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Abstract—Toroidal magnetic configurations are widely exploited 
in industry and scientific research, involving a vast spectrum of ap-
plications, such as thermonuclear fusion, particle detectors, SMES 
systems and medical devices. To properly design and analyse these 
systems, it is crucial to determine the magnetic field generated by 
different configurations. The multipole expansion theory can be ap-
plied to the analysis of toroidal configurations, by solving the La-
place equation for the magnetic scalar potential in toroidal coordi-
nates. Contrarily to the case of accelerator magnets with straight 
axis, in this case the correlation between the current distribution and 
the field harmonics cannot easily be identified. This paper proposes 
a methodology for the computation of field harmonics in toroidal 
coordinates, which is validated by comparison with the results ob-
tained through the Biot-Savart law. This work was carried out in the 
frame of the GaToroid project ongoing at CERN.  
  

Index Terms—Curve fitting, Harmonic analysis, Laplace equa-
tion, Toroidal magnetic fields  

I.  INTRODUCTION 
OROIDAL magnets are widely exploited in industry and sci-
entific research, involving a vast spectrum of applications, 

such as thermonuclear fusion, particle detectors, SMES systems 
and medical devices. Toroidal configurations may involve dif-
ferent number of coils of different planar and three-dimensional 
geometries; to properly analyze these systems, it is crucial to 
determine the magnetic field generated by the various configu-
rations. 

The multipole expansion theory in cylindrical coordinates is 
widely adopted to describe the magnetic field of particle accel-
erator magnets with straight axis [1]. The main advantage of 
this analytical description is the possibility of identifying mul-
tipolar field components of the magnetic system and use them 
to predict the interaction of a charged particle beam with the 
field itself. In this case, the correlation between current distri-
bution and field harmonics is well known. 

The multipole expansion theory can also be applied to the 
analysis of toroidal configurations, by solving the Laplace 
equation for the magnetic scalar potential in toroidal coordi-
nates [2]–[5]. In this case however, the correlation between the 
current distribution and the field harmonics cannot easily be 
identified. 

This paper proposes a methodology for the determination of 
the field harmonics in toroidal coordinates, based on the work 
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introduced in [6]. The starting point of the model is the calcula-
tion of the magnetic scalar potential, based on a hybrid analyti-
cal-numerical approach, which was validated versus well-estab-
lished software for electromagnetic calculations.  

Several previous studies concerning toroidal field harmonics 
propose simplified versions of the equations involved. Some-
times the expansion functions are normalized by means of half-
integer Legendre functions computed at a selected value of the 
radial toroidal coordinate for numerical purposes [2], [7]. The 
methodology proposed in this paper does not require any sim-
plification, and allows one describing magnetic fields with sat-
isfactory accuracy by using a rather low number of toroidal har-
monics (less than 100 in the considered configurations). 

II. MULTIPOLE EXPANSION IN TOROIDAL COORDINATES 
The toroidal coordinate system (x, h, f) is a set of three-di-

mensional orthogonal coordinates obtained by rotating the two-
dimensional bipolar coordinates (x, h) around the axis which 
separates the two foci [8], shown in Fig. 1. Strictly speaking, (x, 
h) can be associated to the radius and the poloidal angle of a 
more intuitive cylindrical coordinate system. 

The procedure followed for the evaluation of the field har-
monics is based on the Laplace’s equation solution for the mag-
netic scalar potential, in a suitable coordinate system [1]. 

The inner region of a toroidal system is in vacuum and no 
current lines are present; in this area the magnetic field is irro-
tational, hence it can be expressed as the gradient of the scalar 
potential 𝑯 = −∇𝜓, provided that the toroidal region is reduced 
to a simply connected domain. Furthermore, the magnetic field 
H is solenoidal, consequently we can write the Laplace’s equa-
tion for the scalar potential ∇&𝜓 = 0 [9]. The Laplace’s equa-
tion can be solved in toroidal coordinates employing the R-sep-
aration technique [10]. Since the toroidal geometry represents a 
multiply connected domain, it is necessary to add to the general 
solution reported in [10] the term 𝑀))

* 𝜙 (see (1)), which allows 
fulfilling the Ampere’s law. This term, called ideal contribu-
tion, corresponds to the magnetic field generated by a homoge-
nous current distribution on a toroidal surface. This contribution 
does not depend on the coil geometry; it can be demonstrated 
that 𝑀))

* = 𝑁𝐼/2𝜋, where N is the number of coils of the mag-
netic configuration and I the current flowing in each coil [2]. 
Assuming that no current is flowing inside the torus, ξ takes 
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finite values in this region, and periodicity exists along f and η, 
then the scalar potential can be written for the inner region of 
the torus as follows: 

      (1) 

 
where Mij are the multipolar coefficients related to the field 

harmonics, and the terms 𝑃234/&5  and 𝑄234/&5   are the half-inte-
ger Legendre polynomials of the first and second kind [11], re-
spectively. 

The magnetic field components are deduced by applying the 
gradient to the whole expression of the scalar potential, in to-
roidal coordinates. 

 
Fig. 1. Bipolar coordinate system. The rotation around the z-axis, quantified 
by the angle f, defines the toroidal coordinate system. 
 
The expressions found are the following: 

 (2) 

 (3) 

 (4) 

where 𝑘 = 8cosh(𝜉) − cos(𝜂). Once the coefficients of the 
multipolar expansion of the magnetic scalar potential are 
known, the magnetic field components can be computed with 
the equations (2) - (4). 

III. METHODS AND PROCEDURES 

The methodology proposed here for the computation of the 
multipolar coefficients is based on two subsequent fitting pro-
cedures, where the coefficients are determined by non-linear 
least squares method. No simplifications of the expansion (1) 
are needed with this approach. The requirement for the applica-
tion of this algorithm is the knowledge of the magnetic scalar 
potential at a fixed radial coordinate ξ = ξ0, for L values of the 
poloidal angle η and S values of the toroidal angle f. This set of 
points defines a reference grid. It has been verified that values 
of L = S = 200 are a good compromise between accuracy of 
results and computational burden. The reference grid is defined 
by equally spaced points, although this is not a requirement for 
the use of the proposed method. For this work, the scalar poten-
tial has been computed with a procedure based on the evalua-
tion of the solid angles subtending each current loop [12], em-
ploying the plane triangles approximation [13]. It is worth re-
calling that the scalar potential presents a discontinuity on an 
arbitrary surface bounded by the current loop. Still, its gradient 
(i.e. the magnetic field) remains a continuous function within 
the toroidal domain inside the coils [12]. 

The procedure described below is applied to the scalar poten-
tial 𝜓∗ = 𝜓 −𝑀))

* 𝜙, where the ideal contribution, known a pri-
ori, is removed to further ameliorate the computational accu-
racy. The first part of the procedure requires the magnetic scalar 
potential at a fixed value ξ = ξ0 and at given angles η = ηl, with 
l = 0, 1, …, L-1. Therefore, 𝜓∗is reduced to a function of 𝜙 only 
and the expression of the scalar potential can be written as: 

 (5) 

where 

 (6) 

 (7) 
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First of all, it is necessary to choose the values of N and M at 
which the summations can be truncated. The values of Cn and 
Dn can be found by applying a fitting procedure, named Fitting 
1, which takes as an input the values of the scalar potential at ξ 
= ξ0, η = ηl for S equidistant values of fs=2p s/S, with s = 0, 1, 
..., S – 1. Equation (5) is used as a fitting equation in order to 
obtain the 2N values of the coefficients Cn(ξ0, ηl) and Dn(ξ0, ηl).  

The actual values of the multipolar components are undeter-
mined at this stage. Indeed, the terms Cn and Dn involve many 
contributions of the toroidal harmonics, which need to be dis-
tinguished between each other.  

To this purpose, it is necessary to apply all the steps de-
scribed so far to each different value of ηl=2pl/L, with l = 0, 1, 
..., L − 1. The result of this last step is a set of L values of Cn 
and a set of L values of Dn, which depend on the angle η and on 
the fixed value ξ0. These data can be interpreted as the known 
data of the previous fitting; therefore, it is possible to employ a 
similar method to fit them and obtain the coefficients Mcc, Msc, 
Mcs, Mss, for each value of n and m. The two procedures imple-
mented are referred to hereafter as Fitting 2C and Fitting 2D: 
the fitting equations are respectively (6) and (7). At the end of 
the fitting procedures, the values of each coefficient, introduced 
in the multipolar expansion of the scalar potential, are known. 

Therefore, employing the described technique, the multi-
poles of a specific toroidal configuration can be identified. The 
multipolar coefficients can also be substituted in the expression 
of the magnetic field components (2), (3), (4).  

A. Validations 
The first method that can be used to validate the self-con-

sistency of the proposed procedure consists in comparing the 
scalar potential computed with the solid angles method, referred 
to as ψsa, and the scalar potential obtained by inserting in (1) the 
multipolar coefficients found through the fitting procedure, in-
dicated as ψmc. The study of the relative error between these two 
values of the scalar potential, computed with the ideal contribu-
tion included in the results, allows one verifying the correctness 
of the multipolar coefficients assessment. 

The validity of the scalar potential computation and of its de-
composition in multipolar coefficients can also be confirmed by 
replacing them in (2), (3) and (4) to determine the field compo-
nents along the coordinate axes. These results can be directly 
compared with the magnetic field independently computed by 
means of the Biot-Savart law [14]. A further validation of the 
results was based on verifying that the computed magnetic field 
components respect the Ampere’s law.  

IV. RESULTS AND DISCUSSION 
The aim of this section is to present some of the configura-

tions which have been analyzed employing the methodology 
proposed in this paper. The input parameters characterizing the 
three studied configurations are summarized in Table 1. In or-
der to demonstrate the absence of restrictions required by the 
algorithm, the three examples proposed here involve a different 

number of coils at the same angular coordinate and a non-cir-
cular coil shape; their geometry is shown in Fig. 2. 

The simplest configuration analyzed consists of a toroid with 
16 individual circular coils, equally distributed along the azi-
muthal coordinate, represented in blue in Fig. 2a). In the same 
figure, the red points represent the reference grid necessary for 
the implementation of the fitting procedure. Fig. 3 shows the 
comparison between the two scalar potentials ψsa and ψmc, eval-
uated at a fixed h = 0.6 rad. The good agreement between these 
two potentials indicates the correctness of the identification 
procedure of the multipolar coefficients.  

As for the validation by comparison with the independent 
Biot-Savart based field computation, the results obtained with 
the two methods for the component Hf computed at fixed h = 
0.6 rad are shown in Fig. 4. The maximum relative error found 
between the results of the two procedures is in the order of 10-5 
%.  

A more complex configuration is the one represented in Fig. 
2b), which involves coil grading with four non-concentric cir-
cular coils at the same toroidal section, as specified in Table I. 

 

 

 

 
 
Fig. 2. Analyzed configurations: the blue points represent the coils, while the 
red points represent the reference grid. a) 16 individual circular coils. b) 16 
graded circular coils, 4 coils in each section, 64 coils in total. c) 16 individual 
GaToroid coils. 
 

a) 

b) 

c) 
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This type of configuration is applied to modify the typical 1/r 
field dependence of the Hf component. The procedure de-
scribed in this work does not impose any restriction on the 
shape of the coils. For instance, it is possible to consider coils 
with the shape displayed in Fig. 2c), which have been proposed 
for the GaToroid system [15]–[17]. The relative errors found by 
comparing ψsa and ψmc for the three configurations is shown in 
Fig. 5, for three different choices of the upper limits for the 
computation of the infinite sums. 
 

 

 
Fig. 3. Comparison between ψsa and ψmc, for the Case a). For the sake of sim-
plicity, the comparison is plotted at a fixed value of h, set to 0.6 rad. 
 

 
Fig. 4. Comparison between the magnetic field component Hf computed with 
the Biot-Savart law and the same field component obtained by replacing the 
computed multipolar coefficients in (4), for Case a). For the sake of simplicity, 
the comparison is plotted at a fixed value of h, set to 0.6 rad. 

 
Fig. 5. Comparison of the relative error between the scalar potential obtained 
with the solid angles’ method and the scalar potential found by replacing in (1) 
the computed multipolar coefficients, for the cases a), b) and c). Relative errors 
are evaluated for different ranges of the index n = 0 : N and m = 0 : M. 

 
In particular, the sums in n and m were truncated at N (48, 

80, 96) and M (5, 10, 20) respectively. 
Fig. 5 shows that a lower number of harmonics are required 

to achieve a correct reconstruction of the scalar potential in case 
a), given the simplicity and the symmetry of the magnetic con-
figuration. In this case, choosing the index n in the range 0:80 
and the index m in the range 0:10, the maximum relative error 
obtained from the comparison between ψsa and ψmc is 1 10-8 %.  

As for cases b) and c), with n = 0 : 96 and m = 0 : 20, a relative 
error of 6 10-8 % and 4 10-8 % are obtained respectively. 

Therefore, in order to reach the same accuracy, a higher num-
ber of harmonics is required for cases b) and c). 

V. CONCLUSION 
A novel methodology has been developed for the computa-

tion of field harmonics in toroidal coordinates, without any con-
straint on the number and shape of coils in the magnetic config-
uration. The self-consistency of the procedure was proved by 
reconstructing the given scalar potential by means of a finite 
sum of the toroidal multipolar components.  

A further validation of the procedure was obtained by com-
paring the results on the magnetic field components with those 
found via an independent algorithm based on the Biot-Savart’s 
law developed to this purpose.  

The calculation accuracy obtained with the proposed method-
ology is well below the precision required for field quality assess-
ment in particle accelerators, fusion machines and medical appli-
cations. The developed algorithm can be applied to explore the 
correlation between the shape and number of coils disposed 
along the torus and the generated multipolar components.  
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TABLE I 
CONFIGURATIONS PARAMETERS 

Parameter Case A Case B Case C 

Number of coils 16 16 16 
Number of coils per section  1 4 1 

Current in each coil [A] 1000 1000 1000 
Toroid major radius [m] 1.25 1.33 - 
Toroid minor radius [m] 0.5 0.33 - 

Reference grid major radius [m] 1.25 1.25 1.25 
Reference grid minor radius [m] 0.05 0.05 0.05 

In the case of graded coil, the third and the fourth parameters refer to the inner 
coil; these terms are not provided in the case of GaToroid coils, whose shape does 
not allow one to define radii.  
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