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Abstract: SHiP is a proposed high-intensity beam dump experiment set to operate at

the CERN SPS. It is expected to have an unprecedented sensitivity to a variety of mod-

els containing feebly interacting particles, such as Heavy Neutral Leptons (HNLs). Two

HNLs or more could successfully explain the observed neutrino masses through the seesaw

mechanism. If, in addition, they are quasi-degenerate, they could be responsible for the

baryon asymmetry of the Universe. Depending on their mass splitting, HNLs can have very

different phenomenologies: they can behave as Majorana fermions — with lepton number

violating (LNV) signatures, such as same-sign dilepton decays — or as Dirac fermions

with only lepton number conserving (LNC) signatures. In this work, we quantitatively

demonstrate that LNV processes can be distinguished from LNC ones at SHiP, using only

the angular distribution of the HNL decay products. Accounting for spin correlations in

the simulation and using boosted decision trees for discrimination, we show that SHiP will

be able to distinguish Majorana-like and Dirac-like HNLs in a significant fraction of the

currently unconstrained parameter space. If the mass splitting is of order 10−6 eV, SHiP

could even be capable of resolving HNL oscillations, thus providing a direct measurement

of the mass splitting. This analysis highlights the potential of SHiP to not only search for

feebly interacting particles, but also perform model selection.
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1 Introduction

The experimentally observed non-vanishing neutrino mass differences are among a few

firmly established deviations from the Standard Model (SM) predictions. An economic

way of generating the light neutrino masses is to introduce heavy singlet fermions with

Majorana mass terms into the model [1–6]. The masses of the active neutrinos in this

extension of the SM are determined by the type-I seesaw formula and at least two singlet

fermions are needed to accommodate the two observed mass differences of light neutrinos. A

consequence of this mechanism is the presence of heavy Majorana fermions which mix with

active neutrinos. The mass scale of these Majorana fermions — Heavy Neutral Leptons

(HNLs) — is not fixed. It can be below the electroweak scale,1 like in the νMSM [9, 10],

where two HNLs are responsible for the light neutrino masses and generating the Baryon

Asymmetry of the Universe (BAU) via CP -violating oscillations during their production.

From the FIP (feebly interacting particles) search point of view, HNLs with masses

below that of a B meson are the most accessible in the foreseeable future [11]. There is

a vast program to search for HNLs at intensity frontier experiments, either LHC-based,

such as MATHUSLA [12–14], FASER [15–17], CODEX-b [18, 19], AL3X [20, 21] and

ANUBIS [22], or at beam-dump facilities, such as DUNE [23–25] (using the near detector),

NA62++ [26, 27] (in dump mode) and SHiP [28–30]. Comparative studies of the exclusion

limits expected from these experiments have been performed in refs. [31–34]. If a candidate

HNL signal were to be observed, the latter three experiments would be sensitive to both

its mass and mixing angles.

SHiP is a proposed beam-dump experiment (represented in figure 1) set to operate at

the CERN SPS. It will use an intense, 400 GeV proton beam from the SPS, dumped on a

thick target in order to produce a large number of heavy hadrons, which subsequently decay

into Standard Model (SM) or feebly-interacting particles. SHiP is designed to provide a

background-free environment to look for the decays of these heavy FIPs. To this end, a

hadron absorber located right after the target absorbs most SM particles. It is followed

by an active muon shield which deflects the muons away from the experimental cavern.

The main detector consists of a decay volume — evacuated in order to reduce the neutrino

background, and surrounded by vetos — with a tracker and a calorimeter located at its far

end, enabling it to reconstruct the decay event.

In order to generate the light neutrino masses via the seesaw mechanism, HNLs must be

Majorana fermions, which violate the total lepton number. However, if the mass splitting

is small enough, they can pair to form a coherent superposition of two quasi-degenerate

Majorana fermions, which behaves almost like a Dirac fermion. Such a combination is

dubbed “quasi-Dirac pair”. In this case, the mixing angles can exceed the naive seesaw limit

U2 ≈ mν/MN [35–37], where mν and MN are respectively the mass scales of light neutrinos

and HNLs. This is possible because a quasi-Dirac fermion approximately conserves the total

lepton number, hence protecting the light neutrino masses. For instance, the νMSM [9,

10] contains such a quasi-Dirac pair if one requires the mass degeneracy which is needed

1An argument in favour of the low-scale seesaw comes from the measured values of the Higgs and top

masses. HNLs with masses below the electroweak scale are not destabilising the Higgs mass [7, 8].
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Figure 1. Sketch of the SHiP experiment, with the decay chain H → h′lα(N → lβh
′′).

for baryogenesis [10, 38] and especially for late-time leptogenesis [39]. Quasi-Dirac pairs

also naturally appear in some models of neutrino mass generation, such as the inverse

seesaw [40, 41] and the linear seesaw [42, 43]. This near degeneracy of the HNL masses

leads to coherent HNL oscillations. In the νMSM, these oscillations in the early Universe

are responsible for baryogenesis.

For sufficiently light (. 10 GeV) HNLs like the ones accessible at SHiP, LNV may

be experimentally observable even when they form a quasi-Dirac pair [44, 45]. We can

distinguish three cases,2 depending on the scale of the oscillation phase δMτ , where δM is

the mass splitting of the quasi-Dirac pair and τ the typical proper time probed:

1. Dirac-like HNL: one Dirac HNL or a quasi-Dirac pair with an oscillation period

exceeding the HNL lifetime or detector size (δMτ � 2π).3 Only LNC processes can

be observed.

2. Majorana-like HNL: one Majorana HNL or a quasi-Dirac pair with a lifetime and

detector size exceeding the oscillation period (δMτ � 2π). Both LNC and LNV

processes can be observed, with equal integrated rates (see section 2.2).

3. Manifestly quasi-Dirac HNLs: an interesting case occurs when the oscillation period

is comparable to the HNL lifetime or to the size of the detector4 (δMτ ∼ 2π): the

experiment may then be sensitive to the coherent oscillations of HNLs.

If HNLs were to be observed at SHiP, the detection or non-observation of lepton num-

ber violation and HNL oscillations would allow constraining models and their parameters.

2To be generic, we have included the more exotic cases of a single Dirac or Majorana HNL. The limits

presented below are for a quasi-Dirac pair, which only differs from those in the number of events produced.
3As pointed out in ref. [45], for most experiments, this possibility might be technically unnatural due to

the very small mass splitting needed to satisfy the inequality.
4Interestingly, the mass difference needed to generate DM in the νMSM, as found in ref. [39], is exactly

in this borderline range.
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The most relevant LNV process at SHiP is the well-studied same-sign dilepton decay :

H → [h′]l+α (N → h′′l+β ), where H, h′ and h′′ are hadrons (with h′ possibly missing),

and l+α , l+β , α, β = e, µ, τ are charged leptons of potentially different generations. Due to

suppressed background, this type of signature is a smoking gun for HNLs in accelerator

searches. However, at beam-dump experiments, the heavy hadron decay which produces

the HNL takes place inside the target, and therefore the charge of the primary lepton lα
cannot be observed. Naively, it seems that the information about the HNL production

is lost, since the charge of the secondary lepton lβ , by itself, is not enough to tell apart

LNC and LNV processes. As we shall see in this paper, it turns out that the HNL decay

products nevertheless carry important information. Namely, their distribution is different

for LNC and LNV processes. Not only does this allow distinguishing Majorana-like from

Dirac-like HNLs given sufficiently many events, but the knowledge of these distributions

can also be used to resolve HNL oscillations and directly measure the mass splitting.

Estimating these two distributions is complicated by the presence of a variety of two-

and three-body production channels. In addition, the parent hadrons are produced with a

finite spectrum. As we shall see in section 3.3, this smears the distributions, making them

look more similar. Therefore, in order to assess whether SHiP will be able to discrim-

inate between Majorana- and Dirac-like HNLs, an accurate treatment of all production

channels, including spin correlations, is required. This is accomplished using a Monte-

Carlo simulation.

The angular distribution of HNL decay products has been studied in a collider setting

for decays which are not fully reconstructible [46–48] (such as trilepton decays), as well as

for beam-dump experiments [49, 50]. Our analysis improves on the latter by not relying

on HNLs being produced as helicity eigenstates, by handling a larger class of production

channels, by considering the full phase-space distribution of the HNL decay products (in-

stead of just their energy) and by producing a concrete sensitivity estimate using a realistic

geometry and heavy meson spectrum for SHiP.

This paper is organized as follows. In section 2, we review the Standard Model ex-

tended with HNLs, and discuss lepton number violation and coherent HNL oscillations.

In section 3, we analyze the different signatures of LNC and LNV processes at the SHiP

experiment. In section 4, we propose a strategy to detect LNV and reconstruct HNL oscil-

lations. Finally, in section 5, we present the sensitivity of SHiP to LNV achieved through

this method, as well as a possible signature of HNL oscillations. Technical details about

the simulation and the statistical analysis are respectively provided in appendices A and B.

2 Model

2.1 Heavy Neutral Leptons

We consider the Standard Model extended with N HNLs NI , which are spin- 1
2 SM singlets

with Majorana masses MI , and new Yukawa couplings Y ν
αI , with α = e, µ, τ the lepton

flavor index. Using the conventions from ref. [51]:

L = LSM +
i

2
N †I (σ̄ · ∂)NI − (Y ν

αI)
∗(φ · Lα)NI −

MI

2
NINI + h.c. (2.1)

– 3 –
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After electroweak symmetry breaking, the Yukawa interaction generates a Dirac mass term

(mD)αI = v√
2
(Y ν
αI)
∗, resulting in a non-diagonal, symmetric Dirac-Majorana mass term for

neutrinos [52]:

MDM = −1

2

(
νT NT

)( 0 mT
D

mD MM

)(
ν

N

)
+ h.c. (2.2)

where MM = diag (MI . . . ). Using a unitary transformation of the fields (Takagi factoriza-

tion [53]), the mass matrix can be brought to a diagonal form:

να = Uαini and NI = UIini (2.3)

MDM = −mi

2
(nini + n†in

†
i ) (2.4)

In the limit |MM | � |mD|, we can use an approximate block factorization, leading to the

mass eigenstates ni ∼= νi, NI mixing with the flavor fields as:

να ∼= UPMNS
αi νi + ΘαINI (2.5)

ΘαI
∼= M−1

I (mD)αI (2.6)

and the following mass sub-matrices:

mαβ
∼= −

∑
I

(mD)αI(mD)βI
MI

∼= −
∑
I

MIΘαIΘβI (2.7)

mIJ
∼= MIδIJ (2.8)

The choice of the mass scale MM and Yukawa couplings Y ν
αI is not uniquely dictated by

low-energy neutrino observables, and should be fixed otherwise.

The Standard Model features an accidental symmetry — lepton number — which, at

tree level, is conserved for massless or Dirac neutrinos, but is violated by the Majorana

mass term of HNLs. Charged leptons and neutrinos have lepton number +1, while charged

anti-leptons and anti-neutrinos have lepton number −1. If lepton number is conserved

(LNC), then the only allowed Feynman diagrams are those with a conserved flow of lepton

number (represented by the arrow on the fermion lines of leptons), like the opposite-sign

dilepton decay of a heavy hadron shown in figure 2(a). On the other hand, in the presence

of lepton number violating (LNV) operators, processes like the same-sign dilepton decay

shown in figure 2(b) become possible. Lepton number violation can also manifest itself in

neutral-current processes or in neutrinoless double-β decay. Whether such LNV transitions

actually happen depends on the specific model.

In the past decade, a class of low-scale seesaw models have risen in popularity, such

as the νMSM [10], not least because of their falsifiability at existing or proposed experi-

ments. In these models, MM is postulated to be below the electroweak scale. The seesaw

formula (2.7) requires at least 2 HNLs to explain the two observed mass differences. If

their parameters are arbitrary, then the smallness of the light neutrino masses is achieved

through small Yukawa couplings of order Y ν ∼ 1
v

√
|mν ||MM |, leading to squared mixing

angles |Θ|2 ∼ |mν |/|MM |. For a typical HNL with MM ∼ 1 GeV, this gives |Θ|2 ∼ 10−11,

a number that is too small to be probed at any current or proposed experiment.

– 4 –
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(a) LNC
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l+β

h′′

W+∗

q

N

W−∗

(b) LNV

Figure 2. Lepton number conserving and violating decay chains for H → h′lα(N → lβh
′′).

However, multiple HNLs can have mixing angles well above the seesaw limit, yet at

the same time produce the correct neutrino masses in a technically natural way, if a certain

symmetry is imposed on their Yukawa couplings. If we consider for simplicity N = 2 nearly

degenerate HNLs N1,2, their mixing angles should be related by Θα2 ≈ ±iΘα1 [35, 36]. Such

HNLs form a quasi-Dirac fermion, which approximately conserves the total lepton number.

This implies that the usual searches for naive LNV effects (e.g. same-sign dilepton decays),

may return null results even if HNLs are there.

Below we discuss an important consequence of the approximate nature of this lepton

number conservation: HNL oscillations, and how quasi-Dirac HNLs can phenomenologically

behave either as Majorana or Dirac HNLs depending on their mass splitting δM and the

length scale probed at the experiment.

2.2 Coherent oscillations of Heavy Neutral Leptons

The SHiP experiment is only sensitive to GeV-scale HNLs, with mixing angles significantly

above the seesaw limit [30]. Therefore it can only probe the quasi-Dirac regime described

above. Apart from a small mass splitting δM � M , the two HNLs are otherwise identi-

cal. Since these two HNLs cannot be distinguished in any realistic experiment, they both

mediate the same processes and each contribute to the total transition amplitude, result-

ing in interference. Only the initial and final-state particles, which strongly interact with

the environment, are measured in the quantum mechanical sense. In order to accurately

describe processes involving multiple HNLs, it is therefore necessary to consider them as in-

termediate particles within a larger process consisting of the HNL production, propagation

and decay, and only square the overall transition amplitude between the observed, external

particles. This can be formulated rigorously within the framework of the external wave

packet model [54, 55] (see also [56–59] and references therein for recent reviews). Let us

note in passing that this description automatically takes care of spin correlations between

the particles taking part in the HNL production and decay.

In what follows, we consider a typical reconstructible decay chain at SHiP, as depicted

in figure 2. We will postpone the detailed discussion of this process to section 3. A heavy

hadron H produced in the target decays at space-time coordinates xP into an HNL NI , a

– 5 –
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charged lepton lα (the primary lepton), and an optional hadron h′. If the HNL is sufficiently

long-lived, it can propagate a macroscopic distance before decaying at xD into a charged

lepton lβ (the secondary lepton) and a hadron h′′.

The slightly different masses of the HNLs mediating the process lead to different disper-

sion relations q2
I = M2

I . As a consequence, the space-time-dependent phase e−iqI ·(xD−xP )

acquired by the HNL between its production and decay will differ slightly for each mass

eigenstate. When squaring the amplitude in order to obtain the differential decay rate,

the interference terms between the partial amplitudes coming from different mass eigen-

states will therefore feature a space-time-dependent modulation: HNL oscillations. The

external wave packet model allows one to unambiguously establish the expression for the

oscillation phase and check that the entire process remains coherent in all experimentally

relevant situations.

The present paper does not aim to be a detailed study of HNL oscillations, which have

already been covered in various settings and limits in the literature [10, 44, 48, 60–65].

Therefore, we will only quote the main result. Let dΓ̂±±αβ be the differential rate for the

above-described process H → [h′]l±α (N → l±β h
′′) mediated by a single Majorana HNL N ,

in the (unphysical) limit of a unit mixing angle between the HNL and the active flavor

α at its production vertex, with flavor β at its decay vertex, and without the absorptive

part. The coherent differential rate dΓ±±αβ (τ) in the presence of N nearly degenerate HNLs

mediating the process, as a function of the proper time τ =
√

(xD − xP )2 between the

HNL production and decay vertex, is then:

dΓ±±αβ (τ) =

∣∣∣∣∣
N∑
I=1

Θ±αIΘ
±
βIe
−iMIτ−

ΓI
2
τ

∣∣∣∣∣
2

dΓ̂±±αβ (2.9)

where MI is the (Majorana) mass of the I-th heavy mass eigenstate, ΓI its total width,

and we have used the shorthand notation Θ+ def
= Θ∗ and Θ−

def
= Θ.

In the case of N = 2 HNLs forming a quasi-Dirac pair, i.e. M1 = M − δM
2 , M2 =

M + δM
2 , Θα2

∼= ±iΘα1 and Γ1
∼= Γ2

def
= Γ, the coherent differential rate reduces to:

dΓ±±αβ (τ) ∼= 2 |Θα1|2 |Θβ1|2 (1± cos (δMτ)) e−ΓτdΓ̂±±αβ (2.10)

where the + sign is for lepton number conserving processes (dΓ+−
αβ and dΓ−+

αβ ), and the −
sign for lepton number violating ones (dΓ++

αβ and dΓ−−αβ ). Notice how in the quasi-Dirac

limit, the oscillation pattern does not explicitly depend on the lepton flavors α and β,

but only on whether the process is LNC or LNV. If δM vanishes exactly, HNLs form

a Dirac fermion and LNV effects are completely absent. Recently, CP -violating HNL

oscillations have attracted some interest [66–69]. However, here we can see that CP -

violation is suppressed in the quasi-Dirac limit.

Throughout this paper, we will focus on the case where Γτ � 1, which is the most

relevant for SHiP, and drop the exponentially decaying factor. Analysing formula (2.10),

we see that there are three regimes of interest, depending on the mass splitting δM and

proper time scale τ probed at the experiment:

– 6 –
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• If δMτ � 2π, the HNL pair is observed before the onset of oscillations, and it behaves

like a single Dirac HNL, i.e. we cannot observe lepton number violation.

• If δMτ � 2π, fast oscillations are averaged out, and the HNL pair behaves like a

single Majorana HNL, with equal integrated decay rates for LNC and LNV channels.5

• If δMτ ∼ 2π, oscillations must be accounted for. If it is possible to experimentally

reconstruct, for each selected event, the proper time τ between the production and

decay vertex of the HNL, then oscillations can be resolved, i.e. the τ -differential event

rates for LNC/LNV will show a periodic modulation according to eq. (2.10).

At SHiP, the proper time scale τ is about 2 m for sufficiently long-lived HNLs. It cor-

responds to the average time between the production and decay of an observed HNL, in

its rest frame. Therefore, the critical mass splitting separating the three regimes — near

which oscillations are resolvable — is about 10−6 eV.

3 Probing lepton number violation at SHiP

Many collider searches for Majorana HNLs [70–73] are sensitive to lepton number violation

through the charges of the leptons produced at the HNL production and decay vertex.

Indeed, due to the chiral nature of the weak interaction, they unambiguously tell the chiral

projection through which the HNL interacts at a given vertex. In theory, a same-sign

dilepton decay (either prompt or displaced) would thus provide clear evidence for lepton

number violation (although, in practice, significant standard model backgrounds exist for

prompt decays).

At SHiP, similar numbers of mesons and anti-mesons are expected to be produced.6

This leads to similar numbers of HNLs being produced along with positively and negatively

charged primary leptons. Consequently, the secondary lepton charge contains very little

information as to whether the process is LNC or LNV. To lift this degeneracy, it becomes

necessary to look at new observables.

Luckily, the HNL lepton number is not the only quantum number conserved by the

weak interaction. The HNL also carries spin 1
2 , and the total angular momentum is always

conserved. When the HNL is produced, its spin is correlated (opposite if H and h′ are

pseudoscalar) with that of the primary lepton. Due to chiral suppression, the spin of the

primary lepton is itself correlated with its lepton number (see for example the left part

of figure 3). This suggests that by looking at the angular distribution of the secondary

particles — which may be observable — we should be able to obtain information about the

primary interaction, and thus whether the process was LNC or LNV (see the right part

5In the rest frame of a single on-shell, Majorana HNL, the only “memory” of the production process is

the HNL spin. To perform the phase-space integration for the HNL decay, one can always choose a frame

where the HNL is at rest and with a fixed spin projection, hence resulting in the same integrated rates for

LNC and LNV processes.
6Unless cascade production significantly alters the results from ref. [74]. The charm spectrum will be

measured at SHiP prior to data taking [75]. Asymmetries, if present, can only improve the classification

accuracy, since the secondary lepton charge would then carry some information.

– 7 –
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Figure 3. This sketch explains the origin of the different angular correlations for LNC and LNV

processes. For simplicity, here we consider two-body primary and secondary decays involving only

pseudoscalar mesons, and the masses of the charged leptons and of h′′ are neglected. For definiteness,

the charge of the primary lepton — which is produced inside the target and thus inaccessible — is

also fixed to +. Since the HNL is a Majorana fermion, the secondary lepton lβ can have either charge.

However, due to angular momentum conservation, the lepton l+α and the HNL N are produced with

opposite spin projections in the rest frame of the heavy meson H. Because of chiral suppression

(which is more effective for light fermions), the charge of the primary lepton is correlated with its

spin (e.g. in the massless limit, l+α has helicity + 1
2 ) and hence with the HNL spin. For the same

reason, the angular distribution of the decay products of the resulting HNL spin eigenstate (which

is unaffected by a boost along the quantization axis) will therefore depend on the secondary lepton

charge. The very same formula for the probability P also holds for CP -conjugated channels, with

the + sign for LNC and the − sign for LNV. The general case (massive, with two- or three-body

primary decay) is discussed in section 3.2.

of figure 3). This realization was the starting point of the present work. More generally,

we expect LNC and LNV decay chains to have different kinematics due to their different

Lorentz structures, potentially allowing us to distinguish them without directly observing

the primary decay.

In section 3.1, we describe the relevant HNL production and decay channels at SHiP;

in section 3.2, we quantitatively compare the angular distributions for LNC and LNV

processes, and in section 3.3 we discuss how this affects the observable momenta in a

beam-dump setting.

3.1 HNL production and decay at SHiP

At SHiP, most HNLs are produced in heavy meson decays through flavor-changing charged

currents, as discussed in ref. [76]. In addition, for the present analysis, we will only consider

fully reconstructible HNL decays such as N → l∓β π
±, producing only charged particles

which are sufficiently long-lived to be detected by the tracking station located at the end

of the decay vessel. Those are also mediated by the charged-current interaction.

Without losing generality, we can therefore consider the generic lepton number con-

serving and violating processes H → [h′]lα(N → lβh
′′) represented in figures 2(a) and 2(b),

respectively, as well as their CP -conjugates. H denotes a heavy hadron (typically a D[s] or

B[c] meson at SHiP), h′ and h′′ are hadrons (with h′ missing for two-body primary decays),

and l±α and l±β are respectively the primary and secondary leptons.

– 8 –
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Since the heavy hadron H is typically short-lived, the primary decay takes place inside

the target and cannot be observed. If the HNL is sufficiently long-lived (we will assume

this to be the case throughout this paper), it can propagate a macroscopic distance before

decaying, and leave a very displaced vertex inside the SHiP decay vessel. For the selected

decay channels N → l∓β π
±, this secondary vertex can be fully reconstructed.

In the present study, we will restrict ourselves to HNL masses between the K and

Ds thresholds. Masses below the K threshold have already been heavily constrained [11],

while above the Ds mass, HNLs are mainly produced in B meson decays, whose spectrum

cannot be directly measured at the beam dump, making our analysis more sensitive to

modeling errors.

3.2 Angular correlations in LNC and LNV decay chains

In order to study the angular correlations between all final-state particles, spin correlations

between the primary and secondary decay must be accounted for. Those result from

the non-observation of the HNL spin, which leads to interference between the two spin

eigenstates Ns, s = ±1
2 (similarly to how the non-observation of its precise mass allows for

flavor oscillations). To compute the overall transition amplitude, we can therefore use the

same trick as for oscillations, i.e. treat the primary and secondary decays as a single process.

To simplify the calculations, in this section we will focus on the case of a single Majo-

rana HNL, which mediates both LNC and LNV decay chains with equal rates, and we will

omit the absorptive part of the amplitude (i.e. we will study dΓ̂±±αβ instead of dΓ±±αβ (τ)). We

do not lose generality in doing so, because the effect of multiple nearly degenerate HNLs

and their finite lifetime can be factored out, and subsequently recovered, using eqs. (2.9)

and (2.10). To keep the notation light, we will from now on drop the HNL index I = 1.

Since we are only concerned with long-lived HNLs, which are produced on their mass

shell and have well separated, localized production and decay vertices, the momentum q of

the HNL is practically fixed, which allows factorizing the transition amplitude as:

A
(
H → h′lαlβh

′′)∣∣∣
N long-lived

∝
∑
s=± 1

2

A
(
H → h′lαNs(q)

)
A
(
Ns(q)→ lβh

′′) (3.1)

where we have omitted the complex phase e−iq·(xD−xP ) resulting from the HNL propagation,

which is unimportant in the case of one HNL. The sub-amplitudes for the primary and

secondary polarized decays are then straightforward to compute using the usual Feynman

rules with two-component spinors [51].

Consider now the LNC and LNV processes H → [h′]lα(N → lβh
′′) where H,h′, h′′

are pseudoscalar mesons and h′ may be missing. They are respectively represented in

figures 2(a) and 2(b), with the arrows denoting the flow of lepton number. Their CP -

conjugates have been omitted, since in the absence of oscillations (as is the case for the

incoherent width), CP is conserved. As can be seen in figure 5, the primary decays H →
[h′]lαN with h′ a pseudoscalar meson or missing indeed produce the majority of HNLs

with masses & 0.7 GeV and below the Ds mass.7 Let JhWµ be the hadronic charge-lowering

7Below MN ≈ 0.7 GeV, a non-negligible fraction of HNLs is produced along with a vector meson. In

this case, we expect the angular correlations to reverse compared to the pseudoscalar case.
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Figure 4. Number of HNLs produced at SHiP as a function of the primary decay multiplicity, for

a coupling to one flavor.

current, j−1µ =
〈
h′|JhWµ|H

〉
and j∓2µ =

〈
h′′|Jh(†)

Wµ |0
〉

the hadronic matrix elements, pα,β
the charged lepton momenta, and q the HNL momentum. If the primary decay is purely

leptonic, then |h′〉 = |0〉. Since SHiP cannot directly measure the spin or helicity of the

particles detected, we sum incoherently over all possible spin configurations of final state

particles. The spin-summed, squared amplitudes are then, in the Fermi approximation:∣∣ALNC(H → h′l+α l
−
β h
′′)
∣∣2 =

|Θα|2 |Θβ |2

v8
tr
(
PR/pα/j

∗
1/q/j
∗
2/pβ/j2/q/j1

)
(3.2)∣∣ALNV(H → h′l+α l

+
β h
′′)
∣∣2 =

|Θα|2 |Θβ |2

v8
M2
N tr

(
PR/pα/j

∗
1/j
∗
2/pβ/j2/j1

)
(3.3)

where we have omitted the ± for brevity if they can be inferred from context, Θα,β are the

mixing angles, and v = 〈|φ|〉 ≈ 246 GeV is the vacuum expectation value of the Higgs field.

These results are consistent with the polarized decay rates from ref. [25], but generalize

to the case where the primary decay produces a superposition of HNL helicity eigenstates.

The above two expressions differ in the trace, therefore we generically expect them to

produce different momentum distributions for LNC and LNV processes. However, in their

current form, this difference is not manifest. To understand it, it is interesting to consider

the special case where the production process is a two-body decay. As can be seen in

figures 4 and 5, it is actually the main production channel for HNLs with masses & 1 GeV

and below the Ds mass.

When both the production and decay process are two-body decays, the hadronic matrix

elements are jµ1 = −iVUDfHpµH and jµ2 = +iVU ′D′fh′′p
µ
h′′ , where VUD denotes the relevant

CKM matrix element and fh is the meson decay constant. Neglecting the masses of the

final state particles, which give O
(m2

α,β,h′′

M2
H,N

)
corrections, the traces from eqs. (3.2) and (3.3),

respectively for LNC and LNV processes, simplify to:

tr
(
PR/pα/j

∗
1/q/j
∗
2/pβ/j2/q/j1

)
∼= |VUD|2 |VU ′D′ |2 f2

Hf
2
h′′ ·M6

N

(
M2
H −M2

N − sll
)

(3.4)

M2
N tr

(
PR/pα/j

∗
1/j
∗
2/pβ/j2/j1

)
∼= |VUD|2 |VU ′D′ |2 f2

Hf
2
h′′ ·M6

Nsll (3.5)
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Figure 5. Fraction of HNLs produced at SHiP as a function of the primary decay multiplicity and

spin of the outgoing meson, for a coupling to one flavor.

where sll
def
= (pα + pβ)2 is the invariant dilepton mass. Note the linear and opposite depen-

dences of the LNC and LNV spin-summed squared amplitudes on sll. To understand their

origin, it is enlightening to reexpress sll in the rest frame of the HNL, in terms of the angle

θCM
ll = ∠(pCM

α ,pCM
β ) between the two lepton momenta. Still in the massless limit, we find:

sll =
M2
H −M2

N

2

(
1− cos

(
θCM
ll

))
(3.6)

Therefore, ∣∣ALNC

∣∣2 ∝ 1 + cos
(
θCM
ll

)
(3.7)∣∣ALNV

∣∣2 ∝ 1− cos
(
θCM
ll

)
(3.8)

We observe that opposite-sign leptons (LNC) tend to be produced in the same direction,

and same-sign leptons (LNV) in opposite directions. As explained in figure 3, this is

a consequence of the chirality of the weak interaction and the conservation of the total

angular momentum. In the absence of any other dynamics, spin projections lead to the

characteristic angular dependence in cos
(
θCM
ll
2

)
and sin

(
θCM
ll
2

)
of the transition amplitude,

respectively for LNC and LNV. Eqs. (3.7) and (3.8) then directly follow from squaring the

amplitude.

In the massive case, the finite masses of the decay products can result in helicity

flips, and in the three-body case, the QCD matrix elements lead to non-trivial correla-

tions between the momenta of the primary decay products. These effects complicate the

correlations between the various momenta. Nevertheless, they can be accounted for when

sampling events. To this end, we have implemented the full matrix elements from eqs. (3.2)

and (3.3) in our Monte-Carlo simulation, as discussed in appendix A.4.

3.3 Angular distribution in the laboratory frame

At SHiP, the invariant mass sll (or angle θCM
ll ) cannot be reconstructed. This is because

neither the heavy hadron momentum nor the momenta of its decay products (other than
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Figure 6. This sketch shows how the different distributions of lβ in the HNL rest frame for LNC

vs. LNV processes affect the corresponding distributions in the rest frame of the heavy hadron H

and in the laboratory frame. The various momenta shown for lβ represent multiple realizations of

the decay. In the H frame, LNV processes typically result in larger momenta for lβ than LNC ones.

In the laboratory frame, this effect partly survives the averaging over the heavy hadron spectrum

and manifests itself as a broadening of the distribution of the secondary lepton momentum pβ .

the HNL) can be determined. Indeed, the heavy hadrons producing the HNLs do not have

a monochromatic spectrum, and the primary decay cannot be observed since it takes place

inside the target. One can then reasonably wonder if some difference between the LNC

and LNV distributions subsists when looking only at the (observable) secondary decay

products, in the laboratory frame, or if it is washed out.

To start answering this question, it is instructive to go back to the simplified case dis-

cussed in section 3.2, where the HNL is produced and decays through two-body processes

involving pseudoscalar mesons. In the HNL rest frame, we obtained the following corre-

lation: for LNV processes, the direction of the secondary lepton momentum is positively

correlated with the boost direction (denoted by z on figures 3 and 6) from the heavy meson

rest frame to the HNL rest frame; while for LNC processes it is anti-correlated. This is

depicted in the left panel of figure 6. Furthermore, in two-body decays, the magnitudes

of all momenta in the rest frame of the parent particle are fixed by four-momentum con-

servation, and depend only on the particle masses. Consequently, in the heavy meson rest

frame, the magnitude of the secondary lepton momentum will on average be larger for

LNV processes compared to LNC ones. This argument is still valid for three-body decays

involving pseudoscalar mesons. A non-trivial asymmetry thus subsists in the heavy meson

rest frame (see the middle panel of figure 6).

As a final step, the momenta must be boosted back to the laboratory frame. Since the

heavy hadron momentum is not fixed, this has the potential to wash out the correlations.
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At SHiP, heavy mesons have a large momentum spread along the beam axis (O(10 GeV),

much larger than the yield of the meson decay), and a significantly smaller one (O(1 GeV))

in the transverse direction (see appendix A.3). The asymmetry between the LNC and LNV

distributions is therefore more likely to be visible in the transverse plane than along the

beam axis. For it to be significant, the HNL kinetic energy in the heavy hadron rest frame

should be similar to or exceed the transverse momentum spread of the hadron spectrum.

As a result, we expect the pT spectrum of the secondary lepton lβ to be broader for LNV

processes than for LNC ones (see the right panel of figure 6), provided that both of them

are broader than the irreducible pT spread of the heavy meson spectrum.

Alternatively, one could try to approximate the angle θCM
ll in the HNL rest frame. If

the heavy hadron momentum is fixed, this can be done exactly, and results in the maximal

classification accuracy allowed by spin projections (e.g. a = 3/4 in the two-body, massless

case). It is then equivalent to measuring the (observable) momentum pCM of the secondary

lepton lβ in the HNL rest frame. However, when the heavy hadron has a finite spectrum,

the boost direction from its rest frame to the HNL rest frame is not fixed any more. This

partially decorrelates θCM
ll and pCM, hence reducing the discriminating power of the latter.

As we shall see in section 4.2, the features discussed above can indeed be used to dis-

criminate between LNC and LNV processes (see for example figure 7). More generally, any

difference — in the laboratory frame — between the distributions of the visible decay prod-

ucts of LNC and LNV processes opens up the possibility of measuring their relative rates,

given sufficiently many events. Although discriminating between these two classes of events

would be very challenging analytically, this problem is well suited to multivariate analysis.

Further complications arise, however, due to HNLs being produced from a mix of

various two- and three-body decays, and because of the geometrical acceptance of the

experiment, which alters the distribution of visible particles. Generating a training set

which faithfully reproduces the angular correlations discussed above while including these

effects is therefore best done using a Monte-Carlo simulation. In the next section, we discuss

the simulation used to generate the training set (section 4.1), then how we use it to train a

binary classifier (section 4.2), and finally how we use the classifier output in order to perform

model selection (section 4.3) and reconstruct HNL oscillations (section 4.4). In section 4.5,

we discuss the applicability of the method presented here to other proposed experiments.

4 Simulation and analysis

4.1 Simulation

In order to accurately estimate the distribution of the momenta of the HNL decay products,

we have devised a simple Monte-Carlo simulation, which generates the primary and sec-

ondary decays at once, using the matrix elements presented in section 3.2. The first step is

to generate D mesons with a realistic spectrum. Generating these spectra from simulation

would be a difficult undertaking, so instead we chose to use experimental data collected by

the LEBC-EHS collaboration [74], at the CERN SPS running at 400 GeV with a hydrogen

target. We then randomly select a production and decay channel according to the relative

abundances of charmed mesons from ref. [29] and the branching fractions from ref. [76].
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Feature(s) Description

Ql2 Charge of the secondary lepton lβ

E1, p1x, p1y, p1z Reconstructed HNL momentum pN = plβ + pπ (lab frame)

E2, p2x, p2y, p2z Secondary lepton momentum plβ (lab frame)

E3, p3x, p3y, p3z Secondary pion momentum pπ (lab frame)

pCMx, pCMy, pCMz Secondary lepton momentum pCM (HNL frame)

xD, yD, zD Decay vertex (lab frame)

Table 1. The 19 features recorded for each event.

Finally, we generate the momenta of both the primary and secondary decay products at

once. This is done by first sampling all the momenta according to phase-space, indepen-

dently for each decay, and finally performing rejection sampling on these momenta using

the matrix element for the combined process. As a last step, we simulate the geometrical

acceptance by requiring the HNL to decay within the hidden sector decay vessel, into two

long-lived, charged particles which both intersect the tracking station. In order to account

for the (small) probability of the HNL decaying inside the fiducial volume, each event is

weighted by Pdecay(τ) = Γe−Γτ , where τ is the proper time between the HNL production

and decay. Throughout this paper, we assume the particle identification to be perfectly

efficient, which should be a reasonably good approximation at SHiP [77]. The simulation

is described in details in appendix A.

4.2 LNC/LNV classification

For a given choice of relative squared mixing angles |Θα|2 (which are supposed to be known

by the time LNV is studied at SHiP), we generate a dataset for a range of HNL masses

between the K and Ds thresholds. For each HNL mass, we sample 3 · 106 events with

uniform weights, and keep only those passing the acceptance cuts. The HNL is simulated

as a single Majorana particle, which ensures that the dataset contains equal numbers of

LNC and LNV events, and is also balanced with respect to the primary and secondary

lepton charges.

Each event is labelled with a boolean flag set to false for LNC and true for LNV, using

the MC truth. The only observable quantities come from the HNL decay in the vacuum

vessel. They are: the momenta and charges of the lepton l±β and pion π∓, and the decay

vertex xD. Of these quantities, we record a total of 19 primary or derived features. Their

definitions can be found in table 1, and some typical distributions are presented, as an

example, in figure 7, for both LNC and LNV processes. Finally, from each dataset, we set

aside 30% of events for testing and 20% for validation, leaving us with 50% of events for

training the classifier.

For each dataset, we train a binary classifier to discriminate between LNC and LNV

decay chains. For this study, we use the LightGBM [78] decision tree boosting algorithm,

through the Python interface to the reference implementation [79]. In order to perform

simple classification, we choose the binary objective. The training is discussed in more
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Figure 7. Corner plot showing the correlations between five selected features, for a 1 GeV HNL

coupling to the muon. See table 1 for a description of the features. Each subplot shows, on the same

scale, the marginal distributions of LNC and LNV events as a function of either one (on-diagonal

plots) or two (off-diagonal plots) features. 1d distributions are represented as histograms, and 2d

distributions as contour plots of the probability density.

details in appendix B.2. The accuracy of the trained classifier (as evaluated on the test set)

is presented in figure 8 as a function of the HNL mass for three scenarios, corresponding

to an HNL coupling to electrons, muons, or equally to both.

4.3 Model selection

Assuming the true event distribution to match (or be sufficiently close to) the simulated

one, we can then use our trained classifier to classify each event as either LNC or LNV. As

stated in section 1, our main goal is to distinguish the following two hypotheses:

• H1: HNLs are Dirac or quasi-Dirac with δMτ � 1 (LNC decays only).

• H2: HNLs are Majorana or quasi-Dirac with δMτ � 1 (as many LNC/LNV decays).
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Figure 9. Number of fully reconstructible events required to detect LNV at 90% CL, for an HNL

coupling to e, µ, or equally to both.

Since the classifier is not perfectly accurate, its decision cannot be used to directly confirm

the presence of LNV processes, or constrain their existence. If we knew the full distribution

in feature space ρ(z) for each hypothesis, we could obtain an optimal test statistics by

constructing the corresponding likelihood ratio [80]. However, accurately estimating ρ(z)

is a non-trivial task and would be error-prone, so we elected to use a less powerful but more

reliable, simplified model. Knowing the classification accuracy a for a given binary classifier,

we compute the likelihood of classifying k events out of N as LNV, and N − k events as

LNC (independently of their specific feature vectors z) assuming that the true fraction of

LNV events is f . We then compute the best-fit value for f and use Wilk’s theorem [81] in

order to determine whether it significantly deviates from either f = 0 (corresponding to

H1) or f = 1
2 (corresponding to H2).

In order to estimate the “model-selection” sensitivity of SHiP, we then compute, under

each hypothesis and as a function of the HNL mass MN and squared mixing angles |Θα|2,

the median confidence level at which we can exclude the other hypothesis assuming 5 years
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of nominal operation (i.e. 2 · 1020 protons on target). For each true hypothesis, we finally

draw the sensitivity limit by plotting, for each MN , the smallest |Θα|2 for which this median

confidence level is at least 0.9. In other words, for mixing angles above this limit, SHiP

has a probability of at least 1/2 of disfavouring one hypothesis at CL = 0.9 if the other is

realized. The number of fully reconstructible events corresponding to this limit is plotted in

figure 9 (when the null hypothesis is taken to be H1). The construction of these confidence

limits is described in details in section B.3, and the resulting sensitivity plots are presented

in section 5.1.

4.4 Resolving HNL oscillations

So far we have only considered the two extreme cases (H1 and H2), where the HNL(s)

behave either as a single Dirac or Majorana particle. However, as discussed in section 2.2,

if two nearly degenerate HNLs form a quasi-Dirac pair, both LNC and LNV decay chains

will be present, with a non-trivial ratio 6= 0, 1, and the corresponding decay rates will

feature oscillations as a function of the proper time τ between the HNL production and

decay events, with the characteristic 1 ± cos(δMτ) dependence described by eq. (2.10),

where (+) corresponds to LNC and (−) to LNV.

For δM ∼ 10−6 eV, δMτ will be of order 2π at SHiP, leading to potentially resolvable

oscillations, provided we can accurately reconstruct the proper time τ between the HNL

production and decay. Expressing it as τ = L
βγ , we see that this can be accomplished if we

have sufficiently accurate vertexing and energy reconstruction. At SHiP, the precision on L

will be limited by the impossibility of reconstructing the primary vertex within the target.

The energy resolution, despite being sufficient for particle identification, is not enough for

reconstructing τ (see sections 4.7 and 4.10 in ref. [28]). However, the momentum resolution,

combined with the dispersion relation (assuming the HNL mass to be known already with

sufficient accuracy) should allow reconstructing γ much more precisely. The high vertexing

and momentum resolution permitted by the SHiP tracker, together with our method for

(statistically) distinguishing LNC from LNV processes (described in section 4.3), should

therefore make it possible to resolve the oscillation pattern in part of the parameter space.

In order to search for HNL oscillations, we first classify the observed events using a

model trained (for one HNL) at the corresponding mass. We thus assume again that we

have sufficiently many events that the HNL mass MN is well known. The events are then

binned in proper time τ , which is the relevant variable for oscillations of massive, relativistic

particles. Instead of using the predicted class, here we implement the classifier decision

as a weight for the binned events, using the predicted probability pLNV. This weight

contains more information than the class does, since it acts as a measure of uncertainty

by taking values close to 1/2 for ambiguous events, and closer to 0 or 1 for unambiguous

ones. However, without applying further corrections, the sum of these probabilities would

average to N 〈pLNV〉 for the entire sample of N events. If used directly as weights, they

would therefore cause the oscillatory pattern to be hidden among Poisson fluctuations. In

order to reveal this pattern, we instead weight the events by pLNV − pLNV, where pLNV is

the sample average of the estimated pLNV. This weight averages to zero over the entire

sample, which limits the impact of Poisson fluctuations.
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HNL oscillations are implemented in our simulation by first generating events without

taking interference into account then, in a second time, performing rejection sampling

based on the proper time τ , following eq. (2.10). The results obtained using this simulated

data set are presented in section 5.2.

4.5 Applicability of the method to other experiments

The present study crucially relies on the identification of the HNL decay products and the

measurement of their momenta. However, a number of proposed experiments to search

for HNLs, such as MATHUSLA [12–14], CODEX-b [18, 19] (in its baseline configuration)

and ANUBIS [22], cannot measure the momenta of the decay products. Since low-mass

HNLs (MN < MBc) at the LHC are also mostly produced in the decays of heavy mesons,

one can wonder to which extent the present analysis would apply to these experiments.

Training a classifier using only the directions of the tracks of the visible decay products

and the same geometry as SHiP reveals that the distributions of LNC/LNV for a given set

of HNL parameters can still be distinguished, with an accuracy only slightly lower than the

one obtained using the full momenta. There are, however, two caveats. First, training the

classifier requires knowing the HNL mass, which cannot be obtained without measuring

the momenta of its decay products (or matching the displaced decay to its reconstructed

production process in the main detector, if this is feasible). In addition, the large center-of-

mass energy at the LHC could result is a very broad heavy meson spectrum, which would

smear out the LNC/LNV distributions and make them indistinguishable. It therefore seems

unlikely that MATHUSLA, CODEX-b or ANUBIS could benefit from this method.

Other planned or proposed detectors, such as NA62++ [26, 27] (in beam-dump mode),

the DUNE near detector [23–25], FASER [15–17] and AL3X [20, 21], are in principle capable

of reconstructing the HNL mass. The AL3X detector, thanks to its large time projection

chamber and its magnetic field, should be able to directly measure both the charges and

momenta of the two leptons, making the method described here unnecessary. It is unclear

to the authors, however, whether FASER could benefit from it. The answer likely de-

pends on the spectrum of the heavy mesons producing the HNLs which eventually interact

with the detector. A Monte-Carlo simulation would provide a definitive answer to this

question. The remaining beam-dump experiments: NA62++ and DUNE, share a similar

geometry with SHiP and face the same challenge (no observation of the primary charged

lepton l±α ). As such, we generically expect the method presented here to be applicable to

these experiments, within the mass range where it is valid, and subject to the heavy meson

spectrum being similar to the one at SHiP. This could be ascertained using a Monte-Carlo

simulation. Whether these experiments can also resolve HNL oscillations will depend on

how accurately they can reconstruct the HNL momentum.

5 Results

5.1 Sensitivity to Lepton Number Violation

In order to easily compare our results to existing exclusion bounds or to the sensitivities of

future experiments, let us consider two simplified models where a single HNL exclusively
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mixes with the electron or muon neutrino.8 As can be seen in figure 8, more generic mixing

patterns with the e and µ flavors do not significantly degrade the classification accuracy;

therefore they should leave the limits presented below mostly unchanged. However, if a

significant fraction of HNLs is produced through mixing with the τ neutrino, then the

present analysis would need to be modified to handle secondary production of HNLs in τ

decays, including spin correlation effects.

As discussed in section 4.3, we define the sensitivity to lepton number violation as

the smallest mixing angles for which SHiP has a 1/2 probability of either rejecting or

detecting LNV, if it is respectively absent or present with the same rate as LNC. The

results are presented in figure 10, along with various existing exclusion bounds and detection

sensitivity9 limits for planned or proposed experiments, extracted from the report of the

Physics Beyond Colliders working group [11]. We only show the sensitivities of experiments

which can not only set exclusion bounds, but also reconstruct the HNL mass, should it be

observed. Note that in order to be consistent with the SHiP detection sensitivity, which

was computed for one Majorana HNL, we present our results for one HNL as well. In the

realistic case of N ≥ 2 HNLs, both curves must be scaled down by a factor of N 1/2. Above

the black dashed line, SHiP should be able to distinguish Dirac-like (H1) and Majorana-

like (H2) HNLs. We have discarded the HNL masses for which the early stopping criterion

returned the first iteration as the best, since it suggests that the classifier has failed to learn

anything about the data. Below 0.7 GeV, additional production channels H → h′V lαN

(where h′V denotes a vector meson) become significant, and have not been implemented

with spin correlations in our Monte-Carlo simulation. Therefore we also restrict the HNL

mass to MN & 0.7 GeV. Additionally, since the sensitivity is almost identical for excluding

H1 or H2, we only plot one limit, which corresponds to excluding H1 at 90% CL if LNV is

actually present.

We can see that the larger number of accepted events (indicated in figure 10 by the

thin dashed grey lines) at higher masses initially compensates for the worse classification

accuracy, but is not sufficient any more as we approach the D threshold. In practice,

we expect that systematic uncertainties about the D spectrum and the simulation will

decrease the sensitivity at both ends of the mass range, where the classification accuracy

is already close to 1/2. Comparing the results to the SHiP detection sensitivity, we see

that around 1 GeV, the model-selection sensitivity limit is about one order of magnitude

above the detection one, while remaining well below the planned NA62++ limit as well as

existing bounds.

This leads us to an interesting conclusion: there exists a non-trivial region of parameter

space, unconstrained by current or near-future experiments, where SHiP would not only

be able to detect HNLs, but also characterize them as either Dirac-like or Majorana-like

particles. As discussed in appendices A.3 and B.4, this conclusion is robust with respect

to uncertainties on the heavy meson spectrum.

8Within the seesaw mechanism, it is impossible to generate the two observed light neutrino mass differ-

ences with a single HNL, or if HNLs mix with one generation only [82]. The two benchmarks presented in

figures 10(a) and 10(b) are thus simplifications, used here because they are consistent with the parametriza-

tion employed by the PBC working group.
9The usual sensitivity, by opposition to the sensitivity to lepton number violation discussed here.
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(b) HNL mixing with νµ.

Figure 10. SHiP sensitivity to lepton number violation. The thick dashed curve is the “model-

selection” sensitivity computed in this work. The thin dashed grey lines show the number of fully

reconstructible events which would be observed at SHiP for a given mass and mixing angle. Dotted

curves are the (lower) detection sensitivities for the proposed or planned experiments which can

reconstruct the HNL mass. Coloured, filled areas are regions of parameter space which have been

excluded by previous experiments. The grey filled area denoted by BBN indicates the region which

is incompatible with Big Bang Nucleosynthesis. Below the seesaw limit10(hatched region), mixing

angles are too small to produce the observed neutrino masses.

5.2 Resolvable quasi-Dirac oscillations

The result of the procedure described in section 4.4 is presented in figure 11 for a new

simulated dataset (independent from the training set), corresponding to a quasi-Dirac pair

of mass MN = 1 GeV, mass splitting δM = 4 · 10−7 eV, and mixing with muon neutrinos

only, with a squared mixing angle |ΘµI |2 = 2 · 10−8, I = 1, 2. The oscillatory pattern is

manifest at τ < 5 m, where most of the events fall. At larger τ it is hidden in Poisson

fluctuations. The uncertainty on τ at SHiP is dominated by the (boosted) length of the

target ∼ 0.1 m, which contains the unresolved primary vertex. It could smear out fast

oscillations, in which case an accurate treatment of this uncertainty would be needed in the

simulation. However, for longer oscillation periods like the one shown in figure 11, its effect

should be negligible. Deriving precise sensitivity limits for HNL oscillations is beyond the

scope of this paper, since it is likely that no simple analytical expression exists for them, due

to the more complex test statistics required, compared to the detection or model-selection

limits. HNL oscillations might for instance be amenable to methods such as maximum

likelihood estimation, wavelets, or matched filtering, for which the null distribution can be

estimated numerically using a (computationally expensive) bootstrapping procedure.

10The seesaw limit can only be rigorously computed if the mixing angles are consistent with the seesaw

equation (2.7). This is not possible for HNLs mixing with only one generation, nor for a single HNL. The

limits presented here instead correspond to the “naive” estimate
∑
mν ≤ MN ·

∑
α |Θα|2, where we have

assumed the lightest neutrino to be massless.
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Figure 11. Events binned by proper time τ and weighted by pLNV−pLNV, revealing the oscillatory

pattern, for two HNLs with MN = 1 GeV, |ΘµI |2 = 2 · 10−8, |ΘeI |2 = |ΘτI |2 = 0 and δM =

4 · 10−7 eV.

6 Conclusions

The SHiP experiment is set to have an unprecedented detection reach for a variety of models

containing feebly interacting particles, such as Heavy Neutral Leptons (HNLs). A distinc-

tive feature of SHiP among other intensity frontier experiments is its decay spectrometer,

which allows it to not only place exclusion bounds, but also perform event reconstruction

and measure the HNL properties. The simplest consistent HNL model accessible at SHiP

contains two nearly degenerate HNLs, which can undergo oscillations. Their mass split-

ting δM is of particular interest, since it greatly influences their phenomenology as well as

early-Universe cosmology (specifically, baryogenesis and dark matter production).

In the present work, we have investigated to which extent SHiP may be able to con-

strain or even measure δM . Depending on the scale of the oscillation phase δMτ accessible

at an experiment, HNLs may or may not exhibit lepton number violation (LNV). The prob-

lem thus amounts to distinguishing LNC from LNV decay chains (figure 2) in a beam-dump

setting (figure 1), where the primary lepton cannot be observed. We have shown that the

angular distribution of the visible secondary decay products provides a partial solution to

this problem, since, depending on the HNL mass, it can significantly differ between LNC

and LNV in the laboratory frame (figure 7). This result has been qualitatively understood

in the simplified case of two-body decays in the massless limit (figures 3 and 6). In order

to handle more realistic cases, a Monte-Carlo simulation has been employed to generate

accurate data sets of LNC and LNV events, including spin correlations and geometrical

acceptance. The different distributions of the kinematic variables thus allow discriminat-

ing between LNC and LNV events using multivariate analysis; and with sufficiently many

events, it becomes possible to statistically detect or exclude lepton number violation.

In order to produce sufficiently accurate training sets, our simulation must satisfy

several requirements. It should be able to generate all the relevant two- and three-body
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meson decays containing an HNL (figure 4), as well as the selected HNL decay channel

N → π∓l±β . It should be accurate for GeV-scale HNLs, and should account for the spin

correlations between the primary and secondary decays. Finally, it should run sufficiently

fast to allow producing large training sets for various hypotheses and parameters. In order

to meet all these requirements, we have written our own Monte-Carlo simulation, the

output of which is used to train a binary classifier.

Knowing the accuracy of the classifier decision (figure 8) for a given mass and (relative)

mixing angles, we can finally draw a “model-selection” sensitivity limit in the (MN , |Θ|2)

plane (shown in figures 10(a) and 10(b)), above which SHiP should be able to either discover

or rule out lepton number violation from HNLs. Interestingly, this limit lies below the

detection sensitivity of near-future experiments such as NA62++. This leads to a striking

conclusion: SHiP might be able to not only discover HNLs, but also characterize them as

either “Dirac-like” or “Majorana-like” fermions (depending on whether they feature LNV)

even if previous experiments see no signal at all. Better yet, if the mass splitting between

the two HNLs is of order δM ∼ 10−6 eV, SHiP should be able to resolve the oscillations

of HNLs (figure 11), given sufficiently many events. Intriguingly, this mass splitting falls

within the range required for producing dark matter in the νMSM [39]. Its measurement

— or constraining — would therefore be an important test of cosmological models.
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A Simulation

A.1 Overview

It is not obvious whether the different angular correlations of LNC and LNV events lead

to an observable effect in a realistic beam-dump experiment. To answer this question,

we have devised a toy Monte-Carlo simulation, inspired from the one used in ref. [30], to

simulate the production and decay of HNLs at the SHiP experiment [28, 29] (represented

on figure 1).

The simulation of rare BSM processes with spin correlations entails two main require-

ments. First, we cannot afford to simulate all the possible processes, since, due to the

small HNL mixing angles, the decay chains mediated by an HNL only represent a tiny

fraction of all decays. Instead, we only simulate the BSM processes, and use importance
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sampling (i.e. introduce weights) in order to obtain the correct absolute number of events

and expectation values (appendix A.2).

Secondly, we cannot sample the primary and secondary decays separately, since they

are not independent. Instead, we construct all possible decay chains for the production

and decay processes of interest, and sample the entire chain at once, with a probability

proportional to its combined branching fraction. The momenta of all the decay products are

then sampled simultaneously, using the matrix element for the entire chain (appendix A.4).

In addition, in order to accurately model the SHiP experiment, we need to sample

the heavy meson momenta from a realistic spectrum (appendix A.3) and take into account

the finite size of SHiP and its geometrical acceptance (appendix A.5). Finally, since most

machine learning algorithms take unweighted data points as input, it is necessary to perform

a last step of rejection sampling in order to produce a training set consisting of events with

equal weights (appendix A.6).

A.2 Decay chains

As discussed in ref. [76], the dominant HNL production process at SHiP is from weak

decays of the lightest charmed or beauty mesons. In the present study, we focus on HNL

masses below the Ds mass, and only select the fully reconstructible secondary decays

N → π±l∓β , By producing long-lived, charged particles which can be measured by the

decay spectrometer located at the end of the decay vessel, they allow the HNL momentum

to be reconstructed. The efficiency of particle identification at SHiP is high enough [77]

that we can approximate it as one for the present estimate. Therefore we do not need to

simulate decay chains containing any other secondary decays.

For the mixing angles of interest (i.e. below existing bounds), the fraction of all decays

which are mediated by an HNL is tiny. We therefore need to use importance sampling

in order to efficiently simulate only the processes of interest. For every proton on target

(POT), the probability of producing a charmed hadron of species H is:

P (H) =
σcc
σpN

·AH (A.1)

where σcc is the production cross-section for charmed hadrons, σpN the interaction cross-

section for protons hitting the target nuclei, and AH is the relative abundance of the

charmed hadron species H (as given in appendix A of [29]). The nominal (i.e. physical)

probability of producing an HNL which mediates a given decay chain H → [h′]lα(N → lβh
′′)

(irrespective of whether the decay is observed in the detector) is then:

P
(
H → [h′]lα(N → lβh

′′)
)

= P (H) · P (h′lαN |H) · P (lβh
′′|h′lαN) (A.2)

=
σcc
σpN

·AH · Brprod(H → [h′]lαN) · Brdecay(N → lβh
′′)

where the last two terms are the production and decay branching ratios for HNLs in the

considered decay chain. The importance distribution P ′ is defined as a uniform scaling for
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decay chains involving an HNL, and as zero for all other outcomes:P
′ (H → [h′]lα(N → lβh

′′)) = 1
wprod

P (H → [h′]lα(N → lβh
′′))

P ′(no HNL) = 0
(A.3)

where wprod is the weight to be applied to all the chains sampled from the importance

distribution, and corresponds to the total probability of producing an HNL according to

the nominal distribution:

wprod =
∑

chains

P
(
H → [h′]lα(N → lβh

′′)
)

(A.4)

When computing expected numbers of events over the entire duration of the SHiP

experiment, which represents an integrated NPOT = 2 · 1020 protons on target for 5 years

of nominal operation, we must further multiply by NPOT the expectation values obtained

for one event. This is most easily done by simply multiplying the total weights by NPOT.

A.3 Heavy meson spectrum

Once a chain is selected, we sample the momentum of the corresponding charmed meson

from the spectrum measured by the LEBC-EHS collaboration [74] at the CERN SPS

running at 400 GeV with a hydrogen target. The differential cross-section is parametrized

as the product of a β distribution in xF and an exponential distribution in p2
T :

d2σ

dxFdp2
T

= σ
(n+ 1)b

2
(1− |xF |)ne−bp

2
T (A.5)

with the best-fit values n = 4.9±0.5 and b = (1.0±0.1) GeV−2. We thus implicitly assume

the spectrum to be separable. Due to their very similar mass, and to compensate for the

lack of data, we assume Ds mesons to share the same spectrum as D mesons.

By using the spectrum for a hydrogen target, we effectively neglect cascade produc-

tion of heavy hadrons inside the target, leading us to underestimate the number of hadrons

produced at the low-energy end of the spectrum. This could be problematic if their pT spec-

trum happens to be significantly different from that of primary hadrons produced in pp col-

lisions. However, the lower acceptance for these softer hadrons should help mitigate the

issue. In figure 12, we show how varying the width of the heavy meson pT spectrum af-

fects the final sensitivity. As expected, a larger pT spread reduces the sensitivity, while a

narrower spectrum improves it.

A.4 Decay product momenta

In order to preserve spin correlations between the HNL siblings and its decay products,

we simulate both the HNL production and decay processes at once. For the masses and

mixing angles of interest, the HNL is long-lived and can be assumed to be on its mass

shell. Therefore the phase-space sampling can be performed independently for the primary

and secondary decays. We use the m-generator algorithm [83] for that, as described in

ref. [84]. In order to sample events with a probability proportional to the squared transition
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Figure 12. Effect of varying the width of the heavy meson pT spectrum on the sensitivity to

lepton number violation (90% CL), for an HNL coupling to the muon. Black lines represent the

model-selection sensitivity of SHiP for various values of
〈
p2T
〉
. The dashed line corresponds to the

best-fit value
〈
p2T
〉

= 1 GeV2 from the LEBC-EHS collaboration [74].

amplitude, we then perform rejection sampling, taking the phase-space distribution as

proposal distribution, and an acceptance probability proportional to the spin-summed,

squared matrix elements (3.2) and (3.3) for the entire decay chain. Only the spin states

of the external particles (which interact with the detector and are thus “measured” in the

quantum mechanical sense) are summed over.

A.5 Geometry

In order to model the geometry of the SHiP experiment, we must account for the finite size

of the detector and its geometrical acceptance. In the current SHiP design (represented on

figure 1), the fiducial volume consists of an evacuated right pyramidal frustum of length

50 m, located at a distance of 50 m from the target, and with horizontal and vertical sides

5 m and 10 m respectively at the far end. It is followed by a 10 m long tracking station.

To estimate the probability of the HNL decaying within the fiducial volume and passing

the acceptance cuts, we use once again importance sampling for sampling the decay vertex.

This is required in order to overcome the potentially very long lifetime of HNLs, which

could cause most of them to decay away from the experiment. We choose an importance

– 25 –



J
H
E
P
0
4
(
2
0
2
0
)
0
0
5

distribution (approximately) covering the fiducial volume, by sampling the decay vertex

uniformly along the HNL momentum, at a distance such that it falls inside the decay

vessel. The nominal decay probability density is, as a function of the proper time τ (or

boost factor γ and distance L) between the HNL production and decay:

Pdecay(τ) = Γe−Γτ =⇒ Pdecay(L|γ) =
Γ

βγ
e
−ΓL
βγ (A.6)

The partial weight resulting from this importance sampling step is therefore:

wdecay(L|γ) =
ΓLDV

βγ cos(θ)
e
−ΓL
βγ (A.7)

where LDV = 50 m is the length of the decay vessel and θ the angle between the HNL

momentum and the beam axis. In the linear regime, where Γτ � 1, this partial weight

reduces to wdecay(L|γ) ∼= ΓLDV
βγ cos(θ) .

We finally apply acceptance cuts by requiring the HNL to decay within the decay

vessel, and the trajectories of its two decay products (l∓β and π±) to intersect the tracking

station located at its far end.

A.6 Unweighting

As a last step, we perform again rejection sampling on the weighted events in order to obtain

a set of events with equal weights, which are easier to analyse and process with machine

learning algorithms. This is done by accepting events with a probability proportional to

their weight, and can be justified as follows.

Let X denote a random variable representing the simulated event, and x a concrete

realization of it. Let f(x) = P (X = x) be the nominal (i.e. true) distribution and g(x) the

importance distribution, such that g(x) > 0 for all outcomes x in the domain of interest Ω

(i.e. all relevant observables must have their support in Ω). If x is sampled from the

importance distribution g(x), its associated weight will be w(x) = f(x)/g(x). Let M be

an upper bound on w(x), i.e. M ≥ w(x), ∀x ∈ Ω. If we choose the acceptance probability

to be a(x)
def
= w(x)/M ≤ 1, then it immediately follows that the accepted events, effectively

drawn from the new importance distribution g(x) · a(x), will have uniform weight M .

It is therefore possible to perform rejection sampling a posteriori in order to produce

uniformly weighted events. However, storing all the generated events, many of which will

eventually be rejected, would be inefficient from a memory perspective. A more economical

solution, which we decided to use, consists in performing rejection sampling directly as

events are being generated. This requires estimating an upper bound M on the weights,

during an initial burn-in phase.

B LNC/LNV classification

At leading order in the light lepton and hadron masses, the matrix elements for LNC and

LNV decay chains have a straightforward analytical dependence on the invariant mass sll
of the charged lepton pair. However, unlike in collider experiments, this variable is not
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readily available in a beam-dump setting, due to the primary lepton being unobservable.

As we saw in section 3.2, the different angular correlations between the charged leptons

can nevertheless lead to residual correlations between the visible HNL decay products. The

absence of an obvious test statistics, along with the almost background-free conditions and

highly efficient PID at SHiP [77], makes the task of distinguishing LNC from LNV ideally

suited for multivariate analysis. In the following subsections, we describe how we generate

the training set (appendix B.1), the classifier used to discriminate between LNC and LNV

events (appendix B.2), how to produce a sensitivity limit from its output (appendix B.3),

and finally how sensitive is the classification to systematic uncertainties on the heavy meson

spectrum (appendix B.4).

B.1 Dataset

As mentioned in section 4.2, we need to generate datasets for various HNL masses MN

and rays in |Θα|2 space, where α = e, µ (the overall normalization does not matter). In

practice, we choose a mass range spanning the region between the K and Ds thresholds,

and consider several benchmark models with fixed |Θe|2 : |Θµ|2 ratios.11 For each choice of

physical parameters, we sample 3·106 events with uniform weights. This is done by sampling

sufficiently many weighted events and, as they are being generated, “unweighting” them by

performing rejection sampling with an acceptance probability proportional to their weight.

Only events which pass the acceptance cuts are used for training. In the simulation, the

HNL is taken to be a single Majorana particle, such that the dataset contains equal numbers

of LNC and LNV events and is balanced with respect to the primary and secondary lepton

charges. We select only the fully reconstructible HNL decays N → π∓l±β , which do not

contain an unobservable light neutrino, and produce long-lived charged particles which can

be measured by the decay spectrometer. For the sake of simplicity, we will assume the PID

to be perfectly efficient throughout this analysis. Non-trivial efficiencies are expected to

slightly reduce the final sensitivity reach. As explained in section 4.2, each event is labelled

as being either LNC or LNV, and we record the 19 observable features listed in table 1. The

dataset is split into training/validation/test sets with respective proportions 0.5 : 0.2 : 0.3.

B.2 Classifier

We employ the LightGBM [78] gradient boosting algorithm, accessed through the Python

interface to the reference implementation [79]. For classification, we choose the binary ob-

jective. We use early stopping based on the binary log-loss (binary logloss) and the area-

under-curve (auc) metrics, with a 10 round threshold. The hyperparameters num leaves

and learning rate are manually optimized by maximizing the above two metrics on the

validation set. The classification accuracy is presented in figure 8 as a function of the HNL

mass MN for two orthogonal scenarios, corresponding to the HNL coupling exclusively to

11We do not consider HNL production through τ mixing in this work, since it would have required to

implement secondary production from τ decays. It is negligible in the considered mass range unless the Θτ

mixing angle is significantly larger than the others, as can be seen in figure 4. In addition, visible HNL

decays through τ mixing are forbidden below the τ threshold.
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Feature p2y p3y p2x p3x pCMz zD xD yD p1x pCMy

# splits 302 282 243 238 141 114 105 97 91 85

Feature pCMx p1y E1 E2 E3 p3z p2z p1z Ql2

# splits 77 74 69 67 61 53 34 14 9

Table 2. Feature importance for a 1 GeV HNL coupling to µ.

electrons (|Θe|2 : |Θµ|2 : |Θτ |2 = 1 : 0 : 0) or muons (|Θe|2 : |Θµ|2 : |Θτ |2 = 0 : 1 : 0), and a

third one where it couples equally to both (|Θe|2 : |Θµ|2 : |Θτ |2 = 1 : 1 : 0).

It is instructive to understand the origin of this dependence, if only to make sure that

it corresponds to a physical effect. LightGBM provides a way to estimate the feature im-

portance, by counting the number of times a feature is used to split a tree. Those are listed

in table 2 for a 1 GeV HNL coupling to muons (which results in a classification accuracy

of 63.5%). They reveal that the most important features are the transverse components

of the momenta of the HNL decay products. Indeed, it is possible to successfully train a

model using a single feature such as the transverse momentum pT,µ of the secondary muon,

while still obtaining a classification accuracy of 61.5% (for the same dataset).

Inspecting the results more closely (see figure 7) shows that LNV events have on

average a slightly larger transverse momentum than LNC ones. This is consistent with our

discussion from section 3.2, and allows us to understand the mass dependence. At large

HNL masses, as we approach the closing mass of D meson leptonic decays, the kinetic

energy of the HNL in the heavy meson rest frame decreases, until it becomes so small

that the difference between LNC and LNV becomes negligible compared to the transverse

momentum spread of the heavy meson spectrum. As the HNL mass decreases, 3-body

semileptonic decay channels open, and become dominant at lower masses. The additional

meson takes away part of the energy from the HNL, leaving it with insufficient kinetic

energy to “escape” the transverse momentum spread of the heavy meson spectrum. Finally,

the large boost of the heavy mesons along the beam axis washes out most of the information

contained in the longitudinal part of all laboratory frame momenta, which explains their

low importance.

B.3 Sensitivity to lepton number violation

As stated in section 4.3, our main goal is to distinguish between the following two hypothe-

ses using exclusively the classifier decision (i.e. not the underlying feature vector z):

• H1: HNLs are Dirac or quasi-Dirac with δMτ � 1 (LNC decays only).

• H2: HNLs are Majorana or quasi-Dirac with δMτ � 1 (LNC and LNV decays).

Those can be expressed as special cases of a more general hypothesis H(f), f ∈ [0, 1],

parametrized by the relative frequency f of LNV events:

• H(f): (LNV rate) = f × (total rate).

such that H1 = H(f = 0) and H2 = H(f = 1/2).
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We model the classifier decisions using a 2 × 2 confusion matrix Cij =

P (i classified as j), where i, j = 1, 2 correspond to the two classes, respectively LNC and

LNV. The confusion matrix can be expressed in terms of the classification accuracies as:

C =

(
a1 1− a1

1− a2 a2

)
(B.1)

Suppose we observe N events passing the selection cuts, k of which are classified as LNV.

Then, under H(f), the likelihood of classifying N − k events in class 1 (LNC) and k in

class 2 (LNV) is given by the following binomial distribution:

L(k; f) =

(
N

k

)(
a2f + (1− a1)(1− f)

)k(
a1(1− f) + (1− a2)f

)N−k
(B.2)

Under hypothesis H1, i.e. all events are LNC, this likelihood reduces to:

L1(k) = L(k; f = 0) =

(
N

k

)
(1− a1)kaN−k1 (B.3)

while under hypothesis H2, i.e. events come from either class with equal probability, it

becomes:

L2(k) = L(k; f = 1/2) =

(
N

k

)
(1 + a2 − a1)k(1 + a1 − a2)N−k

2N
(B.4)

For many models, including LightGBM (with a balanced training set), a1 ≈ a2
def
= a. In

this limit, L2(k) simplifies to
(
N
k

)
2−N .

Since H1,2 and H(f) are nested, then, assuming we have sufficiently many events,

we can use Wilk’s theorem12 to try to exclude H1,2 . To this end, we construct the two

likelihood ratios Λ1,2(k) as:

Λi(k) =
Li(k)

L(k; f̂)
, i = 1, 2 (B.5)

where f̂ is the maximum likelihood estimator for f :

f̂ =
1− a− k/N

1− 2a
(B.6)

Wilk’s theorem states that if Hi (i = 1 or 2) is realized, then −2 ln(Λi(k)) follows a χ2

distribution with one degree of freedom. Conversely, if we observe −2 ln(Λi(k)) > 2.7, then

Hi will be disfavoured at 90% CL. If both hypotheses H1,2 were disfavoured simultaneously,

this would suggest δMτ ∼ 2π and potentially resolvable HNL oscillations.

12A potential issue in the case of H1 could be that the null value f = 0 lies on the boundary of the

domain [0, 1] of f , while Wilk’s theorem requires the true value to be in the interior of the parameter space.

However, ln(L(k; f)) has a well-behaved analytical continuation over a domain larger than [0, 1]. As long as

the estimator f̂ has a sufficiently small variance, this boundary effect can therefore be ignored and Wilk’s

theorem still applies. See [85] for a comprehensive discussion of the validity conditions of Wilk’s theorem.
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If hypothesis H1 is actually realized, we expect k to take a value around the expected

number of events misclassified as LNV: (1−a)N , which, for large N , is approximately equal

to the median. The median of the log-likelihood-ratio when testing for H2 is therefore:

med1 (ln(Λ2)) ≈ −N
(

ln(2) + a ln(a) + (1− a) ln(1− a)
)︸ ︷︷ ︸

def
= l1(a)>0

(B.7)

If, instead, H2 is realized, then we expect k to take a median value of approximately N/2,

such that:

med2 (ln(Λ1)) ≈ N
(

ln(2) +
1

2
ln(a) +

1

2
ln(1− a)

)
︸ ︷︷ ︸

def
= l2(a)<0

(B.8)

For a fixed confidence level, we can invert these two formulas to estimate, for each true

hypothesis Hi, i = 1, 2, the median number of events Ni(a) required to exclude the

other hypothesis:

Ni(a) =

∣∣∣∣ ln(Λcr)

li(a)

∣∣∣∣ (B.9)

with −2 ln(Λcr) ≈ 2.7 for a 90% CL. The higher the classification accuracy, the less events

are required to reach the target, while accuracies close to 1/2 do not allow distinguishing

the two hypotheses, as Ni(1/2)→∞. So far we have only considered the two extreme cases

f = 0 or 1/2, i.e. δMτ ≶ 2π. We can generalize this analysis to the case where the true hy-

pothesis or the null hypothesis have a non-trivial LNV fraction f . A larger number of events

will then be required to reach the same confidence level. We will not discuss these cases

further in this paper, in order to avoid making the discussion unnecessarily complicated.

As a final step, for each HNL mass M and ratio |Θe|2 : |Θµ|2 : |Θτ |2, we compute the

squared mixing angles |Θα|2i (M) required to produce Ni(a(M)) events, thus producing for

each true hypothesis Hi a sensitivity limit, above which SHiP should be able to exclude

the other hypothesis with a probability of at least 1/2. The resulting sensitivity plots are

presented in section 5.1.

B.4 Systematic uncertainties coming from the heavy meson spectrum

For a classifier to generalize well out of sample, i.e. on real-world data, the distribution

used for training should match the true, physical distribution of features. This is in general

not the case, since a simulation never perfectly represents reality. We can, however, work

around this requirement by explicitly evaluating the classification accuracy over a set of

test distributions which is likely to encompass the true distribution. This requires knowing

and parametrizing the uncertainties coming from the simulation. We can then obtain a

conservative estimate for the classification accuracy by varying the unknown parameters

within their uncertainties, and taking a lower bound. If this lower bound is high enough,

we should still be able to probe lepton number violation on real data.

At SHiP, the main uncertainty affecting the LNC/LNV classification accuracy comes

from the transverse momentum spread of the heavy meson spectrum, which is only known

with limited accuracy. In order to estimate the actual sensitivity of SHiP to LNV for a
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Figure 13. Effect on the LNV sensitivity (90% CL) of computing the classification accuracy on a

test set generated with a different pT spectrum compared to the training set, for an HNL coupling

to the muon. Black lines represent the model-selection sensitivity of SHiP for various true
〈
p2T
〉
.

Here, the training set is always generated with
〈
p2T
〉

= 1 GeV.

realistic dataset, we therefore compute the classification accuracy for a family of test sets

generated using slightly different pT spectra, and we take the lowest value as our estimate.

The change in the sensitivity resulting from varying
〈
p2
T

〉
by a factor of two up and down

with respect to the best-fit value from LEBC-EHS [74] is shown in figure 13. The planned

charm spectrum measurements at SHiP should be able to constrain
〈
p2
T

〉
to a much better

accuracy than the range displayed in the figure.

Interestingly, when comparing this result with figure 12, we observe that the classifica-

tion accuracy seems to mostly depend on the
〈
p2
T

〉
of the test set, but not much on the one

used for training. This suggests that we might be able to safely use the best-fit spectrum

for training without worrying about biasing the results should the true spectrum turn out

to be different, provided that we use a conservative estimate for the accuracy. In a more

comprehensive study, one would likely want to vary additional parameters related to the

spectrum, geometry and simulation.
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[45] M. Drewes, J. Klarić and P. Klose, On lepton number violation in heavy neutrino decays at

colliders, JHEP 11 (2019) 032 [arXiv:1907.13034] [INSPIRE].
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