M.Sc. Thesis Defense 08.04.2019

LEARNING REPRESENTATIONS OF
SOURCE CODE FROM
STRUCTU RE & CONTEXT by Dylan Bourgeois

=PrFL |
Stanford N

1 Introduction

2 Code: a structured language with
natural properties

3 Leveraging structure and context Iin
representations of source code

4 Experiments

1 Introduction

Example applications

Code recommendation
Plagiarism detection
Smarter development tools
Error correction

Smart search

Capturing
similarities of
source code

Programming languages offer a

unified interface, which is for
leveraged by programmers. The

regularities in coding patterns can

be used as a proxy for semantics.

5 in
optimizer.zero_grad()

= model()

Software is
UbiqUitous def forward(self, x):

x1 = F.relu(self.convl(x))
x1l = F.max_pool2d(x1l, 2, 2)
e Should be x1!
X2 F.relu(self.conv2(x))
X2 F.max_pool2d(x2, 2, 2)
return F.log_softmax(x2, dim=1)

Programming is a human
endeavour. It is an intricate
process, often repetitive,
time-consuming and error-prone.

Software is
multimodal

The idiosyncrasies of source code
are not trivial to deal with.
Software is also inherently
composable, reusable and
hierarchical, it has side-effects.

Software is multilingual.

.C Jjava .rs

It exists through several representations...

S

0 —_—

Cpp

and multiple abstractions.

Existing work

Most work has focused on solving
specific tasks, less so on capturing
rich representations of source
code.

Heuristic-based

Leveraging the strong logic encoded by
PL to create formal verification tools,
memory safety checkers, ...

Contextual regularities

Capturing common patternsin the
input representation, typically used in
code editors.

Our approach

We propose a hybrid approach,
which leverages both heuristics
and regularities.

Specifically, we hypothesise that
structure is an informative
heuristic.

HEURISTICS (STRUCTURE)

We provide evidence for the importance of
leveraging structure in the representation of
source code.

REGULARITIES (CONTEXT)

We show that patterns in the input
provide a decent signal.

HYBRID (OURS)

We propose a model which learns to recognize
both structural and lexical patterns.

2 Code: a structured language
with natural properties

[Shannon, 1950, Harris, 1954, Deerwester et al, 1990, Bengio et al. 2003, Collobert and Weston, 2008]

Capturing the regularities of language

A Language Model (LM) defines a probability
distribution over sequences of words:

p(t) = p(wy...wn)

This probability is estimated from a corpus, and
can be parameterized through different forms:

e Bidirectional / Bi-linear

e Neural Network P(w,|context)VieV

10

[Hindle et al., 2012]

On the naturalness
of software

Source code starts out as text: as such it
can present the same kind of regularities as
natural language.

Its restricted vocabulary, strong
grammatical rules and composability
properties encourage regularity and hence
predictability.

10

—e— English Cross—entropy
Java Projects Cross—entropy

Log(Perplexity) or Cross—entropy (10-Fold Cross Validation)

Order of N-Grams

Figure 1. Comparison of English cross-entropy versus the code cross-
entropy of 10 Java projects.

11

FunctionDef

hello_wor

def hello_world(): arguments

print("Hello world!") —
Representations of
source code

1. RAW CODE 2. AST

block A
Each representation has inherent o LOAD.GLOBAL 0 print
o o i “Hello world!"

properties and abstraction levels & AL FURGTEoR &r ;

associated to it.

block C

3. CFG 4. ByteCode

12

def hello_world(self):
self.said_hello = True
print("Hello world!")

Code represented
as a structured i
language

name hello_world

[FunctionDef]

The Abstract Syntax Tree (AST)

. . . arguments I Assign I Print
provides a universally-available, l aaaaa » \ ‘ dest ‘
deterministic and rich structural ke e = o | s

e Attri
representation of source code. [-] [
Name Str]

id self s “Hello world!”

13

The regularities of
structured
representations

Similar to what was found by
[Hindle et al., 2012] on free-form
text, we see both common patterns
(e.g. motif #7) and project specific
patterns (e.g. motif #3).

1
Z-scores

MOTIFS V?v%?%???

VY

10 11

12 13

14

3 Leveraging context and
structure in representations of
source code

15

3.1 Learning from context

Linear Language
Models

The n-gram model can be represented as a
Markov Chain, simplifying the joint
probability by assuming that the likelihood
of aword depends only on its history.

m m
P(wl,. ..,wm) = HP(’U}@ | 'wl,...,w,-_l) ~ HP(’lDi I ’w,*_(,‘_l), =5 % ,w,'_l)
i=1 i=1

|

FIRE BURNS

®-0-@-0

Linear Graphical Model
Markov Chain

17

[Mikolov et al.,, 2013, Peters et al., 2018]

Generalized language models

However, in order to integrate more complex
models of language, it is necessary to allow : : : :

more complex models of context. i THE FIRE BURNS

Contextual Graphical Model
Markov Random Field (ELMo)

In order to model polysemy, this context
should also modulate the representation of a
given word.

P(wl ‘ context) Vz € V Fully Connected Graphical Model
BERT’s Markov Random Field

18

The Transformer

Many of these insights are captured

ENCODER K

in the Transformer architecture

[Vaswani et al., 20171.

ENCODER 1

(D) () ()

ENCODER 0

- W W

It is a deep, feed-forward, attentive
architecture showing strong results
compared to recurrent architectures.
It is now the building block for most

state-of-the-art architectures in NLP.
[Radford et al., 2018, Devlin et al. 2018]

19

[Vaswani et al., 20171

The Transformer

The encoder embeds input
sequences. Several of these blocks
are then stacked to create deeper
representations.

ENCODER

H

FEED-FORWARD

SELF-ATTENTION

20

3.2 Learning from structure

21

[Allamanis et al., 2018]

Leveraging
structured
representations of
code

Recent work has built on the
powerful Graph Neural Networks,
running on semantically augmented
representations.

(ExpressionStatement)

(InvocationExpression)

(MemberAcccssExpression)

(a) Simplified syntax graph for line 2 of Fig. 1, where
blue rounded boxes are syntax nodes, black rectan-
gular boxes syntax tokens, blue edges Child edges
and double black edges NextToken edges.

1 2
e
'llé \\\ \\
C 3 S
{ - ."~. \\ \\ =%
. ::4 \\ 5 \\:’\ 6
’a‘..:::'—“-”:.-_' -—(

(b) Data flow edges for (Ql,[iz) = Foo();
while (&]3 > 0) [;4 = ‘x5 + §]6 (indices
added for clarity), with red dotted LastUse edges,
green dashed LastWrite edges and dashdotted
purple ComputedFrom edges.

22

Limitations of the
approach

Unfortunately, we found the purely
structural approach to have limited
results.

INSIGHTS

e Alimited vocabulary means contexts are
averaged across too many usages to be
semantically meaningful.

e Learning arepresentation for each token
has the inverse problem: not enough
co-occurrences.

e Some aggregators can have issues with
common motifs in code [Xu et al, 2019].

Max&Mean Fail

FDef
def hello_world():

self.said_hello = True
Print print("Hello world!")

FDef
< def hello_and_goodbye_world():

self.said_hello = True
print("Hello world!")
self.said_bye = True
print(“Goodbye world!")

Print

Print

23

3 Learning from context
structure

INSIGHT

The Transformer: a
GNN perspective e

SELF | e
ATTENTION | . -

No assumptions are made on the
underlying structure: the attention NN v SEE SN« SN~ O
module can attend to all the S HE R EEEREE EEERIS

elements in the sequence.

INSIGHT

The Transformer: a
GNN perspective

No assumptions are made on the
underlying structure: the attention
module can attend to all the
elements in the sequence.

This can be seen as a
message-passing GNN on a fully
connected input graph.

4[]

SELF . AGG |

ATTENTION

x, NN x N x; NN x N xs S
FIRE

IF BURNING

THE KEEPS

26

OUR APPROACH

Generalizing to T
arbitrarily s
structured data

x; DN x DN x; DN x, SN x; N

VAR1

The message-passing edges can be
restricted to a priori edges, e.g.
syntactic relationships. This
enables the treatment of arbitrary
graph structures as input.

O

—— AST edge

== Attended
edge

COMPARE BINOP

OUR APPROACH

Generalizing to
arbitrarily
structured data

The message-passing edges can be
restricted to a priori edges, e.g.
syntactic relationships. This
enables the treatment of arbitrary
graph structures as input.

z, [N

SELF AGG

ATTENTION

COMPARE BINOP

28

OUR APPROACH

Generalizing to
arbitrarily
structured data

The aggregation scheme can be
replaced by any message-passing
aggregation architecture!

GCN-based aggregation

1
AGGREGATE (1) = a(y — W"-hﬁ)
ve N (w Cuv

GAT-based aggregation

AGGREGATEk(u):O'(Y a’;v-wk-h’,j)
veN(u)

where af, = Sortmax (¢(u,v))

Masked Dot-Product Attention

N
k 'kk
AGGREGATE(u) = Z SOFTMAX (Qu X)vﬁ

veN(u \/d_k

Semantic Aggregation?

29

OUR APPROACH

Generalizing to
arbitrarily
structured data

For example, with the masked
attention formulation, we can
modify a Transformer encoder
block to run on arbitrarily
structured inputs.

ENCODER

FEED-FORWARD

MP - GNN

30

OUR APPROACH

A hybrid approach
to aggregating
context

With this formulation, we can jointly
learn to compose local and global
context, obtaining a deep
contextualized node representation.

This helps to learn structural and
contextual regularities.

ENCODER

h, BN

h, BT

h; B

z; N

z; N

GLOBAL

z, I

z, I

LOCAL

x, NN

x; NN

31

3.4 from context and
structure

Model pre-training:
a semi-supervised
approach

Great success in NLP applications
to first model the input data.

Similar approach to auto-encoders,
but only the masked input is
reconstructed.

N :

C FEED-FORWARD)
[CLS] TOKEN TOKEN

ss
[Ly

=0
>y logp(tm)]

33

Source code
provides abundant
training data

Structure is readily available and
deterministic, unlike parse trees of
natural language.

The masked language model is
similar to a node classification task
on graphs.

- AST edge

ENCODER C FEED-FORWARD)
z NN z 0NN RN e z; [N
(SELF-ATTENTION)

« RS x @00 x @§fEE x, @0EE xs EEEE

COMPARE BINOP

34

Transfer learning
capabilities

Once the model is pre-trained, it
can be fine-tuned to produce labels
through a pooling token [CLS] or
used as arich feature extractor.

I
1

FEED-FORWARD

[CLS]

TOKEN

[PAD]

35

4 Experiments

4.1 Learning from structure

37

Graph-based tasks

Node classification

The structure is similar to the
pre-training task.

RN : NN

I Tty

FEED-FORWARD

CORA

Ours Freq L-GCN GCN

MODEL TRAINED
FROM SCRATCH

Testacc. 0.83" 0.16 0.83 0.81

[CLS]

T Label Propagation setting

Table 4.10 — Results on node classification

[MASK]

[MASK]

38

Graph-based tasks

Graph classification

In this case, we use the pooled
representation of the input graph
to make a prediction.

SOFTMAX

C

FEED-FORWARD

PRE-TRAINED
MODEL

[CLS]

TOKEN

[PAD]

39

Graph classification

Our approach is competitive with
state-of-the-art results on classic
graph classification datasets.

ENZYMES
Predicting one of 6 classes of chemical properties
on molecular graphs.

MSRC 21
Predicting one of 21 semantic labels (e.g.
building, grass, ...) on image super-pixel graphs.

MUTAG
Predicting the mutagenicity of chemical
compounds (binary).

ENZYMES
Ours | Freq GCN GraphSAGE DiffPool WL
TestAcc. | 0.68 | 0.16 0.64 0.54 0.62 0.53
MSRC-21
Ours | Freq GCN
TestAcc. | 0.90 | 0.05 0.92
@3 1.0 | 0.15
MUTAG
Ours | Freq GCN DGCNN WL
TestAcc. | 0.81 | 0.55 0.76 0.85 0.80

Table 4.9 — Results for the Graph Classification dataset

40

Transfer learning
on graphs

Pre-training the model seems to
enable faster training. For better
accuracy, the model can be trained
on multiple related tasks.

MSRC 21 [\Winn et al. 2005]

Dataset of MRFs connecting
super-pixels of an image, where the goal
is to predictone of 21 labels (e.g.
building, grass, ...).

0.75

0.5

0.25 ¢

== withLM == withLM @3 ==

noLM == nolM@3

20

25

30

41

Transfer learning
on graphs

Pre-training the model seems to
enable faster training. For better
accuracy, the model can be trained
on multiple related tasks.

MSRC 21/9 [\Winn et al. 2005]

Dataset of MRFs connecting
super-pixels of an image, where the goal
is to predict one of 21/9 labels (e.g.
building, grass, ...).

0.75

0.5

0.25 %

== Transfer == Transfer @3

= = Classification == Classification @ 3

10 15

20

42

4.2 Learning from structure
context

Datasets

We collect code from online
repositories into three datasets at
different scales.

A fourth very large (3TB!) dataset is
currently being curated.

LoC #Snip. #Tokens # UniqueTok. Avg. nodedeg. HashID
keras 38,139 7,142 173,696 1,156 2.09/4.69 3e6dbOe
sk-learn 192,663 35,228 776,365 3,581 2.07/4.61 611254d
pytorch 17,163 2,384 59,803 740 2.06/4.70 £3a860b
ansible 428,144 95,846 2,168,605 5,847 2.06 /4.65 0b579a0
requests 5,036 699 11,508 452 2.06/4.72 2820839
django 121,188 22,892 337,444 3,413 2.05/4.71 c£826c9
httpie 3,919 612 8,886 421 2.06/4.65 358342d
youtube-dl 131,960 25,742 371,753 2,248 2.04/4.69 794c1b6
flask 7,750 804 13,086 490 2.05/4.64 4£3dbb3
BERT 5,928 1,967 17,805 480 2.06/4.60 bee6030
CORPUS-SM 65,225 7,142 173,696 1,146 2.09 /4.69
CORPUS-MID 247,965 44,754 1,009,864 3,823 2.07 /1 4.67
CORPUS-LG 951,890 193,316 3,938,951 9,769 2.06 / 4.67

Table 4.1 — Dataset Statistics

44

Processing the data

def hello_world(self):
self.said_hello = True
print("Hello world!")

1. RAW CODE

arguments Assign
vararg
kwarg

Name

id

self

FunctionDef]

name hello_world

Attribute

attr said_hello

Name
id self

2. AST REPRESENTATION

nl

True

dest

Str

s | “Hello world!”

arg

Name

self

FuncDef

3. PROCESSED AST

45

Preparing the data
for pre-training

We generate a set of code snippets,
defined as valid code subgraphs,
and perturb the dataset for
reconstruction in the Masked
Language Model task.

Name Range Description

nb_masked_tokens 1-10 Number of tokens masked in training in-
stance

mask_probability 0.15 Probability for uniform sampling of masked
token

noise_factor 0.1 Probability of adding a random incorrect to-
ken to the training instance

dupe_factor 50 Number of generated training instances from
each input instance

max_seq_length 64-128 Maximum length (resp. number of nodes) of

input sequence (resp. graph)

Table 4.2 — Dataset Generation Hyperparameters

46

@ BERT @ OURS-large OURS-small

Pre-training: a 1
semi-supervised //—w_h

task

0.5

Accuracy

0.25

Our syntax-aware model i
significantly outperforms

BERT [Devlin et al, 20181, providing

some evidence that the addition of

structure helps the model capture

regularities.

1 100 Tk 10k 50k 100k 200k 300k

Epochs

47

4.3 Supervised tasks

Supervised
fine-tuning

We fine-tune the model on two
standard tasks in the field of

machine learning on source code:

1 Method Naming

2 Variable Naming

def hello_world(self):
self.said_hello = True
print("Hello world!")

[CLS]

a¥dvMy04-a3ad

SOFTMAX

FuncDef

se(_params
_repr__
rename

layer

reshape

call

hello_world

_init__

49

Method Naming

The addition of structural
information seems to help
outperform traditional LM
architectures.

F1-Macro' F1 -Weighted * Subtoken Accuracy @1 *

OURS
CORPUS-SM 0.82 0.85
CORPUS-MID 0.68 0.76
CORPUS-LG 0.53 0.76

BERT
CORPUS-SM 0.03 0.12

0.86
0.81
0.76

0.21

Table 4.5 — Method Naming Results

* Points for partial match, at a token level

% Exact match

50

Method Naming

We outperform State-of-the-art
results, showing a 20% relative
improvement to [Alon et al, 2019].

Reported

Description

[Tyer et al., 2016]

[Allamanis et al., 2016]
[Alon et al., 2018]

[Alon et al., 2019]

0.275

0.473
0.511

0.633

RNN+Attention on textual representation of
JAVA source code. Original work is done on
C#/SQL ([Alon et al., 2019] for reported).
CNN+Attention run on JAVA source code.
Learning a CRF on paths generated from
Python AST code (Accuracy measured @7).
RNN-+attention embedding of paths on the
AST, run on a filtered subset of JAVA code.

Ours

0.76

Generalized TRANSFORMER model run on
Python code (CORPUS-1g).

Table 4.4 — Method Naming Results - Literature.

51

Method Naming

1 def deserialize(config, custom_objects=None):
return deserialize_keras_object(config,
module_objects=globals(),
custom_objects=custom_objects,
printable_module_name="'regularizer')

Predictions 0. deserialize (1.0)
1. model_from_config (0.0)
2. from_config (0.0)

3 def __call__(self, shape, dtype=None):
return K.random_uniform(shape,
self.minval,
self.maxval,
dtype=dtype,
seed=self.seed)

Predictions 0. __call__ (0.995)
1. truncated_normal (0.001)
2. transform (0.0)

4

def __init__(self, minval=-0.05, maxval=0.05, seed=None):
self.minval = minval
self.maxval = maxval
self.seed = seed

Predictions 0. __init__ (1.0)
1. on_train_begin (0.0)
2. preprocess_input (0.0)

def get_config(self):
return {
'mean': self.mean,
'stddev': self.stddev,
'seed': self.seed

Predictions 0. get_config (1.0)
1. _updated_config (0.0)
2. _preprocess_conv3d_kernel (0.0)

52

1 def glorot_normal(seed=None):
return VarianceScaling(scale=1.,
mode="'fan_avg',
distribution="normal',
seed=seed)

o Predictions 0. he_normal (0.209) 3. glorot_uniform (6.193)
Method Namlng 1. lecun_normal (0.198) 4. he_uniform (0.19)

2. lecun_uniform (0.198)

2 def call(self, x):
output = K.dot(x, self.W)
if self.bias:
output += self.b
output = K.max(output, axis=1)
return output

Predictions 0. __call__ (0.554)

Failure modes reveals that B (et o TG
interesting semantic information is
being captured.

def add(inputs, **kwargs):
3
return Add(**kwargs) (inputs)

Predictions ©. average (0.343)
1. maximum (0.326)
2. minimum (0.323)

53

Method Naming

The model can leverage both
co-occurrence based semantics as
well as structural similarities.

def sigmoid(x):
return 1. / (1. + np.exp(-x))

Predictions 0. tanh (0.525)

1.

2.

def tanh(x):
return np.tanh(x)

softplus (0.335)

def softplus(x):
return np.log(l. + np.exp(x))

softsign (0.104)

def softsign(x):
return x / (1 + np.abs(x))

54

Supervised
fine-tuning

We fine-tune the model on two
standard tasks in the field of

machine learning on source code:

1 Method Naming

2 Variable Naming

def hello_world(self):
self.said_hello = True
print("Hello world!")

[CLS]

| Name

QIVYMY04-a3id

SOFTMAX

SOFTMAX

SOFTMAX

SOFTMAX

[MASK]

FuncDef

Print

Str

[MASK]

[MASK] [MASK]

55

Variable Naming

We show clear improvements with
the addition of structure, as well as
state-of-the art results.

Accuracy
@1 @3 @5 @7
BERT 03 043 048 0.52
OURS 0,59 0.792 0.833 0.849

[Alon et al., 2018]
Assumed @] 0.567 - -

[Allamanis et al., 2018b]
PYTHON 0.536 - :

Table 4.6 — Variable Naming Results

56

Variable Naming

for layer in model._input_layers:

input_tensor = Input(batch_shape=layer.batch_input_shape,
dtype=layer.dtype,
sparse=Tlayer.sparse,
name=layer.name)

input_tensors.append(input_tensor)

Cache newly created input layer.

newly_created_input_layer = 1input_tensor._keras_history[0]

Predictions ['layer', '[PAD]', '[PAD]', '[PAD]']

def __call__(self, shape, dtype=None):
return K.constant(0, shape=shape, dtype=dtype)

Predictions [‘self’, '[PAD]', '[PAD]', '[PAD]']

2

def selu(x):
alpha = 1.6732632423543772848170429916717
scale = 1.0507009873554804934193349852946
return scale * K.elu(x, alpha)

Predictions [‘x’, '[PAD]', '[PAD]', '[PAD]']

for cell 1in self.cells:
if disinstance(cell, Layer):
trainable_weights += cell.trainable_weights

Predictions [‘cell’, '[PAD]', '[PAD]', '[PAD]']

57

4.4 Sanity checks

Permutation invariance

We shuffle the token input sequence order but preserve edges, ensuring that the
model actually learns on the message-passing edges and not local co-occurrences
in the flattened representation.

Accuracy MRR
@1 @3 @5 @7 @3 @5 @7
Standard 0.63 0.66 0.66 0.69 0.73 0.49 0.37
Random Permutations 0.628 0.65 0.67 0.68 0.72 0.478 0.36

Table 4.7 - METHODNAMING results, with and without permutations.
59

Syntactic
correctness

To test the model’s properties we
evaluate the syntactic correctness
of the predicted tokens, as defined
by the language’s grammar.

Token Type - 2 classes

e Language keyword

e User-provided token

Token Class - 14 classes

e BoolOp-And, Or
e Expression-Lambda, Yield, Num, Str, ...
e Statement- FuncDef, Return, If, While...
[]
Token Type Token Class
Accuracy Accuracy F-1Macro F-1 Weighted
BERT
200k iterations 0.990 0.979 0.92 0.91
OURS
200k iterations 0.997 0.994 0.96 0.96

Table 4.8 — Assessing the syntactical correctness of Masked Language Model predictions.

60

Head Inspecting attention weights

nage
natge asdn
e
J »
*f
comprdhension
subx;‘dnﬁl.
e
!MZ]
Ateoton bess 1 -Lyr2 nton s 2 - Layer 1
? .
optinlizer
nasne
name assign

S istawmp

comprahension

subsgripindex-sar

e e

[MASK]

Atantion hesd 3 Layer

optisizer

mp

Atention hesd 3 - Layer s

7"
optiizer

compragpsion

[MASK)

Attetion hesd 3. Layer2

“
Dpl\ilzer

name
assign
s

comprepension
st

S Ve

[MABK]

Atention hesd 4 - Layer Attetion hasd 3 - Layer

"?es es
optinizer optigiizer

naghe naghe
/
} 7 } 7
de ute e ute
mp 4 P

comprepension compréension
Subsgriptn deer subsgripin e
e e "
[MASK) [MASK]
Attnton hewd 4 - Layer 1 Aterionhena 5. Layer 1

Wyes
optinfizer

Attention hesd 5. Layer 2

"
optifizer

Atteotin hesd 6 - Layero

Welifjhes
optiffilzer

namne
depliirbuUte -
listagmp
@
compraension
SUbSEIINGE sty
nafhe name
[MASK)
Atectonbess s -Layer2
welihes
optighizer
naghe
e asdgn

Inspecting attention weights

kﬁm In early layers, the model has a receptive field
& that extends only to its immediate neighbours.

More complex attentive chains
formin later layers.

62

20

20

Inspecting the entropy of attention weights

We measure the entropy of attention weights to see if the model is able to weigh
different neighbours differently based on their importance, comparing it to uniform
weights (all neighbours are equally important).

Entropy - Head 0 / Layer 0

Entropy - Head 1 / Layer 0

Entropy - Head 2 / Layer 0

20

1

2 3 4 5 6
Entropy - Head 3 / Layer 0

20

I

1

63

5 Conclusion

e e propose a model leveraging both structural and
contextual information to embed graph-structured input.

e \Xe show that adding structure provides strong semantic
signals for the representations of source code.

e We present a model that can extend to several related tasks
on graphs, encouraging re-use of prior knowledge.

64

Future Work

Reproducibility

The field of MLL4Code
could benefit from
explicitly designed
datasets, serving as
diagnostics or
evaluations on a
standardized
benchmark.

Architecture

Design more complex

aggregation schemes,

possibly incorporating
more domain-specific
information, global
feature information or
recursively
aggregating at larger
scales.

Similarity

Proxy tasks validate the
approach but the final
goal is to measure
similarity in software.
This requires designing a
better evaluation of
similarity, and extending
to other languages and
applications.

65

Thank you!

Dylan Bourgeois
@dtsbourg

nny
_

66

Additional slides

A - Reproducibility in ML4Code
B - Other work

A

Data

« [s the data available? If yes, in which form?

Reproducibility 5 o ot

[Pre-processed data.
C h kl. t O Output data.
ec I s ¢ Is the pre-processing pipeline explicit?
[J What filters are applied? (e.g. removing low-frequency elements)

[0 Which assumptions are made when generating the data? (e.g. snippets should be

Inspired by the influential VAl EE
or ey . . [0 What transformations are applied to the original dataset?
re p rOd ucl bl I Ity Ch ec kI ISt by Joel Ie [0 What is the final representation that is passed to the model?
Pineau (adopted for NeurlIPS this « Is the meta-data fully specified?
yea r !) we propose a SpeCIﬁC [0 What is the origin of the corpus.
. ’ f M L 4 C d [If the raw source forming the dataset is available online, are hashes or fingerprints
version ror ode. of its version shared?

[Is the programming language specified, including its version?

[0 What are the Train / Test / Validation splits?

68

A

Code

* Is the entire pipeline available? This includes the following components:

Re p rOd UCi b i li ty O Data collection.
C h eC k'.i St O Data pre-processing.

[J Main algorithm loop and architecture.
U (Optional) Post-processing steps.

J Output in a form matching that of reported results.

Inspired by the influential

re prOd ucibil |ty checklist by Joélle * Is there a runnable version of the code provided? This includes the specification of:
Pi neau (ad o pted fo r N eu rI PS th iS [0 The source platform and hardware specifications.
year!), we propose a specific

[0 Dependency version information.

version for ML4Code. or

O Areproducible container which packages the entire project.

69

A

Reproducibility
Checklist

Inspired by the influential
reproducibility checklist by Joélle
Pineau (adopted for NeurlIPS this
year!), we propose a specific
version for ML4Code.

Model

¢ Is the algorithm fully specified?
[J Hyperparameter sets.

[0 Computational Cost analysis.

[0 Number of iterations to convergence.

[Ablation study.
[J Pre-trained model.
* Is the evaluation task fully specified?
[Objective
O Metric

[0 Labels

70

A

SCUBA

Semantics of Code and Understanding BenchmArk

We would also like to propose a
standardized benchmark dataset,
whose development is in process,
complete with an online
leaderboard and diagnostics tasks.

Inspired by the GLUE benchmark.
[Wang et al. 2018]

Inference Tasks

Predicting a label or property of a set of
tokens from the input, similar to a node
classification.

Snippet-level evaluation

Predicting a label or property for an entire
chunk of the input, similar to graph
classification.

Similarity measures

Predicting labels for sets of inputs, from
similarity to link prediction.

71

B

GNN-Explainer: A
tool for post-hoc
interpretation of
Graph Neural
Networks

R.Ying, D. Bourgeois, J. You, M.
Zitnik, J. Leskovec

KDD’19 (submitted)
arxiv:1903.03894

BA-Community BA-Shapes

Mutag

Tree-Cycles

Tree-Grid

Mutag

Computation graph GNN EXPLAINER

Grad

By
House

Attention

B

A dynamic
embedding model
of the media
landscape

J. Rappaz*, D. Bourgeois®, K. Aberer

WebConf’ 19

Legend @ Gray 1 kwch 3 kotaty
2 cbs7 4 kjct8

b -l @
] @..%ﬁ; 20
° [44 2
®)
® 11
12
2015/05

@ Gatehouse 9 houn

@ Sinclair

1atoday 11 sa

10 dailycomet 12
[J
9-12
-,
®
1-4
2018/05

-8 12 g
Do 11 ®
5
0!%.9 ®1-4
10
2017/01
ina
yourstephenvilletx

73

Bibliography

[Allamanis, 2018] Allamanis, M. (2018). The adverse effects of code duplication in machine learning models of
code. arxiv:1812.064609.

[Allamanis et al., 2015] Allamanis, M., Barr, E. T, Bird, C., and Sutton, C. (2015). Suggesting accurate method
and class names. ESEC/FSE 2015, pages 38-49

[Alon et al., 2019] Alon, U,, Zilberstein, M., Levy, O,, and Yahav, E. (2019). Code2vec: Learning distributed
representations of code. POPL.

[Allamanis et al., 2018a] Allamanis, M., Barr, E. T., Devanbu, P. T., and Sutton, C. A. (2018a). A survey of
machine learning for big code and naturalness. ACM Comput. Surv., 51:.81:1-81:37.

[Allamanis et al., 2018b] Allamanis, M., Brockschmidt, M., and Khademi, M. (2018b). Learning to represent
programs with graphs. ICLR.

[Bengio et al., 2003] Bengio, Y., Ducharme, R, Vincent, P., and Janvin, C. (2003). A neural probabilistic
language model. J. Mach. Learn. Res., 3:1137-1155.

74

Bibliography

[Collobert and Weston, 2008] Collobert, R. and Weston, J. (2008). A unified architecture for natural language
processing.: Deep neural networks with multitask learning. ICML '08.

[Deerwester et al., 19901 Deerwester,S.C.,.Dumais,S.T.Landauer, T.K. Furnas,GW.,and Harshman, R. A. (1990).
Indexing by latent semantic analysis. JASIS, 41:391-407.

[Devlin et al., 2018] Devlin, J,, Chang, M.-W., Lee, K., and Toutanova, K. (2018). BERT: Pre-training of deep
bidirectional transformers for language understanding. Arxiv:1810.04805.

[Firth,219571 Firth,J.R.(1957).A synopsis of linguistic theory 1930-55. Studies in Linguistic Analysis (special
volume of the Philological Society), 1952-59:1-32.

[Hindle et al., 2012] Hindle, A, Barr, E. T., Su, Z., Gabel, M., and Devanbu, P. (2012). On the naturalness of
software. In ICSE '12, pages 837-847, IEEE Press.

[Mikolov et al., 2013] Mikolov, T,, Chen, K., Corrado, G., and Dean, J. (2013). Efficient estimation of word
representations in vector space. ICLR'13

75

Bibliography

[Peters et al., 2018] Peters,M.E. Neumann,M. lyyer,M. Gardner,M. Clark,C..Lee K.and Zettlemoyer, L. S. (2018).
Deep contextualized word representations. In NAACL-HLT.

[Radford et al., 2018] Radford, A., Narasimhan, K., Salimans, T., and Sutskever, |. (2018). Improving language
understanding by generative pre-training. OpenAl.

[Shannon, 1950] Shannon, C. (1950). Prediction and entropy of printed english. Bell Systems Technical
Journal.

[Vaswani et al., 20171 Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N,, Kaiser, L.,
and Polosukhin, I. (2017). Attention is all you need. In NeurlPS.

[Wang et al., 2018] Wang A, Singh,A.,Michael,J. Hill,F, Levy,O..andBowman,S.R.(2018). GLUE: A multi-task
benchmark and analysis platform for natural language understanding. arXiv:1804.07461.

[Xu et al.,, 2019] Xu, K., Hu, W., Leskovec, J., and Jegelka, S. (2019). How powerful are graph neural networks?
In ICLR'10.

76

@ CORPUS-sm @ CORPUS-mid CORPUS-lg

Pre-training: a | -
semi-supervised /W“/.

task
e
0.25
The results are consistent across 0
1 100 1k 10k 50k 100k 200k 300k 400k 500k
corpora.
Epochs

77

Multi-task capabilities

classification

multi-graph

classification
or

link prediction

similarity

multiple-choice

[CLS]

[CLS]

[CLS]

INPUT

INPUT1

INPUT1

INPUT2

INPUT

INPUT

INPUT

[PAD]

[SEP]

[SEP]

[SEP]

[SEP]

[SEP]

[SEP]

[MARGARET j——v(FEED FORWARD)

INPUT2

INPUT2

INPUT1

ANSWER 1
ANSWER 2

ANSWER 3

[PAD] [MARGARET]——V[FEED FORWARD]

MARGARET
MARGARET

[MARGARET]—»[FEED FORWARD)L
[MARGARET j—»[FEED FORWARD)—>
[MARGARET }—»(FEED FORWARDJJ—'

78

