
LEARNING REPRESENTATIONS OF
SOURCE CODE FROM
STRUCTURE & CONTEXT by Dylan Bourgeois

M.Sc. Thesis Defense 08.04.2019

Supervised by

Pr. Pierre Vandergheynst
Michaël Defferrard

Pr. Jure Leskovec
Dr. Michele Catasta

1 Introduction
2 Code: a structured language with
 natural properties
3 Leveraging structure and context in
 representations of source code
4 Experiments

2

1 Introduction

3

Capturing
similarities of
source code

Programming languages offer a
unified interface, which is
leveraged by programmers. The
regularities in coding patterns can
be used as a proxy for semantics.

Example applications

● Code recommendation

● Plagiarism detection

● Smarter development tools

● Error correction

● Smart search

4

Software is
ubiquitous

Programming is a human
endeavour. It is an intricate
process, often repetitive,
time-consuming and error-prone.

5

Software is
multimodal

The idiosyncrasies of source code
are not trivial to deal with.
Software is also inherently
composable, reusable and
hierarchical, it has side-effects.

6

Software is multilingual.

It exists through several representations...

and multiple abstractions.

Existing work

Most work has focused on solving
specific tasks, less so on capturing
rich representations of source
code.

7

Heuristic-based

Leveraging the strong logic encoded by

PL to create formal verification tools,

memory safety checkers, ...

1

Contextual regularities

Capturing common patterns in the

input representation, typically used in

code editors.

2

Our approach

8

We show that patterns in the input

provide a decent signal.

We propose a hybrid approach,
which leverages both heuristics
and regularities.

Specifically, we hypothesise that
structure is an informative
heuristic.

HEURISTICS (STRUCTURE)

We provide evidence for the importance of

leveraging structure in the representation of

source code.

REGULARITIES (CONTEXT)

We propose a model which learns to recognize

both structural and lexical patterns.

HYBRID (OURS)

2 Code: a structured language
 with natural properties

9

Capturing the regularities of language

A Language Model (LM) defines a probability

distribution over sequences of words:

10

[Shannon, 1950, Harris, 1954, Deerwester et al, 1990, Bengio et al. 2003, Collobert and Weston, 2008]

This probability is estimated from a corpus, and

can be parameterized through different forms:

● n-gram

● Bidirectional / Bi-linear

● Neural Network

On the naturalness
of software

Source code starts out as text: as such it

can present the same kind of regularities as

natural language.

Its restricted vocabulary, strong

grammatical rules and composability

properties encourage regularity and hence

predictability.

11

[Hindle et al., 2012]

Representations of
source code

Each representation has inherent
properties and abstraction levels
associated to it.

12

Code represented
as a structured
language

The Abstract Syntax Tree (AST)
provides a universally-available,
deterministic and rich structural
representation of source code.

13

The regularities of
structured
representations

Similar to what was found by
[Hindle et al., 2012] on free-form
text, we see both common patterns
(e.g. motif #7) and project specific
patterns (e.g. motif #3).

14

z-scores

3 Leveraging context and
structure in representations of
source code

15

3.1 Learning from context

16

Linear Language
Models

The n-gram model can be represented as a

Markov Chain, simplifying the joint

probability by assuming that the likelihood

of a word depends only on its history.

17

Generalized language models

18

However, in order to integrate more complex

models of language, it is necessary to allow

more complex models of context.

In order to model polysemy, this context

should also modulate the representation of a

given word.

[Mikolov et al., 2013, Peters et al., 2018]

The Transformer

Many of these insights are captured
in the Transformer architecture
[Vaswani et al., 2017].

It is a deep, feed-forward, attentive
architecture showing strong results
compared to recurrent architectures.
It is now the building block for most
state-of-the-art architectures in NLP.
[Radford et al., 2018, Devlin et al. 2018]

19

The Transformer

20

[Vaswani et al., 2017]

The encoder embeds input
sequences. Several of these blocks
are then stacked to create deeper
representations.

3.2 Learning from structure

21

Leveraging
structured
representations of
code

Recent work has built on the
powerful Graph Neural Networks,
running on semantically augmented
representations.

22

[Allamanis et al., 2018]

Limitations of the
approach

Unfortunately, we found the purely
structural approach to have limited
results.

23

INSIGHTS

● A limited vocabulary means contexts are

averaged across too many usages to be

semantically meaningful.

● Learning a representation for each token

has the inverse problem: not enough

co-occurrences.

● Some aggregators can have issues with

common motifs in code [Xu et al, 2019].

3 Learning from context and
structure

24

The Transformer: a
GNN perspective

No assumptions are made on the
underlying structure: the attention
module can attend to all the
elements in the sequence.

25

INSIGHT

The Transformer: a
GNN perspective

26

No assumptions are made on the
underlying structure: the attention
module can attend to all the
elements in the sequence.

This can be seen as a
message-passing GNN on a fully
connected input graph.

INSIGHT

Generalizing to
arbitrarily
structured data

The message-passing edges can be
restricted to a priori edges, e.g.
syntactic relationships. This
enables the treatment of arbitrary
graph structures as input.

27

OUR APPROACH

Generalizing to
arbitrarily
structured data

28

The message-passing edges can be
restricted to a priori edges, e.g.
syntactic relationships. This
enables the treatment of arbitrary
graph structures as input.

OUR APPROACH

Generalizing to
arbitrarily
structured data

The aggregation scheme can be
replaced by any message-passing
aggregation architecture!

29

GCN-based aggregation

GAT-based aggregation

Masked Dot-Product Attention

where

Semantic Aggregation?

OUR APPROACH

Generalizing to
arbitrarily
structured data

30

For example, with the masked
attention formulation, we can
modify a Transformer encoder
block to run on arbitrarily
structured inputs.

OUR APPROACH

A hybrid approach
to aggregating
context

31

With this formulation, we can jointly
learn to compose local and global
context, obtaining a deep
contextualized node representation.

This helps to learn structural and
contextual regularities.

OUR APPROACH

3.4 Learning from context and
structure

32

Model pre-training:
a semi-supervised
approach

Great success in NLP applications
to first model the input data.

Similar approach to auto-encoders,
but only the masked input is
reconstructed.

33

Source code
provides abundant
training data

Structure is readily available and
deterministic, unlike parse trees of
natural language.

The masked language model is
similar to a node classification task
on graphs.

34

Transfer learning
capabilities

Once the model is pre-trained, it
can be fine-tuned to produce labels
through a pooling token [CLS] or
used as a rich feature extractor.

35

4 Experiments

36

4.1 Learning from structure

37

Node classification

38

Graph-based tasks

The structure is similar to the
pre-training task.

MODEL TRAINED
FROM SCRATCH

Graph classification

39

Graph-based tasks

In this case, we use the pooled
representation of the input graph
to make a prediction.

PRE-TRAINED
MODEL

Graph classification

40

Our approach is competitive with
state-of-the-art results on classic
graph classification datasets.

ENZYMES
Predicting one of 6 classes of chemical properties
on molecular graphs.

MSRC 21
Predicting one of 21 semantic labels (e.g.
building, grass, …) on image super-pixel graphs.

MUTAG
Predicting the mutagenicity of chemical
compounds (binary).

Transfer learning
on graphs

Pre-training the model seems to
enable faster training. For better
accuracy, the model can be trained
on multiple related tasks.

41

MSRC 21
Dataset of MRFs connecting
super-pixels of an image, where the goal
is to predict one of 21 labels (e.g.
building, grass, …).

[Winn et al. 2005]

Transfer learning
on graphs

Pre-training the model seems to
enable faster training. For better
accuracy, the model can be trained
on multiple related tasks.

42

MSRC 21/9
Dataset of MRFs connecting
super-pixels of an image, where the goal
is to predict one of 21/9 labels (e.g.
building, grass, …).

[Winn et al. 2005]

4.2 Learning from structure and
context

43

Datasets

We collect code from online
repositories into three datasets at
different scales.

A fourth very large (3TB!) dataset is
currently being curated.

44

45

Processing the data

Preparing the data
for pre-training

We generate a set of code snippets,
defined as valid code subgraphs,
and perturb the dataset for
reconstruction in the Masked
Language Model task.

46

Pre-training: a
semi-supervised
task

Our syntax-aware model
significantly outperforms
BERT [Devlin et al, 2018] , providing
some evidence that the addition of
structure helps the model capture
regularities.

47

4.3 Supervised tasks

48

Supervised
fine-tuning

49

We fine-tune the model on two
standard tasks in the field of
machine learning on source code:

Method Naming

Variable Naming

1
2

Method Naming

The addition of structural
information seems to help
outperform traditional LM
architectures.

50

*

*
*

* *

Exact match

Points for partial match, at a token level

OURS

Method Naming

We outperform State-of-the-art
results, showing a 20% relative
improvement to [Alon et al, 2019].

51

Method Naming

52

Method Naming

Failure modes reveals that
interesting semantic information is
being captured.

53

Method Naming

The model can leverage both
co-occurrence based semantics as
well as structural similarities.

54

Supervised
fine-tuning

We fine-tune the model on two
standard tasks in the field of
machine learning on source code:

55

Method Naming

Variable Naming

1
2

Variable Naming

We show clear improvements with
the addition of structure, as well as
state-of-the art results.

56

OURS

Variable Naming

57

4.4 Sanity checks

58

Permutation invariance

59

We shuffle the token input sequence order but preserve edges, ensuring that the
model actually learns on the message-passing edges and not local co-occurrences
in the flattened representation.

Syntactic
correctness

To test the model’s properties we
evaluate the syntactic correctness
of the predicted tokens, as defined
by the language’s grammar.

60

Token Type - 2 classes

Token Class - 14 classes

● Language keyword
● User-provided token

● BoolOp - And, Or
● Expression - Lambda, Yield, Num, Str, …
● Statement - FuncDef, Return, If, While…
● ...

OURS

61

Layer

Inspecting attention weights

0

1

2

0
Head

1 2 3 4 5

62

Layer

Inspecting attention weights

0

1

2

0
Head

1 2 3 4 5

In early layers, the model has a receptive field

that extends only to its immediate neighbours.

More complex attentive chains

form in later layers.

Inspecting the entropy of attention weights

63

We measure the entropy of attention weights to see if the model is able to weigh
different neighbours differently based on their importance, comparing it to uniform
weights (all neighbours are equally important).

5 Conclusion

64

● We propose a model leveraging both structural and
contextual information to embed graph-structured input.

● We show that adding structure provides strong semantic
signals for the representations of source code.

● We present a model that can extend to several related tasks
on graphs, encouraging re-use of prior knowledge.

Future Work

65

Reproducibility

The field of ML4Code
could benefit from
explicitly designed
datasets, serving as
diagnostics or
evaluations on a
standardized
benchmark.

Architecture

Design more complex
aggregation schemes,
possibly incorporating
more domain-specific
information, global
feature information or
recursively
aggregating at larger
scales.

Similarity

Proxy tasks validate the
approach but the final
goal is to measure
similarity in software.
This requires designing a
better evaluation of
similarity, and extending
to other languages and
applications.

Thank you!

66

Questions?

Dylan Bourgeois
@dtsbourg

Additional slides

A - Reproducibility in ML4Code
B - Other work

67

Reproducibility
Checklist

Inspired by the influential
reproducibility checklist by Joëlle
Pineau (adopted for NeurIPS this
year!), we propose a specific
version for ML4Code.

68

A

Reproducibility
Checklist

Inspired by the influential
reproducibility checklist by Joëlle
Pineau (adopted for NeurIPS this
year!), we propose a specific
version for ML4Code.

69

A

Reproducibility
Checklist

Inspired by the influential
reproducibility checklist by Joëlle
Pineau (adopted for NeurIPS this
year!), we propose a specific
version for ML4Code.

70

A

SCUBA

We would also like to propose a
standardized benchmark dataset,
whose development is in process,
complete with an online
leaderboard and diagnostics tasks.

Inspired by the GLUE benchmark.

Predicting a label or property of a set of

tokens from the input, similar to a node

classification.

71

A Inference Tasks

Semantics of Code and Understanding BenchmArk

Predicting a label or property for an entire

chunk of the input, similar to graph

classification.

Snippet-level evaluation

Predicting labels for sets of inputs, from

similarity to link prediction.

Similarity measures

[Wang et al. 2018]

GNN-Explainer: A
tool for post-hoc
interpretation of
Graph Neural
Networks

R. Ying, D. Bourgeois, J. You, M.
Zitnik, J. Leskovec

KDD’19 (submitted)
arxiv:1903.03894

72

B

A dynamic
embedding model
of the media
landscape

J. Rappaz*, D. Bourgeois*, K. Aberer

WebConf’19

73

B

Bibliography

74

[Allamanis, 2018] Allamanis, M. (2018). The adverse effects of code duplication in machine learning models of
code. arxiv:1812.06469.

[Allamanis et al., 2015] Allamanis, M., Barr, E. T., Bird, C., and Sutton, C. (2015). Suggesting accurate method
and class names. ESEC/FSE 2015, pages 38–49

[Alon et al., 2019] Alon, U., Zilberstein, M., Levy, O., and Yahav, E. (2019). Code2vec: Learning distributed
representations of code. POPL.

[Allamanis et al., 2018a] Allamanis, M., Barr, E. T., Devanbu, P. T., and Sutton, C. A. (2018a). A survey of
machine learning for big code and naturalness. ACM Comput. Surv., 51:81:1–81:37.

[Allamanis et al., 2018b] Allamanis, M., Brockschmidt, M., and Khademi, M. (2018b). Learning to represent
programs with graphs. ICLR.

[Bengio et al., 2003] Bengio, Y., Ducharme, R., Vincent, P., and Janvin, C. (2003). A neural probabilistic
language model. J. Mach. Learn. Res., 3:1137–1155.

Bibliography

75

[Collobert and Weston, 2008] Collobert, R. and Weston, J. (2008). A unified architecture for natural language
processing: Deep neural networks with multitask learning. ICML ’08.

[Deerwester et al.,1990] Deerwester,S.C.,Dumais,S.T.,Landauer,T.K.,Furnas,G.W.,and Harshman, R. A. (1990).
Indexing by latent semantic analysis. JASIS, 41:391–407.

[Devlin et al., 2018] Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). BERT: Pre-training of deep
bidirectional transformers for language understanding. Arxiv:1810.04805.

[Firth,1957] Firth,J.R.(1957).A synopsis of linguistic theory 1930-55. Studies in Linguistic Analysis (special
volume of the Philological Society), 1952-59:1–32.

[Hindle et al., 2012] Hindle, A., Barr, E. T., Su, Z., Gabel, M., and Devanbu, P. (2012). On the naturalness of
software. In ICSE ’12, pages 837–847, IEEE Press.

[Mikolov et al., 2013] Mikolov, T., Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation of word
representations in vector space. ICLR’13

Bibliography

76

[Peters et al., 2018] Peters,M.E.,Neumann,M.,Iyyer,M.,Gardner,M.,Clark,C.,Lee,K.,and Zettlemoyer, L. S. (2018).
Deep contextualized word representations. In NAACL-HLT.

[Radford et al., 2018] Radford, A., Narasimhan, K., Salimans, T., and Sutskever, I. (2018). Improving language
understanding by generative pre-training. OpenAI.

[Shannon, 1950] Shannon, C. (1950). Prediction and entropy of printed english. Bell Systems Technical
Journal.

[Vaswani et al., 2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L.,
and Polosukhin, I. (2017). Attention is all you need. In NeurIPS.

[Wang et al., 2018] Wang,A.,Singh,A.,Michael,J.,Hill,F.,Levy,O.,andBowman,S.R.(2018). GLUE: A multi-task
benchmark and analysis platform for natural language understanding. arXiv:1804.07461.

[Xu et al., 2019] Xu, K., Hu, W., Leskovec, J., and Jegelka, S. (2019). How powerful are graph neural networks?
In ICLR’19.

Pre-training: a
semi-supervised
task

The results are consistent across
corpora.

77

Multi-task capabilities

78

