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1 Introduction
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Capturing 
similarities of 
source code

Programming languages offer a 
unified interface, which is 
leveraged by programmers. The 
regularities in coding patterns can 
be used as a proxy for semantics.

Example applications

● Code recommendation

● Plagiarism detection

● Smarter development tools

● Error correction

● Smart search
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Software is 
ubiquitous

Programming is a human 
endeavour. It is an intricate 
process, often repetitive, 
time-consuming and error-prone.
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Software is 
multimodal

The idiosyncrasies of source code 
are not trivial to deal with. 
Software is also inherently 
composable, reusable and 
hierarchical, it has side-effects.
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Software is multilingual.

It exists through several representations...

and multiple abstractions.



Existing work

Most work has focused on solving 
specific tasks, less so on capturing 
rich representations of source 
code.
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Heuristic-based

Leveraging the strong logic encoded by 

PL to create formal verification tools, 

memory safety checkers, ...
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Contextual regularities

Capturing common patterns in the 

input representation, typically used in 

code editors.
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Our approach
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We show that patterns in the input 

provide a decent signal.

We propose a hybrid approach, 
which leverages both heuristics 
and regularities. 

Specifically, we hypothesise that 
structure is an informative 
heuristic.

HEURISTICS (STRUCTURE)

We provide evidence for the importance of 

leveraging structure in the representation of 

source code.

REGULARITIES  (CONTEXT)

We propose a model which learns to recognize 

both structural and lexical patterns.

HYBRID (OURS)



2 Code: a structured language
    with natural properties
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Capturing the regularities of language

A Language Model (LM) defines a probability 

distribution over sequences of words:
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[Shannon, 1950, Harris, 1954, Deerwester et al, 1990, Bengio et al. 2003, Collobert and Weston, 2008]

This probability is estimated from a corpus, and 

can be parameterized through different forms:

● n-gram

● Bidirectional / Bi-linear

● Neural Network



On the naturalness 
of software

Source code starts out as text: as such it 

can present the same kind of regularities as 

natural language.

Its restricted vocabulary, strong 

grammatical rules and composability 

properties encourage regularity and hence 

predictability.
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[Hindle et al., 2012]



Representations of 
source code

Each representation has inherent 
properties and abstraction levels 
associated to it.
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Code represented 
as a structured 
language

The Abstract Syntax Tree (AST) 
provides a universally-available, 
deterministic and rich structural 
representation of source code.
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The regularities of 
structured 
representations

Similar to what was found by 
[Hindle et al., 2012] on free-form 
text, we see both common patterns 
(e.g. motif #7) and project specific 
patterns (e.g. motif #3).
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z-scores



3 Leveraging context and 
structure in representations of 
source code
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3.1 Learning from context
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Linear Language 
Models

The n-gram model can be represented as a 

Markov Chain, simplifying the joint 

probability by assuming that the likelihood 

of a word depends only on its history.
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Generalized language models
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However, in order to integrate more complex 

models of language, it is necessary to allow 

more complex models of context.

In order to model polysemy, this context 

should also modulate the representation of a 

given word.

[Mikolov et al., 2013, Peters et al., 2018]



The Transformer

Many of these insights are captured 
in the Transformer architecture 
[Vaswani et al., 2017].

It is a deep, feed-forward, attentive 
architecture showing strong results 
compared to recurrent architectures. 
It is now the building block for most 
state-of-the-art architectures in NLP.
[Radford et al., 2018, Devlin et al. 2018]
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The Transformer

20

[Vaswani et al., 2017]

The encoder embeds input 
sequences. Several of these blocks 
are then stacked to create deeper 
representations.



3.2 Learning from structure
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Leveraging 
structured 
representations of 
code 

Recent work has built on the 
powerful Graph Neural Networks, 
running on semantically augmented 
representations.
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[Allamanis et al., 2018]



Limitations of the 
approach

Unfortunately, we found the purely 
structural approach to have limited 
results.
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INSIGHTS

● A limited vocabulary means contexts are 

averaged across too many usages to be 

semantically meaningful.

● Learning a representation for each token 

has the inverse problem: not enough 

co-occurrences.

● Some aggregators can have issues with 

common motifs in code [Xu et al, 2019].



3 Learning from context and 
structure
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The Transformer: a 
GNN perspective

No assumptions are made on the 
underlying structure: the attention 
module can attend to all the 
elements in the sequence. 
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INSIGHT



The Transformer: a 
GNN perspective
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No assumptions are made on the 
underlying structure: the attention 
module can attend to all the 
elements in the sequence. 

This can be seen as a 
message-passing GNN on a fully 
connected input graph.

INSIGHT



Generalizing to 
arbitrarily 
structured data

The message-passing edges can be 
restricted to a priori edges, e.g. 
syntactic relationships. This 
enables the treatment of arbitrary 
graph structures as input.
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OUR APPROACH



Generalizing to 
arbitrarily 
structured data
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The message-passing edges can be 
restricted to a priori edges, e.g. 
syntactic relationships. This 
enables the treatment of arbitrary 
graph structures as input.

OUR APPROACH



Generalizing to 
arbitrarily 
structured data

The aggregation scheme can be 
replaced by any message-passing 
aggregation architecture!
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GCN-based aggregation

GAT-based aggregation

Masked Dot-Product Attention

where

Semantic Aggregation?

OUR APPROACH



Generalizing to 
arbitrarily 
structured data
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For example, with the masked 
attention formulation, we can 
modify a Transformer encoder 
block to run on arbitrarily 
structured inputs.

OUR APPROACH



A hybrid approach 
to aggregating 
context
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With this formulation, we can jointly 
learn to compose local and global 
context, obtaining a deep 
contextualized node representation.

This helps to learn structural and 
contextual regularities.

OUR APPROACH



3.4 Learning from context and 
structure
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Model pre-training: 
a semi-supervised 
approach

Great success in NLP applications 
to first model the input data.

Similar approach to auto-encoders, 
but only the masked input is 
reconstructed.
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Source code 
provides abundant 
training data

Structure is readily available and 
deterministic, unlike parse trees of 
natural language. 

The masked language model is 
similar to a node classification task 
on graphs.
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Transfer learning 
capabilities

Once the model is pre-trained, it 
can be fine-tuned to produce labels 
through a pooling token [CLS] or 
used as a rich feature extractor.
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4 Experiments
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4.1 Learning from structure
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Node classification
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Graph-based tasks

The structure is similar to the 
pre-training task.

MODEL TRAINED 
FROM SCRATCH



Graph classification
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Graph-based tasks

In this case, we use the pooled 
representation of the input graph 
to make a prediction.

PRE-TRAINED 
MODEL



Graph classification
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Our approach is competitive with 
state-of-the-art results on classic 
graph classification datasets.

ENZYMES
Predicting one of 6 classes of chemical properties 
on molecular graphs.

MSRC 21
Predicting one of 21 semantic labels (e.g. 
building, grass, …) on image super-pixel graphs.

MUTAG
Predicting the mutagenicity of chemical 
compounds (binary).



Transfer learning 
on graphs

Pre-training the model seems to 
enable faster training. For better 
accuracy, the model can be trained 
on multiple related tasks.

41

MSRC 21
Dataset of MRFs connecting 
super-pixels of an image, where the goal 
is to predict one of 21      labels (e.g. 
building, grass, …).

[Winn et al. 2005]



Transfer learning 
on graphs

Pre-training the model seems to 
enable faster training. For better 
accuracy, the model can be trained 
on multiple related tasks.
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MSRC 21/9
Dataset of MRFs connecting 
super-pixels of an image, where the goal 
is to predict one of 21/9 labels (e.g. 
building, grass, …).

[Winn et al. 2005]



4.2 Learning from structure and 
context
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Datasets

We collect code from online 
repositories into three datasets at 
different scales.

A fourth very large (3TB!) dataset is 
currently being curated.
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45

Processing the data



Preparing the data 
for pre-training

We generate a set of code snippets, 
defined as valid code subgraphs, 
and perturb the dataset for 
reconstruction in the Masked 
Language Model task.
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Pre-training: a 
semi-supervised 
task

Our syntax-aware model 
significantly outperforms 
BERT [Devlin et al, 2018] , providing 
some evidence that the addition of 
structure helps the model capture 
regularities.
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4.3 Supervised tasks
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Supervised 
fine-tuning
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We fine-tune the model on two 
standard tasks in the field of 
machine learning on source code:

Method Naming

Variable Naming

1
2



Method Naming

The addition of structural 
information seems to help 
outperform traditional LM 
architectures.
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*

*
*

* *

Exact match

Points for partial match, at a token level

OURS



Method Naming

We outperform State-of-the-art 
results, showing a 20% relative 
improvement to [Alon et al, 2019].
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Method Naming
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Method Naming

Failure modes reveals that 
interesting semantic information is 
being captured.
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Method Naming

The model can leverage both 
co-occurrence based semantics as 
well as structural similarities.
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Supervised 
fine-tuning

We fine-tune the model on two 
standard tasks in the field of 
machine learning on source code:
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Method Naming

Variable Naming

1
2



Variable Naming

We show clear improvements with 
the addition of structure, as well as 
state-of-the art results.
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OURS



Variable Naming
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4.4 Sanity checks
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Permutation invariance
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We shuffle the token input sequence order but preserve edges, ensuring that the 
model actually learns on the message-passing edges and not local co-occurrences 
in the flattened representation.



Syntactic 
correctness

To test the model’s properties we 
evaluate the syntactic correctness 
of the predicted tokens, as defined 
by the language’s grammar.
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Token Type - 2 classes

Token Class - 14 classes

● Language keyword
● User-provided token

● BoolOp - And, Or
● Expression - Lambda, Yield, Num, Str, … 
● Statement - FuncDef, Return, If, While… 
● ...

OURS
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Layer

Inspecting attention weights

0

1

2

0
Head

1 2 3 4 5
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Layer

Inspecting attention weights

0

1

2

0
Head

1 2 3 4 5

In early layers, the model has a receptive field 

that extends only to its immediate neighbours.

More complex attentive chains 

form in later layers.



Inspecting the entropy of attention weights
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We measure the entropy of attention weights to see if the model is able to weigh 
different neighbours differently based on their importance, comparing it to uniform 
weights (all neighbours are equally important).



5 Conclusion
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● We propose a model leveraging both structural and 
contextual information to embed graph-structured input.

● We show that adding structure provides strong semantic 
signals for the representations of source code. 

● We present a model that can extend to several related tasks 
on graphs, encouraging re-use of prior knowledge.



Future Work
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Reproducibility

The field of ML4Code 
could benefit from 
explicitly designed 
datasets, serving as 
diagnostics or 
evaluations on a 
standardized 
benchmark.

Architecture

Design more complex 
aggregation schemes, 
possibly incorporating 
more domain-specific 
information, global 
feature information or 
recursively 
aggregating at larger 
scales.

Similarity

Proxy tasks validate the 
approach but the final 
goal is to measure 
similarity in software. 
This requires designing a 
better evaluation of 
similarity, and extending 
to other languages and 
applications.



Thank you!
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Questions?

Dylan Bourgeois
@dtsbourg



Additional slides

A - Reproducibility in ML4Code
B - Other work
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Reproducibility 
Checklist

Inspired by the influential 
reproducibility checklist by Joëlle 
Pineau (adopted for NeurIPS this 
year!), we propose a specific 
version for ML4Code.
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Reproducibility 
Checklist

Inspired by the influential 
reproducibility checklist by Joëlle 
Pineau (adopted for NeurIPS this 
year!), we propose a specific 
version for ML4Code.
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Reproducibility 
Checklist

Inspired by the influential 
reproducibility checklist by Joëlle 
Pineau (adopted for NeurIPS this 
year!), we propose a specific 
version for ML4Code.
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SCUBA

We would also like to propose a 
standardized benchmark dataset, 
whose development is in process, 
complete with an online 
leaderboard and diagnostics tasks.

Inspired by the GLUE benchmark.

Predicting a label or property of a set of 

tokens from the input, similar to a node 

classification.
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A Inference Tasks

Semantics of Code and Understanding BenchmArk

Predicting a label or property for an entire 

chunk of the input, similar to graph 

classification.

Snippet-level evaluation

Predicting labels for sets of inputs, from 

similarity to link prediction.

Similarity measures

[Wang et al. 2018]



GNN-Explainer: A 
tool for post-hoc 
interpretation of 
Graph Neural 
Networks

R. Ying, D. Bourgeois, J. You, M. 
Zitnik, J. Leskovec

KDD’19 (submitted)
arxiv:1903.03894
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A dynamic 
embedding model 
of the media 
landscape

J. Rappaz*, D. Bourgeois*, K. Aberer

WebConf’19
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Pre-training: a 
semi-supervised 
task

The results are consistent across 
corpora.
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Multi-task capabilities
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