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Reconfigurable Logic Gates
Based on Programable
Multistable Mechanisms
Binary logic gates are building blocks of computing machines, in particular, electronic
computers. One variant is the programable logic gate, also known as the reconfigurable
logic gate, in which the logical function implemented can be modified. In this paper, we con-
struct a mechanism to implement a reconfigurable logic gate. This mechanism is based on
the concept of programable multistable mechanisms which we introduced in previous work.
The application of a programable multistable mechanism is superior to the different bis-
table mechanisms previously used to implement logic gates since a single mechanism can
be used to implement several logic functions. Our reconfigurable logic gates use a novel
geometric construction where the geometric data depend on the stability behavior of the
mechanism. There are 16 binary logic gates and our construction can theoretically
produce nine of these and our physical model produces six logical gates. Input and
output of the mechanism are displacement and the mechanisms can be combined serially,
i.e., output of a mechanism is an input for another. We show that we can implement NOR

and NAND gates, so combinations of our mechanism can express any logical function. The
mechanism is therefore theoretically universal, i.e., implement any computation. We give
an analytic model of the mechanism based on Euler–Bernoulli beam theory to find the geo-
metric data, then validate it using finite element analysis and experimental demonstration.
[DOI: 10.1115/1.4045970]
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1 Introduction and Statement of Results
1.1 Logic Gates. Binary logic gates have two inputs each

taking on possible values True or False, with an output taking on
values True or False. For technical reasons, the usual mathematical
formulation is to denote True by the number 1 and False by the
number 0 [1]. Logic gates are the classical building blocks of com-
puting machines. Electronic transistors are widely used to imple-
ment these logic functions due to the speed and miniaturized size
within the nano-regime and simple integration with electronic cir-
cuits. However, under extreme conditions occurring in space appli-
cations such as high temperature and cosmic radiation, electronic
gates can fail. On the other side, mechanical structure is reliable
functioning under these conditions [2,3]. This has motivated
research into purely mechanical structures to implement logic
gates. Switches and rods are a basic example for the implementation
of mechanical logic [4]. Mechanical oscillators have recently been
utilized as logic devices where the logic output is encoded by oscil-
lator frequency [5]. Bistable mechanisms have also been used to
build logic gates [6,7].
There are four unary logic gates and 16 basic binary logic gates

[1] and these can be combined to implement any general logical
expressions. Of special interest are the NOR and NAND gates which
can reproduce any other unary and binary logic gate and are there-
fore called universal. It follows that the implementation of a NOR or
NAND gate and the ability to combine gates allow one to implement
any computable logic function.
One construction of a binary logic gate is the programable logic

gate, also known as the reconfigurable logic gate, where the logic
gate functionality can be modified post-fabrication. This paper will

focus on the construction of purely mechanical reconfigurable logic
gates.

1.2 Multistable Mechanisms. The mechanisms considered in
this paper are compliant mechanisms that perform their functions by
the deformation of their flexible elements, e.g., slender beams [8,9].
These mechanisms store strain energy as they deform, and local

energy minima positions correspond to stable states and energy
maxima to unstable states. The qualitative behavior of such mech-
anisms can be described by their energy profile [9]. In particular, a
mechanism is called amultistable mechanism if it has more than one
stable state.
As a bistable mechanism is displaced from one stable state to

another stable state, it passes through an unstable state, and
before doing so, its stored energy increases. When displaced past
the unstable state, the mechanism converts potential energy into
kinetic energy, since the system is conservative, and the mechanism
displaces to the other stable state [8], see Fig. 1, where the position
of the ball indicates the state of the mechanism.
The most basic multistable mechanism is the bistable mechanism

having two stable states. Examples of these are curved beams
[10,11], the four-bar mechanism [12,13], slider crank mechanism
[14], and tensural pivots [15]. Bistable mechanisms are well suited
for logic computation due to their binary nature. Since they act as
switches, they can be considered as mechanical analogues of
transistors

1.3 Programable Multistable Mechanisms. The bistable
mechanisms applied to logic gates can only implement a single
logic function. In order to implement reconfigurable logic gates,
we use programable multistable mechanisms (PMM) introduced
in our previous work [16–18]. These are characterized by having
a set of inputs we have named programing inputs p2 and p1 to
modify the mechanism’s stability behavior, in particular, the
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number of stable states. Figures 2(a) and 2(b) illustrate our mecha-
nism with programing inputs p2 and p1 and output x.
As opposed to bistable mechanisms which are displacement

driven, our programable multistable mechanisms produce displace-
ment by modifying the energy profile. One can think of this as
moving an object on a carpet by lifting the carpet, i.e., actuation
is orthogonal to displacement.
This is illustrated in Fig. 3, where the ball again represents the

state of the mechanism. The mechanism is initially bistable with
the ball at stable state s2 (Fig. 3(a)). Then, programing inputs p1
and p2 are applied to modify the energy profile (Fig. 3(b)). At
certain values of p1 and p2, s2 becomes unstable as illustrated in
Figs. 3(c) and 3(d ) and the mechanism becomes monostable
(Figs. 3(e) and 3( f )). After that, the ball moves to the other stable
state s1, which is now the only stable state (Figs. 3(e) and 3( f )).
One advantage of this method is that actuation is more repeatable,
as was applied to the construction of a medical device for delicate
eye surgery [18].
The set programing values p1 and p2 are partitioned into regions

where the mechanism is monostable and bistable. This is described
by a programing diagram; Fig. 2(c) discussed in detail in Sec. 3.
This discretization is used to construct logic gates via the geometric
method of Sec. 1.4, in particular, regions of monostability will cor-
respond to True, i.e., to output 1 and regions of bistability will cor-
respond to False, i.e., 0.
Remark. In this paper, we use the term “programing” to refer to

the modification of the stability behavior of the mechanism. This
has no relation to stored computer programs in computability.

1.4 Geometric Construction of Reconfigurable Logic
Gates. In this section, we present a novel geometric construction
of a reconfigurable logic gate represented by block diagram in
Fig. 4(a). The stability behavior of our PMM mechanism will
provide the geometric data to implement this method.
Given a region Ω in the plane and positive constants α2 and α1,

one can construct a reconfigurable logic gate fr2 ,r1 (i2, i1), where r2

and r1 are values that reconfigure the gate and i2 and i1 are the
binary logical inputs taking values 0 or 1.
For each choice of reconfiguration values r2 and r1, one applies

the logical values i2 and i1 using r2 and r1 so that logical input ij cor-
responds to coordinate rj+ (ij− 1/2)αj. More explicitly, this says
that i2= 0 corresponds to r2− α2/2 and i2= 1 corresponds to r2+
α2/2, and similarly, i1= 0 corresponds to r1− α1/2 and i1= 1 corre-
sponds to r1+ α1/2. Geometrically, this creates a rectangle centered
at (r2, r1) with sides of length α2 and α1, and whose four corners cor-
respond to the four possible values of (i2, i1) (see Fig. 4(b)).
We then define a logic gate

fr2 ,r1 = τ (r2 + (i2 − 1/2)α2, r1 + (i1 − 1/2)α1) ∈ Ω[ ] (1)

where τ is the truth value of a logical expression ε

τ[ε] = 1 if ε is True
0 if ε is False

{

Geometrically, the logic gate fr2 ,r1 (i2, i1) returns 1 if and only if
the corner of the rectangle corresponding to (i2, i1) lies inside the
region Ω (see Fig. 4(c)).
The 16 possible binary logical gates are not all necessarily imple-

mentable, as the possible gates depend on the region Ω. For
example, only 14 of these are possible when Ω is the interior of a
circular disc; the two functions corresponding to the rectangle
having only opposite corners inside the disc are geometrically
impossible; these are f6= 0110 and f9= 1001 using the notation of
Table 1.

1.5 Reconfigurable Logic Gates Generated by Programable
Multistable Mechanisms. In this paper, reconfigurable logic gates
will be generated by the geometric method of Sec. 1.4 where the
region Ω corresponds to a programing diagram described in
more detail in Sec. 3. These charts will have the property that the
region Ω is the part of the plane lying below the single-valued
function p1=Φ(p2). This means that the truth value True

Fig. 1 Strain energy of the displacement-driven bistable mech-
anism where the mechanism position is denoted by the ball at
(a) stable state s2, (b) unstable state u, (c) past unstable state
u, and (d) to other stable state s1

Fig. 2 (a) Physically constructed demonstrator of our multi-
stable mechanism implementing logic gates, (b) conceptual
diagram of our mechanism, (c) programing diagram showing
the number of stable states corresponding to programing
inputs p1 and p2

021111-2 / Vol. 12, APRIL 2020 Transactions of the ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/m

echanism
srobotics/article-pdf/12/2/021111/6648789/jm

r_12_2_021111.pdf by EPFL Lausanne user on 15 M
ay 2023



corresponds to being below the graph (p2, Φ(p2)) in the p2 and p1
plane (see Fig. 5).
In the case of a region defined by a single-valued function Φ, the

definition of a reconfigurable logic gate given by Eq. (1) becomes

fr2 ,r1 (i2, i1) = τ r1 + (i1 − 1/2)α1 <Φ(r2 + (i2 − 1/2)α2)[ ] (2)

The definition of Eq. (2) states that fr2,r1 (i2, i1) has output 1 if and
only if r1+ (i1− 1/2)α1 is less than Φ(r2+ (i2− 1/2)α2).
The output f corresponds to a displacement x, as illustrated in

Fig. 2. When the mechanism is bistable, then it has energy profile
as illustrated in Fig. 3(b) and is in stable state s2, corresponding
to zero displacement x= 0. On the other hand, when the mechanism
is monostable, then its energy profile corresponds to Fig. 3(d )
where the mechanism is in the single stable state s1 corresponding
to a displacement x > β, where β is a constant. The mechanism is
designed so that β > α1 and β > α2; this property guarantees that
the output of one of our mechanisms can be applied as input for
another of our mechanisms, i.e., logical expressions can be con-
structed out of our logic gates.

The number of possible logic gates generated by our PMMs using
this geometric method is limited by the fact that

f (i2, 1) = 1 ⇒ f (i2, 0) = 1

which simply states that if r1+α1/2 <Φ(r2+ (i2− 1/2)α2), then r1−
α1/2 <Φ(r2+ (i2− 1/2)α2). Geometrically, this says that if a top
corner of the rectangle is below the graph, then the bottom corner
just under it is also below the graph.

Table 1 Implementable functions

i1 1 0 1 0
i2 1 1 0 0

Logical expression Binary code

False f0 0 0 0 0
¬(i1 ∨ i2) f1 0 0 0 1
¬i2 f3 0 0 1 1
¬(i1← i2) f4 0 1 0 0
¬i1 f5 0 1 0 1
¬(i1 ∧ i2) f7 0 1 1 1
i2 f12 1 1 0 0
i1→ i2 f13 1 1 0 1
True f15 1 1 1 1

Fig. 4 (a) Block diagram representation of reconfigurable logic
gate where i1 and i2 are the logic operands and r1 and r2 deter-
mine the logical operation and f is the logic output, (b) four pos-
sible logic input states, (c) regionΩwith output True when corner
of the rectangle is outside ΩFig. 3 Strain energy of the one-degree-of-freedom programable

multistable mechanism for different values of p1 and p2 as the
mechanism switches from bistability to monostability, where
the ball denotes the position of the mechanism: (a) bistable
with ball at stable state s2, (b) the stable state s2 has a higher
energy level, (c) stable state s2 vanishes and the ball starts
moving to single stable state s1, (d) ball moving toward the
other stable state s1, (e) the ball reaches the stable state, s1,
and (f) ball remains at stable state s1
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This is the only general restriction, and using the notation of
Table 1, it forbids all binary codes fxx10 and f10xx, that is, the
seven functions

f2 = f0010, f6 = f0110, f8 = f1000,

f9 = f1001, f10 = f1010, f11 = f1011, f14 = f1110

In general, this method can generate nine logic gates at most and
these functions are listed in Table 1. The number of the imple-
mented logic functions depends on value of α1 and α2.
The partition Φ generated by the programing diagram of our

PPMs can generate all nine of these logic gates. Our physical
demonstrator was limited only to four of these logic gates (see
Sec. 6).
We note that f1=¬(i1 ∨ i2) and f7 = ¬(i1 ∧ i2) in Table 1 corre-

spond to a NOR gate and a NAND gate, respectively, since these are
universal, our mechanisms can be combined to perform any compu-
tation. In particular, our demonstrator implements f1 (see Sec. 6).
The nine possible functions divided the space of reconfiguration

parameters r1 and r2 into nine regions; this generates a reconfigura-
tion diagram (see Fig. 6). This discrete partition of the reconfigura-
tion space means that the reconfiguration of our logic gates can be
done by applying nine discrete inputs. The application of this tech-
nique is the subject of our current research.

1.6 Physical Implementation. Figure 2(a) gives the physical
implementation of a reconfigurable logic gate studied in this
paper. The demonstrator is made of polyoxymethylene using laser
cutting. Its programing diagram is given in Fig. 2(c). Two different
logic functions are illustrated in Figs. 7 and 8. Further details con-
cerning the application of the programing inputs are given in
Fig. 19. We ensure that the displacement of the mechanism is
within the linear regime; therefore, there is no plastic deformation.
We selected the dimensions of the mechanism such that the

maximum stresses during actuation never surpass the admissible
stress, which we define as the fatigue limit divided by a safety
factor as discussed in Ref. [8].

1.7 Advantages and Limitations. Our implementation of
logic gates has the following advantages compared to the
state-of-the-art.

Fig. 5 Single valued function boundary p1=Φ(p2)

Fig. 6 The space of reconfiguration parameters r1 and r2 divided
into nine regions corresponding to the nine possible logic gates

Fig. 7 Mechanism to implement f =¬pi
1 at (pi

2, p
i
1)= (a) (0,0),

(b) (0,1), (c) (1,0), and (d) (1,1)

Fig. 8 Mechanism to implement f = pi
2 ∧ ¬pi

1 at (pi
2, p

i
1)= (a)

(0,0), (b) (0,1), (c) (1,0), and (d) (1,1)
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(1) Our logic gates are reconfigurable which enable the imple-
mentation of different logic functions using the same
mechanical structure.

(2) Our logic gates are based on multistable mechanisms so
energy is required only during the transition between stable
states, i.e., during computation. No energy is required to
maintain the stable position of the mechanism.

(3) Our mechanisms store output values, represented by the
stable states.

(4) Our mechanical logic gates can be combined without requir-
ing auxiliary mechanisms.

(5) Our logic gates are universal, i.e., any computable function
can be implemented using the logic gates of this paper.

(6) The number of the logic operands can be easily increased by
adding a spring element for each additional input.

Complex functions can be implemented on combining logic
gates. In logic design, two metrics are used to evaluate the perfor-
mance of combined logic gates, fan out limit and propagation delay.
The fan out limit is the maximum number of logic gate inputs that

can be driven by the output of the logic gate. As illustrated in
Fig. 10, a small amount of energy is provided by the input Ein, rep-
resented by the energy difference between unstable state u and
stable state s2, to initiate the execution of the function. Also, the
gate releases energy, Eout, equivalent to the energy difference
between the unstable state, u, and the stable state, s1, to represent
a high output.
Therefore, the limit of the fan out is

M =
Eout

Ein
(3)

assuming that the driven logic gates are identical.
The second parameter is the propagation delay. It is defined as the

time taken by a signal to travel from the input of the logic gates to
the output. In our case, we can consider our serial combination of
programable multistable mechanisms as a transmission line. The
propagation delay within bistable transmission lines was addressed
in Ref. [19] and it depends on the amount of energy released by each
bistable unit and energy dissipation.
In this paper, we will focus only on the implementation of recon-

figurable logic gates using programable multistable mechanisms.

1.8 Paper Outline. The paper is organized as follows: Sec. 2
gives a complete description of our proposed reconfigurable logic

gate. Section 3 derives an analytical model to calculate the program-
ing diagram by computing mechanism stiffness as a function of the
programing inputs. Section 4 provides a description of the effect of
modifying the programing inputs on the number of stable states,
their position, and their stiffness. Section 5 gives a setup of the
FEM simulation of our mechanism. Finally, Sec. 6 describes the
logic gates implemented by our physical construction and
deduces the reconfiguration diagram.
Whenever possible, we express our results using normalized

parameters so that the expressions are independent of the actual
physical dimensions of the mechanisms.

2 Elastically Driven Axially Loaded Double
Parallelogram Mechanism
The elastically driven axially loaded double parallelogram

mechanism (EADPM) given in Fig. 9 consists of two slender
beams with thickness t, width w, and length ℓ. The two beams
are connected by a central block. On one extremity, the beams
are fixed and the other extremity is restricted only to the movement
in the axial direction of the beams and loaded by a spring of stiffness
k1. The central block is loaded by a spring k2 in the lateral direction
of the beams. The spring k1 is preloaded by displacement p1 and the
spring k2 is preloaded by displacement p2. The displacement p1 and
p2 are the programing inputs. The position of the central block of the
mechanism is given by x.
When p1= 0 and p2= 0, the mechanism is monostable as given in

Fig. 9. On imposing x, the lateral displacement of the central block
increases and spring k2 is loaded. As the beams deform laterally, the
beams move axially loading k1. On increasing p1 for p2= 0, the
spring k1 imposes an axial load on the beams reducing its stiffness
as illustrated in Figs. 10(a) and 10(b). As p1 increases beyond a crit-
ical value pcr1 , the beams buckle and move laterally deforming the
spring k2 and the mechanism is bistable. Figures 9(b) and 9(c)
give the stable positions of the mechanism. These stable states cor-
respond to the logic output.
As p1 increases beyond pcr1 , the energy barrier between the stable

states increases. However, if p1 < 0, the stiffness of the mechanism
increases.
The programing input p2 does not affect the stiffness of the

beams. However, it modifies the mechanism overall stability
behavior. To study the effect of p2 on the stability response of
the mechanism, there are two qualitative distinct cases depending
on p1.

Fig. 9 An EADPM for p2=0 where (a) stable state at p1=0, (b) and (c) stable states for |p2|< pcr
2 and

p1 > pcr
1 , corresponding to high output and low output of a logic operation
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Case 1: p1 < pcr1
The EADPM is monostable where the position of the stable

state depends on p2. At p2= 0, the mechanism has one stable
position at x= 0. When p2 > 0, the stable position will be at
x> 0. Otherwise, the stable position will be at x< 0 as illus-
trated by the energy profiles given in Figs. 10(d )–10( f ).
Case 2: p1 > pcr1

If p2= 0, the mechanism is bistable. As p2 changes, the energy
barrier will vary. There is a value at which |p2| > pcr2 , a stable and
unstable state merge. Therefore, the energy barrier vanishes and
the mechanism is monostable. The strain energy of the mecha-
nism for different values of p2 when p1 > pcr1 are given in Figs.
10(g)–10(l ).

Table 2 summarizes the different stability regions as functions of
p1 and p2 where “−” indicates no impact.

Remark II: The mechanism exhibits zero stiffness behavior at
p1 = pcr1 or p2 = pcr2 . The mechanism is a zero force mechanism at
p1 = pcr1 and a nonzero force mechanism when p2 = pcr2 .
Remark III: The value of pcr2 is a function of p1. The higher p1 is,

the higher pcr2 will be. When p1 < pcr1 , p
cr
2 does not exist.

3 Analytical Model
The goal of the model is to find the stability boundaries at which

the mechanism switches between monostability and bistability,
which are essential for finding the relation between the logic oper-
ation and the programing inputs. This requires a qualitative descrip-
tion of the stability behavior of the EADPM. Our model is based on
the following assumptions:

(1) The beams are slender, i.e., the beam thickness is 100 times
lower than the length. Therefore, there is no shear within the
beam.

(2) The beam displacement is within its intermediate range.
(3) The material used is a linear elastic material with Young’s

modulus E.
(4) The elastic axial extension of the beams is neglected.

Figure 9(a) gives the main variables representing the dimensions
of the mechanism used in the model and Table 3 gives the value of
these dimensions. The stiffness of the double parallelogram mech-
anism can be written as [20]

kp =
48EI
ℓ3

1 −
N

N0

( )
(4)

where

N0 =
2π2EI
ℓ2

, I =
wt3

12

The axial load exerted on the beams is

N = k1(p1 − λ)

where λ is the axial displacement of the beam

λ =
6x2

5ℓ

Substituting back into the equation

kp =
48EI
ℓ3

1 −
k1(p1 −

6x2

5ℓ
)

N0

⎛
⎜⎜⎝

⎞
⎟⎟⎠

The effective stiffness of the mechanism is equivalent to two
springs, the beams denoted by kp and k2, connected in parallel.
Therefore, the total required force is

f = kpx − k2(p2 − x) (5)

We normalize the force f by the factor EI/ℓ2. This leads to the
following equation:

f̂ =
f ℓ2

EI
=
288
5

γx̂3 + (48 − 48γ p̂1 + k̂2)x̂ − k̂2 p̂2 (6)

Fig. 10 Energy profiles of EADPM at (a) p1=0, p2=0;
(b) p1 = pcr

1 , p2 = 0; (c) p1 > pcr
1 , p2 = 0; (d) p1 < pcr

1 , p2 < 0;
(e) p1 < pcr

1 , p2 = 0; (f) p1 < pcr
1 , p2 > 0; (g) p1 > pcr

1 , 0> p2 >−pcr
2 ;

(h)p1>pcr
1 ,p2=−pcr

2 ; (i)p1>pcr
1 ,p2<−pcr

2 ; (j)p1>pcr
1 ,0<p2<pcr

2 ;
(k)p1>pcr

1 ,p2=pcr
2 ; and (l)p1>pcr

1 ,p2>pcr
2

Table 3 Dimensions used for FEM simulation

Parameter Value Parameter Value

ℓ 120 (mm) t 0.2 (mm)
w 10 (mm) E 210 (GPa)
k1 5 (kN/m) k2 30 (N/m)

Table 2 Stability regions as functions of p1 and p2

Number of stable states p1 p2

1 p1 < pcr1 –
1 p1 > pcr1 |p2| > pcr2
2 p1 > pcr1 |p2| < pcr2
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where

x̂ =
x

ℓ
, p̂1 =

p1
ℓ
, p̂2 =

p2
ℓ
, γ =

k1ℓ

N0
, k̂2 =

k2ℓ3

EI

The roots of equation determine the number of stable states of the
mechanism. On normalizing the equation by the first coefficient, it
can be rewritten as

x̂3 +
5
6γ

−
5
6
p̂1 +

5k̂2
288γ

( )
x −

5k̂2 p̂2
288γ

= 0 (7)

The number of the real roots is determined by the discriminant
which can be written as

Δ = −4
5
6γ

−
5 p̂1
6

+
5k̂2
288γ

( )3

−27
5k̂2 p̂2
288γ

( )2

(8)

In order to have more than one root, i.e., multistability, the discri-
minate Δ needs to be positive. This condition can be written as

p̂2 <
576γ

15
��
3

√
k̂2

5 p̂1
6

−
5
6γ

−
5k̂2
288γ

( )3/2
∣∣∣∣∣

∣∣∣∣∣ (9)

This equation represents the stability boundary between monostable
and bistable configurations. This is equivalent to the functionΦ dis-
cussed in Sec. 1. In order to have real value, the following condition
has to be satisfied:

p̂1 >
1
γ
+
k̂2
48

( )
(10)

Therefore, once both conditions in Eqs. (10) and (9) are satisfied,
the mechanism exhibits bistability behavior.
The positions of the stable states, s1 and s2, and unstable state, u,

are the roots of the cubic polynomial given in Eq. (6), where the
mechanism position at the roots xs1 and xs2 corresponding to s1
and s2, respectively, and the mechanism position of the root xu cor-
responds to u.
The stiffness of the mechanism is the first derivative of the force,

given in Eq. (6), with respect to x̂ such that

k̂ =
864
5

γx̂2 + 48 − 48γ p̂1 + k̂2 (11)

The stiffness of the mechanism at stable and unstable states can
be evaluated at the position of the roots s1, s2, and u.
Remark IV: The stiffness of the mechanism is independent of

displacement p2.

4 Mechanism Behavior With Respect to Programming
Input
The stability behavior of a PMM can be determined by calculat-

ing its strain energy, which depends on the value of p1 and p2.
Figure 11 illustrates the normalized force for different values of
p1 and p2. As discussed in our previous work [16], the qualitative
behavior of PMM can be described in terms of the programing
diagram, bifurcation diagrams, and stiffness maps. These diagrams
are essential to illustrate the operation of mechanism as reconfigur-
able logic gate as it will be given in Sec. 6.

4.1 Programing Diagram. The programing diagram gives the
relation between the number of stable states and p1 and p2, as illus-
trated in Fig. 12(a). The values of pcr1 and pcr2 representing the curve
Φ are highlighted in Fig. 12(b). At p2= 0, the mechanism is bistable
when p1 > pcr1 . Otherwise, it is a monostable mechanism.
If |p2| < pcr2 , the mechanism is bistable for p1 > pcr1 . The values

of pcr1 and pcr2 representing the stability boundaries are given by
Eqs. (10) and (9).

To describe the impact of p1 and p2 on the mechanism stability
behavior qualitatively, we use both bifurcation and stiffness
diagrams.

4.2 Bifurcation Diagram. A bifurcation diagram gives the
relation between the position of stable and unstable states with
the programing inputs. Since we have two programing inputs, we
fix one of the programing inputs and vary the other to simplify
the analysis of the mechanism behavior.
Figure 13 illustrates the impact of p1 on the position of the stable

and unstable states for given p2. At p2= 0, the mechanism acts as
buckled beams. One stable state exists, s1. At p1 = pcr1 , pitchfork
bifurcation occurs. The stable state becomes unstable u and bifur-
cates into two stable states s1 and s2.
For non-zero |p2| < pcr2 , a saddle-node bifurcation occurs instead

of a pitchfork bifurcation, at which a stable state and an unstable
state emerge. For p2 < 0, the bifurcation occurs at x> 0 as shown
in Fig. 13(b). Otherwise, the bifurcation node occurs for p2 > 0 at
x< 0 as given in Fig. 13(c). The value of x at which bifurcation
occurs depends on p2. The higher |p2|, the higher |x|.
In Fig. 14, the bifurcation diagram of stable and unstable states

with p2 for different values of p1 is shown. If p1 < pcr1 , the mecha-
nism has one stable state s1. As p2 increases, the position of the
stable state varies linearly. As p1 increases, the relation between
the position of stable states becomes nonlinear due to the softening
effects of the beam under compression.
At p1 = pcr1 , bifurcation occurs; two stable states and one unstable

state emerge at p2= 0 as given in Fig. 14(b). As p1 increases, the
position of the bifurcation nodes varies. It should be noted that
the bifurcation node is the value of pcr2 , where the mechanism
switches from bistability to monostability.
If we assume that the mechanism is positioned at s2 in Figs. 13(b)

and 13(c), on decreasing p1, the mechanism position will slightly
change until p1 reaches the bifurcation node. Then, the stable
state s2 vanishes and the mechanism will switch to s1 releasing
energy. The energy released and distance traveled by the mecha-
nism on switching depend on p2.
Similarly, p2 can be used to switch the mechanism between its

stable states. We assume that the mechanism is placed at s2 position
given in Fig. 14(c). As p2 increases, the mechanism slightly moves.
Once p2 > pcr2 , s2 vanishes and the mechanism snaps from s2 to s1.

4.3 Stiffness Map. The stiffness map gives the relation
between the stiffness of stable states, s1 and s2, and unstable
state u versus the programing inputs p1 and p2 as illustrated in
Fig. 15.
In the case of the stable state, s1, it does exist for all values of p1

and p2. The stiffness is always positive, implying that the position is
stable. p1 has a higher impact on the stiffness. For large negative
values p1, the stiffness of EADPM is high and it decreases with
increasing p1. It reaches zero at p1 = pcr1 when p2= 0. After that,
increasing p1 increases stiffness. The stiffness of s1 is slightly
affected by p2.
In the case of the unstable state, u, it exists only when the mech-

anism is bistable and its stiffness is always negative. Similar to s1,
the stiffness magnitude increases on increasing p1 and it is slightly
impacted by p2 variations.
For the stable state, s2, it does exist only when the mechanism is

bistable. The stiffness varies significantly with p1 and slightly with
p2. As p1 increases, the stiffness increases.

5 Numerical Verification
COMSOL was used to verify our analytical computations. Table 3

gives the dimensions of the mechanism used in the simulation.
The solid mechanics module is used with the linear elastic material
model.
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The programing inputs were applied as prescribed displacement.
A parametric sweep was performed. For each step, the strain energy
was calculated where geometric non-linearity was considered. A
mesh convergence test was performed to verify the validity of the
solution.
The number of energy minima represents the number of stable

states. The mechanism reaction force and stiffness were calculated
as the first and second derivatives of the strain energy with respect
to the displacement. Figure 19 gives the deformation of our logic
gate based on the finite element analysis.

6 Logic Computation
The EADPM can be used as a reconfigurable logic device as

illustrated in Fig. 16. The boundary condition of the mechanism
is modified by imposing displacement, p1 and p2, representing the
programing input. As discussed in Sec. 1, the programing inputs
have two components, the reconfiguration component, r1 and r2,
and the logic operand i1 and i2. The number of the stable states of
the mechanism can be either “1” or “2” depending on the values
of r1 and r2 with respect to the critical function, Φ, represented
by pcr1 and pcr2 .

Fig. 11 Numerical verification of the model at (a) p1=0 (mm), p2=−3 (mm); (b) p1=0 (mm), p2=0 (mm); (c) p1=
0 (mm), p2=3 (mm); (d ) p1=1.0 (mm), p2=−4 (mm); (e) p1=1.0 (mm), p2=0 (mm); and (f ) p1=1.0 (mm), p2=
4 (mm)
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The displacement r1 and r2 set the mechanism as bistable close to
the stability boundary, as given in Fig. 16(b) and the mechanism is
placed at s2. On applying i1 and/or i2, the mechanism switches from
bistability to monostability as given in Fig. 16(c). We denote the
output “0,” if the mechanism maintains its state s2, i.e., bistable.
The output is “1” if the mechanism is monostable and its stable
state s2 vanishes. As we change the values of r1 and r2, the mech-
anism snaps and energy release will occur for different combina-
tions of i1 and i2. Therefore, the implemented logic function is
changed.

As shown in Fig. 17, the number of implementable logic func-
tions depends on the value of α1 and α2. Therefore, we sweep r1
and r2 for given values of i1 and i2 and possible logic functions
are found using our analytical model. This is done as follows:

(1) Check that the mechanism is bistable at r1 and r2.
(2) If the mechanism is bistable, we calculate the discriminant

from Eq. (8) for the four possible values of the input.
(3) If the discriminant for any of the four values is not positive, it

indicates monostability and the output is “1” for this value.

Fig. 12 (a) Programing diagram and (b) stability boundaries, representing the function Φ used
for logic computation

Fig. 13 Bifurcation diagram for stable and unstable states as a function of p1 at (a) p2=0 (mm),
(b) p2=1 (mm), and (c) p2=−1 (mm)
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Fig. 14 Bifurcation diagram for stable and unstable states as a function of p2 at (a) p1=
0.2 (mm), (b) p1=0.7 (mm), and (c) p1= 1 (mm)

Fig. 15 Stiffness maps as a function of the programing inputs for (a) s1, (b) u, and (c) s2
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Fig. 16 Configuration of the EADPM for implementing logic operations: (a) mecha-
nism, (b) energy profile corresponding to the mechanism deformation, (c) input
values on the programing diagram, and (d) rectangle representing the four discrete
values of the operands

Fig. 17 Possible logic functions implemented by the EADPM for different values of r1 and r2: (a) NOT (i2 OR i1),
(b) NOT i2, (c) False, (d ) i2 OR (NOT i1), and (e) NOT i2
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(4) A reconfiguration diagram relating the implementable func-
tion with the set component of programing input, r1 and r2,
is calculated.

Figure 18 shows the reconfiguration diagram for certain values i1
and i2 where the functions fi are given in Table 1.
We built a demonstrator of the EADPM out of plastic to illustrate

the different logic functions. Figure 19 shows the mechanism

deformation based on numerical and experimental demonstration.
The programing inputs are applied via a slider and a cam, where
the position of the sliders gives the set component, r1 and r2, and
the position of the cams represents the logic operands, i1 and i2.
We verified that f0, f4, and f5 are implementable when r1 is positive.
This is illustrated by the timing diagram in Fig. 20.

7 Future Work
We plan to use the discretization afforded by the reconfiguration

diagram to construct a PMM with purely discrete reconfiguration
input. We also plan to design new PMMs having different program-
ing maps such that more of the possible 16 logical gates can be real-
ized by the same mechanism. We will then combine mechanisms in
order to implement more complex computations.

8 Conclusion
This paper provides new concepts to implement mechanical com-

putation. We present a novel geometric method to construct a recon-
figurable logic gate. We further construct a new programable
multistable mechanism (PMM), the EADPM, to generate the geo-
metric data for a reconfigurable logic gate. Based on our analytical
calculations, 9 of 16 possible implementable logic operations can be
constructed using this mechanism. We gave a complete qualitative
analysis of the mechanism’s stability behavior. The analytical

Fig. 18 Reconfiguration diagram for α1=1.6 (mm) and α2=
6 (mm) based on the analytical model

Fig. 19 (a) Physical demonstrator, (b) deformed in a stable state, (c) FEM simulation of themech-
anism deformation, and (d) cam and slider for imposing i2 and r2, respectively
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computations were verified using numerical simulations and exper-
imental demonstration.
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