x∈KL

∣∣θi(x, t)θj(x, t)∣∣ dtˆ
KL

µL(x) dx

≤ max
i

ˆ T

0

sup
x∈KL

∣∣θi(x, t)∣∣2 dt.
Then, the task now is to estimate

´ T
0

sup
x∈KL

∣∣θi(x, t)∣∣2 dt.
Case vi(·, 0) ∈ L2(K): By (32) we derive

ˆ T

0

sup
x∈KL

∣∣θi(x, t)∣∣2 dt ≤C̃2 R
2(d−1)

|R− L|2
∥∥vi∥∥2

L2([0,+∞),W 1
per(K))

ˆ T

0

[
1

t
+

1

2c |R− L|2

]d−1

e−2c
|R−L|2

t dt.

(40)

By the change of variable σ = 2c |R−L|
2

t we bound the integral

ˆ T

0

[
1

t
+

1

2c |R− L|2

]d−1

e−2c
|R−L|2

t dt

=

(
1

2c |R− L|2

)d−2 ˆ +∞

2c|R−L|2
T

(σ + 1)d−1

σ2
e−σ dσ
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≤

(
1

2c |R− L|2

)d−2(
2c |R− L|2

T
+ 1

)d−1(
2c |R− L|2

T

)−2 ˆ +∞

2c|R−L|2
T

e−σ dσ

=

(
1

2c |R− L|2

)d−2(
1 +

T

2c |R− L|2

)d−1(
T

2c |R− L|2

)3−d

e−
2c|R−L|2

T

≤ C

T d−1
e−

2c|R−L|2
T , (41)

since
(

1 + T
2c|R−L|2

)
and T 2

2c|R−L|2 can be bounded from above by a constant,

due to T ≤ C |R− L|. By plugging (41) into (40) we get:

ˆ T

0

sup
x∈KL

∣∣θi(x, t)∣∣2 dt
≤ C̃2

∥∥vi∥∥2

L2([0,+∞),W 1
per(K))

(
R2

2c |R− L|2

)d−1
1

T d−1
e−

2c|R−L|2
T

≤ C̃2
∥∥vi∥∥2

L2([0,+∞),W 1
per(K))

(
R2

T

)d−1
1

2c |R− L|2
e−

2c|R−L|2
T .

We get (38) with C2,c = C̃2

2c .
Case vi(·, 0) ∈W 1

per(K): We recall (33) and apply Minkowski integral inequal-

ity:

ˆ T

0

sup
x∈KL

∣∣θi(x, t)∣∣2 dt ≤C̃2R2(d−1)
∥∥vi(·, 0)

∥∥2

W 1
per(K)

ˆ T

0

(
e−λ0t

ˆ t

0

s−(d+1)/2e−c
|R−L|2

s eλ0s ds

)2

dt

≤C̃2R2(d−1)
∥∥vi(·, 0)

∥∥2

W 1
per(K)

ˆ T

0

(ˆ T

s

e−2λ0ts−(d+1)e−2c
|R−L|2

s e2λ0s dt

)1/2

ds


2

≤C̃2R2(d−1)
∥∥vi(·, 0)

∥∥2

W 1
per(K){ˆ T

0

1√
2λ0

(
e−2λ0s − e−2λ0T

)1/2
s−(d+1)/2e−c

|R−L|2
s eλ0s ds

}2

≤ C̃
2

2λ0
R2(d−1)

∥∥vi(·, 0)
∥∥2

W 1
per(K)

≤ C̃
2

2λ0
R2(d−1)

∥∥vi(·, 0)
∥∥2

W 1
per(K)

{ˆ T

0

s−(d+1)/2e−c
|R−L|2

s ds

}2

,
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by the fact that
(
1− e−2λ0(T−s)) ≤ 1. We estimate the integral by the change

of variables σ = c |R−L|
2

s :

ˆ T

0

s−(d+1)/2e−c
|R−L|2

s ds =

(
1

c |R− L|2

) d−1
2 ˆ +∞

c
|R−L|2

T

σ(d−3)/2e−σ dσ

≤

(
1

c |R− L|2

) d−1
2

 sup
σ≥c |R−L|2

T

σ(d−3)/2

 ˆ +∞

c
|R−L|2

T

e−σ dσ

≤ 1

c |R− L|2
T (3−d)/2e−c

|R−L|2
T .

And by plugging the bound for the integral into the bound for
´ T

0
sup

x∈KL

∣∣θi(x, t)∣∣2 dt
we get

ˆ T

0

sup
x∈KL

∣∣θi(x, t)∣∣2 dt ≤ C̃2

2λ0
R2(d−1)

∥∥vi(·, 0)
∥∥2

W 1
per(K)

1

c2 |R− L|4
T 3−de−2c

|R−L|2
T

≤ C̃2

2λ0

∥∥vi(·, 0)
∥∥2

W 1
per(K)

(
T

c |R− L|2

)3−d(
1

c(1− L/R)

)2(d−1)

e−2c
|R−L|2

T .

since 1
c(1−L/R) is constant, we get (39) with C2,c = C̃2

2λ0

(
1

c(1−L/R)

)2(d−1)

.

Now, we are ready to prove Theorem 3.2.

Theorem 3.2. The decomposition (20) implies∥∥a0
R,L,T − a0

∥∥
F
≤ d2 max

i,j

(∣∣I1
ij

∣∣+
∣∣I2
ij

∣∣+
∣∣I3
ij

∣∣+
∣∣I4
ij

∣∣) .
By using the upper bounds in Corollary 4.1, Lemmas 4.2 and 4.4, and Proposi-
tions 4.1 and 4.2 in the above inequality we get∥∥a0

R,L,T − a0
∥∥
F
≤ C

[
L−(q+1) + e−2λ0T +

1

|R− L|

(
R√
T

+ 1

)d−1

e−c
|R−L|2

T

+
1

|R− L|2

(
R2

T

)d−1

e−2c
|R−L|2

T

]
,

(42)
for some constant C independent of R, L and T . Using the optimal values

L = koR and T = kTR, with 0 < ko < 1 and kT =
√

c
2λ0

(1− ko), we write (42)
as:∥∥a0

R,L,T − a0
∥∥
F
≤ C

[
R−(q+1) + e−

√
2λ0c(1−ko)R +

1

R

(√
R+ 1

)d−1

e−
√

2λ0c(1−ko)R

+Rd−3e−2
√

2λ0c(1−ko)R

]
,
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The last term is of higher order than the third one, so it can be omitted. Finally,
we get

∥∥a0
R,L,T − a0

∥∥
F
≤ C

R−(q+1) +

1 +

(√
R+ 1

)d−1

R

 e−
√

2λ0c(1−ko)R

 .
(43)

In the case of more regular initial conditions, ∇ · (aei) ∈W 1
per(Y ), we have:

∥∥a0
R,L,T − a0

∥∥
F
≤ C

[
L−(q+1) + e−2λ0T +

(
R√
T

)d−1
1

T
e−c

|R−L|2
T

+

(
T

|R− L|2

)3−d

e−2c
|R−L|2

T

]
.

Also in this case, we use L = koR and T = kTR and omit the last term to get∥∥a0
R,L,T − a0

∥∥
F
≤ C

[
R−(q+1) +

(
1 +R

d−3
2

)
e−
√

2λ0c(1−ko)R
]
. (44)

Finally, using the fact that R ≥ 1, we can bound the prefactors in front of
the exponential terms in (43) and (44) by a constant independent of R and get
(19).

5 Numerical tests

In this section we present several numerical tests which support the theoret-
ical results of Section 4 and experimentally verify the resonance error bound
of Theorem 3.2. We illustrate the expected convergence rates by varying the
regularity parameter q of the filters, in a periodic, smooth setting, as rigorously
proven in the previous sections. Additionally, we compare the convergence rate
of the resonance error for the parabolic scheme with that of standard numerical
homogenization scheme. We also test non-smooth periodic and stochastic coef-
ficients, which violate the theoretical assumptions in the analysis. Nevertheless,
we obtain results as in the smooth periodic case.

In order to numerically assess the convergence rate of the resonance error, we
compute the approximations of the homogenized tensor through the described
parabolic cell problems on domains of increasing size, R ∈ [1, 20], and calcu-
late the Frobenius norm of the difference between such approximations and the
exact a0. In the case of periodic coefficients whose homogenized value could
not be known exactly (i.e., without discretization error) the reference value is
computed by solving the standard elliptic micro problem (5) with R = 1 and
periodic boundary conditions and using formula (4). In the random setting
no approximation is available without some resonance error. In this case, we
take as reference value for the homogenized tensor the one computed from the
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numerical approximation of the parabolic correctors over the largest domain
Rmax = 20.

To compute a numerical approximation of a0
R,L,T , we use a Finite Elements

(FE) discretization for the micro problems (9) in space, and a stabilised explicit
Runge-Kutta method with adaptive time stepping for the time discretization.
A high (fourth) order method, Ref. 1, is chosen in order to make the temporal
discretization error negligible with respect to the resonance error. As we use
explicit methods in time, we need a mass matrix that is cheap to invert. This
is achieve by using either mass lumping (for low order FEMs) or discontinuous
Galerkin methods (for arbitrary order FEMs).

As a second step, the upscaled tensor is approximated by a double integration
in space and time. The spatial integral of the parabolic correctors is computed
by using the FE filtered mass matrix of components

mij =

ˆ
KL

φi(x)φj(x)µL(x) dx,

where {φi}i are the FE basis functions. The integration in time is performed
by the use of Newton-Cotes formulae for non-uniform discretizations.

In order to optimize the convergence rate of the error with respect to the
sampling domain size R, we take the optimal values of Theorem 3.2 for the
averaging domain size L (KL ⊂ KR) and for the final time T given by

L = koR, and T =
R− L√

8βλ0

,

where β is the continuity constant of the tensor a and λ0 is the smallest eigen-
value of the elliptic operator −∇ · (a(·)∇) with periodic boundary conditions.
The oversampling ratio, 0 < ko < 1, and the order of filters, q, can be chosen
freely.

5.1 Two-dimensional periodic case

We consider the upscaling of the 2× 2 isotropic tensor:

a(x) =

(
2 + 1.8 sin(2πx1)

2 + 1.8 cos(2πx2)
+

2 + sin(2πx2)

2 + 1.8 cos(2πx1)

)
Id (45)

for which the homogenized tensor is

a0 ≈
(

2.757 −0.002
−0.002 3.425

)
.

Here, we compare the performances of the described parabolic approach (“par.”
in the legends) and the standard elliptic approach (“ell.” in the legends). In
comparing the two methods, we used a filtered version of (6), namely

ei · a0
R,Lej :=

ˆ
KL

ei · a(x)
(
ej +∇χjR(x)

)
µL(x) dx, (46)
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that improves the error constant for the classical approach. However, we re-
call that the standard elliptic method provides a first order convergence rate,
independently of the use of oversampling or filtering, as shown in Ref. 43. By
contrast, the use of high order filters in the parabolic scheme improves the con-
vergence rate without affecting the computational cost. The two approaches are
solved using P1 finite element discretization in space with 64 points per peri-
odic cell. Mass lumping has been used in order to perform the time integration,
which is carried out via the ROCK4 method, see Ref. 1, with tol = 10−6. Fi-
nally Simpson’s quadrature rule is used for computing the time integral defining
homogenized coefficients.

Results are depicted in Figure 2. As expected, one cannot reach a conver-
gence rate higher than 1 for the standard elliptic approach, in contrast to the
parabolic method. We notice a longer “flat” region in the convergence plot for
small values of ko and high order filters. Intuitively, for any given R, the re-
gion where the filter is “not almost zero” decreases for smaller ko and larger q.
Hence, we need larger values of R for the averaging integral to contain enough
data and the error to decrease with the expected rate.

5.2 Discontinuous coefficients

In the error analysis, we made the assumption that the initial condition ∇ ·
(a(·)ei) ∈ L2(KR). Nevertheless, the parabolic problem can also be solved
for initial condition ∇ · (a(·)ei) ∈ H−1(KR) and we are interested in verifying
numerically if the provided a-priori estimates for the resonance error hold also
for this case. For simplicity, we consider the one dimensional periodic piecewise
continuous coefficient

a(x) =

{
1 1

4 < {x} <
3
4 ,

3 elsewhere,
(47)

where {x} is the fractional part of x, i.e. {x} = x − bxc. The homogenized
coefficient, which can be computed analytically, is a0 = 3

2 . Convergence plots
pictured in Figure 3 show that the theoretical results also apply to the case of
discontinuous coefficients. The test is done with P2 finite element discretization
on a uniform grid of size h = 1/1024 and the ROCK4 time integration scheme
with tol = 10−6. The results are reported in Figure 3 where, for the sake
of completeness, we also pictured the convergence plot for the elliptic scheme
without filtering nor oversampling (this simplifying choice is motivated from
the fact that filtering and oversampling have been proved to be ineffective for
improving the convergence rate in the elliptic case, see subsection 5.1). Also
in this case, if the filter’s order q is increased or the oversampling ratio ko is
decreased, the expected convergence rate will reached for larger values of R.

5.3 A stochastic case

In the last numerical test, we provide an example for a stochastic tensor, which
does not comply with the periodicity assumption made in Section 4. With
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Figure 2: Comparison of the resonance error in the elliptic and parabolic models
for tensor (45).
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Figure 3: Resonance error in the elliptic and parabolic models for the discontin-
uous tensor (47). The elliptic approximation to a0 is computed without filtering
nor oversampling.

this test, we do not aim at proving any theoretical convergence rate of the
error, but rather to verify numerically that the periodicity assumption is not
necessary for achieving fast decaying rates of the boundary error. We consider a
single realization of a stationary log-normal random field with Gaussian isotropic
covariance:

log a(·) ∼ N (µ,Cov(x− y)), Cov(z) = σ2e−
|z|2

2`2 , (48)

where µ and σ2 are the mean and the variance of the field and ` is the correlation
length. An example of such a field is depicted in Figure 4a. We are not interested
in evaluating the statistical error, but only the boundary error, which is∥∥a0

R,L,T − a0
∞,L,T

∥∥
F
.

In practice, we will consider a0
Rmax,L,T

for the large value Rmax = 20 in place

of a0
∞,L,T as a reference for evaluating the resonance error. The new reference

a0
Rmax,L,T

is computed using the numerical approximation of the parabolic cor-
rector on KRmax

with periodic BCs. The test is done with a P1 finite element
discretization on a uniform grid of size h = 1/20 and the ROCK4 time integra-
tion scheme with tol = 10−5. In Figure 4b we show that the resonance error
decays with a rate comprised between 3 and 4 with respect to R.

6 Computational efficiency

The goal of this section is to provide a theoretical estimate of the scaling of
the computational cost with respect to the error tolerance for the proposed
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(a) Realization of the field on the
square [−2, 2]2. The colour scale is log-
arithmic.
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(b) Resonance error. L = 2R/3.

Figure 4: Log-normal random field (48) with µ = 0, σ2 = 1 and ` = 0.2, and
resonance error for the parabolic ell problem with filter order q and final time

T = |R−L|
10 .

parabolic approach and to compare it to the standard elliptic approach. Since
both discretization and resonance parameters play a role in the determination
of the computational cost, in our analysis we will assume that both errors are
smaller than a prescribed tolerance and we derive the computational cost under
these constraints. Our analysis shows that, for sufficiently high order filters, the
computational cost is lower for the parabolic model than for the elliptic one, i.e.
the parabolic case is asymptotically less expensive.

6.1 Standard elliptic case

Let us consider the standard elliptic homogenization scheme of (6), (7). We
partition the domain KR with uniform simplicial elements of size h and we
introduce a finite elements space Sh ⊂ H1

0 (KR) made of piecewise polynomial
functions of degree s on the simplices. The finite elements discretization of the
corrector problem reads: Find χiR,h ∈ Sh such that

ˆ
KR

a(x)
(
∇χiR,h + ei

)
· ∇wh dx = 0, ∀wh ∈ Sh, i = 1, . . . , d, (49)

and the upscaled tensor is defined as

a0,R,h
ij =

 
KR

ei · a(x)
(
∇χjR,h + ej

)
dx. (50)

Hence, the total error for the upscaled coefficients is:

|a0,R,h
ij − a0

ij | ≤ C
(
h2s +R−1

)
,
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where the first term in the error estimate is the discretization error derived
in Ref. 3, while the second term is the resonance error. The finite elements
corrector χiR,h is computed by solving the linear system

Ahvi = bi, for i = 1, . . . , d, (51)

where Ah is a N ×N symmetric positive definite matrix and vi and bi are the
coordinates of, respectively, χiR,h and −∇ · (a(x)ei) in the finite element space

given a Lagrangian basis. Here, N = O(Rdh−d) is the dimension of the space
Sh. The linear system can be solved in several ways using direct or iterative
methods, whose cost depends on N . For example, for sparse LU factorization
the number of operations is4 O(N3/2) Ref. 24, for Conjugate Gradient (CG)
it is O(

√
κN), where κ is the condition number, while for multigrid (MG) it is

O(N), Ref. 40. In the following analysis we will assume that the latter method
is used for solving the linear system. We require the total errors to scale as a
given tolerance tol, so R = O(tol−1) and h = O(tol1/2s). Hence, the total cost
is

Cost = O(N) = O(Rdh−d) = O(tol−d−
d
2s ).

6.2 Parabolic case with explicit stabilized time integration
methods

Let us consider the parabolic cell problem (9) with the upscaling formula (13).
As in the elliptic case, one can discretize (9) in space and compute an approxima-
tion uih(t) of ui(·, t) in theN -dimensional finite elements space Sh. For simplicity
of notation, we will omit the superscript i. For a given basis of Sh, the function
uh(t) is uniquely determined by the vectorial function wh : [0, T ] 7→ RN , that
solve the semi-discrete problem:

d

dt
wh = −M−1

h Ahwh. (52)

We assume that the mass matrix Mh is easy to invert (which hold, e.g., in the
case of mass lumping or discontinuous Galerkin FEs), so that the cost of the
right-hand side evaluation is negligible with respect to the solution of the ODE
system. The differential equation (52) is solved by an explicit stabilised time
integration scheme of order r. Examples of second order methods are RKC2
(Ref. 42) and ROCK2 (Ref. 6), while ROCK4 (Ref. 1) is a fourth order
method. The fully discrete problem reads

Wk = Φh(Wk−1), for k = 1, . . . , Nt,

where the function Φh identifies the time integration method and Nt the number
of time steps. The computed sequence {Wk}Nt

k=0 ⊂ RN is an approximation,

4The constant in this asymptotic rate depends on the sparsity pattern of the matrix, which
is much worse for 3D problems than for diffusion problems in 2D.
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at times tk = k∆t, of w(tk) and it determines (via the finite elements basis) a
sequence {Uk}Nt

k=0 ⊂ Sh. The discrete approximation of the homogenized tensor
is

a0,R,h,∆t
ij =

ˆ
KL

aij(y)µL(x) dx− 2Q
(ˆ

KL

UkU
j
kµL(y) dx,∆t

)
,

where Q(·,∆t) is a quadrature rule on the discretization tk = k∆t of order at
least r (where r is the order of the time integration scheme). Hence, the total
error for the upscaled coefficients is:

|a0,R,h,∆t
ij − a0

ij | ≤ C
(
hs+1 + ∆tr +R−(q+1)

)
, (53)

where we have assumed that, for sufficiently large R, the term R−(q+1) dom-
inates the exponential term in the resonance error bound. This is also the
convergence rate that we reported in the numerical examples of Subsections 5.1
and 5.2. Here, the constant C grows linearly with the final time T , whose op-
timal value scales as R − L. However, the ratio (R − L)/

√
8βλ0 is in general

O(1), so we can consider T = O(1) in the range of values used for R and L. In
order for the error to scale as tol, we require that all the three summands in
(53) scale as tol:

R = O(tol−
1

q+1 ), h = O(tol
1

s+1 ), ∆t = O(tol
1
r ).

The global computational cost is O(NnSNt), where Nt = T/∆t is the num-
ber of time steps, nS is the number of function evaluations (stages) per time
step for a stabilised method and N = O(Rdh−d) is the cost of each function
evaluation which, in the linear case, is the cost of multiplying a sparse N ×N
matrix by a vector in RN . Since we are using a stabilised method we need
to satisfy the weak stability condition ρ∆t = cn2

S , where ρ is the spectral ra-
dius of the Jacobian of the ODE (52) and nS is the number of stages for each
time step. As ρ is the spectral radius of M−1

h Ah, it scales as h−2. Therefore,
nS = O(∆t1/2h−1). From the fact that T = O(1) one derives that the total
cost is

Cost = O(Rdh−d∆t1/2h−1∆t−1) = O(tol−
d

q+1−
d+1
s+1−

1
2r ).

6.3 Comparison of the parabolic and the standard elliptic
methods

Now, we are interested in evaluating under which condition the use of stabilised
time integration methods is more efficient than the regularized elliptic approach.
In Table 1, we summarize the dependency of computational cost and the error
on resonance and discretization parameters, as well as the scaling of the cost for
a given tolerance. In order for the parabolic approach to be competitive with
respect to the elliptic one, the condition to satisfy is:

d

q + 1
+
d+ 1

s+ 1
+

1

2r
< d+

d

2s
.
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Cell problem Parabolic Standard Elliptic
Error R−q−1 + hs+1 + ∆tr R−1 + h2s

Computational cost Rdh−d−1∆t−
1
2 Rdh−d

Computational cost (tol) tol−
d

q+1−
d+1
s+1−

1
2r tol−d−

d
2s

Table 1: Error and computational cost for two homogenization approaches.

In Figure 5 we display the theoretical increase of the computational cost for the
two considered approaches. We observe that, for high order filters, the elliptic
model is much more expensive than the parabolic cell problem.

10−6 10−5 10−4 10−3 10−2 10−1
100

105

1010

1015

1020

tolerance

co
st

ell.
par., q = 3
par., q = 5
par., q = 7

Figure 5: Theoretical computational cost for d = 3, P2-FEM, 4-th order time
integration, q = 3, 5, 7.

7 Conclusion

In this work, we propose a novel approach for numerical homogenization, based
on the solution of parabolic cell problems. We rigorously prove, by Green’s
function estimates, an arbitrary convergence rate for the resonance error in the
smooth periodic setting, but numerical tests demonstrate the same rates also
for piecewise continuous and non-periodic cases. If filters of high order are
used, the computation of the parabolic solutions by means of stabilised explicit
solvers is asymptotically more efficient than the inversion of the discretized
elliptic operator, required by elliptic approaches.
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A Proofs of Lemmas 4.6 and 4.7

In this appendix we prove the statements of Lemmas 4.6 and 4.7.

Lemma 4.6. First of all, we derive an integral equality for Γ∗. Multiplying
L∗(y,s)Γ

∗ = 0 by vi(1− ρ), integrating over KR × (0, t) and using integration by
parts, one gets:

ˆ t

0

ˆ
KR

−∂sΓ∗(y, s; x, t)vi(y, s)(1− ρ(y))

+∇y

(
vi(y, s)(1− ρ(y))

)
· a(y)∇yΓ∗(y, s; x, t) dy ds

=

ˆ t

0

ˆ
∂KR

n · a(y)∇yΓ(x, t; y, s)vi(y, s)(1− ρ(y)) dσy ds, (54)

since ∇yΓ(x, t; y, s) = ∇yΓ∗(y, s; x, t) for any s < t. Then the second and third
integrals in (30) are rewritten as

ˆ
KR

ˆ t

0

−Γ(x, t; y, s)∇y(1− ρ(y)) · a(y)∇yv
i(y, s) ds dy

+

ˆ
KR

ˆ t

0

∇yΓ(x, t; y, s) · a(y)∇y(1− ρ(y))vi(y, s) ds dy

=

ˆ
KR

ˆ t

0

−∇y [Γ(x, t; y, s)(1− ρ(y))] · a(y)∇yv
i(y, s) ds dy

+

ˆ
KR

ˆ t

0

∇yΓ(x, t; y, s) · a(y)∇y

[
(1− ρ(y))vi(y, s)

]
ds dy

=

ˆ
KR

ˆ t

0

Γ(x, t; y, s)(1− ρ(y))∂sv
i(y, s) ds dy

+

ˆ
KR

ˆ t

0

∇yΓ(x, t; y, s) · a(y)∇y

[
(1− ρ(y))vi(y, s)

]
ds dy, (55)

where the last equality follows from the weak form of (10). Then, we integrate
the former of the two last integrals by parts, thus obtaining

ˆ
KR

ˆ t

0

Γ(x, t; y, s)(1− ρ(y))∂sv
i(y, s) ds dy

= lim
ε→0+

ˆ
KR

Γ(x, t; y, t− ε)vi(y, t− ε)(1− ρ(y)) dy

−
ˆ
KR

Γ(x, t; y, 0)vi(y, 0)(1− ρ(y)) dy

−
ˆ
KR

ˆ t

0

∂sΓ(x, t; y, s)(1− ρ(y))vi(y, s) ds dy. (56)
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From the fact that ρ(x) = 1 for all x ∈ KL and from the continuity of vi we
deduce

lim
ε→0+

ˆ
KR

Γ(x, t; y, t− ε)vi(y, t− ε)(1− ρ(y)) dy = vi(x, t)(1− ρ(x)) = 0,

for any x ∈ KL. By putting (30), (55), and (56) together we get

θi(x, t) =

ˆ
KR

ˆ t

0

−∂sΓ(x, t; y, s)vi(y, s)(1− ρ(y)) ds dy

+

ˆ
KR

ˆ t

0

∇yΓ(x, t; y, s) · a(y)∇y

[
vi(y, s)(1− ρ(y))

]
ds dy.

Finally, from (29) and (54) we conclude that

θi(x, t) =

ˆ
∂KR

ˆ t

0

n · a(y)∇yΓ(x, t; y, s)vi(y, s) ds dσy.

Lemma 4.7. From (31) we can write

∣∣θi(x, t)∣∣ ≤ ˆ t

0

ˆ
∂KR

|n · a(y)∇yΓ(x, t; y, s)|
∣∣vi(y, s)∣∣ dσy ds.

By applying the Hölder inequality we get∣∣θi(x, t)∣∣ ≤ |∂KR|1/2
ˆ t

0

sup
y∈∂KR

|n · a(y)∇yΓ(x, t; y, s)|
∥∥vi(·, s)∥∥

L2(∂KR)
ds.

(57)
The value of

∥∥vi(·, s)∥∥
L2(∂KR)

is well defined for any time s > 0 (unless we have

a more regular initial condition, e.g. vi(·, 0) ∈ W 1
per(K), in that case the trace

is defined also for s = 0) and we can estimate it by the following inequality∥∥vi(·, s)∥∥
L2(∂KR)

=
∥∥vi(·, s)(1− ρ)

∥∥
L2(∂KR)

≤ Ctr
∥∥vi(·, s)(1− ρ)

∥∥
H1(∆)

,

where Ctr is fixed, thanks to the fact that the distance between KR̃ and ∂KR

is larger or equal to 1/2. As ρ ∈ C1(KR) and ∂xk
vi(·, s) ∈ L2(KR) the product

rule holds and we can write∥∥∇(vi(1− ρ))
∥∥
L2(∆)

≤
∥∥∇vi∥∥

L2(∆)
+ ‖∇ρ‖L∞(∆)

∥∥vi∥∥
L2(∆)

.

Let us now consider a covering of ∆, defined as ∆K :=
⋃

y∈∂KR+R̃
2

K+y. Then,

|∆K | = c(d)
∣∣∣∂KR+R̃

2

∣∣∣ diam(K) ≤ CRd−1. By exploiting the periodic structure

of vi we have that∥∥vi∥∥
L2(∆)

≤
∥∥vi∥∥

L2(∆K)
≤
(
|∆K |
|K|

)1/2 ∥∥vi∥∥
L2(K)

,
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∥∥∇vi∥∥
L2(∆)

≤
∥∥∇vi∥∥

L2(∆K)
≤
(
|∆K |
|K|

)1/2 ∥∥∇vi∥∥
L2(K)

.

Finally, we recall that in the space W 1
per(K) the Poincaré-Wirtinger inequality

holds: ∥∥vi∥∥
L2(K)

≤ CP
∥∥∇vi∥∥

L2(K)
(58)

so that ∥∥vi(·, s)∥∥
L2(∂KR)

≤ CtrCρCP
(
|∆|
|K|

)1/2 ∥∥∇vi(·, s)∥∥
L2(K)

≤ CR
d−1

2

∥∥∇vi(·, s)∥∥
L2(K)

.

(59)

Now, we go back to the estimation of θi: putting together (57) and (59) (and
recalling that |∂KR| = 2dRd−1 ) we get

∣∣θi(x, t)∣∣ ≤ CRd−1

ˆ t

0

sup
y∈∂KR

|n · a(y)∇yΓ(x, t; y, s)|
∥∥∇vi(·, s)∥∥

L2(K)
ds. (60)

Now, we will derive different a-priori estimates for different regularity assump-
tion on the initial condition. Both of them rely on the Nash-Aronson type
estimate

∇yΓ(x, t; y, s) ≤ C

(t− s)
d+1

2

e−c
|x−y|2

t−s , (61)

with C = (4πα)
−d/2

and c = (4β)−1. The bound (61) is proved in Ref. 23,33 for
parabolic equations in non-divergence form with Hölder continuous coefficients.
In Ref. 22 the authors claim that (61) is valid also for parabolic equation in
divergence form with Hölder continuous coefficients, but the statement remains
unproved.
Case vi(·, 0) ∈ L2(K): We apply the Hölder inequality in time and the estimates
on ∇yΓ for Hölder coefficients to get:

∣∣θi(x, t)∣∣ ≤ CRd−1
∥∥∇vi∥∥

L2((0,t),L2(K))

(ˆ t

0

sup
y∈∂KR

|n · a(y)∇yΓ(x, t; y, s)|2 ds

)1/2

≤ CRd−1 ‖a‖L∞(K)

∥∥∇vi∥∥
L2((0,t),L2(K))

(ˆ t

0

C2

(t− s)(d+1)
e−2c

|x−ȳ(x)|2
t−s ds

)1/2

,

(62)

where ȳ(x) = arg min
y∈∂KR

|x− y|. By the change of variables σ = 2c |x−ȳ(x)|2
t−s and

the fact that the primitive function of tNe−t (with N ∈ N) is −
∑N
k=0

N !
k! t

ke−t,
the inequality (62) becomes

∣∣θi(x, t)∣∣ ≤ C ‖a‖L∞(K)

∥∥∇vi∥∥
L2((0,t),L2(K))

Rd−1

(2c |x− ȳ(x)|2)d/2
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d−1∑
k=0

(d− 1)!

k!

(
2c
|x− ȳ(x)|2

t

)k 1
2

e−c
|x−ȳ(x)|2

t

≤ C√
2c
‖a‖L∞(K)

∥∥∇vi∥∥
L2((0,t),L2(K))

Rd−1

|x− ȳ(x)|(d− 1)!

d−1∑
k=0

(
d− 1

k

)
1

tk

(
1

2c |x− ȳ(x)|2

)d−1−k
 1

2

e−c
|x−ȳ(x)|2

t

≤ C(d− 1)!√
2c

‖a‖L∞(K)

∥∥∇vi∥∥
L2((0,t),L2(K))

Rd−1

|x− ȳ(x)|[
1

t
+

1

2c |x− ȳ(x)|2

] d−1
2

e−c
|x−ȳ(x)|2

t .

Including all the terms that do not depend on R, L nor t in a single constant
C̃ and by the lower bound inf

x∈KL

|x− ȳ(x)| ≥ |R− L| we deduce

∣∣θi(x, t)∣∣ ≤ C̃ Rd−1

|R− L|
∥∥∇vi∥∥

L2((0,t),L2(K))

[
1

t
+

1

2c |R− L|2

] d−1
2

e−c
|R−L|2

t .

Case vi(·, 0) ∈W 1
per(K): Again, we use the eigenvalues {λj}j=0 and eigenvectors

{ϕj}j=0 of B. Let us denote v̂ij(t) := 〈vi(·, t), ϕj〉L2(K). Then,

v̂ij(t) = e−λjt〈vi(·, 0), ϕj〉L2(K).

From the above characterization of the components v̂ij(t) and the coercivity
of B we have

α
∥∥∇vi(·, t)∥∥2

L2(K)
≤ B[vi(·, t), vi(·, t)] =

+∞∑
j=0

e−2λjtλj
∣∣〈vi(·, 0), ϕj〉L2(K)

∣∣2 ,
for any t ≥ 0. The Parseval’s identity also holds for t = 0, since vi(·, 0) ∈
W 1
per(K), by assumption. So,

α
∥∥∇vi(·, t)∥∥2

L2(K)
≤ e−2λ0t

+∞∑
j=0

λj
∣∣〈vi(·, 0), ϕj〉L2(K)

∣∣2
= e−2λ0tB[vi(·, 0), vi(·, 0)]

≤ βe−2λ0t
∥∥∇vi(·, 0)

∥∥2

L2(K)
.

Thus, ∥∥∇vi(·, t)∥∥
L2(K)

≤ e−λ0t

(
β

α

)1/2 ∥∥∇vi(·, 0)
∥∥
L2(K)

. (63)
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Then, we apply again the known inequality for ∇yΓ and the estimate in (60)
becomes∣∣θi(x, t)∣∣ ≤ Rd−1 β

3/2

α1/2

∥∥vi(·, 0)
∥∥
W 1

per(K)

ˆ t

0

C

(t− s)(d+1)/2
e−c

|x−ȳ(x)|2
t−s e−λ0s ds

= Rd−1 β
3/2

α1/2
e−λ0t

∥∥vi(·, 0)
∥∥
W 1

per(K)

ˆ t

0

C

s(d+1)/2
e−c

|x−ȳ(x)|2
s eλ0s ds,

and we get the thesis by posing C̃ = Cβ3/2

α1/2 and re-using the lower bound

inf
x∈KL

|x− ȳ(x)| ≥ |R− L| .
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