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Abstract. We investigate the stability and stabilization of the cubic focusing Klein-Gordon
equation around static solutions on the closed ball of radius L in R3. First we show that
the system is linearly unstable near the static solution u ≡ 1 for any dissipative boundary
condition ut + auν = 0, a ∈ (0, 1). Then by means of boundary controls (both open-loop and
closed-loop) we stabilize the system around this equilibrium exponentially under the condition√

2L 6= tan
√

2L. Furthermore, we show that the equilibrium can be stabilized with any rate

less than
√
2

2L
log 1+a

1−a , provided (a, L) does not belong to a certain zero set. This rate is sharp.
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1. Introduction

In this paper we consider a model customarily studied on R3, the focusing energy subcritical
Klein-Gordon equation

(1.1) 2u+ u = u3, 2 = ∂tt −∆.

This model admits static solutions, namely solitons W (x) (see for example [10, 46]), which are
unstable equilibria [40]. The instability comes from the linearization around W which admits
a negative eigenmode, leading generically to exponential growth for the corresponding wave
flow. As one of the core problems of dispersive PDEs, the long time behavior of solutions of a
number of related problems has been extensively studied in the last twenty years and has led
to fruitful theories. Let us mention some of them: the work on scattering by the Kenig-Merle
method [25] on the energy critical focusing nonlinear wave equations, the stability of special
solutions using the center manifold method by Krieger-Nakanishi-Schlag [28, 29] in the context
of the one-dimensional Klein-Gordon equation, and the soliton resolution for the energy critical
wave equation by [20]. See also the book by Tao [48] on an excellent introduction on dispersive
equations.

1.1. The damping stabilization of the wave equation and the NLKG equation. It
is natural to ask if unstable static solutions can be stabilized with the help of control terms:
indeed, in control theory, this is the so called stabilization problem. When we restrict wave
equations to bounded domains, control terms can be naturally implemented on the boundary
of the domain, resulting in boundary control (or boundary stabilization). The controllability of
wave equations has been extensively studied in the literature, in particular the linear systems
that will be dealing with are exactly controllable. This property can be shown via different
approaches, for example the multiplier method [55], Carleman estimates [49, 50], as well as
microlocal analysis [4], and the references therein. We also note that the closely related unique
continuation problem for wave operators is studied by Tataru, Hörmander, Robbiano–Zuily
[23, 51, 42] as well as others.

To study the issue of stabilizing an unstable solution in the context of (1.1), we briefly
discuss some static solutions for it in the context of a bounded domain. For example, imposing
a Neumann boundary condition, a positive static solution solves the following elliptic Klein-
Gordon equation,

−∆u+ u− u3 = 0 in Ω,(1.2)

uν = 0 on ∂Ω,(1.3)

u > 0 in Ω.(1.4)

To simplify the model and reduce the difficulty, in this paper we shall only work with the
equation in a radial setting, and from now on we let

the domain Ω denote the closed ball BL/
√

2(0) as subset of R3,

where the extra
√

2 is added for normalization reasons to simplify the calculations. Clearly
(1.2) - (1.4) admits the constant solution u ≡ 1, but in general it is not unique. We refer to
[6, 3, 39, 38, 47] for the same problem with Dirichlet boundary conditions. In our specific case,
one has the following result due to Lin-Ni-Takagi:

Proposition 1.1 (Lin-Ni-Takagi, [36]). There exist numbers R0 and R1 satisfying 0 < R0 < R1

such that,

(i) if L < R0, then Equations (1.2)–(1.4) only admit the unique solution u = 1;
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(ii) if L > R1, then Equations (1.2)–(1.4) also admit another non-trivial solution u(x) =
WL(x).

Indeed, in [36] the authors considered the more general system −∆u + µu − u3 = 0 with a
general parameter µ > 0. Moreover, when the nonlinearity is close enough to the critical value,
Rey-Wei [41] showed that this non-trivial solution WL can be obtained by departing from the
unique soliton solution W of the same equation in the unbounded domain.

In this paper, we focus on the stabilization problem around the simplest solution u = 1. It
is easy to prove the instability around this equilibrium at the linear level by considering the
linearization

2u− 2u = 0 in Ω,

uν = 0 on ∂Ω.

See Theorem 1.2 below concerning a variant of this instability result.
Various methods have been introduced to stabilize different wave equations, including the

Gramian method [27], the Riccati method [1], the backstepping method [45], the Lyapunov
approach [17, 32], the duality method [44], the damping method [4, 7, 8, 31, 33, 56], to just
name a sample. Let us comment more on the so called damping method, which is probably the
most investigated method on the stabilization of dispersive equations. Its idea is to replace the
Neumann boundary condition by a dissipative boundary condition,

ut + auν = 0 on ∂Ω,

and to show that the new system is stable. To explain this in more detail, consider the model
equation

2u = 0 in Ω,

ut + auν = 0 on ∂Ω.

Define the energy of the wave equation by

(1.5) E1(u[t]) :=
1

2

∫
Ω

(
|∂tu|2 + |∇u|2

)
(x)dx,∀u[t] := (u, ut) ∈ H1(Ω),

and perform a simple integration by parts. We thereby get the following “decay” property

(1.6)
d

dt
E1(u[t]) = −

∫
∂Ω

1

a(x)
|ut(x)|2dx ≤ 0.

It remains to understand how “fast” the solution decays. For example, does the solution decay
exponentially? This is equivalent to showing the following observability inequality: there exist
some T > 0 and C > 0 such that the solution satisfies,∫ T

0

∫
∂Ω

1

a(x)
|ut(x)|2dxdt ≥ CE1(u[0]), ∀u[0] ∈ H1(Ω)× L2(Ω).

The proof of such an observability inequality is non-trivial, and different methods have been
introduced for this purpose, for example the multiplier method. Based on the latter Lagnese
characterized sufficient conditions on the choice of the “damping function” a(x) for exponential
stabilization in [31]. Other related works include for example Zuazua [56] on the local inter-
nal stabilization of semilinear wave equations. Another method, based on microlocal analysis,
relates this problem to the propagation of singularities: in the seminal work [4] Bardos-Lebeau-
Rauch introduced the Geometric Control Condition (GCC) which provides an almost sharp
condition for the controllability and the dissipative boundary stabilization of the linear wave
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equation (see also Burq-Gérard [8] and Burq [7] for improvements and simplifications). This
powerful method has been widely used for the study of other linearized dispersive equations
and nonlinear dispersive equations (but in a defocusing setting; as we shall see later on our
focusing system is unstable even with dissipative boundary control). For example, Laurent [33]
proved the local stabilization of critical defocusing Klein-Gordon equations using internal con-
trol, and Dehman-Lebeau-Zuazua [19] proved the local boundary stabilization of the subcritical
semilinear wave equation. Furthermore, even when GCC is not satisfied, Lebeau-Robbiano [35]
proved asymptotic stability. Finally, we remark that all these results are proved in a general
non-radial setting.

Let us now return to the equation arising upon linearizing (1.1) around the equilibrium u = 1,
with dissipative boundary condition:

2u− 2u = 0 in Ω,

ut + auν = 0 on ∂Ω.

Defining the energy

(1.7) E0 (u[t]) :=
1

2

∫
Ω

(
|∂tu|2 + |∇u|2 − 2|u|2

)
(x)dx, ∀u[t] ∈ H1(Ω),

we obtain the “decay” property,

(1.8)
d

dt
E0(u(t)) = −

∫
∂Ω

1

a(x)
|ut(x)|2dx ≤ 0.

However, since the energy E0 is not positive definite (this comes from the focusing nature of
(1.1)), the decrease of the value of E0 does not imply the decay of the solution. Indeed, as we
shall prove later on in Theorem 1.2, this system is also unstable despite the dissipative bound-
ary condition. Heuristically, we observe that the instability ought to come from low-frequency
modes of the system, since the high-frequency modes are expected to be stable according the
above mentioned theories on the wave equation.

To remedy this, our idea is to add a suitable control on the boundary,

ut + auν = b in Ω

to stabilize those finitely many unstable modes. In general terms,

• based on explicit calculations we show that the spectrum of the operator generating the
wave flow under the dissipative boundary condition has an asymptotic line in the left
half complex domain (see Section 3.1, Lemma 3.2 and especially its proof for details);
• using resolvent estimates we further prove that the high-frequency part of the system

is exponentially stable with explicit decay rates (see Sections 3.2–3.5 for details);
• we show that by adding suitable controls the low frequency part can be stabilized. This

step is achieved via a holomorphic extension approach (see Section 2 and Section 3.6
for details).

This strategy will be further explained in Section 2. Remark that the idea of exploiting the
high-frequency stability of a system has been previously used by other authors. For example,
Ammari-Duyckaerts-Shirikyan proved a general exponential stabilization result on damped de-
focusing like equations with internal controls in [1], where they adapted the Riccati approach
to stabilize the low frequency part. We emphasize that our stabilization approach appears
different from the existing ones and provides explicit feedback laws with sharp decay rate.
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1.2. The main results. In this paper, our goal is to investigate the controllability of the
unstable static solution u = 1 of the focussing NLKG equation by means of a very direct and
explicit method related to resolvent estimates, yielding an essentially sharp result.

First, the fact that this solution is (lineary) unstable follows from

Theorem 1.2. Let L > 0. Let a ∈ (0, 1). The cubic focusing Klein-Gordon system

2u+ u− u3 = 0, in Ω,

ut + auν = 0, on ∂Ω,

is linearly unstable around the equilibrium (1, 0).

As illustrated above the main purpose of this paper is to add some control term on the
dissipative boundary, i.e. ut + auν = b(t), to stabilize those unstable modes. To reduce the
difficulty, in this paper we only consider the radial case, i.e. both initial data and boundary
conditions are radial, which forces solutions be radial. It is to be expected, though, that the
methods and results of this paper can be extended to the non-radial framework, at considerable
technical expense.

Let us denote by H1 the space of radial function pairs

(1.9) H1 :=

{(
u
v

)
: u ∈ H1

rad(Ω), v ∈ L2
rad(Ω)

}
,

and endow it with the norm

(1.10) ‖(u, v)‖2H1 :=

∫
Ω

(
|∇u|2 + |v|2 + |u|2

)
(x)dx.

The solution of the nonlinear Klein-Gordon equation with boundary control term b(t) and given
initial data (u0, v0) is a function u(t, x) ∈ C([0, T );H1) that satisfies the equation in the classical
transportation sense, where T ∈ R ∪ {+∞} is the blow up time, and throughout we use the
boundary condition from before ut+auν = b(t). This definition of solution, introduced by Lions
[37], is commonly used in control theory, see the book by Coron [12] for an nice introduction
to this subject.

The first main result of this paper is the following one concerning open-loop stabilization of
NLKG.

Theorem 1.3. Let L > 0 such that L 6= tanL. Let a ∈ (0, 1). There exist some effectively

computable constants β∗ > 0, Cβ∗ > 0, εβ∗ > 0, Nβ∗ ∈ N and smooth functions {bk(t)}
Nβ
k=1

compactly supported on the time interval (2, 4) such that, for any radial initial state (u0, v0)T ∈
H1 satisfying

‖(u0, v0)T − (1, 0)T ‖H1≤ εβ∗ ,

we are able to find a smooth real control function b(t) as a linear combination of {bk(t)}
Nβ
k=1,

b(t) :=
N∑
k=1

l̃k(u0, v0)bk(t),

with l̃k(u0, v0) ∈ R depending continuously on (u0, v0)T ∈ H1 satisfying

N∑
k=1

|l̃k(u0, v0)| ≤ 2Cβ∗‖(u0, v0)− (1, 0)‖H1 ,
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such that the unique radial solution of the nonlinear equation
2u+ u− u3 = 0 in Ω,

ut + auν = b(t), on ∂Ω

u(0, x) = u0, ut(0, x) = v0,

satisfies

‖(u(t), ut(t))
T − (1, 0)T ‖H1≤ 2Cβ∗e

−β∗t‖(u0, v0)T − (1, 0)T ‖H1 , ∀t ≥ 0.

Moreover, the same conclusion obtains for any β ∈ (0,
√

2
2L log 1+a

1−a) replacing β∗, provided a

does not belong to a certain zero measure set A(L) (see (3.24) for its definition).

Remark 1.4. The condition L 6= tanL is assumed to ensure that 0 is not an eigenvalue of the
wave operator, and is a limitation of our method for technical reasons. We do not know whether
it is possible to stabilize the system with the help of nonlinear terms even if the linearized system
is not stable, as it is the case for many other models, for example phantom tracking for Euler
equation [11, 22], and power series expansion for KdV with critical length [16] etc.

Remark 1.5. In terms of the distribution of eigenvalues in relation to the asymptotic line√
2

2L log 1+a
1−a , our result is presumably sharp. Moreover, observing that when a tends to 1− the

value of
√

2
2L log 1+a

1−a tends to +∞; thus in some sense we can understand this result as rapid
stabilization, i.e. exponential stabilization with the decay rate being arbitrarily large. Indeed, by
taking a = 1 this paper already presents the rapid stabilization. The case a > 1 can be treated
similarly leading to an analogous result.
It is noteworthy that the study of the essential spectrum for the damped wave equation in a
general geometric setting is more involved. This is related to the stability of the damped wave
equation: by contrast to our situation there is no need to add extra control terms to stabilize
the system. We refer to the works of Koch–Tataru [26], Lebeau [34] and the references therein
in this direction.

Remark 1.6. We can replace the support (2, 4) by any other compact interval, which only

affects the choices of the constants Cβ, εβ, and the functions {bk(t)}
Nβ
k=1, but not the dimension

of the control Nβ that we use.

Notice that Theorem 1.3 is an open-loop stabilization result, which is less robust to dis-
turbances compared with closed-loop stabilization for engineering applications and realistic
situations. Generally speaking, it is hard to pass from an open-loop stabilization result to a
closed-loop stabilization result, since the open-loop control that we choose may be non-local in
time while closed-loop feedback (except for some time-delay feedbacks) should only depend on
the current state and time. However, we observe from Theorem 1.3 that the control is chosen
from a finite dimensional space which, in particular, is also compactly supported. This essential
observation makes it possible to derive from Theorem 1.3 a closed-loop stabilization theorem
by means of time periodic feedback laws.
For this purpose we need to add some “observers”, which are introduced in order to observe the

current state, more precisely, to determine the value of l̃k that appears in Theorem 1.3. This
is a standard, and in many circumstances a necessary trick for stabilization problems, see for
example [15, 18, 53].
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Therefore the state becomes (u, ut; l1, l2, ..., lNβ ) ∈ H1 × RNβ , and one needs to stabilize the
following new system

2u(t, x) + u(t, x)− u3(t, x) = 0, t ∈ (s,+∞), x ∈ Ω

ut(t, x) + auν(t, x) = bf (t), t ∈ (s,+∞), x ∈ ∂Ω,

l̇k(t) = 0, ∀k ∈ {1, 2, ..., Nβ}, t ≥ s, t ∈ [NT, (N + 1)T ), N ∈ Z,
lk(NT ) = l̃k(u(NT ), ut(NT )), ∀k ∈ {1, 2, ..., Nβ}, NT ≥ s,N ∈ Z,

with the help of some time periodic feedback law bf (t) that depends on the state (u, ut; l1, l2, ..., lNβ )
and time t. In fact, observing from the last two condition in the preceding formula, one only
needs to stabilize (u, ut)(t). More precisely, we have the following closed-loop stabilization
result.

Theorem 1.7. Let L > 0 such that L 6= tanL. Let a ∈ (0, 1). Take the values of β∗ and Nβ∗
from Theorem 1.3. For any ε0 > 0 small enough, there exist effectively computable constants

C̃ > 0, ε̃ > 0, T̃ > 0, smooth functions {bk(t)}
Nβ∗
k=1 compactly supported on (2, 4), and T̃ -periodic

feedback laws that depends on the value of (l1, l2, ..., lNβ∗ )(t) and time t:

bf (t) = bf
(
l1(t), l2(t), ..., lNβ∗ (t)

)
(t) :=

Nβ∗∑
k=1

lk(t)bk

(
t− [

t

T̃
]T̃

)
,∀t ∈ R,

such that, for any s ∈ R, for any radial initial state
(
u0, v0; l01, l

0
2, ..., l

0
Nβ∗

)
∈ H1×RNβ∗ satisfying

the smallness condition

‖(u0, v0)T − (1, 0)T ‖H1≤ ε̃,

and the compatible condition

l0k = l̃k(u0, v0), ∀k ∈ {1, 2, ..., Nβ∗},

where the continuous function l̃k and the smooth functions {bk(t)}
Nβ
k=1 are chosen directly from

Theorem 1.3, the unique radial solution (u, ut; l1, l2, ..., lNβ∗ )(t) of the nonlinear equation,

2u(t, x) + u(t, x)− u3(t, x) = 0, t ∈ (s,+∞), x ∈ Ω

ut(t, x) + auν(t, x) = bf (t), t ∈ (s,+∞), x ∈ ∂Ω,

l̇k(t) = 0, ∀k ∈ {1, 2, ..., Nβ∗}, t ≥ s, t ∈ [NT̃ , (N + 1)T̃ ), N ∈ Z,
lk(NT̃ ) = l̃k(u(NT̃ ), ut(NT̃ )), ∀k ∈ {1, 2, ..., Nβ∗}, NT̃ ≥ s,N ∈ Z,
u(s, x) = u0, ut(s, x) = v0,

lk(s) = l0k, ∀k ∈ {1, 2, ..., Nβ∗},

satisfies

‖(u(t), ut(t))
T − (1, 0)T ‖H1≤ C̃e−(β∗−ε0)(t−s)‖(u0, v0)− (1, 0)‖H1 , ∀t ≥ s,

Nβ∗∑
k=1

|lk(t)| ≤ 2C̃e−(β∗−ε0)(t−s)‖(u0, v0)− (1, 0)‖H1 , ∀t ≥ s.

Moreover, the same conclusion obtains for any β ∈ (0,
√

2
2L log 1+a

1−a) replacing β∗, provided a does

not belong to a certain zero measure set A(L).
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Remark 1.8. We do not know whether adding Nβ integral terms is “optimal”, as the con-
trollability and stabilization with reduced control terms is among one of the central problems in
control theory, especially for nonlinear systems for which the nonlinearity may provide plenty
of extra information rather than linear systems, see for example [13] concerning local exact con-
trollability of three dimensional Navier-Stokes equations with only one controlled component.

To the best of our knowledge, this appears to be the first attempt to stabilize multi dimen-
sional unstable focusing dispersive equations using resolvent estimates, and this stabilization
result also shares the advantage of explicit feedback with a sharp decay rate.

We note that under the radial assumption on solutions the NLKG can be more or less regarded
as a one dimensional wave equation, for which the understanding of controllability, stability and
stabilization is more complete, to be compared with the more complicated higher dimensional
case. For example local controllability and global controllability even with different type of
nonlinearities has been obtained by Zuazua [55, 57] (see also [12] for an introductory proof
of the local controllability), exponential stabilization using Lyapunov functions is obatined by
Coron-Trélat [17] , or by the backstepping method [45] (this general approach has been applied
to different types of models, see for example the heat equation [14] and KdV equation [54]).

Nevertheless, though benefiting from the simplicity of the radial setting, we do not use any
other specific one dimensional structures in this paper, which suggests the possibility to extend
things to the multi-dimensional non-radial case.

This paper is structured as follows. In Section 2 we introduce some general facts concerning
the linear inhomogeneous problem as well as our strategy of stabilizing unstable modes. Section
3 is the main part of the paper; we prove that under the radiality assumption via explicit
resolvent estimates the static equilibrium is unstable (Theorem 1.2) and that with the help
of some control term on its linearized system the solution will decay exponentially (Theorem
3.1). This is followed by a section on open-loop stabilization of the nonlinear system concerning
Theorem 1.3 as well as a section on closed-loop stabilization concerning Theorem 1.7. In the
end, in Section 6 we comment on some interesting further questions, and furnish some technical
proofs in Appendix A and Appendix B.

2. Inhomogeneous linear problem and our stabilization strategy

In this section we introduce our stabilization strategy for general linear wave equations with
potential terms and boundary controls

2u− V u = h(t, x) in Ω,(2.1)

(ut + auν)(t) = b(t) on ∂Ω,(2.2)

u(0, x) = u0, ut(0, x) = v0,(2.3)

where the potential V is assumed to be radial, bounded and smooth, and a ∈ (0, 1) throughout.
Also, the function b(t) is always assumed to be C∞ and compactly supported.

2.1. Our stabilization strategy. In this subsection we briefly comment on our strategy of
getting stabilization, and leave the more detailed explanations to Section 2.2–2.3. It is essen-
tially composed of two parts:

• Transform the evolution problem into an elliptic one via Fourier transformation in time.
This procedure gives some function U(ω, x) that is well-defined if − Imω is large enough;
• Extend the function U(ω, x) holomorphically to a larger domain with the help of control

terms if necessary, and perform resolvent estimates for U(ω, x).
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We note that the idea of using the Fourier transform in time has been used for the study
of the stability problem of damped wave equations in different settings. Let us mention, for
example, the works by Lagnese [31], Burq–Zworski [9], Duyckaerts-Miller [21] and the refer-
ences therein. Remark that in most of the literature one deals with stable linearized equations,
thus holomorphic extension is always possible, and one mainly concentrates on the resolvent
estimates. Indeed, in this circumstance the damped wave equation is exponentially stable.
However, in our framework, as we shall see later on in Section 1.2, the damped wave equation
is unstable and holomorphic extension is only guaranteed by working with well-chosen controls.

Let us now briefly present the idea of Fourier transform in time. Let us define the partial
Fourier transform

(2.4) U0(ω, x) :=

∫ +∞

0
e−iωtu(t, x)dt,

where u is assumed to be a solution of (2.1)–(2.3). Straightforward calculation implies that U0

satisfies an elliptic equation

∆U0 + (V + ω2)U0 = −H0 in Ω,(2.5)

iωU0 + aU0,ν = B0 on ∂Ω,(2.6)

Then, at least formally, for ω = α + iβ with some fixed negative valued β we can define for
t > 0

(2.7) eβtuβ(t, x) =
1

2π

∫ +∞

−∞
eiαtU0(α+ iβ, x)dα =: F (β, t, x).

That the preceding expressions make sense for β a negative number of sufficiently large absolute
value follows from Lemma 2.1. Therefore, in this circumstance the preceding formula is exactly
the inverse Fourier transformation, and the value of uβ(t, x) coincides the unique solution of
the wave equation u(t, x).

If furthermore, we are able to extend the definition of U0(ω, x), F (β, t, x), to much larger sets
of the complex parameter ω, in particular to the region where β > 0, and to prove for some
β0 > 0 that

(2.8) ‖F (β0, t, ·)‖H1≤ C(β0), ∀t ∈ [0,+∞),

then we get the required exponential decay of u.
This requires us to extend U0(ω, x) holomorphically from the region of β sufficiently small to

the region β ≤ β0. Note that generally we are not allowed to extend U0 via the definition (2.4),
since the integral may not be well-defined. Instead we shall perform the extension by solving
(2.5)–(2.6). We shall see later in subsection 2.3 that these equations need not admit a solution
for certain specific values of ω (namely the poles), unless H0 and B0 satisfy a suitable com-
patibility condition. Notice that the value of B0 is directly related to the values of the control
term b(t) (see Equation (2.20)), while H0 is directly related to the initial states (see Equation
(2.19)). Our strategy is to exhibit this compatibility condition on (H0, B0), or equivalently to
find suitable controls b(t), such that one can solve U0 holomorphically in the complex region
Imω ≤ β0. Consequently, the function uβ(t, x) defined in (2.7) is analytically extended to the
larger region β ≤ β0, and still coincides with the unique solution of the wave equation u(t, x).
In the following when there is no confusion we shall simply denote uβ(t, x) by u(t, x).
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Finally, we obtain the required estimate (2.8) using resolvent estimates (see subsections 3.4–
3.5 for details).

2.2. Relating the stability question to elliptic problems. As a simple starting point, we
state the following lemma. Let us define the energy of the system,

E(t) :=
1

2

∫
Ω

(
|∂tu|2 + |∇u|2 + |u|2

)
(t, x)dx

and

(2.9) Ẽ(t) := E(t) +
1

a

∫ t

0

∫
∂Ω
u2
t (s, x)dσds.

Lemma 2.1. There exists some C = C(V,Ω) such that for any given (u0, v0)T ∈ H1, the unique
solution of (2.1)–(2.3) satisfies(

Ẽ(t)
) 1

2
. eCt(E(0))

1
2 +

∫ t

0
eC(t−s) (‖h(s, ·)‖L2+|b(s)|+ |b′′(s)|

)
ds, ∀t ∈ [0,+∞).

Proof. At first we consider the case b(t) = 0. Direct calculation yields

d

dt
Ẽ(t) =

∫
Ω

((1 + V )utu+ uth) dx ≤ CẼ(t) +

√
Ẽ(t)‖h(s, ·)‖L2(Ω),

thus
d

dt

√
Ẽ(t) ≤ C

√
Ẽ(t) + ‖h(s, ·)‖L2(Ω),

which implies the lemma via Gronwall’s inequality.
As for the case b(t) 6= 0, by taking the difference of u and g(x)b(t) with some smooth function

g(x) satisfying g(L) = 0, gx(L) = a−1 we transform the term b(t) into the source term, which
can then be handled by the above inhomogeneous free boundary control case. This concludes
the required estimate. �

Remark 2.2. Observe from the energy estimate that the boundary trace has temporal derivative
bounded in the L2 sense, while the usual trace formula only provides its continuity. This is
indeed a hidden inequality that comes from the boundary value problems, and sometimes such a
kind of hidden inequality is the key to prove controllability results (see for example [43, 30] for
KdV). Moreover, we shall also benefit from this trace estimate in our stabilization problem.

In order to take advantage of the inverse Fourier transformation, we need to extend u(t) by
0 on t < 0 via a smooth truncation. Let χ ∈ C∞(R) satisfies χ(t) = 0 for t ≤ 1, and χ(t) = 1
for t ≥ 2. Define w := χu, it satisfies

2w − V w = χttu+ 2χtut + χh = h0 in Ω,(2.10)

wt + awν = χb+ χtu = b0 on ∂Ω,(2.11)

w(0, x) = wt(0, x) = 0.(2.12)

Let us assume that the control b(t) that we will choose later on satisfies that

(2.13) supp b(t) b (2,+∞).

Thanks to this assumption, we know that u(t, x)|t∈(0,2) is uniquely determined by (u0, v0)(x)
and h(t, x)|t∈(0,2). Therefore, the boundary term b0(t)|t∈(0,2) is given by χtu(t, x)|t∈(0,2), and
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the source term h0(t, x) is fixed irrespective of the choice of b(t). Moreover, since the energy
and the trace of u(t) are bounded by

E(t) . E(0) +

(∫ t

0
‖h(s, ·)‖L2ds

)2

,∀t ∈ (0, 2),

|u(t, L)|2 . E(0) +

(∫ t

0
‖h(s, ·)‖L2ds

)2

,∀t ∈ (0, 2),∫ t

0
u2
t (s, L)ds . E(0) +

(∫ t

0
‖h(s, ·)‖L2ds

)2

,∀t ∈ (0, 2),

we know that

‖h0(t)‖2L2. ‖h(t)‖2L2+‖u0‖2H1+‖v0‖2L2+

(∫ t

0
‖h(s, ·)‖L2ds

)2

,∀t ∈ (0, 2).

It suffices to stabilize w = χu via a good choice of b0(t) keeping in mind that on the time
interval [0, 2] this function is given by w(t) = χ′(t)u(t, L).

By defining

(2.14) U(ω, x) :=

∫ +∞

0
e−iωtw(t, x)dt =

∫ +∞

−∞
e−iωtw(t, x)dt,

thanks to Lemma 2.1, we know that for any complex number ω satisfying Imω < −C(V,Ω)
both U0(ω, x) and U(ω, x) are well-defined and belong to the H1 space. Thanks to the inverse
Fourier transform, for ω = α+ iβ satisfying β ≤ −C(V,Ω), the function w(t, x) satisfies

eβtw(t, x) =
1

2π

∫ +∞

−∞
eiαtU(x, α+ iβ)dα,(2.15)

eβtwt(t, x) =
1

2π

∫ +∞

−∞
(iα− β)eiαtU(x, α+ iβ)dα.(2.16)

In the following if there is no confusion we will call w(t) (or sometimes u(t)) the function
corresponding to U(ω). Then, we derive the following relations via integration by parts:∫ +∞

0
e−iωtwttdt = e−iωtwt|+∞0 + iω

∫ +∞

0
e−iωtwtdt = −ω2U(ω, x),

aUν = a

∫ +∞

0
e−iωtwν(t, L)dt =

∫ +∞

0
e−iωt(−wt(t, L) + b0(t))dt

= −iωU +

∫ +∞

0
e−iωtb0(t)dt.

All of these relations are valid as long as Imω < −C(V,Ω). In that same region for the
parameter value ω, direct calculation shows that U can be characterised by an elliptic boundary
value problem:

∆U + (V + ω2)U = −H in Ω,(2.17)

iωU + aUν = B on ∂Ω,(2.18)
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where H and B are the Fourier transforms of h0 and b0 respectively:

H(ω, x) :=

∫ +∞

0
e−iωth0(t, x)dt,(2.19)

B(ω) :=

∫ +∞

0
e−iωtb0(t)dt.(2.20)

The preceding elliptic boundary value problem is to be understood in the following variational
sense: U ∈ H1(Ω) is a solution if for every W ∈ H1(Ω) we have that

(2.21)

∫
Ω
∇U∇Wdx−

∫
Ω

(V + ω2)UWdx+
iω

a

∫
∂Ω
UWdσ =

∫
Ω
HWdx+

1

a

∫
∂Ω
BWdσ.

Consider now the unbounded operator PV (ω) defined as follows,

PV (ω) : D(PV (ω)) ⊂ L2
rad(Ω)→ L2

rad(Ω),

U 7→ (∆ + V + ω2)U,

with domain

D(PV (ω)) := {U ∈ H2
rad(Ω) : iωU + aUν = 0}.

As in [31, page 174], PV (ω) is an m-sectorial operator associated with the sesquilinear form on
the left hand side of (2.21), which is sectorial for any ω ∈ C according to the following Lemma.
Its proof can be found in Appendix A.

Lemma 2.3. For any ω ∈ C, we define the sesquilinear form pω as follows,

pω : H1
rad(Ω)×H1

rad(Ω)→ C,

(U,W ) 7→
∫

Ω
∇U∇Wdx−

∫
Ω

(V + ω2)UWdx+
iω

a

∫
∂Ω
UWdσ,

where the same assumptions on the potential V as before are in force. Then the sesquilinear
form pω is sectorial.

We conclude (see e.g. [24]) that the operator valued function PV (ω) is resolvent-holomorphic,
which means that for any λ ∈ C, the operator valued function(

λ− PV (ω)
)−1

is holomorphic in a sufficiently small neighborhood of any ω0 ∈ C with the property that
λ ∈ ρ(ω0). In particular, this holds for λ = 0.
The resolvent being a compact operator (see. e. g. [31]), we infer that the non-invertibility
of PV (ω) is equivalent to the existence of a non-trivial function in its kernel. The elementary
Lemma 2.6 below (and proved in the appendix) implies that all such values of ω in the lower
complex half plane for which PV (ω) is not invertible lie on the imaginary axis, and standard
theory implies that they form a discrete set there.

Definition 2.4. We call ω ∈ C a pole, provided PV (ω) is not boundedly invertible on L2(Ω).
If ω is not a pole, we call it regular. Moreover, a pole ω0 ∈ C is called of order n if the operator

valued function (ω − ω0)n
(
PV (ω)

)−1
is holomorphic around ω0 and (ω − ω0)n−1

(
PV (ω)

)−1
is

not holomorphic around ω0.

As we shall see later on, the first inequality of Lemma 2.6 implies that all the poles in the
lower half plane are in fact simple(of order one).
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Remark 2.5. Let us remark here that the poles coincide with the eigenvalues of the following
unbounded operator A defined on the Hilbert space H1, which is the infinitesimal generator of
the semigroup associated to the damped wave equation:

A : D(A) ⊂ H1 → H1,(
u
v

)
7→
(

0 1
∆ + V 0

)(
u
v

)
,

with

D(A) :=

{(
u
v

)
∈ H2

rad(Ω)×H1
rad(Ω) : v + auν = 0 on ∂Ω

}
.

Since the operator A has compact resolvent, its spectrum reduces to the set of eigenvalues.
Suppose that for some ω ∈ C and (w,wt)

T ∈ H2(Ω)×H1(Ω) there is

A
(
w
wt

)
= ω

(
w
wt

)
,

namely,

ẇ = wt = iωw in Ω,

ẇt = wtt = ∆w + V w = iωwt in Ω,

wt + awν = 0 on ∂Ω,

then simple calculation yields

∆w + V w + ω2w = 0 in Ω,

iωw + awν = 0 on ∂Ω.

This observation automatically gives the criterion for the stability of the linearized equation:
stable if and only if there is no pole in the lower half plane.

2.3. Holomorphic extension. From the preceding section, assuming that the function w
satisfies (2.10) - (2.12), for some b0(t) compactly supported and h0 bounded1 in H1(Ω), say, we
know that, at least for Imω < −C(V,Ω) the function

(
U(ω, x), H(ω, x), B(ω, x)

)
, defined via

(2.14), (2.19), (2.20), respectively, is well-defined in H1×H1×C, and holomorphic with respect
to ω, and its components solve (2.17)–(2.18). As illustrated in Section 2.1, the relations (2.15)–
(2.20) remain valid for β ≤ β0 provided that there is a holomorphic (with respect to ω) function
U(ω, x) solving (2.17)-(2.18) in the region Imω ≤ β0. Now we intend to holomorphically extend
the solution of this elliptic equation to more general complex values ω, and more specifically,
we strive to extend it up to the line Imω = β0 with some β0 positive. This will imply the
exponential stability of the system.

However, it is not always possible to analytically extend the solution of the elliptic problem
(2.17)–(2.18), due to the presence of poles. Indeed, suppose that ω0 is a pole, i.e. the preceding
operator PV (ω0) is not invertible, and there exists some non-trivial solution U1 of the following
equation,

∆U1 + (V + ω2
0)U1 = 0 in Ω,

iω0U1 + aU1ν = 0 on ∂Ω.

1In fact later we make much stronger exponential decay assumptions on h0.
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The equations (2.17)–(2.18) may not even admit a solution at this pole ω0. Indeed, if W is a
radial function on Ω satisfying

(2.22) iωW + aWν = B on ∂Ω,

then U being a solution of (2.17)–(2.18) is equivalent to X := U −W being a solution of

∆X + (V + ω2
0)X = Y in Ω,(2.23)

iω0X + aXν = 0 on ∂Ω,(2.24)

Y := −H −∆W + (V + ω2
0)W.(2.25)

The preceding equation need not admit a solution since PV (ω0) is not invertible. On the other
hand, there is a subset I(ω0) of L2

rad(Ω) such that for any Y belonging to I(ω0), the preceding
equation admits a solution X (but the solution will not be unique).

Observe from the preceding equation that W only depends on the value of b(t) (which de-
termines B), which is exactly the control term. Therefore it is natural and reasonable to ask
whether there is a good choice of b(t) such that for any pole ω0 the above defined function Y
takes its value from the set I(ω0). This guarantees the existence of a solution for Equations
(2.17)–(2.18) for any pole ω0. In fact, the precise condition required is given by (iv) in the
Assumption 1 on b below. It remains to show that under this assumption there is a holomor-
phic extension for U(ω, x) beyond any pole. This will be done in Lemma 2.8. Note that the
motivation for (iv) below is that if ω0 is a pole, then for any given radial function H, all radial
H1-solutions U of the inhomogenous problem

(2.26) ∆U + (V + ω2
0)U = −H, in Ω,

have the same boundary value

(2.27) iω0U + aUν on ∂Ω.

We now specify the precise technical assumptions we shall make on b. An actual construction
of a function b satisfying these conditions, and in the context of a nonlinear iterative scheme,
will be accomplished in Lemma 3.15.

Assumption 1: We say that a function b(t) satisfies this assumption if the following conditions
on b0(t) defined as χb+ χtu hold:

(i) Compatibility condition:

b0(t) = χ′(t)u(t, L) on [0, 2].

(Remark: this condition comes from the assumption (2.13) on b(t)).
(ii) Real valued condition: b0(t) is real valed.

(Remark: notice that for any pole ω = α+iβ with β > 0 the value of α is not necessarily
0, which may cause some difficulty for finding real controls b, but this is resolved by the
fact that ω and −ω̄ appear in pairs).

(iii) Support property: b0(t) is compactly supported
(Remark: this condition is imposed to ensure that B is always defined, as well as the
decay).

(iv) Compatibility on poles: for any simple pole ωj satisfying Imωj < β, we have that B(ωj)
coincides with the value of iωjU+aUν for any one (and hence for all solutions according
to the observation on (2.26)–(2.27)) of the radial H1-solutions U of the elliptic equation

∆U + (V + ω2
j )U = −H(ωj) in Ω.
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Indeed, once a function b0(t) that satisfies such four properties is chosen, one shall select b(t)
as follows

(2.28) b(t) :=

{
0, if t ∈ (0, 2),

b0(t), if t ∈ [2,+∞).

Below we shall see that if we assume that there is no pole on the line Imω = β0 and the
above assumptions hold, and furthermore all poles are simple, then the solution U = U(ω, x) of
the above elliptic problem can be holomorphically extended to a neighbourhood of the domain
Imω ≤ β0. Again, we emphasize that when ω = ωj is a pole, the problem

∆U1 + (V + ω2
j )U1 = −H(ωj) in Ω,

iωjU1 + aU1ν = 0 on ∂Ω

may not admit any solution. This can also be compared to a similar issue for the simple ODE
model:

uxx = f(x), u(0) = 0, u(π) = 0,

which does not necessarily admit a C2 solution. The preceding strategy shall be rendered rigor-
ous below in Lemma 2.8, and the precise choice of the control term b0 that satisfies Assumption
1 shall be found in Section 3.6.

We now present the details, starting with some properties concerning the kernel of PV (ω0):
any potential pole that lies in the lower half plane can only appear on the imaginary axis,
moreover, these poles cannot accumulate in this region, and are simple. The following lemmas
closely mimic ones in [31], and the proofs can be found in Appendix A:

Lemma 2.6. The point ω = α + iβ is regular if β ≤ 0, α 6= 0. Furthermore, for α 6= 0 and
β ∈ (−C(V,Ω), 0) the unique solution of

∆U + (V + ω2)U = −H in Ω,(2.29)

iωU + aUν = 0 on ∂Ω,(2.30)

satisfies

‖U‖2L2(Ω)+|β|
−1‖U‖2L2(∂Ω).

1

|αβ|2
‖H‖2L2(Ω),

and
‖U‖H1(Ω)+‖U‖L2(∂Ω). ‖U‖L2(Ω).

We also record the following basic

Lemma 2.7. There are finitely many poles ωj = iβj with −βj ∈ (0, C(V,Ω)), and they are
simple poles.

In fact, the simplicity of the poles in the lower half plane is a direct consequence of Lemma 2.6.
Armed with the preceding lemmas and a good choice of b(t), we can holomorphically extend

U , interpreted as function of ω, to all of the lower half plane or even further.

Lemma 2.8. Suppose that there is only a finite number of simple poles2 under the line Imω =
β0. Assume that H(ω, x) depends holomorphically on ω in a neighbourhood of the domain
Imω ≤ β0. Then, for any fixed b0(t) satisfying Assumption 1, the unique function U(ω, x)

2In particular, we assume there are no higher order poles
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which solves (2.17)–(2.18) for regular points ω can be holomorphically extended to all ω in the
domain Imω ≤ β0, thus also including the poles, namely, U(ω, x) is holomorphic in this domain
and solves Equations (2.17)–(2.18).

Proof. Thanks to the choice of b(t), we know that for any regular ω such that Imω ≤ β the
elliptic equation (2.17)–(2.18) admits a unique solution U(ω, x). It suffices to show that U(ω)
can be holomorphically extended to any simple pole ωj . Since ωj is in the spectrum, we can
expand the resolvent (∆ + V + (ωj + ω − ωj)2)−1 with the boundary condition iωU + aUν = 0
as

(ω − ωj)−1A+Q(ω),

where the image of A is of one dimension (the kernel of the operator for ωj), and the regular
part Q(ω) is bounded and holomorphic near ωj .

Now let U(ωj) be any one H1-solution of the problem

∆U + (V + ω2
j )U = −H(ωj).

According to (iv) of the basic conditions for b, we then have

iωjU(ωj) + aUν(ωj) = B(ωj).

For any ω close to ωj , we set the difference

∆ω := U(ω)− U(ωj),

which satisfies

(∆ + V + ω2)∆ω = −(ω2 − ω2
j )U(ωj)−H(ω) +H(ωj), in Ω,

iω∆ω + a(∆ω)ν = i(ω − ωj)U(ωj , x) +B(ω)−B(ωj), on ∂Ω.

As usual we split ∆ω by Vω +W with W given by

W (ω, x) := g(x)
(
i(ω − ωj)U(ωj , x)|∂Ω +B(ω)−B(ωj)

)
,

where the smooth function g(x) verifies g|∂Ω(L) = 0, g′|∂Ω(L) = a−1. Thus Vω satisfies

(∆ + V + ω2)Vω = −(ω2 − ω2
j )U(ωj)−H(ω) +H(ωj)

−
(
i(ω − ωj)U(ωj , L) +B(ω)−B(ωj)

)
(∆ + V + ω2)g(x),

= (ω − ωj)R(ω),

iωVω + a(Vω)ν = 0,

where R(ω) is holomorphic near ωj . Thanks to the resolvent expression of (∆ + V + ω2)−1, we
know that

Vω = AR(ω) +Q(ω)(ω − ωj)R(ω),

which is of course holomorphic around ωj . �

Remark 2.9. The lemmas stated in this section actually hold beyond the radial context.

According to Lemma 2.6, we only have information about poles that are below the real line.
However, in the next section for a specific potential function V = 1 with the help of explicit
calculations we will be able to extend the function U(ω, x) significantly above the real line.
In particular, the preceding construction can be extended to any strip in the upper half-plane
where only finitely many poles exist, under a suitable non-degeneracy condition.
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3. Stabilization around unstable equilibria

This section is devoted to the stabilization of the system around the static solution u ≡ 1,
more precisely, the stabilization of its linearized system,

2u− 2u = h, in Ω,

ut + auν = b(t), on ∂Ω.

Let us perform the following simple change of variables

u(t, x) := u

(
t√
2
,
x√
2

)
, b(t) :=

1√
2
b

(
t√
2

)
, Ω := BL(0).

For ease of notations, if there is no risk of confusion we still denote the new variables by u and
f , which therefore verify

2u− u = h, in Ω,

ut + auν = b(t), on ∂Ω,

u(0, x) = u0, ut(0, x) = v0.

For any given β ∈ R, we define and works with the following space for the triple (h, u0, v0),

B = B(β) := {(h, u0, v0) : h(t, x) ∈ L1(0,+∞;L2(Ω)), (u0, v0) ∈ H1},(3.1)

with its norm given by

‖(h, u0, v0)‖B:=

∫ +∞

0
eβt‖h(t, ·)‖L2(Ω)dt+ ‖(u0, v0)‖H1 .(3.2)

In the end of this section, we will achieve the theorem that we present in the following.
Remark that this result only deals with the case that a ∈ (0, 1)\A(L) (see (3.24) for the precise
definition of this set that contains countably many numbers), while when a takes its value from
A(L) the same argument leads to exponential stabilization with decay rate β∗, for some number
β∗ that is sufficiently close to 0 such that there is no pole in the strip Imω ∈ [0, β∗] (as stated
in Theorem 1.3).

Theorem 3.1. Let L > 0 such that L 6= tanL. Let a ∈ (0, 1) \ A(L) (see (3.24) for a precise
definition). For any β ∈ (0, 1

2L log 1+a
1−a), there exists a constant Cβ effectively computable such

that, for any radial triple (h, u0, v0) ∈ B we are able to find a smooth real function b(t) compactly
supported in interval (2, 4) satisfying

|b(t)|, |b′(t)| ≤ Cβ‖(h, u0, v0)‖B
such that the solution u verifies

‖u(t)‖H1 ≤ Cβe−βt
(∫ t

0
‖h(t, ·)‖L2(Ω)dt+ ‖(u0, v0)‖H1

)
, for t ≤ 2,

‖u(t)‖H1 ≤ Cβe−βt
(∫ +∞

0
eβt‖h(t, ·)‖L2(Ω)dt+ ‖(u0, v0)‖H1

)
, for t > 2.

Moreover, the real function b(t) is in fact chosen from a fixed finite dimensional space N :=
span {b1(t), ..., bN (t)}

b(t) =

N∑
k=1

lkbk(t)
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with lk = lk(h, u0, v0) ∈ R depending linearly and continuously on (h, u0, v0) ∈ B:

N∑
k=1

|lk(h, u0, v0)| ≤ Cβ‖(h, u0, v0)‖B.

As it corresponds to the case of V ≡ 1 in the preceding section, we study the operator
P (ω) := P1(ω) that we introduced in (2.17)–(2.20): for any function U ∈ D(P1(ω)),

PωU := (∆ + 1 + ω2)U in Ω,

iωU + aUν = 0 on ∂Ω.

Since we are working with radial functions, it is standard to consider the following function on
r ∈ [0, L]:

(3.3) ψ(r) := rU(r).

Then, the preceding operator on U becomes the following one acting on ψ:

Q(ω) : D(Q(ω)) ⊂ L2(0, L)→ L2(0, L),

ψ 7→ ∂2
rψ + (1 + ω2)ψ,(3.4)

with its domain of definition as

D(Q(ω)) := {ψ ∈ H2(0, L) : ψ(0) = 0, (iLω − a)ψ(L) + aLψ′(L) = 0}.(3.5)

We again observe that all solutions of (2.26) have the same boundary value (2.27) if ω0 is a
pole: suppose that ω0 is a pole and that Equation (2.26) has two different solutions U1 and U2

having different boundary behaviors, then U := U1 − U2 is a solution of Equation (2.26) with
H = 0. Thus ψ := rU satisfies

ψrr + (1 + ω2
0)ψ = 0,

ψ(0) = 0, (iLω0 − a)ψ(L) + aLψ′(L) 6= 0.

Therefore, the unique solution of the second order ODE

∂2
rψ + (1 + ω2

0)ψ = 0, ψ(0) = 0, ψr(0) = 1,

satisfies
(iLω0 − a)ψ(L) + aLψ′(L) 6= 0.

This is in contradiction with the assumption that ω0 is a pole.

3.1. Spectral properties. We want to find those non trivial pairs (ω, ψ) ∈ C×D(Q(ω) that
satisfy Q(ω)ψ = 0. Observe that this is related to the following unbounded operator A defined
on the Hilbert space L2(0, L),

A : D(A) ⊂ L2(0, L)→ L2(0, L),

A

(
ψ1

ψ2

)
=

(
1

∂2
r + 1

)(
ψ1

ψ2

)
,

with its domain of definition given by

D(A) := {(ψ1, ψ2)T ∈ H2(0, L)×H1(0, L) : ψ2(0) = 0, −aψ1(L) + aLψ′1(L) = −Lψ2(L)}.
Note that the spectrum of A coincides the spectrum of the operator A that is defined in Remark
2.5.
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Since the operator A has real coefficients, its eigenvalues appear in pairs. Suppose that
(iω, ψ1, ψ2) is a pair of eigen modes for the preceding operator, then we easily get from its
definition that

ψ2 = iωψ1, in Ω

(∂2
r + 1)ψ1 = iωψ2 = −ω2ψ1, in Ω

ψ1(0) = ψ2(0) = 0,

−aψ1(L) + aLψ′1(L) = −Lψ2(L) = −iLωψ1(L)

Hence, (ω, ψ1) is a pair constituting a non trivial solution of (3.4)–(3.5). It suffices to find all
eigenvalues of A; in fact, we are more interested in their asymptotic behavior, i.e. when k tends
to ∞, the value of iωk.

Asymptotically, formally neglecting lower order terms, we reduce to study the simpler oper-

ator Ã,

Ã

(
ψ1

ψ2

)
=

(
1

∂2
r

)(
ψ1

ψ2

)
,

ψ2(0) = 0, aψ′1(L) = −ψ2(L),

whose spectrum is explicit:

iω̃k =
1

2L
log

1− a
1 + a

+ i
kπ

L
, k ∈ Z,

thus

ω̃k = i
1

2L
log

1 + a

1− a
+
kπ

L
, k ∈ Z.

Hence, the following lemma is quite natural. In fact, exploiting the radiality assumption, we
are able to sharpen Lemma 2.6 and Lemma 2.7 in the preceding section as follows.

Lemma 3.2. In the radial case, the operator P (ω) is invertible except on a discrete set {ωk},
(i) there exist only finitely many poles ωk such that Im(ωk) < 0, and these poles are simple

and purely imaginary. Moreover, if ωk is a pole then so is −ω̄k;
(ii) there is no pole ωk on the real line if L 6= tanL;
(iii) for any β < 1

2L log 1+a
1−a , there are only finitely many poles which are under the line

Imω = β. Indeed, β = 1
2L log 1+a

1−a is the asymptotic line for poles.

In particular, there exists γ > 0 such that in the strip 0 < Im(ω) ≤ γ there is no ωk.
(iv) for any L such that tanL 6= L, there exists a set A(L) containing at most countably

many elements such that for any a ∈ (0, 1) \ A(L) there are only simple poles.

Proof. The first property and (i) follow from Lemma 2.6 and Lemma 2.7. We continue with
the proof of properties (ii), (iii) and (iv).

Recall that a complex value ω being a pole is equivalent to the existence of a non-trivial
solution of the equation

∂2
rψ + (1 + ω2)ψ = 0,(3.6)

ψ(0) = 0, (iLω − a)ψ(L) + aLψ′(L) = 0.(3.7)

From now on we shall denote 〈ω〉2 := ω2 + 1, and define 〈ω〉 as a square root of (ω2 + 1) as
follows: if ω /∈ [−i, i], let 〈ω〉 be the unique square root of (ω2 + 1) closest to ω. Furthermore,
for ω ∈ [−i, i], given by ω = i sin ρ, ρ ∈ R, set 〈ω〉 = | cos ρ|. Then

∣∣ω − 〈ω〉∣∣ ≤ 1. Also, for
ω /∈ [−i, i], we have

〈−ω̄〉 = −〈ω〉.
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Now assume3 ω 6= ±i, and notice that the solutions of

∂2
rψ + (1 + ω2)ψ = 0, ψ(0) = 0

are given by Cψ with

ψ1(r) := ei〈ω〉r − e−i〈ω〉r.
Therefore, (3.6)–(3.7) admits a non-trivial solution if and only if

(iLω − a)ψ1(L) + aLψ′1(L) = 0,

which is further equivalent to

(iLω − a)
(
ei〈ω〉L − e−i〈ω〉L

)
+ iaL〈ω〉

(
ei〈ω〉L + e−i〈ω〉L

)
= 0.

This implies that ω ∈ C \ {i,−i} is a pole if and only if

(3.8) e2i〈ω〉L =
iLω − a− iaL〈ω〉
iLω − a+ iaL〈ω〉

,

or equivalently,

(3.9) (iLω − a) sin(〈ω〉L) + aL〈ω〉 cos(〈ω〉L) = 0.

Setting ω = 0, we see that the condition L 6= tanL implies that it is not a pole, as asserted in
(ii).
Next, we prove (iii). At first we show that there is a uniform upper and lower bound for the
imaginary part of poles. Assume that ω = α + iβ is a pole such that |ω| > N for some N
large enough to be chosen later on. Since |ω − 〈ω〉| ≤ 1, we know that on the left-hand side of
Equation (3.8)

(3.10) e−2L(1+β) ≤ |e2i〈ω〉L| ≤ e2L(1−β).

Moreover, by the definition of 〈ω〉 there is

〈ω〉
ω

= 1 + rω with |rω| ≤
1

N
.

Hence the right-hand side of (3.8) is equivalent to

(3.11)
iLω − a− iaL〈ω〉
iLω − a+ iaL〈ω〉

=
iL
(

1− a 〈ω〉ω
)
− a

ω

iL
(

1 + a 〈ω〉ω

)
− a

ω

=
iL ((1− a)− arω)− a

ω

iL ((1 + a) + arω)− a
ω

.

Inspired by the preceding formula we shall choose N := Na,L as

(3.12) Na,L :=
2a(1 + L)

(1− a)L
.

Such a choice of Na,L indeed guarantees

|iL ((1− a)− arω)− a

ω
| ≥ L(1− a)− aL

Na,L
− a

Na,L
≥ L(1− a)

2
,

|iL ((1 + a) + arω)− a

ω
| ≥ L(1 + a)− aL

Na,L
− a

Na,L
≥ L(1 + 3a)

2
.

Thus

(3.13)
L(1− a)

2L(1 + 2a) + 2a
≤
∣∣∣∣ iLω − a− iaL〈ω〉iLω − a+ iaL〈ω〉

∣∣∣∣ ≤ 2L(1 + 2a) + 2a

L(1 + 3a)
,

3It is easily seen that ω = ±i are not poles
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which combined with (3.10), yields an effectively computable constant Ca,L such that

(3.14) |β| ≤ Ca,L for any pole ω satisfying |ω| ≥ Na,L.

Consequently, there exists some constant CU > 0 such that

(3.15) |β| ≤ CU for any pole ω ∈ C.

Next we give an asymptotic expansion for poles such that α ≥ Na,L. Keep in mind that for
any pole ω = α+ iβ which satisfies this condition, its imaginary part is smaller than Ca,L. By

writing 〈ω〉 = α̃+ iβ̃, one easily gets4

α̃ = α+
1

2α
+O(

1

α2
), β̃ = β +O(

1

α2
), 〈ω〉 = ω +

1

2α
+O(

1

α2
),

ei〈ω〉r = eiωr + eiωrO(
1

α
) = eiωr +O(

1

α
).

Since 〈ω〉 = α+ 1
2α + iβ +O( 1

α2 ) we further get

ei〈ω〉r = ei(α+ 1
2α

+iβ+O( 1
α2

))r = eiωr + eiωr
ir

2α
+ r(r, α)(3.16)

with

|r(r, α)| . r

α2
, ∀r ∈ [0, 2L], α ≥ A.

Thanks to (3.16), the left-hand side of (3.8) is

e2i〈ω〉L = e2iL(α+ 1
2α

+iβ) +O(
1

α2
).(3.17)

On the other hand, since 〈ω〉/ω = 1 +O(1/α2), the right-hand side verifies

(3.18)
iLω − a− iaL〈ω〉
iLω − a+ iaL〈ω〉

=
iL(1− a)− a

α

iL(1 + a)− a
α

+O(
1

α2
) =

1− a
1 + a

+O(
1

α
).

By combining the preceding two equations we conclude that

(3.19) e2iL(α+ 1
2α

)e−2Lβ =
1− a
1 + a

+O(
1

α
).

By comparing the absolute values of both sides of the equation we immediately obtain

(3.20) β =
1

2L
log

1 + a

1− a
+O(

1

α
),

which implies (iii).

Finally, we present the proof of Property (iv). Notice from Equation (3.9) ω is a pole if and
only if

(3.21) S(a, ω) := (iLω − a) sin(〈ω〉L) + aL〈ω〉 cos(〈ω〉L) = 0,

thus it is a double pole if and only if in addition the derivative Sω(a, ω) at ω satisfies

(3.22) (i− aLω) sin(〈ω〉L) +
iLω2

〈ω〉
cos(〈ω〉L) = 0.

4Recall our choice of 〈ω〉.
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See also the definition of cg and η by Equation (3.28) in the next subsection. Therefore, ω is a
double pole if and only if it satisfies both (3.21) and

(3.23) L(a2 − 1)ω3 − 2iaω2 + a2Lω − ai = 0.

Take ω = iy and deduce that ω is a solution of (3.23) if and only if y is a solution of

f(y) := (1− a2)Ly3 + 2ay2 + a2Ly − a = 0

Clearly for any fixed a ∈ (0, 1) the preceding equation admits three complex valued solutions
y1(a), y2(a) and y3(a). We first notice that f(0) = −a < 0 and that f(1) = L + a > 0, thus
there exists at least one solution in the interval (0, 1). Indeed, there is exactly one solution in
this interval: suppose there are at least two solutions, then we deduce from the values of f(0)
and f(1) that all the three solutions should be inside (0, 1), which is incompatible with the fact
that

y1 + y2 + y3 = − 2a

(1− a2)L
< 0.

From now on we shall denote such a unique solution in (0, 1) by y1(a). For any a0 ∈ (0, 1) there
exist a closed ball around a0, B(a0) ⊂ C, as well as a simply connected domain around y1(a0),
say D(a0) ⊂ C\{±1} such that y1 : (0, 1) ∩B(a0)→ (0, 1) can be holomorphically extended to
y1 : B(a0)→ D(a0).
We claim that the other two solutions y2(a) and y3(a) both have negative real part. We know
from the preceding equation that Re (y2 + y3) < 0 and Im (y2 + y3) = 0. If one of them is
real valued, then both are real valued, and in this case both are negative, since their product is
positive. If y2,3 are not real valued, then they are complex conjugate numbers having the same
negative real part.

Recall from Lemma 2.7 that there are only simple poles below the real axis; hence we know
that ω2 := iy2(a) and ω3 := iy3(a) are not double poles. Consequently, a ∈ (0, 1) admits double
poles if and only if ω1(a) := iy1(a) satisfies Equation (3.21). For any a0 ∈ (0, 1) we shall define
the following function on B(a0):

F (a) := 〈iy1(a)〉−1 · S(a, iy1(a)),

which is holomorphic by the choice of the simply connected domain D(a0). Therefore, there
are at most finitely many a inside B(a0) that admit double poles, and we shall define the set
of these values of a as Aa0 .

Finally the set A(L) is given by

(3.24) A(L) :=
⋃

a0∈(0,1)

Aa0 ∩ (0, 1),

which only admits countably many elements. More concretely, some number a ∈ (0, 1) belongs
to A(L) if and only if it satisfies

(3.25) (Ly2
1(a) + a) sin

(
L
√

1− y2
1(a)

)
− aL

√
1− y2

1(a) cos

(
L
√

1− y2
1(a)

)
,

where y1(a) is the unique solution inside (0, 1) of the cubic equation

(3.26) (1− a2)Ly3 + 2ay2 + a2Ly − a = 0.

�
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3.2. Asymptotic resolvent estimate: the inverse R(ω) = P (ω)−1. In this Section we only
work with ω ∈ C such that Imω ∈ [−1, CU + 1] (recall from the preceding section that CU is
the uniform upper bound of the imaginary part of poles). For ω = α+ iβ /∈ {ωk}, the operator
P (ω) is invertible on L2

rad. One of the essential goals here is to characterize the resolvent
asymptotically in terms of α, which will be used later on in the following sections concerning
energy estimates. For f(x) ∈ L2

rad(Ω), thus rf(r) ∈ L2, and R(ω)f = U = r−1ψ satisfies,

∂2
rψ + (1 + ω2)ψ = rf(r),

ψ(0) = 0, (iLω − a)ψ(L) + aLψ′(L) = 0,

which can be obtained by solving Sturm–Liouville’s problem with the help of Green’s function:

R(ω)f = r−1ψ = r−1

∫ L

0
Γ(r, s;ω)sf(s)ds.

Let us now concentrate on the Green’s function which subject to the above ODE is of the
form

Γ(r, s) :=

{
1
cg
φ1(s)φ2(r), for r ≥ s,

1
cg
φ2(s)φ1(r), for r < s,

(3.27)

where for ω /∈ {±i}

(3.28)


φ1(r) := 1

2

(
ei〈ω〉r − e−i〈ω〉r

)
,

φ2(r) := 1
2

(
ei〈ω〉r − e−i〈ω〉r

)
+ η

2

(
ei〈ω〉r + e−i〈ω〉r

)
,

cg := φ1(0)φ′2(0)− φ′1(0)φ2(0) = −i〈ω〉η,

with some value η to be fixed later on such that φ2(r) verifies the right-hand side boundary
condition, namely, (iLω − a)φ2(L) + aLφ′2(L) = 0.

Remark 3.3. Let us remark here that R(−ω̄) = R(ω). Indeed, by the definition of 〈ω〉, we

know that 〈−ω̄〉 = −〈ω〉. Then successively, we have φi(−ω̄; r, s) = φi(ω; r, s), cg(−ω̄) = cg(ω),

Γ(−ω̄; r, s) = Γ(ω; r, s), which implies the required conjugacy property.

For ease of notations we only consider α ≥ A for some A big enough (actually it suffices to
take A = 1).

Remark 3.4. In the following calculation we only deal with the case that α ≥ A, for α ≤ −A
we also identify 〈ω〉 with ω+ 1

2α +O( 1
α2 ) and all the calculations that follows remain the same.

Moreover, throughout this paper we do not detail the case that −A ≤ α ≤ A, since all the
estimates that we will be dealing with are uniformly bounded on this compact interval.

Let β ∈ [−1, CU + 1]. Since φ2 verifies the right-hand side boundary condition, we have

0 =(iLω − a)
((
ei〈ω〉L − e−i〈ω〉L

)
+ η

(
ei〈ω〉L + e−i〈ω〉L

))
+ iaL〈ω〉

((
ei〈ω〉L + e−i〈ω〉L

)
+ η

(
ei〈ω〉L − e−i〈ω〉L

))
,

thus

(1− ei2ωL)− a(1 + ei2ωL) +O(
1

α
) =

(
(1 + ei2ωL)− a(1− ei2ωL) +O(

1

α
)

)
η.

It is easy to obtain the existence of c, C > 0 such that η ∈ (c, C). Unfortunately, we are
not able to present η by series expansion with respect to 1

α , due to its periodicity. For some
further reasons, we need to perform explicit first order expansion of α on η. Thanks to precise
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calculations, the details of which can be found in Appendix B, there exist π/L periodic functions
(with respect to the α variable) η0(α), η1(α) such that

η = η0 +
η1

α
+O(

1

α2
) =
−1 + d0e

−i2Lα

1 + d0e−i2Lα
+

d1e
−i2Lα

(1 + d0e−i2Lα)2

1

α
+O(

1

α2
),

where d0 and d1 are constants depending on the value of β with d0 satisfying

d0 =
1− a
1 + a

e2Lβ < 1.

Remark 3.5. The above value of d0 can be compared with property (iii) of Lemma 3.2, in fact,
from the definition of d0 we easily observe an asymptotic line of poles: β = 1

2L log 1+a
1−a , which

corresponds to the case that d0 = 1. We also emphasize here that the fact that d0 be smaller
than 1 is crucial, as this allows us to perform series expansion on ηi. Indeed, simple calculation
yields

− 1

η0
=

1 + d0e
−i2Lα

1− d0e−i2Lα
= 1 + 2

∞∑
n=1

dn0e
−2iLnα,

η1

η2
0

= d1e
−i2Lα 1 + d0e

−i2Lα

(1− d0e−i2Lα)2
= d1

(
1 +

∞∑
n=1

(2n+ 1)dn0e
−2iLnα

)
.

Next, we characterize the other terms asymptotically. To simplify the notations we denote

e± = e±(r) := eiωr ± e−iωr.
Hence

ei〈ω〉r − e−i〈ω〉r = e− +
ir

2α
e+ +O(

r

α2
), ei〈ω〉r + e−i〈ω〉r = e+ +

ir

2α
e− +O(

r

α2
).

Then, for α ∈ [A,+∞), s, r ∈ [−L,L], via some direct calculation, successively we are able to
obtain

η = η0 +
η1

α
+O(

1

α2
),

cg = −iηα
(

1 +
iβ

α
+O(

1

α2
)

)
= −iα

(
η0 +

iβη0 + η1

α
+O(

1

α2
)

)
,

2φ1(r) = e− +
ir

2α
e+ +O(

r

α2
),

2φ′1(r) = iω

(
e+ +

ir

2α
e−
)

+O(
1

α
),

2φ2(r) = e− +
ir

2α
e+ + η

(
e+ +

ir

2α
e−
)

+O(
r

α2
),

2φ′2(r) = iω

(
(e+ +

ir

2α
e−) + η(e− +

ir

2α
e+)

)
+O(

1

α
).

Thanks to the preceding asymptotic expansion, we can further expand the kernel function Γ by
4Γ(r, s) = i

αη (1− iβ
α )φ1(s)φ1(r) + i

α(1− iβ
α )φ1(s)(e+ + ir

2αe
−)(r) +O( 1

α3 ),

= i
αη0

e−(s) (e−(r) + η0e
+(r)) +O( 1

α2 ), for s ≤ r,
4Γ(r, s) = i

αη (1− iβ
α )φ1(s)φ1(r) + i

α(1− iβ
α )φ1(r)(e+ + is

2αe
−)(s) +O( 1

α3 ),

= i
αη0

e−(r) (e−(s) + η0e
+(s)) +O( 1

α2 ), for r < s,

(3.29)



STABILIZATION OF FOCUSING KLEIN-GORDON EQUATIONS 25

3.3. Instability despite dissipative boundary condition: Theorem 1.2. We have seen
in Remark 2.5 that the linearized system is stable if and only if there is no pole in the lower
half plane.

Here we are interested in the low frequency case, i.e. the existence of ω = −is with s > 0
such that equation (3.8) holds, which clearly implies the instability of the nonlinear system.
Note that it is not sufficient to show the existence of ω = −is, s ≥ 0. For example, if the unique
non-positive eigenvalue is given by s = 0, then this eigen mode may generate a center manifold
for the nonlinear system, which stabilizes the system.

Equation (3.8), for ω = −is with s > 0 reads

(3.30) ei2L
√

1−s2 =
Ls− a− iaL

√
1− s2

Ls− a+ iaL
√

1− s2
.

Observe that in (3.30) both sides have absolute value 1 if s < 1, hence it suffices to find s ∈ (0, 1)
such that the argument of both complex numbers coincide, which is further equivalent to

L
√

1− s2 = arg(Ls− a− iaL
√

1− s2),

or also

(3.31) tan(L
√

1− s2) =
aL
√

1− s2

a− Ls
.

Let us define

f1(s) := tan(L
√

1− s2), f2(s) :=
aL
√

1− s2

a− Ls
.

Here we have to exclude the case s = 1, which corresponds to ω = −i, which is not a pole
anyways.

In the following we will prove the existence of unstable eigenmodes, ω = −is with s ∈ (0, 1),
by considering different cases.

(1) When L = 1, we look at equation (3.30), the goal is to find a solution s that is between
0 and a. Indeed, when s varies from 0 to a, the argument of the right hand complex
number increases from π

2 to π and the argument of the left decreases from 2 to 2
√

1− a2.
Therefore, there exists some s ∈ (0, a) such that these two arguments coincide. Actually,
this strategy easily adapts to the case when 2L ∈ [π2 , π] mod 2π.

(2) For the general case that L > 1, again by looking at Equation (3.30) we let s vary from
0 to 1. Simple calculation shows that when s varies from 0 to 1, for (3.30) the argument
of the right hand complex number turns from π

2 for (s = 0) to π for (s = a), then to 2π
for (s = 1), and the argument of the left hand side decreases from 2L to 0. As they are
rotating from different directions, thanks to the fact that

2L+
3π

2
≥ 2π,

we get the existence of some s ∈ (0, 1) such that Equation (3.30) holds.
(3) When 0 < a < L < 1, we turn to the formula (3.31) instead. Since

f1(0)− f2(0) = tan(L)− L > 0, lim
s→ a

L
−
f1(s)− f2(s) = −∞,

there exists some point s0 ∈ (0, aL) such that f1(s0) = f2(s0).
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(4) When 0 < a = L < 1, since

f2(s) = L

√
1 + s

1− s
→ +∞, when s→ 1−,

we also concludes the existence of s0 such that f1(s0) = f2(s0).
(5) When 0 < L < a < 1, we notice that

f1(1)− f2(1) = 0.

and in fact both f1 and f2 tend to 0 as s → 1. However, considering the convexity of
f1 − f2, we have

f ′1(s)− f ′2(s) =
− Ls√

1−s2

cos2(L
√

1− s2)
− aL

(
− aLs√

1− s2(a− Ls)
+
L
√

1− s2

(a− Ls)2

)
,

=
Ls√

1− s2

(
a

a− Ls
− 1

cos2(L
√

1− s2)

)
− aL2

√
1− s2

(a− Ls)2
.

Letting s tend to 1− we notice that the preceding expression tends to +∞. Therefore
(f1 − f2)′(s) > 0 for s ∈ (1 − ε, 1), which, combined with the fact that (f1 − f2)(0) >
0, (f1−f2)(1) = 0, implies the existence of some point s0 ∈ (0, 1) such that (f1−f2)(s0) =
0.

Remark 3.6. This approach actually gives the existence of poles that lie on the interval i(−1, 0),
and with the help of more explicit (which is of course much more complicated) study we are even
able to completely characterize the number of poles on this interval. One still needs to investigate
the situation on i(−C,−1) to obtain the exact number of poles in the lower half plane.

3.4. Energy estimates: inhomogeneous problems. Both this section and the next are
devoted to the energy estimates for the solution u corresponding to the elliptic equation (2.17)–
(2.20). In this section we are interested in inhomogeneous problems with null boundary condi-
tion (while homogeneous problems with controlled boundary are reserved for the next section),
which will eventually lead to the decay property that we are seeking.

3.4.1. The main estimate. More precisely, we want to bound the energy of u as follows.

Proposition 3.7. Let β > 0 such that there is no pole on the line Im z = β. If the radial
function U verifies

∆U + U + ω2U =

∫ +∞

0
e−itωf(t, x)dt in Ω,

iωU + aUν = 0 on ∂Ω,

for ω = α+ iβ on the line Im z = β, then the related radial function w(t, x) = w(t, r) given by
the inverse Fourier transformation (2.15) satisfies

‖w(t)‖H1(Ω)≤ Ce−βt
∫ +∞

0
et0β‖(rf)(t0)‖L2

r
dt0.(3.32)

The following lemma is essential to the proof of the preceding result.

Lemma 3.8. Let β > 0 such that there is no pole on the line Im z = β. If the radial function
U verifies

∆U + U + ω2U = eiαt0f(x) in Ω,

iωU + aUν = 0 on ∂Ω,
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for ω = α + iβ on the line Im z = β, then the radial function w(t, x) = w(t, r) given by the
inverse Fourier transformation (2.15) satisfies∫ L

0

(
(rw)2 + w2 + (rw)2

t + (rw)2
r

)
(t, r)dr ≤ Ce−2βt

∫ L

0
(rf)2dr,

where the left hand side is equivalent to the H1(Ω) norm, and where the constant C is inde-
pendent on the choice of f and t0. Moreover, if in the elliptic equation we replace the function

eiαt0 by eiαt0
ω , then the same estimate still holds.

Proof of Proposition 3.7. Suppose that U is the unique solution of the equation (recall that
ω = α+ iβ is not a pole, thus the solution is unique). We decompose U by

U :=

∫ +∞

0
Ut0dt0

with Ut0 the solution of

∆Ut0 + Ut0 + ω2Ut0 = e−it0ωf(t0, x) = eβt0e−it0αf(t0, x), in Ω,

iωUt0 + a(Ut0)ν = 0, on ∂Ω.

Thanks to Lemma 3.8 we know that

‖wt0‖H1≤ Ce−βtet0β‖(rf)(t0)‖L2
r
, ∀t, t0 ∈ R+,

thus

‖w‖H1≤ Ce−βt
∫ +∞

0
et0β‖(rf)(t0)‖L2

r
dt0, ∀t ∈ R+.

�

In the rest of this section we focus on the proof of Lemma 3.8. For ease of notations, we only
prove the case with t0 = 0, while the other cases can be adapted by the same proof. From now
on, we denote rf(r) by F (r). By assuming f(x) ∈ L2

rad we have F (r) ∈ L2
r :∫

BL

f2(x)dx = C

∫ L

0
r2f2(r)dr = C

∫ L

0
F 2(r)dr,∫

BL

|∇f(x)|2dx = C

∫ L

0
r2f2

r dr.

From the previous section, we know that

R(ω)f = r−1

∫ L

0
Γ(r, s;ω)F (s)ds =: r−1R0(r;ω).(3.33)

Therefore, thanks to the radiality of the function, it only remains to prove the following propo-
sition to conclude Lemma 3.8.
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Proposition 3.9. Let a ∈ (0, 1). Let β < 1
2L log 1+a

1−a such that there is no pole on the line

Imω = β. There exists C > 0 such that, for any t ∈ R+,∫ L

0

∣∣∣∣∫ +∞

−∞
eitαR0(r;ω)dα

∣∣∣∣2 dr ≤ C‖F‖2L2 ,(3.34) ∫ L

0

∣∣∣∣(∫ +∞

−∞
eitαR0(r;ω)dα

)
r

∣∣∣∣2 dr ≤ C‖F‖2L2 ,(3.35) ∫ L

0

∣∣∣∣∫ +∞

−∞

1

r
eitαR0(r;ω)dα

∣∣∣∣2 dr ≤ C‖F‖2L2 ,(3.36) ∫ L

0

∣∣∣∣∫ +∞

−∞
αeitαR0(r;ω)dα

∣∣∣∣2 dr ≤ C‖F‖2L2 .(3.37)

Observe that (R0)r gives an extra α for high frequency, thus in some sense (3.35) also implies
(3.34) and (3.37). In the following parts of this section, we will prove those estimates one by
one, with a main focus on the proof of (3.35), as this almost describes all technical difficulties.

Moreover, because those kernels are uniformly bounded on the domain α ∈ [−A,A], r, s ∈
[0, L], e.g. Γr(r, s;ω),Γr(r, s;ω)/r, we only concentrate on the proof of the related inequalities
with integral domain (−∞,−A) ∪ (A,+∞).

3.4.2. A technical lemma. Look at the expansion of Γ by (3.29) and the definition of the
kernels that are given in (3.34)–(3.37), basically we are dealing with∫ +∞

−∞

1

αk
ei(t±r±s)αdα, with k = 0, 1, 2, 3...

Thus it is natural to present the following lemma concerning the estimates on such a kernel.

Lemma 3.10. Let A ≥ 1. There exists C > 0 such that for any function S(r, s) satisfying
|S| ≤ 1 for any r, s ∈ [0, L], the following estimates hold,

‖
∫ r

0
S(r, s)

∫ +∞

A

1

α2
ei(t±r±s)αdαF (s)ds‖L2

r
≤ C‖F‖L2 ,

‖
∫ r

0
S(r, s)

∫ +∞

A

1

α
ei(t±r±s)αdαF (s)ds‖L2

r
≤ C‖F‖L2 ,

‖
∫ L

r
S(r, s)

∫ +∞

A

1

α
ei(t±r±s)αdαF (s)ds‖L2

r
≤ C‖F‖L2 .

Proof. The first inequality is trivial, it suffices to consider the rest. Let us consider the following
two special integrals h(p) and k(p) given by

h(p) :=

∫ +∞

A

1

α
eipαdα,(3.38)

k(p) := − i
2

(

∫ −A
−∞

+

∫ +∞

A
)

1

α
eipαdα =

∫ +∞

A

1

α
sin(pα)dα.(3.39)

The function k(p) will turn out to be useful later on. Via a simple change of variable, they
satisfy

|h(p)| ≤ max{C0, | log |p||}, h′(p) = −1

p
eipA,

|k(p)|, |k′(p)| ≤ C0.
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Indeed, for h(p) with p > 0, we know from a simple change of variables that∫ +∞

A

1

α
eipαdα =

∫ +∞

Ap

1

α
eiαdα =

∫ 1

pA

1

α
eiαdα+

∫ +∞

1

1

α
eiαdα,

which concludes the properties of h(p). The same idea also holds for k(p), while thanks to the
fact that sin(pα)/α is continuous at α = 0, both k(p) and k′(p) are uniformly bounded.

Therefore, for example, by taking t+ r + s we have

|G0(r, s)| := |
∫ +∞

A

1

α
ei(t+r+s)αdα| ≤ C0 + | log |t+ r + s||.

We extend G0(r, s) from s ≤ r to 0 ≤ s, r ≤ L, then we have

g(r) :=

∫ r

0
G0(r, s)f(s)ds, ∀r ∈ [0, L]

satisfies

‖g(r)‖L2
r
≤
(∫ L

0
|
∫ L

0
G0(r, s)f(s)ds|2dr

) 1
2

≤
∫ L

0

(∫ L

0
G2

0(r, s)dr

) 1
2

|f(s)|ds,

thus

‖g(r)‖L2
r
≤ C‖f‖L1 , for t ∈ [−4L, 4L].

On the other hand, if t /∈ [−4L, 4L] then |G0| is uniformly bounded, hence

‖g(r)‖L2
r
≤ C‖f‖L1 ,

which combined with the preceding case yields

‖g(r)‖L2
r
≤ C‖f‖L1 ,∀t ∈ R.

�

3.4.3. On the estimate of (3.34). This part is devoted to the proof of the L2 estimate (3.34):∫ +∞

−∞
eitαR0(r;ω)dα ∈ L2

r .

Thanks to Lemma 3.10 and the expansion of Γ given by Equation (3.29), we can remove the

O( 1
α2 ) terms by regarding Γ(r, s) as Γ̃(r, s) +O( 1

α2 ), where the function Γ̃ is defined by

4Γ̃(r, s) :=

{
i
αη0

e−(s)e−(r) + i
αe
−(s)e+(r), if s ≤ r,

i
αη0

e−(s)e−(r) + i
αe
−(r)e+(s), if s > r.

Furthermore, thanks to Lemma 3.10 again, the kernel∫ +∞

A
eitαΓ̃(r, s;ω)dα

defines a bounded operator on L2. The other parts can be estimated in the same way.
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3.4.4. On the estimate of (3.35). We study, in this part, the derivative of the kernel K(r, s)
given by

K(r, s) :=

(∫ −A
−∞

+

∫ +∞

A

)
eitαΓ(r, s;ω)dα.

Reduce K(r, s) as K̃(r, s).
Notice that Γ contains several non-explicit parts, which prevent us from using oscillate in-

tegration directly. However, observe that those terms are asymptotically small, therefore, we
select and only work with the main part of K:

K̃(r, s) :=

(∫ −A
−∞

+

∫ +∞

A

)
eitαΓ̃(r, s;ω)dα.

After some careful calculation, the details of which can be found in Appendix B, we have the

following expansion of 4Γr(r, s)− 4Γ̃r(r, s),

− i

2ηα

(
se+(r)

(
e+(s) + ηe−(s)

)
+ re−(r)(e−(s) + ηe+(s))

)
+

1

α

η1
η20
e+(r)e−(s) +O(

1

α2
),

for the region r < s, and

− i

2αη

(
se+(s)(e+(r) + ηe−(r)) + re−(s)(e−(r) + ηe+(r))

)
+

1

α

η1
η20
e+(r)e−(s) +O(

1

α2
),

for the region s ≤ r.
Now we prove that the kernel Γ̃r − Γr generates a bounded operator on L2. Indeed Γ̃r − Γr

is composed of two parts: we denote by R1 for the O( 1
α2 ) part, and by R2 for the rest part.

Suppose that F (s) is a L2 function, then consider∫ L

0
F (s)

∫ +∞

A
eitα(R1 +R2)dαds.

At first, for R1 we know that ∫ L

0
F (s)

∫ +∞

A
eitαO(

1

α2
)dαds

is uniformly bounded, which implies the required L2
r estimate.

Next, for G2 we notice that all the terms are of the form

S(r, s)dn0

∫ +∞

A

1

α
ei(t−2nL±r±s)αdα,

where |S(r, s)| is uniformly bounded, and where the index −i2Lnα on the exponential term
comes from the series expansion of 1

η0
. Therefore, G2 generates a bounded operator from L1 to

L2 with its norm given by

4|S(r, s)|L∞C(2 + 2C
∑
n

dn0 + C
∑
n

(2n+ 1)dn0 ) < +∞.

As a consequence, in the following, it suffices to work with the reduced kernel

K̃r(r, s) :=

((∫ −A
−∞

+

∫ +∞

A

)
eitαΓ̃(r, s;ω)dα

)
r

.
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Thanks to the explicit expression of Γ̃(r, s), we directly calculate K̃ and K̃r by decomposing Γ̃

into two parts Γ̃1 and Γ̃2:

Γ̃1 :=
i

αη0
e−(s)e−(r) +

i

α

(
ei(α+iβ)(s+r) − e−i(α+iβ)(s+r)

)
,

Γ̃2 :=
i

α

(
−ei(α+iβ)(r−s) + ei(α+iβ)(s−r)

)
, if s ≤ r,

Γ̃2 :=
i

α

(
ei(α+iβ)(r−s) − ei(α+iβ)(s−r)

)
, if s > r.

In the following we shall treat Γ̃1 and Γ̃2 one by one.

On the estimate concerning Γ̃1(r, s).

Concerning Γ̃1, thanks to the series expansion of 1
η0

, each of the composing terms has the form

i

α
dn0e
−i2nLαei(±r±s)(α+iβ).

As the sum of dn0 converges, thanks to an argument similar to the one used for G2, it suffices
to obtain a uniform bound on

1

α
eit0αei(±r±s)(α+iβ), ∀t0 ∈ R.

Let

H1(r, s) :=

∫ +∞

A
ei(t+t0)α 1

α
ei(±r±s)(α+iβ)dα =

∫ +∞

A

1

α
eit̃αei(±r±s)(α+iβ)dα.

Then, via direct calculation, we obtain

H1(r, s) = e−(±r±s)β
∫ +∞

A

1

α
ei(t̃±r±s)αdα = e−(±r±s)β (C0 + h(t̃± r ± s)

)
.

In order to understand the derivative in the distributional sense, we write

H1(r, s) = lim
ε→0+

e−(±r±s)β
∫ +∞

A

1

α
ei(t̃±r±s)α−εαdα,

and so

(H1)r(r, s) = ∓βe−(±r±s)β (C0 + h(t̃± r ± s)
)
± lim
ε→0+

e−(±r±s)β 1

t̃± r ± s+ iε
ei(t̃±r±s)A,

= ∓βe−(±r±s)β (C0 + h(t̃± r ± s)
)
± lim
ε→0+

eit̃A
1

t̃± r ± s+ iε
ei(±r±s)(A+iβ),

= ∓βe−(±r±s)β (C0 + h(t̃± r ± s)
)
± lim
ε→0+

eit̃A
1

t̃± r ± s+ iε
e(±r±s)z,

where A, β, and z = −β + iA are fixed numbers. Thanks to Lemma 3.10, the first part of the
preceding formula is a kernel that generates a bounded operator on L2 with a uniform norm.
It only remains to consider the second part, more precisely, the distribution valued kernel

lim
ε→0+

1

t̃± r ± s+ iε
e(±r±s)z = P.V.

( 1

t̃± r ± s
e(±r±s)z)

− iπ · δ0(t̃± r ± s), r, s ∈ [0, L].
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The second term on the right clearly leads to an operator which is L2-bounded. As for the first
term on the right, thanks to a symmetric change of variable, it suffices to consider

1

t+ r ± s
e(r±s)z, r, s ∈ [0, L].

For F (s) ∈ L2, we define

G(r) =

∫ L

0

1

t+ r ± s
e(r±s)zF (s)ds,

thus

e−rzG(r) =

∫ L

0

1

t+ r ± s
(
e−szF (s)

)
ds,

which can be treated by means of the following lemma.

Lemma 3.11. There exists C > 0 such that for any t ∈ R, we have∥∥∥∥∫ L

0

1

t+ r ± s
f(s)ds

∥∥∥∥
L2(0,L)

≤ C‖f(s)‖L2(0,L).

Proof. Observe that the preceding formula is of Hilbert transform type. Extend f(s) trivially
to the whole line and by abuse of notation denote the resulting function by f(s). Then for
r ∈ [0, L] we have

g(r) =

∫ L

0

1

t+ r ± s
f(s)ds =

∫ +∞

−∞

1

t+ r ± s
f(s)ds =

∫ +∞

−∞

1

s
f(t+ r ∓ s)ds.

We extend g(r) by the same formula to the whole line and still denote it by g(r). As this is
exactly a Hilbert transform, we get

‖g(r)‖L2= π‖f(s)‖L2 .

�

On the estimate concerning Γ̃2(r, s).

Concerning Γ̃2(r, s), we know that (recall the proof of Lemma 3.10 for the definition of the
function k)

K̃2(r, s) =

(∫ −A
−∞

+

∫ +∞

A

)
eitαΓ̃2(r, s)dα,

(for s ≤ r) =

(∫ −A
−∞

+

∫ +∞

A

)
eitα

i

α

(
−ei(α+iβ)(r−s) + e−i(α+iβ)(r−s)

)
,

= 2e−(r−s)βk(t+ r − s)− 2e(r−s)βk(t− r + s),

(for s > r) =

(∫ −A
−∞

+

∫ +∞

A

)
eitα

i

α

(
ei(α+iβ)(r−s) − e−i(α+iβ)(r−s)

)
,

= −2e−(r−s)βk(t+ r − s) + 2e(r−s)βk(t− r + s).

Simple calculation shows that |(K̃2)r(r, s)| is uniformly bounded in the domain r, s ∈ [0, L],
which of course generates a bounded operator on L2. This simple symmetric structure also

holds for Γ̃1.
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3.4.5. On the estimate of (3.36). To be compared with Equation (3.34), the estimate (3.36)
admits an extra 1/r, however, as we will demonstrate later on, which does not produce any

singularity at r = 0. Similar to the previous sections, we reduce the kernel Γ by
˜̃
Γ that is given

by

˜̃
Γ :=

{
1
αη0

e−(s) (e−(r) + η0e
+(r)) = Γ̃, for s ≤ r,

1
αη0

e−(r)
(
e−(s) + η0e

+(s) + is
2αe

+(s) + η0
is
2αe
−(s)

)
, for s > r.

In fact, it is allowed to consider
˜̃
Γ instead of Γ, thanks to those techniques that we performed

in previous sections as well as the following facts,

(1) in Γ− ˜̃Γ, those terms of type r
α2 can be easily bounded;

(2) for |α| ≥ A, we have |e−(r)| ≤ C|αr|;
(3) inequality (3.44), which will be proved later on.

Therefore, it suffices to consider the kernel

L(r, s) :=
1

r

(∫ −A
−∞

+

∫ +∞

A

)
eitα

˜̃
Γ(r, s;ω)dα.

It remains to show that

Lemma 3.12. The following integrations

1

r

(∫ −A
−∞

+

∫ +∞

A

)
eitα

1

α
e−(s)e−(r)dα, for s ≤ r,(3.40)

1

r

(∫ −A
−∞

+

∫ +∞

A

)
eitα

1

α
e−(s)e+(r)dα, for s ≤ r,(3.41)

1

r

(∫ −A
−∞

+

∫ +∞

A

)
eitα

1

α
e−(s)e−(r)dα, for r ≤ s,(3.42)

1

r

(∫ −A
−∞

+

∫ +∞

A

)
eitα

1

α
e−(r)e+(s)dα, for r ≤ s,(3.43)

1

r

(∫ −A
−∞

+

∫ +∞

A

)
eitα

1

α2
e−(r)e±(s)dα, for r ≤ s(3.44)

are uniformly bounded for t ∈ R, s, r ∈ (0, L).

Proof of Lemma 3.12. Now we present the proof of Lemma 3.12, the essential idea is to derive
an extra r from e−(r) (or e−(s) if s ≤ r). We only need to show (3.41), (3.43) and (3.44).

For inequality (3.43), we have

1

r

(∫ −A
−∞

+

∫ +∞

A

)
eitα

1

α

(
e−βreiαr − eβre−iαr

)(
e−βseiαs + eβse−iαs

)
dα,

thus by symmetry we only need to treat

1

r

(∫ −A
−∞

+

∫ +∞

A

)
eitα

1

α

(
e−βreiαr − eβre−iαr

)
e−βseiαsdα

=e−βs
1

r

(∫ −A
−∞

+

∫ +∞

A

)
eitα

1

α

(
e−βreiαr − eβre−iαr

)
eiαsdα.
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Recalling the definition of k(p), (3.39), we get

1

r

(∫ −A
−∞

+

∫ +∞

A

)
eitα

1

α

(
e−βreiαr − eβre−iαr

)
eiαsdα

=
1

r

(
e−βrk(t+ s+ r)− eβrk(t+ s− r)

)
,

where

k(p) =

∫ +∞

Ap

sinα

α
dα, |k| ≤ C, |k(p1)− k(p2)| ≤ C|p1 − p2|.

Therefore
1

r

(
e−βrk(t+ s+ r)− eβrk(t+ s− r)

)
=

1

r

(
e−βrk(t+ s+ r)− k(t+ s+ r) + k(t+ s+ r)− k(t+ s− r)

+ k(t+ s− r)− eβrk(t+ s− r)
)
,

≤ C.
For inequality (3.41), we benefit from the fact that s ≤ r,

1

r

(∫ −A
−∞

+

∫ +∞

A

)
eitα

1

α

(
e−βseiαs − eβse−iαs

)(
e−βreiαr + eβre−iαr

)
dα.

Similar to (3.43), we only prove

1

r

(∫ −A
−∞

+

∫ +∞

A

)
eitα

1

α

(
e−βseiαs − eβse−iαs

)
eiαrdα,

thus
1

r

(
e−βsK(t+ r + s)− eβsk(t+ r − s)

)
,

=
1

r

(
e−βsk(t+ r + s)− k(t+ r + s) + k(t+ r + s)− k(t+ r − s)

+ k(t+ r − s)− eβsk(t+ r − s)
)
,

≤ C s
r
≤ C.

As for the last estimate (3.44), thanks to the same reasons as the previous two inequalities,
we only consider

1

r

(∫ −A
−∞

+

∫ +∞

A

)e−(r)

α2
eiαsdα =

1

r

(
e−βrQ(t+ s+ r)− eβrQ(t+ s− r)

)
,

with

Q(p) :=
(∫ −A
−∞

+

∫ +∞

A

) 1

α2
eipαdα

which, similar to k(p) and h(p), satisfies

|Q(p)| ≤ C, |Q′(p)| = 2|k(p)| ≤ C.
This completes the uniform boundedness of (3.40)–(3.44). �

This implies that the kernel L(r, s) is uniformly bounded, thus generating a bounded operator
on L2.
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3.4.6. On the estimate of (3.37). Thanks to the preparation in previous sections, the proof
of (3.37) is straightforward since the proof of the inequality (3.35) already presented the main
difficulty. Indeed, thanks to the decomposition of Γ under the O( 1

α3 ) order term, the kernel

K(r, s) :=

(∫ −A
−∞

+

∫ +∞

A

)
αeitαΓ(r, s;ω)dα,

can be written by

k1 +
1

α
k2 +O(

1

α2
),

while k1 is similar to the leading term that appear in K̃r,
1
αk2 and O( 1

α2 ) can be handled by
Lemma 3.10.

3.5. Energy estimates: boundary problems. In this section, we further prove the energy
estimates for the homogeneous equation with boundary controls. The idea is to transform such
a boundary controlled problem into an inhomogeneous one.

Proposition 3.13. Let β > 0 such that there is no pole on the line Im z = β. If the radial
function U satisfies

∆U + U + ω2U = 0 in Ω,

iωU + aUν =

∫ +∞

0
e−iωtb(t)dt on ∂Ω,

for ω = α + iβ on the line Im z = β, then the radial function w(t, x) = w(t, r) given by the
inverse Fourier transformation (2.15) satisfies

‖w‖H1≤ Ce−βt
∫ +∞

0
et0β

(
|b(t0)|+ |b′(t0)|

)
dt0 + C

∣∣∣∣∫ t

0
b(s)ds

∣∣∣∣+ C|b(t)|, ∀t ≥ 0.

Let the radial smooth function g(x) be satisfying g(L) = 0, g′(L) = 1/a. Let as decompose
U as

U = V + b̂(ω)g(x).

Then, the function V satisfies,

∆V + V + ω2V = −b̂(ω)(∆g + g)− ω2b̂(ω)g(x) in Ω,

iωv + aVν = 0 on ∂Ω.

Because the preceding source term can be written as

b̂(ω)(∆g + g)(x) =

∫ +∞

0
e−itωb(t)(∆g + g)(x)dt,

ω2b̂(ω)g(x) = −
∫ +∞

0
e−itωb′′(t)dtg(x),

thanks to Proposition 3.7, we obtain

‖v(t)‖H1≤ Ce−βt
∫ +∞

0
et0β

(
|b(t0)|+ |b′′(t0)|

)
dt0.

Actually, we can further reduce the regularity of b(t) in the preceding formula. Indeed, one
needs to consider some function g(ω, x) instead of g(x), more precisely, let

g(ω, x) :=
φ(x)

iω
,
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provided that the smooth function φ satisfies φ(L) = 1, φ′(L) = 0. Let

U = V + b̂(ω)g(ω, x).

Then, the function V satisfies,

∆V + V + ω2V = − b̂(ω)

iω
(∆φ+ φ) + iωb̂(ω)g(x) in Ω,

iωv + aVν = 0 on ∂Ω.

Because the source term can be written as

b̂(ω)

ω
(∆φ+ φ) =

∫ +∞

0

e−itω

ω
b(t)(∆φ+ φ)(x)dt,

iωb̂(ω)φ =

∫ +∞

0
e−itωb′(t)dtφ,

by applying Proposition 3.7 and Lemma 3.8 we get

‖v(t)‖H1≤ Ce−βt
∫ +∞

0
et0β

(
|b(t0)|+ |b′(t0)|

)
dt0, ∀t ≥ 0.

On the other hand, for l := u− v that satisfies

l̂(ω) =
b̂(ω)

iω
φ,

we have

eβtl(t) = φ

∫ +∞

−∞
eiαt

∫ +∞
0 e−iαseβsb(s)ds

iα− β
dα = φ

∫ +∞

0

∫ +∞

−∞

eiα(t−s)

iα− β
dαeβsb(s)ds.

Because ∫ +∞

−∞

eiα(t−s)

iα− β
dα

is uniformly bounded, we know that

|l(t)| . e−βt
∫ +∞

0
eβs|b(s)|ds.

Concerning the term eβtlt(t), one needs to estimate∫ +∞

0

(∫ +∞

−∞

eiα(t−s)

iα− β
dα

)
t

eβsb(s)ds.

Because the term (∫ +∞

−∞

eiα(t−s)

(iα− β)iα
dα

)
t

is uniformly bounded, by taking the difference it suffices to estimate((∫ −A
−∞

+

∫ +∞

A

)
eiα(t−s)

α
dα

)
t

,

which, thanks to the function k(p), equals to k′(t−s), therefore is obviously uniformly bounded.
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Thus, combining the preceding estimates on l and v, we get

‖u(t)‖H1. e−βt
∫ +∞

0
et0β

(
|b(t0)|+ |b′(t0)|

)
dt0, ∀t ≥ 0.

Remark 3.14. It should be pointed out that by the choice of b(t), it is essential to let

(3.45) χtu(t, L)t ∈ L1,

for u, some solution of

2u− u = h(t, x) in Ω,(3.46)

(ut + auν) = 0 on ∂Ω,(3.47)

u(0, x) = u0, ut(0, x) = v0.(3.48)

Indeed, this is exactly the trace estimate that we have previously proved in Lemma 2.1.

3.6. Construction of feedbacks: exponential stabilization of the linearized system.
Thanks to the energy estimates in the preceding two sections, we are in a position to conclude
the following bound for the solution u|(0,2) of (3.46)–(3.48) and the solution w = χu of (2.10)–
(2.12).

For t ≤ 2, thanks to Lemma 2.1, there is

(3.49) ‖u‖H1.
∫ t

0
‖h(s, ·)‖L2(Ω)ds+ ‖u0‖H1(Ω)+‖v0‖L2(Ω).

For t ≥ 2, thanks to the estimates that obtained in Section 3.4–3.5, we get exponential decay
of u with a decay rate β:

‖u(t)‖H1 = ‖w(t)‖H1 ,

. e−βt
∫ +∞

0
esβ‖h0(s)‖L2(Ω)ds+ e−βt

∫ +∞

0
esβ
(
|b0(s)|+ |b′0(s)|

)
ds,

. e−βt
(∫ +∞

0
esβ‖h(s)‖L2(Ω)ds+ ‖u0‖H1(Ω)+‖v0‖L2(Ω)

)
+ e−βt

(∫ 2

0
esβ‖h(s)‖L2(Ω)ds+ ‖u0‖H1(Ω)+‖v0‖L2(Ω)

)
+ e−βt

∫ +∞

0
esβ
(
|b(s)|+ |b′(s)|

)
ds,

. e−βt
(∫ +∞

0
esβ
(
‖h(s)‖L2(Ω)+|b(s)|+ |b

′(s)|
)
ds+ ‖u0‖H1(Ω)+‖v0‖L2(Ω)

)
,

provided that the control b(t) satisfies Assumption 1 that is raised in Section 2.3. To be more
specific:

(i) b(t) = 0 on the time interval t ∈ [0, 2];
(ii) b(t) is real valued;
(iii) b(t) and b′(t) decreases exponentially;
(iv) for any pole ωj satisfying Imωj < β, we have that B(ωj) coincidences the value of

iωjU + aUν for the solution U of

∆U + (1 + ω2
j )U = −H in Ω.
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We mainly concentrate on the choice of b(t) such that the property (iv) holds, as the others
are simple to achieve. Actually, by taking ψ = rU we get

∂2
rψ + (1 + ω2)ψ = −r

∫ +∞

0
e−iωjt

(
χ(t)h(t) + χttu(t) + 2χtut(t)

)
dt,

ψ(0) = 0, (iLω − a)ψ(L) + aLψ′(L) = L2

∫ +∞

0
e−iωjt (b(t) + χtu(t)) dt.

Assume that there are exactly N poles in the region Im z ≤ β, and there are given by {ωj}Nj=1.
Because ω = ωj is a pole, the above equations admit solutions only for some well-chosen
boundary values. More precisely, for any given f(r) we need to find the unique value l(ωj) such
that

∂2
rψ + (1 + ω2

j )ψ = f(r),

ψ(0) = 0, (iLωj − a)ψ(L) + aLψ′(L) = l(ωj),

has a C2 solution. Since ωj is a pole such that the above equations with f = l = 0 admit
non-trivial solutions, we are allowed to set ψ′(0) = 0. Therefore, the function ψ satisfies

∂2
rψ + (1 + ω2

j )ψ = f(r),

ψ(0) = ψ′(0) = 0, (iLωj − a)ψ(L) + aLψ′(L) = l(ωj).

By ignoring the third boundary condition and solving the preceding ODE, we obtain

|ψ(r)| . r‖f‖L2 , |ψ′(r)| . ‖f‖L2 ,

thus the value l satisfies
|l(ωj)| . ‖f‖L2 .

Therefore, the value on right hand side should linearly depend on (h, u0, v0):

l(ωj) = Lωj

(
−r
∫ +∞

0
e−iωjt (χ(t)h(t) + χttu(t) + 2χtut(t)) dt

)
=: L1

ωj (h, u0, v0),

which also means that∣∣∣∣∫ +∞

0
e−iωjt (b(t) + χtu(t)) dt

∣∣∣∣ . ∥∥∥∥r ∫ +∞

0
e−iωjt (χ(t)h(t) + χttu(t) + 2χtut(t)) dt

∥∥∥∥
L2
r

.

Moreover, the functionals also satisfy the conjugate property: l(−ω̄j) = l(ωj), L1
−ω̄j = L1

ωj .

On the other hand, by the definition of χtu(t) we have

L2

∫ +∞

0
e−iωjt (b(t) + χtu(t)) dt =: L2

∫ +∞

0
e−iωjtb(t)dt+ L2

ωj (h, u0, v0),

thus ∫ +∞

0
e−iωjtb(t)dt =

1

L2

(
L1
ωj (h, u0, v0)− L2

ωj (h, u0, v0)
)

= rωj (h, u0, v0),

with rωj
linearly depending on (h, u0, v0), such that r−ω̄j = r̄ωj .

Because

|χtu(t, L)|+
∥∥∥∥r ∫ +∞

0
e−iωjt (χttu(t) + 2χtut(t)) dt

∥∥∥∥
L2
r

. ‖(u0, v0)‖H1+

∫ 2

0
‖h(s, ·)‖L2(Ω)ds,
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we obtain∣∣∣∣∫ +∞

0
e−iωjtb(t)dt

∣∣∣∣ . ∥∥∥∥∫ +∞

0
e−iωjth(t)dt

∥∥∥∥
L2(Ω)

+ ‖(u0, v0)‖H1+

∫ 2

0
‖h(s, ·)‖L2(Ω)ds.

Therefore, condition (iv) means that for every pole ωj there is

(3.50)

∫ +∞

0
e−iωjtb(t)dt = rωj (h, u0, v0)

with the functional rωj satisfying conjugate property and linearly depending on (h, u0, v0),

|rωj (h, u0, v0)| .
∫ +∞

0
eβjt‖h(t, ·)‖L2(Ω)dt+ ‖(u0, v0)‖H1+

∫ 2

0
‖h(s, ·)‖L2(Ω)ds,

.
∫ +∞

0
e(β−ε)t‖h(t, ·)‖L2(Ω)dt+ ‖(u0, v0)‖H1 .

Hence, there exists some constant CN such that

|rωj (h, u0, v0)| ≤ CN‖(h, u0, v0)‖B, ∀(h, u0, v0) ∈ B, ∀j ∈ {1, 2, ..., N}.

Now we prove the following lemma which eventually will lead to the feedback b(t) that we
are seeking for. Recalling (3.2) on the norm for the triple (h, u0, v0), we have

Lemma 3.15. There exists some C0 > 0 such that for any (h, u0, v0) ∈ B, we can find some
control b(t) ∈ R compactly supported in (2, 4) that verifies

(i)
∫ +∞

0 esβ(|b(s)|+ |b′(s)|)ds ≤ C0‖(h, u0, v0)‖B;

(ii)
∫ +∞

0 e−iωjtb(t)dt = rωj (h, u0, v0),∀j ∈ {1, 2, ..., N}.

Proof. This is indeed a moment problem that usually appears in control theory, except that here
we only have finitely many moments while the moment problem concerning exact controllability
of partial differential equations is always composed of infinitely many moments (see [52, 5, 2] for
the moment theory). However, normally the moment problem on bi-orthogonal sequences only
provides complex-valued functions, here we need to select a real-valued control term as we are
working on dispersive equations. Generally speaking, this is not possible, as for conjugate pairs
(ωj ,−ω̄j) the integrals

∫
e−iωtb(t)dt should be conjugate for real controls b(t), while, on the

other hand, the moments rωj are not necessarily selected to verify the same conjugate property.
For us, however, it is exactly the conjugacy fact r−ω̄j = r̄ωj that allows us to solve this problem,
and that is the reason why we always ensured this conjugation property before.
Observing the conjugacy on (ωj ,−ω̄j), it suffices to verify the condition on those ω such that
their real part is non negative. Indeed, after simple calculation we are allowed to divide {ωj}
and {rωj} into two sets:

rωj = riβj = r(j), for j ∈ {1, 2, ...,K},
rωj = rαj+iβj = r1(j) + ir2(j), αj 6= 0, for j ∈ {K + 1, ..., J},
r−ω̄j = r−αj+iβj = r1(j)− ir2(j), αj 6= 0, for j ∈ {K + 1, ..., J}.
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We are able to show the existence of real-valued smooth functions bj(t), b
1
j (t), b

2
j (t) supported

on (2, 4) such that ∫ +∞

0
e−iωktbj(t)dt = δj,k, ∀j, k ∈ {1, 2, ...,K},∫ +∞

0
e−iωktbj(t)dt =

∫ +∞

0
eiω̄ktbj(t)dt = 0, ∀k ∈ {K + 1, ..., J},∫ +∞

0
e−iωktb1j (t)dt = δj,k, ∀j ∈ {K + 1, ..., J}, k ∈ {1, 2, ..., J},∫ +∞

0
e−iωktb2j (t)dt = iδj,k, ∀j ∈ {K + 1, ..., J}, k ∈ {1, 2, ..., J}.

Indeed, for example, for {(αk, βk)}k≤N given with αk > 0 and (αi, βi) 6= (αj , βj), we need to
find b(t) supported on (2, 4) such that∫ 4

2
eβ1t cos(α1t)b(t) = 1,

∫ 4

2
eβ1t sin(α1t)b(t) = 0,∫ 4

2
eβkt cos(αkt)b(t) = 0,

∫ 4

2
eβkt sin(αkt)b(t) = 0, k ≥ 2.

This is possible thanks to the fact that {eβkt cos(αkt)|(2,4), e
βkt sin(αkt)|(2,4)}k are linearly inde-

pendent.
Therefore, by the above choice of {bj , b1j , b2j} the control term b(t) that satisfies the moment

problem (ii) can be selected as a combination of them:

b(t) :=
K∑
j=1

r(j)bj(t) +
J∑

j=K+1

(
r1(j)b1j + r2(j)b2j

)
,

which of course verifies∫ +∞

0
esβ(|b(s)|+ |b′(s)|)ds ≤ C

 K∑
j=1

|r(j)|+
J∑

j=K+1

(|r1(j)|+ |r2(j)|)


≤ C0‖(h, u0, v0)‖B.

�

As a consequence of the above lemma, we immediately derive the exponential decay of the
energy by selecting the control term concerning the lemma.

‖u(t)‖H1 .
∫ t

0
‖h(t, ·)‖L2(Ω)dt+ ‖(u0, v0)‖H1 , for t ≤ 2,

‖u(t)‖H1 . e−βt
(∫ +∞

0
eβt‖h(t, ·)‖L2(Ω)dt+ ‖(u0, v0)‖H1

)
, for t > 2.

4. Open-loop stabilization of the NLKG

In this section, we stabilize the nonlinear Klein-Gordon equation around the static solution
u ≡ 1. The idea is, as usual, to regard the nonlinear term as a perturbed forcing term and to
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use the linearized stabilization. By considering u = 1+v as well as the same change of variables
as in Section 3,

v(t, x) := v

(
t√
2
,
x√
2

)
, b(t) :=

1√
2
b

(
t√
2

)
, Ω := BL(0), β :=

1√
2
β,

and still denoting the new variables by the old ones if there is no risk of confusion, we derive
the following nonlinear equation

2u− u = 3
2u

2 + 1
2u

3 in Ω,

ut + auν = b(t) on ∂Ω,

u(0, x) = u0, ut(0, x) = v0,

where the initial state (u0, v0) is small. We will show that for sufficiently small initial data, we
can find control b(t) that is supported on (2, 4) such that the solution of the above nonlinear
equation decay exponentially with a decay rate β: if a belongs to A(L), then β is chosen
sufficiently small (as the value β∗ stated before the statement of Theorem 3.1); if a does not
belong to A(L), then β can be chosen as any positive number that is strictly smaller than
1

2L log 1+a
1−a .

Since we are dealing with sub-critical nonlinear terms, we perform the classical fixed point
argument benefiting the linearized result Theorem 3.1 to get the solution. Let us introduce a
new function space,

D :=
{
u ∈ C0([0,+∞);H1

rad(Ω)) ∩ C1([0,+∞);L2
rad(Ω)) :

sup
t≥0

eβt(‖u(t)‖H1(Ω)+‖ut(t)‖L2(Ω)) < +∞
}

with its norm given by

‖f(t, x)‖D:= sup
t≥0

eβt(‖u(t)‖H1(Ω)+‖ut(t)‖L2(Ω)),∀f ∈ D.

Let us select some positive number εβ that will be fixed later on, and let ε ∈ (0, εβ). For any
given initial state (u0, v0) such that

‖(u0, v0)‖H1≤ ε,

and for any function v ∈ D(2Cβε), i.e.

‖v(t, x)‖D≤ 2Cβε,

we define the map T that maps v(t, x) to u(t, x) as the solution of
2u− u = 3

2v
2 + 1

2v
3 in Ω,

ut + auν = b
(

3
2v

2 + 1
2v

3, u0, v0

)
(t) on ∂Ω,

u(0, x) = u0, ut(0, x) = v0,

where b
(

3
2v

2 + 1
2v

3, u0, v0

)
(t) is chosen by Theorem 3.1 in order to stabilize the linear system.

We will show that for a good choice of εβ the map T is actually a contraction on the Banach
space D(2Cβε), hence admit a fixed point u ∈ D(2Cβε) as a solution of the nonlinear system,
and which decays exponentially.

First, we show that

T : D(2Cβε)→ D(2Cβε).
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Indeed, for any v ∈ D(2Cβε) , thanks to Theorem 3.1, the solution u = T (v) satisfies

‖u(t)‖H1≤ Cβe−βt
(∫ +∞

0
eβt‖h(t, ·)‖L2(Ω)dt+ ‖(u0, v0)‖H1

)
,

where h = 3
2v

2 + 1
2v

3. Therefore,

‖u(t)‖D = sup
t≥0

eβt‖u(t)‖H1(Ω),

≤ sup
t≥0

Cβ

(∫ +∞

0
eβt‖h(t, ·)‖L2(Ω)dt+ ‖(u0, v0)‖H1

)
,

= Cβ

(∫ +∞

0
eβt‖3

2
v2 +

1

2
v3‖L2(Ω)dt+ ‖(u0, v0)‖H1

)
,

≤ Cβ
(∫ +∞

0
eβt(

3

2
‖v(t)‖2H1+

1

2
‖v(t)‖3H1)dt+ ε

)
,

≤ Cβ
(∫ +∞

0
eβt(

3

2
(e−βt2εCβ)2 +

1

2
(e−βt2εCβ)3)dt+ ε

)
,

≤ Cβ

(
6C2

βε
2

β
+

2C3
βε

3

β
+ ε

)
≤ 2Cβε,

provided that

(4.1)
6C2

βε
2

β
+

2C3
βε

3

β
≤ ε,

where we used the Sobolev embedding H1(Ω) ↪→ L6(Ω).

Next, we show that under a suitable choice of ε, the map T is indeed a contraction. We
select two functions v1, v2 ∈ D(2Cβε) and suppose that ui, i = 1, 2, are solutions of

2ui − ui = 3
2v

2
i + 1

2v
3
i in Ω,

uit + auiν = b
(

3
2v

2
i + 1

2v
3
i , u0, v0

)
(t) on ∂Ω,

ui(0, x) = u0, uit(0, x) = v0.

By considering the difference u := u1 − u2, thanks to the fact that b is linear with respect to
(h, u0, v0), we get 

2u− u = h, in Ω,

ut + auν = b(h, 0, 0) on ∂Ω,

u(0, x) = 0, ut(0, x) = 0,

where

h :=
3

2
(v1 − v2)(v1 + v2) +

1

2
(v1 − v2)(v2

1 + v1v2 + v2
2).
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Therefore,

‖u(t)‖D,

≤ sup
t≥0

Cβ

(∫ +∞

0
eβt‖h(t, ·)‖L2(Ω)dt+ ‖(0, 0)‖H1

)
,

= Cβ

(∫ +∞

0
eβt‖3

2
(v1 − v2)(v1 + v2) +

1

2
(v1 − v2)(v2

1 + v1v2 + v2
2)‖L2(Ω)dt

)
,

≤ Cβ
(∫ +∞

0
eβt(

3

2
‖v1(t)− v2(t)‖H1‖v1(t) + v2(t)‖H1

+
1

2
‖v1(t)− v2(t)‖H1‖v1(t) + v2(t)‖2H1)dt

)
,

≤ Cβ
(∫ +∞

0
eβt(

3

2
(e−βt4εCβ)e−βt‖v1 − v2‖D+

1

2
(e−βt4εCβ)2)e−βt‖v1 − v2‖Ddt

)
,

≤ ‖v1 − v2‖DCβ

(
12Cβε

β
+

8C2
βε

2

β

)
≤ 1

2
‖v1 − v2‖D,

provided that

(4.2)
12C2

βε

β
+

8C3
βε

2

β
≤ 1

2
.

Condition (4.2), together with (4.1), characterize the choice of εβ > 0. Then, by Banach’s fixed
point theorem we find a fixed point u ∈ D(2Cβε) which is exactly the solution. Thus for initial
data (u0, v0) that satisfies ‖(u0, v0)‖H1= ε, the unique solution u ∈ D(2Cβε) verifies

‖u(t)‖H1+‖ut(t)‖L2≤ e−βt2Cβε.

Moreover, by the definition of the control, b(t) verifies

b(t) =
N∑
k=1

l̃k(u0, v0)bk(t)

with l̃k(u0, v0) depending continuously on (u0, v0) ∈ H1 satisfying

N∑
k=1

|l̃k(u0, v0)| ≤ Cβ
(∫ +∞

0
eβt‖3

2
u2(t) +

1

2
u3(t)‖L2+ε

)
≤ 2εCβ.

5. Closed-loop stabilization of the NLKG

We are now in a position to prove the stronger closed-loop stabilization result. Without loss
of generality, we assume that s ∈ [(M1)Tβ,MTβ) for some integer M . The proof will be divided
into two parts, in the first part for t ∈ (s,MTβ) we use trivial a priori energy estimate as the
feedback during this period is not the one that provides decay stabilization, while in the second
part for t ≥ MTβ we apply Theorem 1.3 on each interval [KTβ, (K + 1)Tβ),K ≥ M such that

the energy of the solution decay at least e−βTβ in each of them.
The well-posedness of the closed-loop system is trivial, as in each interval t ∈ (s,MTβ) and

[KTβ, (K + 1)Tβ)),K ≥ M the value of lk does not change, which implies that the system
can be regarded as an open-loop system, hence, of course, admit an unique solution. In the
following, we only focus on the stability issues.
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For any given β, thanks to Theorem 1.3, we get the value of Cβ > 0, εβ > 0 and smooth

functions {bk(t)}
Nβ
k=1. Let us also select some constant Tβ > 0 that will be chosen explicitly

later on. Without loss of generality, we assume that s ∈ [(M − 1)Tβ,MTβ).

In the first part t ∈ (s,MTβ), for ease of notations we work on (u− 1, ut) instead of (u, ut),
while still use the notation of (u, ut). For t ∈ (s,MTβ), lk(t) = l0k and the system on (u, ut)
reads as 

2u(t, x)− 2u(t, x) = 3u2(t, x) + u3(t, x), t ∈ (s,MTβ), x ∈ Ω

ut(t, x) + auν(t, x) =
∑N

k=1 l
0
kbk

(
t− [ tTβ ]Tβ

)
, t ∈ (s,MTβ), x ∈ ∂Ω,

u(s, x) = u0 − 1, ut(s, x) = v0.

We then extend this equation on the time interval (s, s+Tβ). By regarding the nonlinear term
as a source term (thanks to the sub-critical setting) and by applying the direct energy estimate
Lemma 2.1, we know that the energy

1

2
‖u(t)‖2H1≤ Ẽ(u(t)) :=

1

2
‖u(t)‖2H1+

1

a

∫ t

s

∫
∂Ω
u2
t (τ, x)dσdτ

satisfies

d

dt
‖u(t)‖H1 ≤ C‖u(t)‖H1+3‖u(t)‖2H1+‖u(t)‖3H1+C

∑
k

|l0k|,

≤ C‖u(t)‖H1+3‖u(t)‖2H1+‖u(t)‖3H1+2CCβ‖(u0, v0)− (1, 0)‖H1 ,

= C‖u(t)‖H1+3‖u(t)‖2H1+‖u(t)‖3H1+2CCβ‖u(s)‖H1 .

Though evolve as a nonlinear equation that may blow up for any nontrivial initial state, for
any given bounded time interval we are allowed to set the initial data small enough such that
the solution grows exponentially in that interval. More precisely, we will be selecting Tβ and
ε̃Tβ by that

(5.1) ‖u(t)‖H1≤ 1,∀t ∈ (s, s+ Tβ), if ‖u(t)‖H1≤ ε̃Tβ ,

which is possible by choosing ε̃Tβ for any given Tβ. If the above condition holds, then for any
‖u(s)‖H1≤ ε̃Tβ , we have that

‖u(t)‖H1≤ CTβ‖u(s)‖H1 , t ∈ (s, s+ Tβ).

Therefore, by changing back the notation of (u, ut), we have proved that for any Tβ there exists
ε̃Tβ > 0 and CTβ > 0 such that, for any initial state satisfying

‖(u0 − 1, v0)‖H1≤ ε̃Tβ ,

we know that the solution of the closed-loop system verifies

(5.2) ‖(u, ut)(t)− (1, 0)‖H1≤ CTβ‖(u0 − 1, v0)‖H1 , t ∈ (s,MTβ).

Next, we turn to the stabilization part. In this part, we will call directly the exponential
decay Theorem 1.3. In fact, we only work on the first periodic interval [MTβ, (M + 1)Tβ), for
which the “initial state” is (u(MTβ), ut(MTβ)). By the definition of lk(MTβ), in this interval
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lk(t) ≡ l̃k(u(MTβ, ut(MTβ), then the system becomes
2u(t, x) + u(t, x)− u3(t, x) = 0, t ∈ [MTβ, (M + 1)Tβ), x ∈ Ω

ut(t, x) + auν(t, x) =
∑Nβ

k=1 l̃k(ũ0, ṽ0)bk(t−MTβ), t ∈ [MTβ, (M + 1)Tβ), x ∈ ∂Ω,

u(MTβ, x) = ũ0, ut(MTβ, x) = ṽ0.

Observe that the preceding equation is exactly the equation that appears in Theorem 1.3
with initial time MTβ and initial state (ũ0, ṽ0). Hence, once the initial state is smaller than εβ
we will be able to apply the decay theorem, which is fulfilled if (u0, v0) is selected to be smaller
than some εTβ < ε̃Tβ such that

εTβCTβ ≤ εβ.
Thus we have the following exponential decay result, ∀t ∈ [MTβ, (M + 1)Tβ),

‖(u(t), ut(t))− (1, 0)‖H1≤ 2Cβe
−β(t−MTβ)‖(ũ0, ṽ0)− (1, 0)‖H1 .

Notice that the constant Cβ is independent of Tβ, we will select Tβ large enough such that

(5.3) 2Cβe
−βTβ ≤ e−(β−ε0)Tβ ,

which is of course possible as ε0 > 0.

Since u((M+1)Tβ) is even smaller than u(MTβ), we are allowed to repeat the same procedure
in [(M+1)Tβ, (M+2)Tβ) to achieve exponential decay. By repeating this piecewise exponential
decay procedure, we let the solution tends to 0. To be more precisely, we have the following
decay result

‖(u, ut)(t)− (1, 0)‖H1 ≤ CTβ
(
e−(β−ε0)Tβ

)[
t−MTβ
Tβ

]
2Cβ‖(u0, v0)− (1, 0)‖H1 ,

≤ C̃βe−(β−ε0)(t−s)‖(u0, v0)− (1, 0)‖H1 , ∀t > s.

The decay of lk then obviously comes from its definition.

6. Further comments

We believe that this paper presents more interesting open questions than answers. Even if
we do not ask about other typical stabilization problems such as rapid stabilization or finite
time stabilization, the following questions come naturally.

As we can see from Theorem 1.2 that the system around simple positive static solutions
with any dissipative boundary condition is unstable, it is already of significant importance
to understand the stability analysis for dispersive equations around soliton-like solutions, for
instance for the easiest case, is the system around u = 1 always unstable with dissipative
boundary condition ut(x) + a(x)uν(x) = 0? It is natural expect instability when a(x) close
enough to a. What about other cases, like a(x) compactly supported in a part of the boundary?
What about blow up situations?

As stated in the introduction, we start by considering the focusing subcritical Klein-Gordon
in the radial setting around the simplest static solution u = 1. We hope that our method
that gives quantitative stabilization can be generalized to non radial cases (still close to the
static solution). Of course, it will be further important to stabilize focusing systems around
soliton-like static solutions, for which the specific situation could become more complicated and
so would the analysis.

Due to the focusing setting, we are not able to adapt the famous Bardos-Lebeau-Rauch
theory, and also as we can see in Theorem 1.2 that the dissipative boundary stabilization fails
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(maybe also fails for other focusing cases), it is thus natural to ask whether we can stabilize
the system by adding some control term on a part of the dissipative boundary under suitable
geometric conditions.

Appendix A. Proof of Lemma 2.3 and Lemma 2.6

Proof of Lemma 2.3. Consider

pω(φ, φ) :=

∫
Ω

∣∣∇φ∣∣2 dx− ∫
Ω

(V + ω2)
∣∣φ∣∣2dx+

iω

a

∫
∂Ω

∣∣φ∣∣2dσ, ω ∈ C

Our aim is to exhibit for each ω ∈ C a real constant γ as well as a positive constant C with
the property that for each φ in the domain of pω(φ, φ) we have∣∣ Im pω(φ, φ)

∣∣ ≤ C · [Re pω(φ, φ)− γ
∥∥φ∥∥2]

.

Writing ω := α+ iβ, we claim that in fact

γ = −
(
2α2 +

∥∥V ∥∥
L∞(Ω)

+ C
)

for sufficiently large C = C(β, a, L) works. Observe that

Re pω(φ, φ)− γ
∥∥φ∥∥2 ≥

∫
Ω

∣∣∇φ∣∣2 dx+ (C + α2 + β2)

∫
Ω

∣∣φ∣∣2dx− β

a

∫
∂Ω

∣∣φ∣∣2dσ.
It remains to estimate the third term on the right. Observe that given φ ∈ H1(Ω), which we
assume real-valued for simplicity, there is r∗ ∈ [L4 ,

3L
4 ] with the property that∣∣φ(r∗)

∣∣ ≤ C1(L) ·
∥∥φ∥∥

L2(Ω)
,

and then using the Cauchy-Schwarz inequality and the fundamental theorem of calculus we
infer ∣∣φ(1)

∣∣2 ≤ ∣∣φ(r∗)
∣∣2 +

∣∣ ∫ 1

r∗

φs(s) · φ(s) ds
∣∣

≤ C2
1 (L) ·

∥∥φ∥∥2

L2(Ω)
+ C2(L) ·

∥∥φ∥∥
H1(Ω)

·
∥∥φ∥∥

L2(Ω)
.

Applying the AGM inequality to the last term, we infer that

β

a

∫
∂Ω

∣∣φ∣∣2dσ ≤ 1

2
·
∥∥φ∥∥2

H1(Ω)
+ C3(β, a, L) ·

∥∥φ∥∥2

L2(Ω)
.

If we now define

C := C3(β, a, L) + 1,

we conclude that

Re pω(φ, φ)− γ
∥∥φ∥∥2 ≥ 1

2

∫
Ω

∣∣∇φ∣∣2 dx+ (1 + α2 + β2)

∫
Ω

∣∣φ∣∣2dx.
To conclude the proof of the lemma, it suffices to combine the preceding estimate with the

following one: ∣∣ Im pω(φ, φ)
∣∣ ≤ 2|αβ| ·

∫
Ω

∣∣∇φ∣∣2 dx+
∣∣ a
α

∣∣ · ∫
∂Ω

∣∣φ∣∣2dσ
≤ C4(a, α, β, L) ·

∥∥φ∥∥2

H1(Ω)
.

�
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Proof of Lemma 2.6. Assume that for some U we have that

∆U + (V + ω2)U = 0, in Ω,

iωU + aUν = 0, on ∂Ω.

First we treat the case when β = 0 and α 6= 0. Via direct calculation we get

0 = 〈∆U + (V + ω2)U,U〉,

=

∫
Ω
−|∇U |2 + (V + α2)|U |2dx+

∫
∂Ω
∂νUŪdσ,

=

∫
Ω
−|∇U |2 + (V + α2)|U |2dx− iα

a

∫
∂Ω
|U |2dσ,

which clearly implies that U = 0, ∂νU = 0 on the boundary ∂Ω. This in turn implies U = 0 by
unique continuation.
Next consider the case when β < 0 and α 6= 0. By using the same integration by parts we have

0 = 〈∆U + (V + ω2)U,U〉,

=

∫
Ω
−|∇U |2 + (V + α2 − β2 + 2iαβ)|U |2dx+

∫
∂Ω
∂νUŪdσ,

=

∫
Ω
−|∇U |2 + (V + α2 − β2 + 2iαβ)|U |2dx− iα− β

a

∫
∂Ω
|U |2dσ.

Now we consider the imaginary part of the preceding formula, which leads to

0 =

∫
Ω

2iαβ|U |2dx− iα

a

∫
∂Ω
|U |2dσ = iα

(∫
Ω

2β|U |2dx− 1

a

∫
∂Ω
|U |2dσ

)
.

Because a > 0 and β < 0, we know that U = 0.
To get the bounds for the inhomogeneous problem, by taking the same calculation we observe

that

Im

∫
Ω
HŪdx = α

(∫
Ω
−2β|U |2dx+

1

a

∫
∂Ω
|U |2dσ

)
,

which, together with the Cauchy-Schwartz inequality, yields

‖U‖L2(Ω)≤
1

2|αβ|
‖H‖L2(Ω),

‖U‖L2(∂Ω)≤
(

a

2α2|β|

) 1
2

‖H‖L2(Ω).

In the end, when ω = iβ with β ∈ (−C, 0), we have∫
Ω
V U2dx =

∫
Ω
|∇U |2 + β2U2dx− β

a

∫
∂Ω
U2dσ,

which leads to

‖U‖H1(Ω). ‖U‖L2(Ω).

It appears that we can only get a . 1
|β| bound for the trace, however, as we are working in the

radial setting, the H1 bound of U gives the H1
r bounded of rU(r), which further implies the

trace bound

|LU(L)| ≤ ‖rU(r)‖C(0,L). ‖rU(r)‖H1
r
. ‖U‖H1(Ω). ‖U‖L2(Ω).

�
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Appendix B. On the asymptotic estimates on η and Γr

B.1. The explicit asymptotic estimate of η. By the definition of η we have

(iLω − a)
(
e2i〈ω〉L − 1

)
+ iaL〈ω〉

(
e2i〈ω〉L + 1

)
= −η

(
iaL〈ω〉

(
e2i〈ω〉L − 1

)
+ (iLω − a)

(
e2i〈ω〉L + 1

))
,

thus,

(iL− Lβ + a

α
)

(
ei2Lω − 1 +

iL

α
ei2Lω +O(

1

α2
)

)
+ iaL(1 +

iβ

α
+O(

1

α2
))

·
(
ei2Lω + 1 +

iL

α
ei2Lω +O(

1

α2
)

)
,

= −η
(

((iL− Lβ + a

α
)

(
ei2Lω + 1 +

iL

α
ei2Lω +O(

1

α2
)

)
+ iaL(1 +

iβ

α
+O(

1

α2
))

·
(
ei2Lω − 1 +

iL

α
ei2Lω +O(

1

α2
)

))
therefore,

(1 +
i

α
(β +

a

L
))

(
ei2Lω − 1 +

iL

α
ei2Lω +O(

1

α2
)

)
+ a(1 +

iβ

α
+O(

1

α2
))

·
(
ei2Lω + 1 +

iL

α
ei2Lω +O(

1

α2
)

)
,

= −η
(

(1 +
i

α
(β +

a

L
))

(
ei2Lω + 1 +

iL

α
ei2Lω +O(

1

α2
)

)
+ a(1 +

iβ

α
+O(

1

α2
))

·
(
ei2Lω − 1 +

iL

α
ei2Lω +O(

1

α2
)

))
.

To simplify the notations, we denote ei2Lω by e, which gives

e− 1 + a(e+ 1) +
i

α

(
(β +

a

L
)(e− 1) + Le+ aβ(e+ 1) + aLe

)
+O(

1

α2
),

= −η
(
e+ 1 + a(e− 1) +

i

α

(
(β +

a

L
)(e+ 1) + Le+ aβ(e− 1) + aLe

)
+O(

1

α2
)

)
.

Therefore, η = η0 + η1
α +O( 1

α2 ) satisfies

e− 1 + a(e+ 1) = −η0 (e+ 1 + a(e− 1)) ,

(β +
a

L
)(e− 1) + Le+ aβ(e+ 1) + aLe

= iη1 (e+ 1 + a(e− 1))− η0
(

(β +
a

L
)(e+ 1) + Le+ aβ(e− 1) + aLe

)
+O(

1

α2
),

thus

η0 =
1− a− e(1 + a)

1− a+ e(1 + a)
=

1− c0e

1 + c0e
, c0 =

1 + a

1− a
,

η1 = −i e

(1 + c0e)2

(
β +

a

L
+ L+ aL+ aβ − c0(β +

a

L
) + c0aβ

) 1

1− a
= c1

e

(1 + c0e)2
,
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where c0, c1 are constants. Hence, there exist π/L periodic functions η0, η1 such that

η = η0 +
η1

α
+O(

1

α2
),

=
1− c0e

1 + c0e
+ c1

e

(1 + c0e)2

1

α
+O(

1

α2
),

=
−1 + d0e

−i2Lα

1 + d0e−i2Lα
+

d1e
−i2Lα

(1 + d0e−i2Lα)2

1

α
+O(

1

α2
)

where constants di satisfies

d0 =
1− a
1 + a

e2Lβ < 1, d1 = c1

(
1− a
1 + a

)2

e2Lβ.

B.2. On the estimate of Γr. Here we present the explicit calculation on Γr. For r < s, we
have

4Γ(r, s)− 4Γ̃(r, s),

=
i

αη

(
φ1(r)φ2(s)− e−(r)

(
e−(s) + ηe+(s)

))
− i

α
(

1

η0
− 1

η
)e−(r)e−(s) +

i

η

(
1

〈ω〉
− 1

α

)
φ1(r)φ2(s),

=
i

αη

((
e−(r) +

ir

2α
e+(r) + r(r, α)

)(
e−(s) + ηe+(s) +O(

1

α
)
)
− e−(r)

(
e−(s) + ηe+(s)

))
− i

α
(
η1
η20

1

α
+O(

1

α2
))e−(r)e−(s) +O(

1

α3
)φ1(r)φ2(s),

=
i

αη

((
e−(r) +

ir

2α
e+(r) + r(r, α)

)
O(

1

α
) +

( ir
2α
e+(r) + r(r, α)

)(
e−(s) + ηe+(s)

))
,

− i

α
(
η1
η20

1

α
+O(

1

α2
))e−(r)e−(s) +O(

1

α3
)φ1(r)φ2(s),

thus

4Γr(r, s)− 4Γ̃r(r, s)

= − ω

αη
e+(r)

(
is

2α
e+(s) + η

is

2α
e−(s)

)
− ω

αη

ir

2α
e−(r)(e−(s) + ηe+(s)) +

ω

α2

η1
η20
e+(r)e−(s) +O(

1

α2
),

= − i

2ηα

(
se+(r)

(
e+(s) + ηe−(s)

)
+ re−(r)(e−(s) + ηe+(s))

)
+

1

α

η1
η20
e+(r)e−(s) +O(

1

α2
).

For s ≤ r, we have

4Γ(r, s)− 4Γ̃(r, s)

=
i

αη

(
φ1(s)φ2(r)− e−(s)

(
e−(r) + ηe+(r)

))
− i

α
(

1

η0
− 1

η
)e−(r)e−(s) +

i

η

(
1

〈ω〉
− 1

α

)
φ1(s)φ2(r),

=
i

αη

(
O(

1

α
)
(
e−(r) + ηe+(r) +

ir

2α
(e+(r) + ηe−(r)) + r(r, α)

)
+e−(s)

( ir
2α

(e+(r) + ηe−(r)) + r(r, α)
))
− i

α
(
η1
η20

1

α
+O(

1

α2
))e−(r)e−(s) +O(

1

α3
)φ1(s)φ2(r),
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hence

4Γr(r, s)− 4Γ̃r(r, s),

=
i

αη
(
is

2α
e+(s) + r(s, α))

(
e−(r) + ηe+(r) +

ir

2α
(e+(r) + ηe−(r)) + r(r, α)

)
r
,

+
i

αη
e−(s)

( ir
2α

(e+(r) + ηe−(r)) + r(r, α)
)
r
−
(
i

α
(
η1
η20

1

α
+O(

1

α2
))e−(r)e−(s)

)
r

+O(
1

α3
)φ1(s)(φ2)r(r),

= − ω

αη

is

2α
e+(s)(e+(r) + ηe−(r))− ω

αη

ir

2α
e−(s)(e−(r) + ηe+(r)) +

ω

α2

η1
η20
e+(r)e−(s) +O(

1

α2
),

= − i

2αη

(
se+(s)(e+(r) + ηe−(r)) + re−(s)(e−(r) + ηe+(r))

)
+

1

α

η1
η20
e+(r)e−(s) +O(

1

α2
).
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