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“Whether it occurs by a quirk of nature or at the hand of a terrorist, epidemiologists say a
fast-moving airborne pathogen could kill more than 30 million people in less than a year.
And they say there is a reasonable probability the world will experience such an outbreak in
the next 10-15 years.”

Bill Gates, Business Insider, 2017
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For decades mathematical modeling in epidemiology has helped understanding
the dynamics of infectious diseases, as well as describe possible intervention
scenarios to prevent and control them. However, such models were relying on
several assumptions, such as the ones on the structure of the underlying contact
networks. The robustness of their predictions was therefore limited by this lack of
knowledge. About a decade ago, with the advent of digital epidemiology, scientist
have finally started to try to corroborate those assumptions, for instance with the
use of wearable sensors to measure indeed contact networks.
In this thesis, together with collaborators, I try to combine the digital collection
of public health data with computational tools, in order to have a more realistic
understanding of the phenomena under consideration. In two projects it was
possible to finalize such marriage, thanks also to fruitful collaborations with other
researchers who provided the data. This is for instance the case for the two chapters
respectively on the modeling of influenza and plague outbreaks. Although they
involve different technologies for the data collection, historical epochs and data
types, the traditional epidemiological modeling allowed us to derive interpretable
conclusions, capable for instance to inform public health interventions. In other
projects, either the relevant data collection is still ongoing in the lab (like for the
FoodRepo project), or the data collection has not started yet (like for the project on
measles). Nevertheless, our work provides insights on the importance of such data
collection for future studies.
In the first chapter, we explore different mechanistic interpretations compatible with
our data on the 1630 plague outbreak in Venice, collected through the digitization
of parish books from the historical Patriarchal Archives of Venice. The data shows
a non trivial temporal structure, which led us to propose few different epidemio-
logical explanations. Further data collection will be needed to better constrain such
interpretations.
In the second chapter, we use contact data previously recorded in a high-school
to assess the relative effect of ventilation on influenza spread, with respect to
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vaccination. Our result suggest the usefulness of non pharmacological interventions
such as indeed improved ventilation, which become even more meaningful in the
context of vaccination hesitancy and low vaccine efficacy, due for instance to the
high mutation rate of viruses like influenza virus.
In the third chapter, we propose a simple network generation model to try to
explain differences in the incidence of highly infectious diseases such as measles,
across countries with similar vaccination coverages. Such differences are indeed
one of the main open questions in public health, which are not yet fully understood
even considering social phenomena such as recent anti-vax movements.
In the last chapter, we present our open database of barcoded food products,
FoodRepo. This database represents on the one hand, the first piece of a large study
ongoing in our lab, in the field of nutritional epidemiology, that aims to assess the
variability of glycemic response in a healthy cohort. On the other hand, important
features such as its openness and programmatic accessibility make it an important
digital tool at the service of any private or public actors in the field of nutrition.
The projects presented in this thesis clearly stand on different progress stages,
within their own broad research picture. Nevertheless, they represent different
examples of how combining ‘traditional’ methods (such as stochastic modeling on
networks) with more recent data collection techniques, one can tackle still largely
open question in public health. In each work, we have tried to provide results which
are easily interpretable and translatable by domain experts, while at the same time,
trough the openness of our analysis and datasets, provide as well tools on top of
which future computational research can be built.

Abstract (IT)

Per decenni, i modelli matematici in epidemiologia hanno aiutato a comprendere
le dinamiche delle malattie infettive e a descrivere possibili interventi per prevenirle
e controllarle. Tuttavia, questi modelli si basavano su varie assunzioni, come quella
sulla struttura della rete dei contatti sottostante. La robustezza di queste predi-
zioni era pertanto limitata dalla mancanza di questo dato. Circa un decennio fa,
con l’avvento dell’epidemiologia digitale, gli scienziati hanno finalmente iniziato a
cercare di corroborare queste assunzioni, per esempio con l’uso di sensori indoss-
abili, per misurare appunto la rete di contatti.
In quest tesi, insieme ai nostri collaboratori, ho provato a combinare la raccolta digi-
tale di dati relativi ai problemi di sanità pubblica, con strumenti computazionali, per
cercare di avere una comprensione più realistica dei fenomeni in considerazione. In
due progetti, é stato possibile realizzare questo connubio, grazie alla fruttuosa col-
laborazione con altri ricercatori che hanno fornito i dati. Questo é per esempio il caso
dei due capitoli sulla modellizzazione delle epidemie rispettivamente di influenza e
peste. Sebbene abbiano richiesto differenti tecnologie per la raccolta dei dati, epoche
storiche e tipo di dati, i modelli epidemiologici tradizionali ci hanno permesso di
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ottenere delle conclusioni interpretabili, e capaci di informare misure di sanità pub-
blica. In altri progetti l’attinente raccolta dati o non é ancora terminata (come per
il progetto FoodRepo), o non é ancora iniziata (come per il progetto sul morbillo).
Tuttavia, il nostro lavoro fornisce introspezioni sull’importanza di tale raccolta dati
per studi futuri.
Nel primo capitolo, esploriamo diverse interpretazioni compatibili con i nostri dati,
sull’ epidemia di peste a Venezia del 1630, raccolti grazie alla digitalizzazione dei
libri parrocchiali dell’archivio patriarcale di Venezia. I dati mostrano una struttura
temporale non banale, che ci ha portato a proporre alcune diverse interpretazioni
epidemiologiche. Un’ulteriore raccolta dati sarà necessaria per costringere meglio
tali interpretazioni.
Nel secondo capitolo, usiamo i dati sui contatti raccolti precedentemente in un liceo,
per valutare l’effetto della ventilazione sulla diffusione dell’influenza, relativamente
a quello della vaccinazione. I nostri risultati suggeriscono l’utilità di interventi
non farmacologici come appunto una migliorata ventilazione, che diventano an-
cora più significativi nel contesto della reticenza a vaccinarsi o della bassa efficacia
del vaccino, causata per esempio dall’alto tasso di mutazione di virus come quello
dell’influenza.
Nel terzo capitolo, proponiamo un semplice modello generativo per reti, per cercare
di spiegare le differenze nell’incidenza di malattie altamente infettive come il mor-
billo, tra Paesi con tassi di vaccinazione simili. Tali differenze sono infatti una delle
principali domande ancora aperte in sanità pubblica, non ancora interamente spie-
gata anche considerando fenomeni come i recenti movimenti no-vax.
Nell’ ultimo capitolo, presentiamo il nostro database di prodotti alimentari con
codice a barre, FoodRepo. Questo database rappresenta da un lato, il primo pezzo
di un largo studio in corso nel nostro laboratorio, nel campo dell’ epidemiologia nu-
trizionale, che mira a valutare la variabilità della risposta glicemica in una coorte
sana. Dall’altro lato, caratteristiche importanti come la sua gratuità e accessibilità
programmatica, ne fanno un importante strumento digitale al servizio di ogni attore
pubblico o privato, nel campo della nutrizione.
I progetti presentati in questa tesi, hanno raggiunto chiaramente diversi gradi di
avanzamento, ognuno all’interno del proprio dominio di ricerca. Tuttavia, essi rap-
presentano diversi esempi di come, combinando metodi tradizionali (come i modelli
stocastici su rete) con tecniche più recenti di raccolta dati, si possono affrontare ques-
tioni ancora aperte in sanità pubblica. In ogni lavoro, abbiamo cercato di fornire
risultati facilmente interpretabili e traducibili da esperti del settore, e allo stesso
tempo, grazie alla trasparenza delle nostre analisi e datasets, fornire anche strumenti
sui quali ulteriore ricerca futura può essere costruita.
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Chapter 1

Introduction

Background

Introduction to epidemiological modeling

About a century ago, Anderson McKendrick in a series of works (see for instance
the famous paper (Kermack and McKendrick, 1927) started to lay down the mathe-
matical framework which today constitutes the basis for the modeling of infectious
diseases dynamics. These tools became the standard practice to inform public health
policies, for instance during the HIV epidemics in the 1980s or the modern influenza
pandemics, starting from 2000s. This modeling framework goes under the general
name of compartmental models. Such compartments are inspired by the health con-
dition of each individual of the population in which the infectious disease is spread-
ing. A pathogen (often a virus or a bacterium) enters a susceptible (S-compartment)
host (humans for us – animal or plants, for other public health domains) in order to
proliferate. If the hosts gets exposed (E-compartment) to enough pathogenic parti-
cles, s/he will start to develop symptoms (after the so called incubation period) and
to be infective (I-compartment) (after the so called latency period). Depending on
the diseases, incubation can be longer1 or shorter than latency. After being sick, the
infected host usually recovers or dies, which means that s/he is not in any of the pre-
vious states (R/D-compartment). In this case, epidemiologists will use indeed the
well-known SIR or SEIR models. For those diseases in which the hosts can become
again susceptible, a SIS or SEIS model will be used instead. Here are the equations
describing the typical SIR model2:

dS/dt = −βS ∗ I/N

dI/dt = βS ∗ I/N + γI

dR/dt = γI

The epidemiologist’s work usually consists in estimating the transition rates
between compartments (for instance β, γ in the case of SIR). In particular a key

1in which case one has to take into account the presence of asymptomatic carriers, like in the case
of HIV or typhoid fever (remember the sad case of ‘Typhoid Mary’, in the late 1800s).

2Note that, as no internal population dynamics in included, dS/dt + dI/dt + dR/dt = 0
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quantity to be estimated is the so called basic reproduction number R0, defined
as the expected number of secondary infection cases caused by a single typical
infective case during his/her entire period of infectivity, in a wholly susceptible
population (see for instance Anderson, Anderson, and May, 1992). It is important
to keep in mind few caveats. First of all, a proper estimation of R0 can be performed
only with data from the very early stage of the epidemic, namely until when the
assumption of "wholly susceptible population" is still valid. Furthermore, one
should also keep in mind that the mathematical expression of R0 is of course
model-dependent (for instance R0 = β/γ in the case of SIR model). In addition,
when the model includes also immunization, R0 becomes Rv = R0(1 − x), with
x being the fraction of vaccinated susceptibles. By definition of R0, an outbreak
will occur if R0 > 1, from which one can derive the minimal vaccination coverage
required to prevent an outbreak, xv = 1− 1/R0.
The estimation of the critical vaccination coverage (xv) is a good example of the
limitations of the modeling considered until here3. The issues emerge from the
assumption of homogeneous population, with respect to different aspects, in par-
ticular the mixing, namely the fact that all hosts are connected in the same way to
each other. In reality hosts with their connections represent a network, whose nodes’
health state can be modeled with the same approach as before, namely to be in the
one of above mentioned states (S, E, I, R) at a given time. The study of epidemics
spread on networks has been a very active field of research in the last almost 20
years, that led to remarkable advances in our understanding of infectious disease
dynamics. An important feature of networks, which has a large influence on the
disease spread is the distribution P(k) of a node’s number of connections, also called
node’s degree k. The heterogeneity in the nodes’ degree distribution contributes
for instance to increase the critical vaccination. In particular, the above-mentioned
expression of xv becomes xv = 1− 1/R0 ∗ (〈k〉/〈k2〉), for a heterogeneous network.
A remarkable example are scale-free networks, characterized by a heavy-tail degree
distribution P(k) which takes the form of a power-law P(k) ∼ k−γ (with γ > 0).
Since such degree distributions tend to have very large variability (〈k2〉 → ∞),
critical vaccination levels approaches the whole population (xv → 1). This example
shows the importance of the details of the host’s network in the spread and control
of an infectious disease, in addition of course to the biology of the host-pathogen
interaction. For this reason, epidemiologists realized the importance of actually
trying to measure real social networks, which could then better constrain network
models of epidemics.
About a decade ago, few researchers started to make use of wearable sensors to track
interactions in humans (Cattuto et al., 2010; Stehlé et al., 2011; Salathé et al., 2010),
as well as in animals (Wilson-Aggarwal et al., 2019), in order to better quantify the
amount and the temporal structure of ‘contacts’ networks. Such networks can then

3Mathematically described by a set of deterministic (or mean-field) equations (or ODEs, Ordinary
Differential Equations)
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be used to inform for instance models of air-born diseases (Voirin et al., 2015). This
was indeed the goal in one of the works presented in this dissertation (chapter 3),
where we used previously recorded data (Salathé et al., 2010) to better understand
the spread of influenza in a school-setting (more details are given in the next section).

Clearly, the level of resolution needed to reconstruct contact networks is reach-
able only in relatively recent contexts, when records of occupancy in private/public
spaces (such as houses, schools or working spaces) can be collected, either from dig-
ital devices or simple registers. Trying to study epidemics up to only few decades
ago, implies that those information will likely not be available. The older one digs in
the past, the less granular data one has to expect. In particular, thanks to the rich and
interdisciplinary research environment of EPFL, we had the opportunity to work
with 400-years-old records of a plague outbreak in Venice, in collaboration with the
Digital Humanities lab, at EPFL. In the next subsection follows a brief overview on
the history and etiology such notorious diseases.

History of plague

One of the most deadly diseases in the human history has been the (in)famous
plague. Before digging in the past, here follows an overview of the biological details
and current incidence of the disease, as reported by WHO (WHO | News | Plague
2020). Although in the past people used to refer to "plague" as a generic wide-spread,
high-incidence and high-mortality disease, today the word is used to the specific
medical conditions caused by the bacteria Yersinia Pestis, identified by Alexandre
Yersin, in the 1894 . There are mainly two forms of plague. The bubonic one, which
derives its name from the ‘buboes’, namely the patient’s swollen lymph nodes and
the pneumonic one, where the infection mainly resides in the lungs. Plague is ac-
tually not only a human disease, but occurs also within and among other mammal
species, such as rats and marmots. Transmission can indeed also happen from ani-
mal to human (zoonotic disease). Therefore the whole picture of transmission routes
becomes quite more complex than the one of a usual (human) infectious disease, as
reported in fig. 1.1. In particular, the animal-animal and animal-human transmis-
sion is mainly mediated by fleas. Once inside the flea, the bacterium Y. Pestis settles
in the digestive tract of the insect and creates a biofilm that makes it hard for the
food (host’s blood) to get absorbed. The blood, which now contains the bacteria gets
then regurgitated in the host. Besides that, as it has troubles in food absorption, the
flea tries harder to bite the host, facilitating even more the contagion. Transmission
can happen as well via aerosolized particles (for instance in the case of pneumonic
plague) or contact with infected blood. Concerning treatment and prevention, al-
though no effective and safe vaccine have been produced yet (Jefferson, Demicheli,
and Pratt, 1998), several antibiotics are proven to be effective, if provided within 24
hours after symptoms appearance.
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FIGURE 1.1: Transmission scheme of plague (Gage and Kosoy, 2005a)

Given its complex contagion network (fig. 1.1, endemicity of plague is explained by
the presence of animal reservoirs of mammals such as marmots and rabbits, which
contribute still nowadays to keep active several loci in different countries (see for
instance the new cases reported last year in Mongolia and China (Bubonic plague con-
firmed in China 2019; Mongolian couple die of bubonic plague after eating marmot 2019),
although major epidemics have been recently observed only in Madagascar, Peru
and DRC (see fig. 1.2).

Plague has sadly spanned throughout the whole human history, although the
ancient epidemics were likely caused by other pathogens, rather than by Yersinia

FIGURE 1.2: Space distribution of active loci and countries with main
plague epidemics, as of 2017 (WHO | News | Plague 2020)
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FIGURE 1.3: source: (Alfani and Murphy, 2017)

Pestis, as show in fig. 1.3. The largest plague outbreak ever was notoriously the
1347–1352 epidemic, which in Europe killed about 50 millions people (correspond-
ing to about a third of the population) (WHO | Plague 2020). This pandemic seems
to have started actually in north-eastern China around 1331. From there, it arrived
to the Black Sea area during the following 10 years, and then it got shipped along
the historical trading sea routes to Italy and south France, by 1347 (Alfani and Mur-
phy, 2017). The year after it already spanned the whole Mediterranean area, and
then moved to central/North Europe, during the following four years. The after-
math was infamously terrible, and its death toll still (fortunately) remains second
only to the huge Spanish flu pandemic of 1917-1919. After two centuries of no ma-
jor outbreaks reported, plague stroke again in Europe in the seventeenth century,
with several smaller epidemics, which are traditionally linked by historians to the
Black Death, under the umbrella of the so called ‘Second Pandemic’. Unlike for the
Black Death, this new deadly wave started from the North Europe in the 1620s, then
moved to England and stopped in South Europe, about 40 years later. In particular,
the 1630-1631 outbreak in Venice, is the one analysed in our paper (chapter 2), in
collaboration with the Digital Epidemiology lab, here at EPFL.
Unfortunately, the death toll of plague continued in the beginning of the last century,
starting the so-called ‘Third Pandemic’, running still nowadays (see again fig. 1.2).
The pandemic started once again from China, in the last decade of the 19th century.
From there it reached Hong-Kong and India, killing more than 12 millions people.
Minor outbreaks followed in the Western countries, in particular Glasgow (1900 –
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FIGURE 1.4: Example of necrology book from the Venice archives.

16 deaths), San Francisco (1904 – 113 deaths) and Paris (1920 – 39 deaths). As men-
tioned above, plague outbreaks are still happening in the last few years. The largest
one was the 2017 outbreak in Madagascar, where in the second half of 2017, 209
deaths were reported (mortality rate at 9%). Fortunately, no antibiotic resistance has
been found4 and no exported cases were reported (Plague outbreak situation reports |
WHO | Regional Office for Africa 01/21/2020).

Outline

Since already about 20 years, historians have started digitizing ancient manuscripts
(Abbott, 2001), therefore creating larger and larger corpora of computer-readable
information (Hand, 2011), finally ready to be analyzed with computational tech-
niques, traditionally belonging to natural scientists. Digitalization has therefore
fostered new truly interdisciplinary collaborations between different scientific dis-
ciplines and humanities (Pormann, 2015). Here in EPFL, we had the great opportu-
nity to work together with the Digital Humanities lab5 (DHlab) that took care of the
digitization of some of the 17th century parish archives of the ancient Republic of
Venice (an example is provided in fig. 1.4). Such registers contain detailed records
of daily deaths for each of the city’s parishes. From an epidemiologist’s perspective
they therefore represent an important source of information on the 1630-31 plague
epidemic. We performed spatio-temporal analysis on the dataset, in a close dialog
with the DHlab. This informed in silico models of epidemic spread which let us pro-
pose few different interpretations for the patterns observed in the data. This work
(Lazzari et al., 2019) is currently under peer-review and it is reported in chapter 2.

Our thirst for data, make us leap 400-years forward, back to our age. As men-
tioned before, measurements of physical contact networks in real-time has started

4In general, the appearance of antibiotic resistance poses important threats also in the case of
reemerging infectious diseases (Cassell and Mekalanos, 2001).

5https://dhlab.epfl.ch

https://dhlab.epfl.ch
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FIGURE 1.5: Example of RFID device used for tracking person-to-
person interaction.

up to roughly ten years ago. One of these early successful attempts constituted in-
deed the starting point for our project on influenza. We built an in silico model of
influenza spreading, on top of contacts data collected with RFID devices in a Califor-
nian high-school, in a previous study (Salathé et al., 2010) (see an example of such
devices in fig. 1.5). Furthermore, we also considered the recent evidence that not
only droplets, but also aerosol particles account for an important fraction (∼ 50%) of
influenza infections (Cowling et al., 2013). We therefore included both these trans-
mission routes in our model for influenza spread, in order to assess the effective-
ness of improved ventilation in public spaces, such as indeed school classrooms,
as compared to pure vaccination strategies. This work has been already published
(Smieszek, Lazzari, and Salathé, 2019) and it is reported in chapter 3 of this disserta-
tion.

Although Y. Pestis has been eradicated in most of high-income countries at least,
other ‘plagues’ still strike yearly also those countries with high-quality public health
systems, and even score human, especially young lives. Indeed, despite the large
efforts of governments and WHO to increase immunization coverages and fight
against anti-vax movements, incidence of diseases such as measles has been on the
rise in the last few years, especially in Europe, in countries like France, Bulgaria,
Italy, Poland and Romania (Monthly measles and rubella monitoring report, March 2019)
(see fig. 1.6). However, large differences in disease incidence are measured across
countries with similar vaccination coverages, which still puzzles public health ex-
perts. We tried to explain such differences using a sociological argument. Namely,
we started from observing that especially between countries like European and
North-American, people tend to aggregate in different way, throughout their usual
daily social life. We therefore built an simple algorithm that reproduces such dis-
similarities in social distancing on networks, using a stochastic model of segregation
inspired by the famous Schelling model (Schelling, 1971). We were indeed able to
observe differences in the expected epidemic size for highly infectious diseases, as a
result of changes in the networks’ structural properties, induced by our segregation
algorithm. More details on this work (Lazzari and Salathé, 2019, under peer-review)
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FIGURE 1.6: Measles notification rate per million population, in the
EU/EEA area, from 1 February 2018 to 31 January 2019 – source:

ECDC.

can be found in chapter 4.
The advantages of digital data collection clearly does not limit to the field of in-

fectious diseases. Indeed, in the last ten years, we have assisted to a fast increase
of studies proposing the use of mobile phones and wearable bio-sensors (Kim et
al., 2019) to track various physiological parameters. Such digital approaches are
believed to fundamentally change the way we think about health, so that the new
term of Digital Medicine was coined (Elenko, Underwood, and Zohar, 2015). In
particular, a field that could likely benefit from this methodological switch is nutri-
tional epidemiology, where several phone apps have been already proposed to asses
for instance dietary intake (Sharp and Allman-Farinelli, 2014). Such apps, in order
to be more accurate and scalable would clearly benefit from open food databases,
that would keep track of food products available on retail markets. We therefore
built FoodRepo6, a database of barcoded food products for Switzerland, currently
expanding as well in Germany and Italy. The database contains digitalized infor-
mation of the products package, such as nutrients, ingredients and size, and is also
constantly being updated, including now more than 40000 items. More details on
the rationale behind the database, as well as all steps regarding its construction, ac-
cessibility and maintenance are described in the related paper (Lazzari et al., 2018),
which is here reported in chapter 5.

At last, a final chapter (chap. 6) presents a summary of the main contributions
and possible future developments for each of the work presented in this thesis.

6https://www.foodrepo.org

https://www.foodrepo.org


9

Chapter 2

Death in Venice: A Digital
Reconstruction of a Large Plague
Outbreak During 1630-1631

Gianrocco Lazzari1,*,+ , Giovanni Colavizza2,*,+, Davide Drago3, Francesca Zugno3,
Fabio Bortoluzzi3, Andrea Erboso3, Frédérick Kaplan3, Marcel Salathé1

1. Digital Epidemiology Laboratory, School of Life Sciences, Ecole Polytechnique
Fédérale de Lausanne (EPFL), Switzerland
2. University of Amsterdam, Amsterdam, Netherlands
3. Digital Humanities Laboratory, Ecole Polytechnique Fédérale de Lausanne
(EPFL), Switzerland

∗gianrocco.lazzari@epfl.ch, g.colavizza@uva.nl
+ these authors contributed equally to this work

“Sia laudato il signor Iddio non ci sono
stati morti.”
Bless the Lord, there have been no
deaths [today].

December 24th 1630, in Sant’Eufemia,
Venice.

Abstract

The plague, an infectious disease caused by the bacterium Yersinia pestis, is widely
considered to be responsible for the most devastating and deadly pandemics in hu-
man history. Starting with the infamous Black Death, plague outbreaks are estimated
to have killed around 100 million people over multiple centuries, with local mor-
tality rates as high as 60%. However, detailed pictures of the disease dynamics of
these outbreaks centuries ago remain scarce, mainly due to the lack of high-quality
historical data in digital form. Here, we present an analysis of the 1630-31 plague



outbreak in the city of Venice, using newly collected daily death records. We identify
the presence of a two-peak pattern, for which we present two possible explanations
based on computational models of disease dynamics. Systematically digitized his-
torical records like the ones presented here promise to enrich our understanding of
historical phenomena of enduring importance. This work contributes to the recently
renewed interdisciplinary foray into the epidemiological and societal impact of pre-
modern epidemics.

Introduction

Disease outbreaks of the plague in the past centuries have been so devastating
throughout Eurasia that the term plague has become synonymous with a terrible
disease. By killing a substantial proportion of the human population, which took
multiple generations to recover, plague pandemics have had enormous impacts on
the development of Eurasia. Correspondingly, historical questions, such as the role
of institutions and the socioeconomic impact of plague outbreaks (Alfani and Mur-
phy, 2017), as well as epidemiological questions, such as the causes, nature and inter-
actions of vectors (Keeling and Gilligan, 2000a; Drancourt, Houhamdi, and Raoult,
2006; Hufthammer and Walløe, 2013; Dean et al., 2018), seasonality and climatic
patterns (Welford and Bossak, 2009; Schmid et al., 2015) and even the distinction
between plague and the Black Death (Christakos, Olea, and Yu, 2007), are still be-
ing investigated. While previous studies have highlighted some common traits to
plague epidemics (Gage and Kosoy, 2005b), such as the high impact on densely-
inhabited cities acting as hotspots (Gómez and Verdú, 2017; Yue, Lee, and Wu, 2017),
the importance of human-to-human transmission (Whittles and Didelot, 2016) and
the effect of the plague on different sexes (Curtis and Roosen, 2017), little is known
about local outbreaks, due to the lack of detailed historical data.

We analyze high-quality data from death records created during the 1630-31
plague epidemic in Venice, whose initial investigation is limited and by now dated
(Ulvioni, 1989). This epidemic was part of the so-called “Second Pandemic”, which
started with the Black Death and lasted until the early 19th century. Originated in
northern Europe (modern France and the Rhineland) in 1623, this epidemic crossed
the Alps approximately in 1629, in the case of the territories of the Republic of Venice
likely carried by imperial armies on their way to Mantua. The cause of this specific
outbreak in Venice has been linked to the bacterial species Yersinia pestis (Tran et al.,
2011), and with a set of surprising results, including an uneven and unexpected im-
pact on different cohorts by sex and age, a high parallel increase of mortality due to
a synchronous smallpox epidemic and a raise in public violence (Ell, 1989).

Venetian death records from this period, also referred to as necrologies, are
organized by parish and contain the systematic registration of every death among
the resident population. These necrologies, edited by the parson, were established
by decree since 1504 and kept in the archives of the responsible magistracy (Bamji,
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2016). While death records were commonplace in all Christendom since the late
Middle ages, and are commonly used for demography studies including on the
plague (Alfani and Cohn Jr, 2007; Alfani and Murphy, 2017), Venetian records were
particularly detailed. In the Patriarchal Archives of Venice, 54 out of more than 70
existing parishes at the time possess at least part of the registrations for the plague
year (September 1630 to September 1631), while in the State Archive of Venice, the
extant records for the plague year are few and scattered. Based on our assessments,
these record series are overlapping and one (the former) constitutes the source
for the other (the latter). We thus focus our efforts on the Patriarchal records. An
example page from a necrology record is shown in Figure 2.1. Necrology records
were kept in tiny and oblong books, with entries grouped chronologically by
day. Typically, the most recurring details given for every entry were: the name,
profession, sex and age of the person, the cause of death, approximate length of
illness and whether a doctor attended them or not. The main dataset we use in
what follows contains the number of daily deaths per parish. Data were collected
following the work-flow illustrated in Figure 2.1; more details are given in the SI.

Patriarchal Archive 
of Venice
N° of registers: 89
Records extracted*: 43,088
Sant’Eufemia case study: 1785
*(deaths counted) 

State Archive of Venice
N° of registers: 11

Main dataset
Double-blind counting
Validation data

Secondary Dataset
(Sant’Eufemia)

Full manual transcription
by independent experts

Record structure
1 book per parish/year
1 death per line 
Ordered chronologically

Originals

Digitization

Collection

Analysis

FIGURE 2.1: Illustration of the data collection workflow and datasets,
including an example page from a death records book. The zoomed-
in registration reads as follows: “Messer Piero pasamaner de anni 40
febre et mal mazuccho giorni 5”, which roughly translates to “Mis-
ter Piero passementerie’s weaver aged 40 fever and plague 5 days.”
What is meant is that Mister Peter, a passementerie’s weaver forty of
age (approximately), died of fever and plague after five days of sick-
ness. It was the 23rd of October, 1630 (as it can be read at the top of

the page).
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Results

Our data aggregated over all parishes clearly shows the massive outbreak which
took place between the September and December of 1630, as detailed in Figure 2.2a.
The death counts are staggering: 20,923 deaths between September and December
1630 alone, followed by 10,430 between January and August 1631. In total, 43,088
deaths were recorded over just three years. These numbers are in line with the 35%
estimated mortality in northern Italy during the same epidemic outbreak (Alfani and
Murphy, 2017), and should be compared to an estimated average annual mortality
between 3.7 and 2.7% (but 29.7% for newly-born infants) during the whole seven-
teenth century (Beltrami, 1954; Gordon M., 1970). We stress that not all death records
survived, therefore these numbers must be taken to represent a lower bound of the
actual death toll. Historical demographic sources, even though uncertain (Favero et
al., 1991), report a population of 141,625 inhabitants for Venice in 1624 and of 102,243
in 1633, a reduction of 27,81% (Beltrami, 1954; Gordon M., 1970).

The presence of a single peak of deaths is common in plague outbreaks within
densely populated regions and cities (Welford and Bossak, 2009; Dean et al., 2018).
Its presence in Venice indicates that the authorities’ best efforts to contain the epi-
demic – for example by gathering all sick people in public hospitals or in their houses
(Ell, 1989) – simply failed. The city was too densely populated and well-connected
to leave any margin for containment. In fact, as it can be seen in Figure 2.5 (and
especially 2.5c), the outbreak in 1630 swept through the parishes practically in sync,
as no discernible space correlation is present. However, while the outbreak in 1630
is known, the subsequent 1631 long tail of high mortality has not been described in
the literature before.

In order to gain a better understanding of the disease dynamics, we investigated
another dataset taken from the records of a specific parish: Sant’Eufemia. This was
a populous parish, with a significant amount of deaths in the 1631 tail and whose
necrology records are well-preserved in their entirety. We transcribed all the infor-
mation available in its necrologies, i.e. the name, sex and age at death of each per-
son, together with the cause of death and the length of sickness. This transcription
includes 1785 deaths registered between January 1630 and December 1631. The iden-
tification of deaths due to plague appears to be deceptively simple, as they were usu-
ally registered as fatalities caused by suspicious illness (“mal sospetto"), or with vis-
ible buboes. Nevertheless, previous studies have taken a more inclusive approach,
considering also deaths not clearly caused by other factors as due to plague (Ell,
1989). We take the more conservative approach in what follows – see Tables 2.1, 2.2
and 2.3 for details on which causes of death were considered to be plague.

The statistics of the causes of death give us a first insight. In Figure 2.6a we show
the distribution of deaths grouped by cause and (conservatively) classified as related
to the plague or not. One can see how the two distributions are skewed, meaning
that a small fraction of causes (5%) contributes to a large fraction of deaths (63%).
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FIGURE 2.2: An overview of the full plague outbreak (main dataset):
(a) Cumulative daily deaths for the whole recorded period (1095 days
in total). A total number of 43,088 deaths were reported. One can
clearly see the presence of a two-stage process, spanning until fall
1631. (b) Daily deaths recorded in the parish of Sant’Eufemia, almost
surely due to plague (blue stars – Nplague = 1007) and possibly to
other causes (orange circles – Nnot plague = 778). Only days when
someone died are considered. (c) A heatmap view of the dataset; for

the sake of clarity, not all parishes names are plotted.
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FIGURE 2.3: Hierarchical clustering of parishes zoomed on the main
late-1630 peak (a) and on the 1631 outbreaks (b).
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However, while the number of deaths clearly due to plague (Nplague = 1007) and
possibly non-plague are similar (Nnot plague = 778), only 56 out of 156 causes could be
clearly attributed to plague, leaving more vagueness around the non-plague causes
(in Figure 2.6b the causes with more than 50 deaths are listed). This seems to suggest
that our plague-death counts likely constitute a lower bound of the total number of
deaths directly linked to plague, which we cannot further refine from the records. In
Figure 2.2b we show the time-series of deaths belonging to the Sant’Eufemia parish,
distinguishing between those caused by the plague and the ones possibly due to
other causes. Surprisingly, the first peak of the epidemic begins with few references
to the common symptoms of the plague (October to November), when the records
point instead to more generic and common illnesses, such as fever or spasms (Bamji,
2016). Only afterwards the records start to extensively mention the plague as the
cause of death, well into the Fall of 1631. This might indicate an initial reticence to
acknowledge the epidemic outbreak, as well as a subsequent possible overemphasis
of it. This reticence might be caused by the public authorities’ practice to quaran-
tine the whole household in their house when someone from it died of plague. It
might also be due to a surveillance issue generating a bias in the records: while
many deaths were occurring, medical examination was no longer taking place and
the registrations of the causes of death were not happening regularly, but instead
in batches, leading to approximations. Furthermore, several people were moved to
quarantine areas (lazzaretti) and died there, while their registration happened sub-
sequently, possibly by reporting generic causes of death. It is thus likely that these
deaths are also in large part attributable to plague. However, other explanations are
also possible, such as a known epidemic of smallpox co-occurring during the main
peak (Ell, 1989). Despite these limitations and open questions, Sant’Eufemia’s causes
of death confirm the duration of the epidemic well into the autumn of 1631.

We further verify that deaths by plague were not significantly affected by sex,
under the reasonable assumption that sexes were equally distributed in the popula-
tion of Venice at the time (Gordon M., 1970). Indeed, the male to female deaths ratio
was close to one (Nmale/N f emale = 865/917 ∼ 0.94), a result confirmed by the major-
ity of the literature (Alfani and Murphy, 2017; Whittles and Didelot, 2016; DeWitte,
2009; Bradley, 1977; Scott and Duncan, 2001; Schofield, 1977), with few exceptions
(Ell, 1989; Curtis and Roosen, 2017). Furthermore, the distribution of illness duration
and of age at death did not significantly change with sex (see Figure 2.7a and 2.7b
respectively). Assessing the effect of the plague on age is challenging, as assump-
tions on the age distribution of population at that time are quite difficult to make
and historical statistics are hard to find. Furthermore, the literature on the effect of
the plague on different age cohorts is still ambiguous. Nevertheless, our data are in
line with previous studies (Abrate, 1972; Manfredini, De Iasio, and Lucchetti, 2002;
Alfani and Cohn Jr, 2007; DeWitte, 2010; Alfani and Murphy, 2017) indicating that
the plague had higher relative impact among age cohorts of typically low mortality,
in particular adolescents and adults between 14 and 44 years of age, as shown in
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Figure 2.7c and Figure 2.7d.
Figure 2.2c shows the heatmap of reported cases, for each of the parishes of

Venice, for the entire time window (Ntot_deaths = 43088). One can see that while the
main outbreak occurring in the last four months of 1630 shows good synchroniza-
tion across all parishes, the second, smaller outbreak occurring until fall 1631 seems
to have peaked at rather different time points within each parish, between February
and July 1631. We therefore investigate whether space patterns are present, espe-
cially in the 1631 outbreaks (Ndeaths_tail = 10363). In order to assess the presence of
spatial patterns, we simply plot the pairwise correlation among cases for all couples
of parishes, against the distance between parishes (Figure 2.8). The resulting scatter
plots show no spatial patterns. Nevertheless, the secondary outbreak in 1631 does
not seem to have peaked as homogeneously as the first large outbreak in 1630 (Fig-
ure 2.2c). We hence performed a clustering analysis to highlight possible groups of
rather synchronous parishes (Figure 2.3). The analysis on the main 1630 outbreak
(Figure 2.3a) appears instead to be in sync across parishes.

The clustering on the 1631 outbreaks (Figure 2.3b) shows clusters of parishes
with more spread-out peaks, across the first half of 1631, with tails reaching the fall
of the same year. The main cluster is the one led by the three populous parishes of
S. Geremia, Angelo Rafael and S. Nicola, with peaks between March and May 1631
(central part of Figure 2.3b). Another cluster is the one led by the S. Eufemia and S.
Marcuola parishes (bottom part of Figure 2.3b), a more heterogeneous group, with
peaks occurring mostly in June/July 1631.

Even though these clusters seems to be well separated in time, there is no clear
evidence of a specific process or event in the history of the city that might have
driven this spatial distribution of localized epidemics in different parishes dur-
ing 1631. We therefore assess epidemiological models on data aggregated over all
parishes. The plague is generally modeled as a zoonosis, in which the transition
from an epizootic (typically, in rodents) to a human epidemic is mediated by animal
fleas, the vector carrying Yersinia Pestis (Keeling and Gilligan, 2000b; Monecke, Mo-
necke, and Monecke, 2009). From here on, we refer to this model as the Rats-Fleas-
Humans (RFH) model. At the same time, other studies suggest that these models
are not always preferable to explain the outbreaks dynamics, especially due to the
‘efficacy and speed’ of some historical plague outbreaks (Alfani and Murphy, 2017),
if compared to the typical dynamics of RFH models. We first confirm that neither
a deterministic RFH nor a deterministic Susceptible-Infected-Removed (SIR) model
can explain the presence of the 1631 secondary outbreaks (see Figure 2.9b). We then
investigate the transmission nature of the Venice plague, by considering separately
the main 1630 outbreak and the one in 1631. In both cases, we find that the RFH
model did not perform much better than a simple SIR model, as shown in Figure
2.4a (main 1630 outbreak), and Figure 2.9c (1631 outbreaks). We therefore imple-
ment a time-dependent SIR and find that it can better explain the dynamics over the
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FIGURE 2.4: (a) Best fit comparison of a simple SIR model against the
model from (Monecke, Monecke, and Monecke, 2009) on the main
outbreak peak (150 days time window). (b) Best fit of an explicit time-
dependent SIR; parameters are shown in Figure 2.9d. (c) Example
realization of a stochastic delayed behavioral SIR; the evolution of

transmission rate β(I) is shown in Figure 2.9e.
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entire time window (Figure 2.4b), with an increase in the basic reproduction num-
ber that could indicate a change in the transmission mechanism of pathogen (for
clarity, fitted parameters are reported in Figure 2.9d). In particular this might sug-
gest a transition from bubonic to pneumonic plague, a shift already hypothesized
for other historical plague epidemics (Schofield, 2016). However, a change in the
effective transmission rate might also be due to people’s behavioral response to the
outbreak. In order to investigate the fitness of such hypothesis, we implement a
stochastic delayed behavioral SIR (details can be found in the Methods). In Figure
2.4c we show one example of such model’s stochastic realizations, which presents
both a main peak and a long tail dynamics. This shows that a change in pathogen’s
transmission route is not necessarily required in order for the epidemic to show a
non-trivial temporal pattern, such as the one present in our data. For the sake of
completeness we also check whether a deterministic delayed behavioral SIR would
fit our data. In Figure 2.10b, we show that it cannot actually reproduce the 1631 tail,
in spite of a good fit of the first part of the 1630 outbreak.
Although a change in diffusion parameters seems to provide a reasonable explana-
tion of the two-peak structure, we investigate the possibility of having two-peak out-
breaks similar to the observed one, as a result of the stochastic nature of the disease
spread combined with structural properties of the host network. It is indeed known
that the community structure of a network can strongly impact epidemic dynamics
(Salathé and Jones, 2010). We therefore perform a series of stochastic simulations of
a simple SIR process on top of a small-word graph, a network model which is likely
to resemble the modular structure of social contacts (Schnettler, 2009) (further details
on the simulations are given in the Methods). We find that few simulated epidemics
do resemble the data, as shown in Figure 2.10a. However, as this happens in only
about 0.1% of the simulations, such alternative interpretation of the 1631 tail based
on pure stochastic effects and network structure, although reasonable, remains very
unlikely.

Discussion

In summary, we find a novel epidemic pattern of two peaks in the 1630-31 plague
outbreak in Venice. The first peak in 1630 was very high, and the outbreak highly
synchronized among all parishes; the second peak in 1631 shows temporal variabil-
ity, and was much less pronounced in strength. Most previous recorded cases show
a single main peak (Welford and Bossak, 2009; Monecke, Monecke, and Monecke,
2009; Dean et al., 2018) of varying duration (Alfani and Cohn Jr, 2007; Whittles and
Didelot, 2016), with possible cyclical recurrence (Welford and Bossak, 2009). Rely-
ing on fine-grained daily death records (Alfani and Murphy, 2017), we are able to
confirm that the plague spanned both the main peak and the long tail, over a pe-
riod of more than a year and caused the death of approximately 30% of the city’s
population.



18
Chapter 2. Death in Venice: A Digital Reconstruction of a Large Plague Outbreak

During 1630-1631

Providing an interpretation of the two-stage process remains challenging with
the evidence at our disposal. Firstly, not all deaths could be clearly attributed to
the plague during the early weeks of the main peak. Generic causes of death such
as fever and spasms might indicate plague deaths as well as deaths due to other
causes. A first hypothesis is therefore that the same plague epidemic went on for
more than a year, while being aggravated by other concomitant causes during the
main peak. An alternative hypothesis is that two distinct plague epidemics took
place instead, one during the main peak and another during the long tail. Previous
studies suggest the possibility of a transition from a mainly bubonic to a mainly
pneumonic plague, for example. Furthermore, we show that it is also possible that
such temporal pattern could be generated by the adaptation of hosts’ behavior to
the increase of the number of infected, effectively decreasing the transmission rate,
as the outbreak advances. Lastly, social factors such as the timing and effectiveness
of public containment policies could have played a role.

Further investigations will be needed in order to fully qualify the Venetian 1630-
31 plague outbreak, as well as the Second Pandemic overall. Indeed, as we have
shown, historical records contain information which has so far been relied upon
only to study few episodes but, when digitized and made available at scale and
systematically, can help cast new light on these long-lasting research issues. For
an understanding of detailed local dynamics, but also of global patterns of disease
spread, modern human data and animal research can now be complemented with
digital data collection driven by the digital and medical humanities.

Methods

Data collection

The main dataset we consider consists of the daily number of deaths per parish, from
January 1629 to December 1631. We have first proceeded with a full double-blind
counting, then compared the two series, checking and correcting all discrepancies.
Secondly, two different co-authors have counted again all deaths from a sample of
20 parishes out of 70 (8 and 12 each), to further assess our main dataset, with the
following results:

• 1629: 22 errors over 2395 assessed registrations (0,91%).

• 1630: 60 over 8989 (0,66%).

• 1631: 16 over 3730 (0,42%).

Confirming that the main dataset was already of high quality. Eventually, all remain-
ing errors were checked again and corrected in the final dataset, which we analyze
in this contribution.

We note that the parson of every parish was supposed in principle to a) get a
medical inspection of every dead body to rule out contagious causes, b) report all
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deaths every morning to the magistrate called Provveditori alla Sanità, c) get burial
licenses from this magistracy before inhumation. Steps a and c usually were not
taking place during the months of peak mortality at the end of the year 1630. It
is important to clarify that our death records include deaths which occurred in the
main care institutions in Venice: the four Ospedali Grandi (main hospitals), as well as
minor ones, with respect to residents in the available parishes. They also include all
deaths occurred at the lazzaretti: temporary locations setup for quarantine or inhu-
mation of persons affected by the plague. They do not include foreigners. We finally
note that the parish of S. Nicola is to be identified with San Nicola dei Mendicoli.

Data analysis and modeling

All data analysis and modeling are done in Python. For the general data cleaning
we use the pandas package. The distance between two parishes is defined as the
geodetic distance between the centers of the corresponding polygons, defining the
jurisdiction of the same parishes. The geodesic function from the geopy.distance

module is used for this task.
All dendrograms (Figure 2.3) are plotted using the seaborn.clustermap package.
In particular, we use the metric correlation1 and the method complete to build
the linkage matrix, needed to compute the clusters. The compartmental epidemic
models are integrated using the odeint function from the scipy.integrate

module. The parameters estimations are then obtained using the curve_fit

and differential_evolution function from the scipy.optimize package (Jones,
Oliphant, and Peterson, 2001). In order to account for false positives, we estimate
a baseline of deaths very likely to be unrelated to the plague outbreak, by fitting
a sinusoidal signal from the beginning of the recordings, until the end of August,
as shown in Figure 2.9a. In the time-dependent SIR model we assumed a simple
step function dependence for both β(t) and γ(t), leading to a total of five fitted
parameters: β1, β2, γ1, γ2 and the transition time τ (see again fig 2.9d).
Stochastic simulations in fig. 2.4c and 2.10a were done using the ndlib package
(Rossetti et al., 2018), on graphs generated with the networkx package (Hagberg,
Schult, and Swart, 2008).
The delayed behavioral SIR model (fig. 2.4c) was defined using the following
expression for the transmission rate β(t) = β0e−I(t−τ)/I∗ , where β0, τ and I∗ were
fitted parameters, together with the usual (constant) death rate γ and initial number
of infected I0 (β0 = 0.06429, I∗ = 72, τ = 32, γ = 0.02859, I0 = 3). For its stochastic
implementation we used a Erdos-Renyi graph, with an edge creation probability
p = 4/Nnodes (Nnodes = 20000).

1For more details, find here the description of possible metrics: scipy.spatial.distance.pdist.

https://geopy.readthedocs.io/en/stable/index.html?highlight=geodesic#geopy.distance.geodesic
https://seaborn.pydata.org/generated/seaborn.clustermap.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.odeint.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolution.html
https://ndlib.readthedocs.io/en/latest/
https://networkx.github.io/documentation/stable/index.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.distance.pdist.html
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FIGURE 2.5: Distribution of number of deaths by parish. (a) One can
clearly see the skewed distribution, with the top 24% of parishes ac-
counting for about 55% of the total deaths. (b) For the sake of clarity,
only parishes with more than 2000 deaths are listed. (c) Map of Venice
parishes, color-coded by total recorded deaths, summed over the en-
tire time-window. For clarity, only the names of parishes with more

than 1000 total deaths are shown.
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FIGURE 2.6: Distribution of number of deaths by cause, for the parish
of Sant’Eufemia. In the records, 156 unique causes of death are found,
of which 56 were attributed to plague. One can clearly see the skewed
distribution, with the top 5% of causes accounting for about 63% of
the overall deaths (a). For the sake of clarity, only causes with more

than 50 deaths are listed; in bold the ones attributed to plague (b).
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Child (3-13) 32.01% 29.2% 30.42%
Young (14-23) 20.95% 8.74% 15.63%
Adult (24-44) 29.2% 16.45% 23.64%
Old (45+) 17.28% 19.28% 18.15%
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FIGURE 2.7: Demographic statistics for the parish of Sant’Eufemia. (a)
Distribution of sickness duration, by sex and cause of death for S. Eu-
femia death records – for sake of clarity the boxplots include only cases
with a sickness spanning less than 20 days (this still covers about 88%
of the total sickness duration distribution). (b,c) Distributions of age
at death, stratified by cause of death. No significant age difference
emerges due to sex (p > 0.001 on two samples KS test, for both causes
of death) (b), while a significant one appears between the plague VS
non-plague deaths, aggregated over sex (p < 10−20 on two samples
KS test) (c). (d) Table with the same numbers of deaths, divided into
age groups. Note that an infant mortality at birth between 20 and 30%

was common at the time (Gordon M., 1970).
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FIGURE 2.8: Pairwise Pearson correlation between cases time-series
of each couple of parishes, as function of distance between the two
parishes. The same scatter plot for all parishes (Nparishes = 54) for
the entire time-windows (a) and for the largest parishes, for the 1631
outbreaks only (b). The largest parishes are defined as those reporting

more than 500 deaths (Nparishes = 28).
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FIGURE 2.9: (a) Estimation of baseline cases due to other causes: a
sinus function (orange line) is fitted from the beginning of the data
until the beginning of the fit (green vertical line) to estimate the mor-
tality rate, which is then applied to the original data (blue) to get the
data used for the fit (green). (b-c) Comparison between a simple SIR
and the more complex RFH model, in the 400 days window (b) and
zoomed on the second part of the epidemic (c). (d) Fitted parameters
for the time-dependent SIR model, as in Figure 2.4b. (e) Evolution of
fitted β(I) and β(I)/γ for the delayed behavioral SIR shown in Figure

2.4c.
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FIGURE 2.10: (a) Selected stochastic simulations of a simple SIR
model on top of a small-word network. Two particular epidemics are
highlighted, in order to show the possibility of having a large peak
followed by a long tail, as present in the data. In shaded orange we
only show, for sake of clarity, the simulated epidemics with lowest
deviation from the data (RMSE < 50− N = 93) (b) Best fit of deter-
ministic behavioral delayed SIR. Although the model can fit very well
the first part of the epidemic, it does not show a secondary outbreak,

in 1631.
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Death causes Related
to
plague
?

annegato False
apoplessia False
brusco False
bubbone pestilenziale
all’inguine True
caduta False
caduta False
caduta apoplettica False
caduto da una scala False
caita nella gola False
cancro alla bocca False
carbone True
carboni True
carboni e parto True
carbonie e petecchie nere True
catare nella gamba False
catarro False
contagio True
contagio e petecchie nere True
convertito etico False
croplesion False
disperso False
doglia di testa False
doglia di testa e mazzucco True
doglia di testa e vermi False
doglia e spasimo False
dolor di vita False
febbre False
febbre False
febbre continua False
febbre continua e
altre indisposizioni False
febbre e catarro False
febbre e doglia False

Death causes Related
to
plague
?

febbre e doglia di schiena False
febbre e doglie di testa False
febbre e ferita False
febbre e flusso False
febbre e gotta False
febbre e lepra(?) False
febbre e mazzucco True
febbre e nosella False
febbre e petecchie True
febbre e petecchie nere True
febbre e petecchie rosse True
febbre e petecchie rosse
non pestilenziali False
febbre e ponta False
febbre e spasimo False
febbre e suspetto True
febbre e un brusco False
febbre e una doglia in un fianco False
febbre e una postiema False
febbre e una scorencia False
febbre e variole False
febbre e vecchiezza False
febbre e vermi False
febbre etica False
febbre etica e catarro False
febbre ferita e flusso False
febbre galica e catarro False
febbre maligna True
febbre maligna e mal sospetto True
febbre maligna e punti True
febbre senza sospetto False
ferita False
ferita False
ferita dietro l’orecchio False
ferite False
ferite da peste True

TABLE 2.1: Manual classification of all 156 death causes as reported
in necrologies, as associated to plague or not – part 1.
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Death causes Related
to
plague
?

ferito False
flusso False
fracassato la testa False
illegibile False
incinta da febbre e doglie False
infermo False
ipolesia False
ipoplessia e febbre False
macchie nel petto
giudicate pestilenziali True
mal caduco False
mal caduco e vermi False
mal contagioso True
mal di febbre False
mal di gotta False
mal di mare e mal sospetto True
mal di mazzucco True
mal di pietra False
mal di reni False
mal mazzucco True
mal sospetto True
mal sospetto e petecchie True
mazzucco True
morto improvvisamente False
n.d. False
nascente False
non aver latte False
non si sa il male False
nosella False
nosella di mal contagioso True
nosella nel cuore False
paralitico senza contagio False
parto False

Death causes Related
to
plague
?

parto e febbre False
parto e ferita False
parto e spasimo False
partorito morto False
patimento False
per non aver avuto latte False
percossia False
peste True
peste e petecchie nere True
peste e strupiata True
petecche paonazze True
petecchi nere True
petecchie True
petecchie True
petecchie e febbre maligna True
petecchie e mazzucco True
petecchie e spasimo True
petecchie e un brusco True
petecchie et un brusco True
petecchie nere True
petecchie nere True
petecchie nere contagiose True
petecchie nere e carbone True
petecchie nere e rosse True
petecchie nere pestilenziali True
petecchie pestilenziali True
petecchie rosse True
petecchie rosse e alcune nere True
petecchie rosse e parto True
petecchie rosse verso il nero True

TABLE 2.2: Manual classification of all 156 death causes as reported
in necrologies, as associated to plague or not – part 2.
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Death causes Related
to
plague
?

punta False
rogna False
sconosciuta False
sempre infermo False
senza peste esterna False
senza sospetto False
spasimo False
spasimo e infermitá False
spasimo e mazzucco True
spasimo e petecchie nere True
spasimo e sturioli False
spasimo e vecchiezza False
spasimo e vermi False
stroppiata su la palada False
strupiata False
tumore False
tumore alla gola False
un carbon True
variole False
variole e sturioli False
vecchiezza False
vecchiezza e febbre False
vermi False
vermi e petecchie True
vermi e spasimo False

TABLE 2.3: Manual classification of all 156 death causes as reported
in necrologies, as associated to plague or not – part 3.
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Abstract

There is increasing evidence that aerosol transmission is a major contributor to the
spread of influenza. Despite this, virtually all studies assessing the dynamics and
control of influenza assume that it is transmitted solely through direct contact and
large droplets, requiring close physical proximity. Here, we use wireless sensors
to measure simultaneously both the location and close proximity contacts in the
population of a US high school. This dataset, highly resolved in space and time,
allows us to model both droplet and aerosol transmission either in isolation or in
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combination. In particular, it allows us to computationally quantify the potential
effectiveness of overlooked mitigation strategies such as improved ventilation
that are available in the case of aerosol transmission. Our model suggests that
recommendation-abiding ventilation could be as effective in mitigating outbreaks
as vaccinating approximately half of the population. In simulations using empirical
transmission levels observed in households, we find that bringing ventilation to
recommended levels had the same mitigating effect as a vaccination coverage of
50% to 60%. Ventilation is an easy-to-implement strategy that has the potential to
support vaccination efforts for effective control of influenza spread.

Keywords: Influenza, Disease Dynamics, Wireless Sensor Networks, Control,
Ventilation

Introduction

Despite extensive clinical experience and decades of research on influenza, it is still
not fully understood how influenza is transmitted among humans. Traditionally, in-
fluenza transmission has been assumed to occur through the air, physical contact be-
tween humans, and by touching contaminated surfaces (i.e., fomites) (Brankston et
al., 2007; Killingley and Nguyen-Van-Tam, 2013) . Airborne transmission can occur
in two ways: either through relatively large particles of respiratory fluid (droplets;
101-102 µm) or through smaller such particles that can remain aerosolized (droplet
nuclei; «101 µm) (Fabian et al., 2008; Gralton et al., 2011; Stilianakis and Drossinos,
2010; Weber and Stilianakis, 2008; Tellier, 2006). As larger droplets are pulled to
the ground by gravity quickly, droplet transmission requires close physical proxim-
ity between infected and susceptible individuals, whereas aerosolized transmission
can occur over larger distances and does not necessarily require that infected and
susceptible individuals are at the same location at the same time (Tellier, 2006).

Until recently, close contact transmission was considered to be the dominant
transmission pathway, largely because the evidence to support the importance of
transmission through aerosols was mixed (Brankston et al., 2007; Tellier, 2006). How-
ever, the question of the importance of the various transmission routes has received
renewed attention recently, and multiple studies have in the past few years provided
evidence for the importance of aerosol transmission (Atkinson and Wein, 2008; Tel-
lier, 2009; Mubareka et al., 2009; Wong et al., 2010; Noti et al., 2012; Cowling et al.,
2013; Lau et al., 2015). There is increasing evidence from experiments with mam-
malian hosts that airborne transmission is much more efficient than fomite trans-
mission (Mubareka et al., 2009; Xiao et al., 2018). Data from randomized controlled
trials of hand hygiene and surgical face masks in households provided evidence
that aerosol transmission accounts for half of all transmission events (Cowling et al.,
2013; Lau et al., 2015). A nosocomial influenza outbreak with subsequent airflow
analysis provided further evidence for the important role of aerosol transmission
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(Wong et al., 2010). An experimental laboratory study using a patient examination
room containing a coughing manikin provided further support for aerosol trans-
mission (Noti et al., 2012). A recent study with outpatients who tested positive
for influenza A virus demonstrated that 53% and 42% produced aerosol particles
containing viable influenza A virus during coughing and exhalation, respectively
(Lindsley et al., 2016). A mathematical model of influenza transmission within a
household has suggested that the aerosol transmission route may not only be im-
portant, but indeed dominant (Atkinson and Wein, 2008). Another mathematical
model suggests that aerosol transmission is the dominant mode of transmission in
long-term epidemics, whereas larger droplets could play a dominant role for short-
term epidemics with high attack rates (Stilianakis and Drossinos, 2010).

Given the increasing evidence supporting an important role of aerosol transmis-
sion, it is prudent to revisit our expectations on disease dynamics of influenza out-
breaks, and the best measures to control the spread of influenza. To address this is-
sue, we use a high-resolution dataset of a medium-sized US high school, where both
individual’s indoor positions and close proximity contacts to others were measured
using wireless sensor network technology and perform computation simulations on
it.

Results

We first investigate the dynamics of influenza spread in three different transmission
models, namely a droplet-based, an aerosol-based, and a combined droplet-aerosol-
based model (for a schematic explanation of these transmission models, please see
Figure 3.1). These three models were chosen to compare the two extreme situa-
tions (droplet-only, and aerosol-only) as well as an intermediate situation where the
two transmission modes are equally relevant (Cowling et al., 2013; Lau et al., 2015).
Simulations of influenza outbreaks were based on an SEIR model run on a high-
resolution contact network collected at a US high school (Salathé et al., 2010) using
wireless sensor network technology. In addition, we used the location information of
each individual obtained using the same technology. In order to simulate partial or
full aerosol transmission, we combined this data with building data from the school
in order to compute the relevant infection probabilities due to aerosol transmission
as per eq. 3.3. The entire model, and the data sources, are described in full detail
in the Methods. Figure 3.2 shows an example of quanta concentrations in multiple
classrooms during a day.

As illustrated in Figure 3.1, both droplet and aerosol transmission can be repre-
sented as weighted networks. It has been shown previously that strength (i.e., the
weighted degree) is a key network metric for understanding disease spread in net-
works: hosts with a high strength generate on average more secondary cases, hosts
with a low strength less (Smieszek and Salathé, 2013; Bell and Atkinson, 1999; Christ-
ley et al., 2005). Figure 3.3 shows distribution of and correlation between measures
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of strength for both modes of transmission, aerosol (quanta) and droplet (contact
duration). As can be seen, distributions are similar and both strength measures are
correlated across modes of transmission.

For all three transmission models, we measure three epidemiological quantities:
the final size of an outbreak (number of recovered r(t) individuals after a simulation
run), the total duration of an outbreak (time until there are no more exposed e(t)
or infected i(t) individuals, respectively), and the time to reach the peak of the out-
break, i.e. to reach the maximal prevalence. In addition, in order to be able to put
these quantities in context, we also measure R0 for the three transmission models. In
an individual-based model like the one used here, measuring R0 is straightforward
using the droplet-based transmission model, because one can directly track which
individual infected which. However, in the case of partial or full aerosol-mediated
transmission where infection is mediated by the air in a room, this tracking is harder
because one would need to computationally keep track of the individual sources
of infectious aerosol particles. We thus measure an alternative but similar quantity,
namely the number of all cases infected during the initial time period until the in-
dex case recovers. We call this quantity R′0. Theoretically, there is a chance that this
overestimates the true R0 by including third generation cases that were not infected
by the index case, but given the values for the incubation period and the recovery
rate, this is rather rare.

In fig. 3.4, we can observe that increasing the relative importance of aerosol-
based transmission (i.e., shifting from pure close-contact transmission via combined
to pure aerosol-based transmission) has no major effect overall on disease dynamics.
We note that outbreak sizes in the pure droplet model are slightly increased, and the
time to outbreak peak is slightly increased. However, the small increase in outbreak
size is also reflected in a small increase of R′0 (see fig. 3.4-D). In summary, our results
indicate that one should not necessarily expect influenza disease dynamics to be
very different when taking aerosol-based transmission into account.

For a better understanding of the behavior of the transmission models, we per-
formed a sensitivity analysis on the core infectivity parameters (fig 3.5). In particu-
lar, we altered the droplet infectivity in the close-contact component (baseline set to
0.003 – see eq. 3.1) and the shedding rate (q – see eq. 3.2) in the aerosol component
within the model that captures both modes of transmission at 50%. We changed
both parameters, relative to the baselines, by -20%, -10%, 0%, 10% and 20%. As can
be seen in figure 3.5, changes on median outbreak size appear to be well-behaved
and proportionate, regardless whether parameters for close-contact or aerosol trans-
mission are changed.

In pure droplet-based transmission models, vaccination is a powerful strategy to
mitigate the spread of an infectious disease. When transmission can also be aerosol-
based, increasing ventilation is an additional way to curb the spread of disease.
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We therefore compared the effect of ventilation to traditional vaccination strate-
gies. According to the American Society of Heating, Refrigerating and Air Condi-
tioning Engineers (ASHRAE) (American Society of Heating, Refrigerating and Air-
Conditioning Engineers, 2016), a good ventilation in classrooms corresponds to 3 air
changes per hour. Most classrooms, however, have poor ventilation at rates around
0.5 air changes per hour (see Methods for more details). In the pure aerosol-based
model, bringing all rooms to the recommended ventilation rate would almost com-
pletely eliminate the chance of an outbreak. This corresponds to the same effect of
complete vaccination coverage in the case of poor ventilation rates, as shown in fig.
3.6-B. In the combined droplet-aerosol scenario, improvements of ventilation still re-
sults in a significant decrease of outbreak sizes. In particular, fig. 3.6-A shows that
in the combined droplet-aerosol model, a good ventilation would have a similar ef-
fect to a 50-60 % vaccination coverage in the poor ventilation scenario. This finding
proved to be robust to changes in transmission parameters in the sensitivity analysis
(data not shown).

In practice, upgrading the ventilation system of an entire school campus to the
rates proposed by ASHRAE will often be challenging due to limited resources. We
therefore asked how strong the mitigating effect would be of upgrading the ventila-
tion of only a fraction of all rooms. We also asked how one would identify the opti-
mal set of rooms for mitigation purposes. The room selection strategies we explore
are optimal, schedule-based, and size-corrected, which are all described in the methods.
As expected, applying good ventilation to less rooms instead of the entire school
leads to less pronounced improvements. However, fig. 3.6-C shows that selecting
only a fraction of rooms for improved ventilation, according to the criteria explained
above, still results in median outbreak sizes comparable with those obtained in a
setting with 30-40% vaccination coverage. In particular, the size-corrected strategy,
which requires only information readily available to each school (i.e. school ros-
ters and room size) can result in median outbreak sizes that are comparable to those
obtained with vaccination rates above 40%, even when only applied to 25% of all
rooms.

Comparisons between the effects of improved ventilation and vaccination also
depend on vaccine efficacy. The baseline efficacy was assumed to be 60%. If the
ASHRAE recommended air change rate were implemented school-wide, this would
result in a protective effect in the combined model that would correspond to a vac-
cination coverage of 60-70% for an efficacy of 40%, 50-60% for 60% efficacy, and 40-
50% for 80% efficacy. In the aerosol model, consistently improved ventilation beats
vaccination even with full coverage if efficacies are low.

Discussion

There is mounting evidence that aerosol-transmission is an important factor in the
spread of influenza (Atkinson and Wein, 2008; Tellier, 2009; Mubareka et al., 2009;
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Wong et al., 2010; Noti et al., 2012; Cowling et al., 2013; Lau et al., 2015). Despite this,
virtually all infectious disease dynamics models on influenza have thus far ignored
aerosol-transmission. Here, we parameterized a model with empirically obtained
values to investigate the dynamics and control of influenza under the assumptions
of no, partial, or full aerosol transmission. In order to create a realistic model, we
used contact network and location data that was previously obtained at a US high
school using wireless sensor network technology (Salathé et al., 2010). This dataset
is well-suited for the objective of the study: modeling droplet-based transmission re-
quires data on close proximity contacts, and modeling aerosol-transmission requires
data on location in rooms and information about the rooms, such as the room size.
The dataset used here, even though limited in scope, and particularly also in dura-
tion (data were of only one day and had to be used repeatedly, thus exaggerating
correlation between school days), contains all of this information.

Using empirical estimates of various influenza-related parameters, we found
that the overall disease dynamics does not differ substantially between the models
using no, partial, or full aerosol transmission. This isn’t entirely surprising, given the
fact that aerosol transmission parameters were estimated from the same influenza
outbreak that was used to parameterize previous (pure droplet-based) influenza
models. However, aerosol transmission does change the underlying transmission
network (see fig. 3.1), which in turn could nevertheless have a substantial impact
on disease dynamics, depending on the specific co-location patterns of individuals.
Our finding that the dynamics do not change substantially in a model parameterized
by empirical co-location data may simply be a reflection of the fact that schools are
high density environments with comparatively limited movement, and - in line with
this - we found that the underlying transmission-dependent network structures to
be very similar with respect to the key network property strength. It should also be
noted that we did not assume any virus inactivation in our model, largely because it
is generally known to be slow for low relative humidity values (typical for indoor air
during influenza season) (Weber and Stilianakis, 2008; Tellier, 2006; Yang and Marr,
2011). Nevertheless, this assumption may overestimate the relative effectiveness of
ventilation somewhat.

While vaccination is at the heart of influenza prevention efforts, aerosol-based
transmission of influenza opens up additional possibilities to control the spread of
the disease. In particular, when infectious agents can remain airborne, air ventila-
tion is a well known method to mitigate disease spread (Li et al., 2007). In this study,
we assessed potential effects of bringing the air change rates up to the recommended
levels by the American Society of Heating, Refrigerating and Air Conditioning Engi-
neers (ASHRAE) (American Society of Heating, Refrigerating and Air-Conditioning
Engineers, 2016), which defines an acceptable ventilation in classrooms to be 3 air
changes per hour. We found that by doing so, we were able to generate reductions
in expected outbreak sizes that would normally only be possible with a substantial
vaccination coverage of 50-60%, which is within the range of observed vaccination
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rates in school settings (Barclay et al., 2014). Moreover, even when bringing only
a quarter of the rooms to the recommended air change rates, using easy-to-obtain
data in order to select the best rooms, we were still able to obtain outbreak size re-
ductions that would require 30-40% vaccination coverage when air change rates are
at levels commonly reported at US schools. The concrete percentages, obviously,
depend on modelling assumptions as well as transmission parameters. Sensitivity
analyses on the transmission parameters (not shown) revealed that both the close-
contact and the aerosol transmission model component reacted similarly to changes
of the transmission parameters.

Our results suggest that improvements of ventilation in high density public
spaces could be an important and relatively easy-to-implement strategy supple-
menting vaccination efforts for effective control of influenza spread. This obser-
vation rests on the assumption that at a substantial part of influenza spread is due
to aerosol-based transmission, for which there is mounting evidence. Given that in-
creased air ventilation rates are not known to have any negative side effects, and
that there are numerous infectious diseases that are entirely or partially transmitted
via aerosol (e.g. tuberculosis), the findings here thus provide an additional argu-
ment corroborating the public health recommendations for good air ventilation. It
should be noted that influenza vaccine effectiveness is often less than the here as-
sumed 60% (Belongia et al., 2016; Osterholm et al., 2012a), whereas good ventilation
would provide increased protection, further underlining its importance.

Methods

Data

The data used in this paper were collected at a US high school during one school day
using wireless sensor technology. In total, 789 individuals (94% of the school pop-
ulation) participated. They wore small sensors that detect and record radio signals
broadcast by other nearby sensors. Further, stationary devices broadcasting signals
were attached to fixed locations (at least one per room) throughout the school cam-
pus to keep track of the participants’ locations.

Consequently, the data include two types of records. Close proximity interac-
tions (CPIs) are records that indicate two participating individuals standing face-to-
face with a distance of less than three meters at a certain point in time. Location
records are records that indicate the presence of an individual nearby a stationary
device (location information is at the level of rooms).

A detailed description on how information and noise were separated in the data
is provided elsewhere (Smieszek and Salathé, 2013). Data were collected at time
intervals of 20 seconds.
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Model of influenza spread

We used an individual-based model with a susceptible, exposed, infectious, recov-
ered (SEIR)-type structure. We assumed that influenza is introduced into the school
population by one index case at the beginning of a simulation run and that no fur-
ther introductions from outside occur. The duration of a simulation time step was
half a day (i.e., contact information was aggregated at this level, which was shown
to be a reasonable approximation for full-resolution networks (Stehlé et al., 2011));
also note that the temporal resolution of the model of virus particle air concentra-
tions was kept at 20 seconds and only exposure levels were aggregated at the this
level, see also below. Infection transmission could only occur during the half-day
including school, not during the half-day including the night. Individual j’s prob-
ability Pj to switch from the susceptible to the exposed state depends on the mode
of transmission. We defined one function Pa,j for aerosol transmission and one func-
tion Pcc,j for close-contact transmission, as laid out below. We ran simulations for an
all-aerosol scenario, for an all-close-contact scenario, and one for a scenario where
both aerosol and close-contact transmission occur as 0.5Pa,j + 0.5Pcc,j. The duration
of the exposed state follows a Weibull distribution with an offset of half a day; the
power parameter is 2.21, the scale parameter is 1.10 (Ferguson et al., 2005; Salathé
et al., 2010)). After that period in the exposed state, every individual will be in the
infectious state for exactly one time step before turning into home confinement and,
finally, recovering. To allow for the fact that the onset of influenza symptoms is typ-
ically sudden and that affected individuals will be dismissed quickly, we reduced Pj

by 75%, as described in Salathé et al. (Salathé et al., 2010), which also contains more
details on all parameter choices other than those specific to the aerosol transmission
probability.

Close-contact transmission probability

Assumptions, parameters, and structure of the close-contact transmission model are
described in detail elsewhere (Salathé et al., 2010), and therefore only described
briefly here.

Close-contact transmission requires social interaction between an infectious and
a susceptible individual, and it includes transmission via large droplets that do not
travel far and do not stay suspended in the indoor air as well as transmission via
direct, physical contact (Smieszek et al., 2014). Risk of transmission is usually opera-
tionalized as a function of contact duration (Smieszek, 2009). Based on data from an
outbreak on a commercial airliner (Moser et al., 1979), the probability of transmis-
sion was estimated as

Pcc,j = 1− (1− 0.003)T (3.1)

with T being the contact duration between two individuals in number of sensor
recordings (every 20s)(Salathé et al., 2010).
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Aerosol transmission probability

In our model, we quantify amounts of aerosolized virus particles in ‘quanta’, fol-
lowing Wells’ (Wells, 1955) quantum theory of disease transmission. A quantum
is defined as the amount of infectious droplet nuclei required to infect the fraction
1− 1/e of a susceptible population exposed to it.

We assume that every room of the school is a well-mixed airspace that is only
connected to the outside, but does not exchange air with other rooms. We further
assume that removal of aerosolized virus particles by ventilation is the dominant re-
moval process and that, e.g., neither inactivation nor settling play an important role
at low levels of relative humidity typical for influenza season (which is a standard
assumption in the literature, cf., e.g., (Azimi and Stephens, 2013; Yang and Marr,
2011)). Under these assumptions, we model the concentration of virus particles in a
particular room r as

∆Cr,t

∆t
=

∑i∈Ir,t
qi,t

Vr
− Cr,t

Qr,t

Vr
(3.2)

where Cr,t is the quanta concentration in room r at time t, Ir,t is the set of all
infectious individuals that are in room r at time t, qi,t is the quanta shedding rate of
infector i at time t, Vr is the volume of room r, and Qr,t is the fresh air supply rate of
room r at time t. The quotient Qr,t/Vr is also known as the air change rate (ACR).

The instantaneous dose of infectious material, Dj,t, inhaled by individual j at
time step t is given by

Dj,t = Cr,t pj∆t

where Cr,t is the quanta concentration in room r - the room in which individual
j is located at time t - at time t, pj is the breathing rate of individual j, and ∆t is the
duration of a simulation time step, here 20s.

Individual j’s total exposure, Dj during an entire school day is given by

Dj =
tx

∑
t=t0

Dj,t.

Combining the total daily exposure with Wells’ definition of quanta allows to
model the probability Pa,j of a fully susceptible individual to become infected during
one simulation school day as

Pa,j = 1− exp(−Dj) (3.3)

where the total exposure Dj is the only parameter required.
Shedding rate: Both bottom-up (Fabian et al., 2008; Chen and Liao, 2010) and

top-down approaches (Rudnick and Milton, 2003) have been used by others to es-
timate quanta-based shedding rates for influenza. Bottom-up studies (mechanistic
approaches starting from basic measurements and processes) suffered from huge
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uncertainties and differed by three orders of magnitude. We used data from Rud-
nick and Milton’s (Rudnick and Milton, 2003) top-down study that back-calculated
quanta shedding rates from the same outbreak data (Moser et al., 1979) that was also
used to parameterize the close-contact model (Salathé et al., 2010). They estimated
shedding rates of between 79 quanta/h and 128 quanta/h, depending on model as-
sumptions. We chose a shedding rate of 100 quanta/h for our aerosol transmission
model.

Ventilation rate: We assumed different scenarios for the ventilation rate. Accord-
ing to the ventilation recommendations for schools by the American Society of Heat-
ing, Refrigerating and Air Conditioning Engineers (ASHRAE) (American Society of
Heating, Refrigerating and Air-Conditioning Engineers, 2016), the ventilation rate
for classrooms should be at least 8 l/s per person. Daisey et al. (Daisey, Angell, and
Apte, 2003) estimate that for a typical classroom situation, this corresponds to an air
change rate (ACR) of 3.0 air changes per hour. This estimate served as our good-
ventilation scenario. Various studies found substantially lower ACR in US schools,
(Daisey, Angell, and Apte, 2003; Shendell et al., 2004; Mullen et al., 2011) and CO2

concentrations at the high school we collaborated with (unpublished data) indicated
very poor ventilation conditions, too. In line with reported ACR in other US schools,
we assumed 0.5 air changes per hour for a poor ventilation scenario. Additionally,
we used 1.5 air changes per hour as a middle scenario.

Breathing rate: The breathing rate of humans depends mainly on their age, gen-
der, and activity levels (Adams, 1993). In line with Adams’ (Adams, 1993) measure-
ments and in accordance with other work in the field (Rudnick and Milton, 2003),
we assumed a constant breathing rate of 8 l/min for every individual.

Interventions

We compared ventilation-based interventions (effect only on aerosol transmission)
with vaccinating individuals (effect independent on transmission pathway).

Ventilation rate: Baseline scenario to which all intervention scenarios were com-
pared with was the poor ventilation scenario (ACR 0.5 h−1). Basic interventions
were improving the ventilation to ASHRAE standards (ACR 3.0 h−1) and to achieve
an intermediate improvement (ACR 1.5 h−1), respectively.

We further analyzed how ventilation improvement only in some rooms would
affect infection spread. We defined three different methods to identify rooms for
which the ACR was increased from 0.5 h−1 to 3.0 h−1: (i) optimal, using all available
information from simulation runs, we identified rooms with the highest cumulative
exposure, i.e., where most susceptibles will be exposed or where doses are highest
in a typical simulation run; (ii) schedule-based, identifying rooms with the highest cu-
mulative occupancy throughout a school day according to the school’s official roster;
(iii) size-corrected, which is similar to the schedule-based approach, but the total oc-
cupancy was divided by the volume of the room to give priority to small rooms with
a high occupancy, as quanta concentration builds up faster in small rooms.
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All three methods were used to identify rooms that represent 5%, 10%, 15%,
20% and 25% of the total indoor space. Methods (ii) and (iii) could realistically be
applied in a school setting. Comparing interventions based on them with optimal
ones allows assessing their relative performance to the theoretical optimum.

Vaccination: We assumed a vaccination effectiveness (protection against trans-
mission) of 60% (Osterholm et al., 2012b) as a standard scenario (In sensitivity anal-
yses we also assumed 40% and 80%) and a random distribution of vaccination status
among the school population. We simulated the impact of vaccination for vaccina-
tion coverage values between 0% (baseline) and 100% with increments of 10%.

Ethical approval

All measurements involving human subjects were conducted according to the rele-
vant regulations and involved an informed consent obtained from all subjects. The
whole study was previously approved by the Stanford IRB (Institutional Review
Board).
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FIGURE 3.1: Simplified scheme of transmission routes. Different sets
of individuals in the school can occupy the same rooms, at differ-
ent times t1 and t2 (A). In these rooms, individuals may be in close
proximity to one another. For visual simplicity, we assume in this
figure that all individuals in the same room at the same time are in
close proximity (but note that in the model, proximity is given by
the sensor measurements). In the aerosol model, infected individ-
uals can shed infectious material while in the room, which in turn
may infect those individuals in the room concurrently or later on.
The network of possible transmission pathways will therefore look
different depending on the transmission routes. Based on the spatio-
temporal pattern shown in panel (A), panel (B) shows the network
of pure droplet transmission; panel (C) shows the network of pure
aerosol transmission; and panel (D) shows the network of droplet and
aerosol transmission combined. The edges for droplet transmission
are always bidirectional, hence no arrows are shown. The edges for
aerosol transmission may be unidirectional due to the temporal delay

of virus shedding and virus uptake, hence arrows are shown.

https://github.com/salathegroup/aerosol/tree/master/input_files
https://github.com/salathegroup/aerosol/tree/master/input_files


Chapter 3. Assessing the Dynamics and Control of Droplet- and
Aerosol-Transmitted Influenza Using an Indoor Positioning System

43

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

0.0

0.5

1.0

ro
o

m
 1

ro
o

m
 2

ro
o

m
 3

ro
o

m
 4

ro
o

m
 5

ro
o

m
 6

0 2 4 6 8

time (h)

n
o

rm
a

liz
e

d
 e

x
p

o
s
u

re

FIGURE 3.2: Illustration of relationship between presence of infected
individual and exposure to others in the aerosol model. Presence of
one (selected) infected individual in different rooms (gray area) and
other people’s exposure to infectious material shed by the individ-
ual in the respective rooms (black bars) across 8 hours; the scale of
the x-axis is hours, the scale of the y-axis is exposure in [0 - 0.02]
quanta. Exposure levels depend on the number of exposed individu-
als in the room following deposition of infectious material, as well as

air change rates (here 0.5).
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FIGURE 3.3: Weighted network representations of droplet transmis-
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lated quanta exposure). Quanta exposure caused in others represents
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degree. Contact duration in droplet transmission is symmetic, there-
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FIGURE 3.5: Sensitivity plots showing the effect of changes in rele-
vant transmission parameters on outbreak size. In particular, both
shedding rate and droplet infectivity were shifted from -20% up to
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(A) Scatter plot summarizing the effect of both parameters changes
on median outbreak size (proportional to circles size, as shown in
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Abstract

Infectious diseases can cause large disease outbreaks due to their transmission po-
tential from one individual to the next. Vaccination is an effective way of cutting
off possible chains of transmission, thereby mitigating the outbreak potential of a
disease in a population. From a contact network perspective, vaccination effectively
removes nodes from the network, thereby breaking apart the contact network into a
much smaller network of susceptible individuals on which the disease can spread.
Here, we look at the continuum of small world networks to random networks, and
find that vaccination breaks apart networks in ways that can dramatically influence
the maximum outbreak size. In particular, after the removal of a constant number of
nodes (representing vaccination coverage), the more clustered small world networks
more readily fall apart into many disjoint and small susceptible sub-networks, thus
preventing large outbreaks, while more random networks remain largely connected
even after node removal through vaccination. We further develop a model of social
mixing that moves small world networks closer to the random regime, thereby facil-
itating larger disease outbreaks after vaccination. Our results show that even when
vaccination is entirely random, social mixing can lead to contact network structures
that strongly influence outbreak sizes. We find the largest effects to be in the regime
of relatively high vaccination coverages of around 80%, where despite vaccination
being random, outbreak sizes can vary by a factor of 20.
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Introduction

The spread of infectious diseases remains a central public health issue in the 21st
century. On the one hand, emerging or re-emerging diseases with no known vac-
cines pose a fundamental threat, and pandemics of such diseases remain on the list
of potentially catastrophic events for humanity (Ten threats to global health in 2019
2019; Bill Gates: deadly flu epidemic is one of biggest threats to humanity - Insider 2018).
On the other hand, even vaccine-preventable diseases continue to cause substantial
morbidity and mortality, for two main reasons: vaccines are generally not perfectly
protective (Ward et al., 2005; La Torre et al., 2007; Osterholm et al., 2012a), and a
vaccination coverage of 100% is rarely achieved (WHO | Data, statistics and graphics
2019). Immunological issues such as limited vaccine efficacy, vaccine effectiveness,
extent and duration of vaccine immunogenicity contribute to an imperfect protec-
tion, and remain under active investigation for improvements. Societal issues such
as limited access to vaccines, as well as medical and personal reasons that prevent
individuals from getting vaccinated contribute to an incomplete coverage (Hill et al.,
2016).
Despite these issues, vaccination has substantially reduced the burden of many dis-
eases in general, and childhood diseases in particular (Rappuoli et al., 2014; Peter,
1992). However, some vaccine preventable diseases have been making worrying
comebacks in recent years. The case of measles is particularly concerning, for nu-
merous reasons. First, measles is one of the most infectious agents known to hu-
mans, with a basic reproductive number R0 anywhere between 12 and 18 (Guerra et
al., 2017). Second, measles does not only cause substantial morbidity and mortality,
but has recently also been shown to diminish previously acquired immune mem-
ory of other pathogens (Petrova et al., 2019; Mina et al., 2019). Third, the measles
vaccine is one of the most efficacious and affordable vaccines, providing life-long
immunity in 97% of people who have received two doses (Rosenthal and Clements,
1993; Demicheli et al., 2013). Because of these factors, the WHO and other health
organizations recommend (WHO position paper on measles vaccine 2017) a vaccination
coverage of 90-95% for two routine doses of measles-containing vaccines, and most
WHO member states have committed to achieving these goals. However, by 2015,
the global two-dose vaccine coverage was only 61%, with high variance between
countries (WHO position paper on measles vaccine 2017). Even in high-income coun-
tries such as those in Europe, only a few countries have achieved the coverage goal.
Concerningly, the number of countries who have achieved the target has declined
recently, from 14 countries in 2007 to 4 countries in 2017 (ECDC: Insufficient vacci-
nation coverage in EU/EEA fuels continued measles circulation 2019). In early 2019, the
WHO declared vaccine hesitancy to be one of the top global health issues (Ten threats
to global health in 2019 2019).
Interestingly, however, countries with similar vaccination coverages show markedly
different patterns with respect to the number of measles cases experienced (fig. 4.1).
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For example, Canada and Switzerland have almost identical vaccine coverages, but
the yearly number of measles cases per capita differ by an order of magnitude. Sim-
ilarly, Germany reports an almost identical coverage than the US, but has almost an
order of magnitude more measles cases per capita than the US. For what reasons
could similar vaccine coverages lead to large differences in relative outbreak sizes?
Some hypotheses have been put forward. For example, even with similar vaccina-
tion coverage, the risk of large outbreaks can vary if unvaccinated individuals are
clustered (Salathé and Bonhoeffer, 2008). If, for example, 10% of the population is
not vaccinated, and those 10% live close to each other (geographically and socially),
outbreaks will likely be larger than if those 10% are more randomly distributed in
the population. In the former case, the protective effect of herd immunity is larger
than in the later case of clusters of unvaccinated individuals. Such a clustering phe-
nomenon has been argued to be a likely contributor to recent outbreaks (Salathé
and Bonhoeffer, 2008). Another hypothesis is that the speed emerging outbreaks are
being tackled can vary greatly from one country to the next. In the US, measles out-
breaks are treated with extreme urgency and even relatively small outbreaks receive
substantial media coverage, something that is not observed in other countries.
Here, we report on another phenomenon that can lead to substantially different out-
break sizes in populations with identical vaccination coverages. When large parts
of a population gets vaccinated, the vast majority of possible chains of transmission
is broken, thereby hampering the spread of a disease. As we will show below, the
structure of the underlying contact network can greatly influence the magnitude of
that effect on outbreak dynamics, and in particular on outbreak size. To do this,
we will use a well-established contact network approach, where the nodes of the
network represent individuals, and the edges between the nodes represent contacts
along which a disease can spread. Vaccinating a node with a very effective vaccine
can be thought of as removing that nodes and all its edges from the network, as
no disease transmission can go through this node. When removing nodes in such a
way, we are left with a much smaller and sparser network of unvaccinated nodes, on
which the disease can spread. The structure of the original complete network will
affect the structure of the remaining susceptible network. Indeed, with high vacci-
nation coverages, the susceptible network will often fall apart into multiple discon-
nected subnetworks. This will substantial lower outbreak sizes, as the spread of the
disease is confined to its network of origin, and outbreaks in a given subnetwork are
limited to the size of the subnetwork. The maximal magnitude of this effect is shown
to be dependent on the vaccination coverage, but given such a constant coverage, the
outbreak size can differ by more than a factor of 20.

Results

The results reported are based on network simulations, where nodes can be in one
of two states, vaccinated and unvaccinated. Using measles as our infectious disease
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FIGURE 4.1: Scatter plot showing total measles cases (per million in-
habitants) against average second-dose-vaccination coverage in the
2011-2018 time window, for North-American and the largest Euro-
pean countries. Data taken from (WHO | Data, statistics and graphics

2019; WHO | Measles and Rubella Surveillance Data 2019)

of interest, we make the simplifying assumptions that a vaccinated note is fully pro-
tected from getting infected, and that given a contact (edge) between an infected
and a susceptible node, an infection is guaranteed to happen. We further ignore
any timing issues with respect to incubation period and recovery times. While these
assumptions do not reflect reality accurately, they are sufficiently representative to
understand the worst case situation for measles, given that MCV2 status confers
97% protection, and the extremely contagious nature of the measles virus. These
assumptions make stochastic disease simulations unnecessary, as the first infected
node will go on to saturate the entire network of connected susceptible nodes with
the disease. Thus, given multiple sub-networks (connected components) of suscep-
tible nodes following vaccination in the complete network, and removal of all vac-
cinated nodes, the expected outbreak size F̄ is given by F̄ = ∑i

ci

∑i ci
∗ ci =

1
Ns

∑i c2
i ,

where ci is the size of the i-th sub-network, and Ns the number of unvaccinated
nodes in the networks (i.e. the sum of the size of all sub-networks). In other words,
F̄ is simply the weighted sum of the sub-networks’ sizes.
In order to understand the effect of the structure of the original network on the ex-
pected outbreak size F̄, we begin with a small-world network (Watts and Strogatz,
1998) of size N = 1000, and an initial rewiring probability of p. We then vaccinate a
fraction V of the nodes, meaning that V represents the MCV2 vaccination coverage
in our model. The vaccinated nodes are subsequently removed from the network,
and the remaining Ns = (1− V)N susceptible nodes may then form multiple dis-
connected sub-networks, whose sizes determines the expected outbreak size F̄ as
indicated above. In order to understand the effect of the network structure on the
expected outbreak size, we are calculating the outbreak size for different rewiring
probabilities p, and different vaccination coverages V. Beginning from a rewiring
probability p = 0.001, we explore increasing p values up to 0.8. Thus, starting
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from highly modular small-worlds network structures, we move increasingly to-
wards random networks by increasing p, thereby lowering the modularity of the
networks. Importantly, rewiring keeps the number of nodes and edges in the net-
works constant, making comparisons more meaningful. Figure 4.2 shows the effect
of increasing rewiring on the size of the largest connected component of unvacci-
nated sub-networks (which dominates the expected outbreak size F̄ given its calcu-
lation above). Overall, less modular networks are likelier to retain a large connected
component after node removal than more modular networks.
Even though the difference in connectedness of the unvaccinated networks may ap-
pear visually subtle, as in Figure 4.2, its effect can nevertheless be quite consequen-
tial in terms of expected outbreak size F̄. Figure 4.3a shows the effect of increasing
rewiring on the expected outbreak size, for vaccination coverages V = 0.5, 0.6, 0.7,
0.8, and 0.9. While rewiring has initially little effect, we start to see noticeable effects
at around p =0.01, initially for lower vaccination rates only, and later for higher
vaccination rates as well. For each of the vaccination coverages, we can observe a
transition from outbreak sizes that are far below the maximum possible outbreak
sizes (as indicated by the horizontal lines in Figure 4.3a), approaching the maximum
value with increasing rewiring. This transition spans at least an order of magnitude
under all vaccination coverages, highlighting the magnitude of the effect. Overall,
this demonstrates that rewiring changes the original network structure in such a
way that the breaking apart of the network through vaccination-driven removal of
nodes strongly influences the expected outbreak size.
We next explore a social model that may drive the rewiring process. Social contacts
may change over time for a number of reasons, and while previous infectious dis-
ease models with vaccination have focused on social dynamics due to vaccination
opinions (Mbah et al., 2012), we focus here on social dynamics that are entirely in-
dependent of vaccination. To begin, we assign a random social status s between 0
and 1 to each node, and then rewire edges assortatively, i.e. in such a way as to
implement a similarity-seeking behavior of the nodes (see Methods for detail). We
measure the strength of the similarity-seeking rewiring with τ, which captures the
threshold of dissimilarity, above which nodes seek to change their contacts to more
similar nodes (with respect to social status s). Once the network reaches a stable
equilibrium, nodes are vaccinated at random, given vaccination coverage V. Thus,
the social dynamics in this model are independent of vaccination, and vaccination
is completely random. Figure 4.3b shows the effect of the dissimilarity threshold τ

on the expected outbreak size with varying vaccination coverages. We observe that
the dynamics are similar to the ones described in Figure 4.3a. We further quantify
the difference τ can make, given a vaccination coverage V, by calculating the ra-
tio between the expected outbreak size F̄ at τ = 0.001 (the minimal value), and the
value of τ where F̄ is maximal for the given vaccination coverage. Notably, at the
minimal value τ = 0.001, there are barely any rewirings, because the desire for simi-
larity (or rather the dislike of dissimilarity) is so great that nodes cannot find suitable
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similar nodes. This value thus represents largely unmodified small-worlds network.
Therefore, the calculated ratio quantifies the maximum strength of the effect of social
dynamics. As can be seen in Figure 4.3c, this ratio can reach values of up to around
20, especially at vaccination coverage around V ∼ 0.8. In other words, depending
on the structure of the network due to social dynamics, outbreak sizes can differ by
a factor of 20, even though the vaccination coverages are the same, and vaccination
is at random. Importantly, these effect do not appear to be captured well by modu-
larity - outbreak sizes can vary considerably in the range τ < 0.03 even though the
modularity of the networks is roughly the same (see Figure 4.4, right panel).
Finally, we explore the structural dynamics of social changes depending on the dis-
similarity threshold τ. Low values of τ mean that nodes are generally seeking to
connect to other, more similar nodes, but finding other nodes is challenging, given
the very low dissimilarity threshold. Thus, the number of overall rewirings is low,
as seen in Figure 4.4 (left panel). As τ is increasing, nodes are less likely to seek new
connections, but when they do, they are more likely to find them due to the higher
dissimilarity threshold. Thus, increasing τ leads to more rewirings. At a certain
level of τ, the dynamics reverses, and rewirings become more rare: with increasing
dissimilarity thresholds, nodes have little desire to seek out new connections. These
overall dynamics of rewiring have a direct impact on the assortativity with respect
to the social status s, and on the modularity of the network. As the rewirings are
increasing, assortativity is increasing (as nodes are seeking, and finding, more simi-
lar nodes to connect to), and modularity is decreasing due to the random structural
nature of the rewire (note that while the rewiring process itself is not random, but
based on the value of s, the structural effect is nevertheless random in nature, be-
cause the values of s have initially been assigned randomly to nodes). This effect
eventually weakens again, when τ becomes so high as to prevent most nodes from
seeking to rewire in the first place.

Discussion

Vaccination is a powerful tool to curb the spread of infectious diseases in human
contact networks because of its ability to break apart potential transmission chains.
Given sufficiently high vaccination coverage, vaccination does not only break apart
transmission chains, but has the potential to break apart a large contact network into
many sub-networks, therefore substantially lowering the maximum possible size of
an outbreak. We showed here that the original network structure influences the sub-
network structure in ways that can have very strong effects on expected outbreak
sizes. In some cases, we observed a 20-fold difference of expected outbreak size, de-
spite identical vaccination coverages.
We started from the observation that the number of measles cases per capita can
differ substantially among countries even if they have very similar vaccination cov-
erages. In particular, as can be seen in Figure 4.1, the number of measles cases per
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(A) (B)

(C) (D)

FIGURE 4.2: Graphs of equal size and similar structure break apart
differently after random removal of 80% of all nodes. Two cases are
shown, starting from the same Watts-Strogatz network (N = 500 and
k = 10), but with different rewiring values: p = 0.1 in panel (a) with
degree coefficient of variation CV = 0.096, and p = 0.8 in panel (c)
with degree coefficient of variation CV = 0.214. In the right column,
the largest connected component of the resulting graph after node
removal (vaccination) is highlighted with blue edges. For top row,

the expected outbreak size F̄ = 8.72, for bottom row F̄ = 79.32.
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FIGURE 4.3: (a) Upper bound of outbreak sizes (F̄), as a function of
the rewiring probability p in the Watts-Strogatz (WS) model. (b) F̄
measured after running the social dynamics algorithm, as a function
of the social distance threshold τ (see Methods). Each dot corresponds
to a single simulations run, with 10 runs for each value of τ and vacci-
nation coverage. Dashed lines in panels (a) and (b) represent the frac-
tion of unvaccinated nodes, i.e. the theoretical maximum outbreak
size. (c) Fold change of F̄, defined as the ratio between its highest
value maxτ(〈F̄〉) and its value at lowest threshold τ, 〈F̄〉(τ = min(τ))
, after taking mean over 10 simulation runs, for each value of τ. In
all simulations WS graphs with N = 1000 and k = 10 were used;

p = 0.01 in (b) and (c).
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FIGURE 4.4: Effect of social dynamics algorithm on network proper-
ties, as a function of threshold τ (log scale). Number of actual edge
rewirings performed (left panel), assortativity of nodes’ ‘social status’
(central panel), and network modularity (right panel). As in figure 3,
dots corresponds to a single simulations run (10 simulation runs for

each value of τ).

capita on the North American continent are roughly an order of magnitude lower
than in European countries with similar vaccination coverages. While there may
be multiple reasons for this, we suggest that social dynamics influencing contact
network structures, as shown here, can also play a role. For example, some evi-
dence points to higher social segregation in the US compared to Europe (DiPrete
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et al., 2011; Mossong et al., 2008; Hens et al., 2009). It is plausible that higher so-
cial segregation will manifest itself in higher network modularity. The lowering of
network modularity is the main topological reason why vaccination would fail to
break apart the network into many disjoint subnetworks. In other words, in a net-
work with weakly inter-connected communities (and higher modularity), the same
level of vaccination will more likely disconnect communities from each other than
in a network with strongly inter-connected communities (and lower modularity),
thereby reducing the expected outbreak size in the former.
Previous models have associated social clustering with higher probabilities of
vaccine-preventable disease outbreaks (Salathé and Bonhoeffer, 2008). Such models
are generally based on the assumption of a vaccine decision-making process (Mbah
et al., 2012), whereby vaccination is clustered in the network due to individuals’
beliefs about vaccination, or other personal views that are correlated with vaccine
decision-making. In contrast, our model strictly assumes a random distribution of
vaccination, and thus describes a different phenomenon. Given that both effects are
likely to be in play in reality, it will be interesting to see how these two phenomena
interact in future work.

Methods

We generated and manipulated the networks using the networkx python library.
In particular, we used the community.greedy_modularity_communities (Clauset,
Newman, and Moore, 2004) and community.modularity functions to compute the
graphs’ modularity (Newman, 2006). The Watts-Strogatz networks used for the so-
cial dynamics model (fig. 4.4, 4.3b and 4.3c) were generated with rewiring probabil-
ity p = 0.01 and number of initial nearest neighbors k = 10. Each node was assigned
a random variable (s, its ‘social status’), uniformly distributed in [0, 1]. Then we in-
troduced a circular distance in the social-status space between node n1 and node n2,
defined as: d(s1, s2) ≡ min(|s1 − s2|, 1− |s1 − s2|). The distance takes therefore val-
ues in the range [0, 1/2]. We then run our social dynamics algorithm, summarized
hereby:
For each edge in the graph (say (n1, n2) ∈ E(G)):

1. decide if the ‘social connection’ between the two nodes n1 and n2 is too weak,
based on a global threshold τ: d(s1, s2) ≥ τ

2. if yes, pick at random one of the two nodes (nold) linked by the edge (e.g.
nold = n1)

3. pick at random another node of the graph (nnew), outside of the neighborhood
of nold (nnew /∈ NG(nold))

4. if a new link is possible (i.e. d(snew, sold) < τ), rewire the old edge to the new
contact (remove (nold, n2) and add (nold, nnew))
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were τ is a free-parameter of the model. The algorithm was stopped after the
actual rewiring slows dramatically; in our case we set the max number of iterations
equal to 4 times the number of edges 4 ∗ E = 20000, much bigger than the highest
number of moves actually observed (see fig. 4.4, left panel). Note the algorithm
preserves the total number of edges, as well as the mean degree, while it does not
necessary keep the graph connected.
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Abstract

In the past decade, digital technologies have started to profoundly influence health
systems. Digital self-tracking has facilitated more precise epidemiological studies,
and in the field of nutritional epidemiology, mobile apps have the potential to
alleviate a significant part of the journaling burden, for example by allowing
users to record their food intake via a simple scan of packaged products’ bar-
codes. Such studies thus rely on databases of available products, their barcodes,
ingredients, and nutritional values, which are not yet openly available with suf-
ficient geographical and product coverage. In this paper, we present FoodRepo
(https://www.foodrepo.org), an open food repository of barcoded food items,
whose database is programmatically accessible through an Application Program-
ming Interface (API). With currently more than 24,000 items available on the Swiss
market, our database represents a solid starting point for large-scale studies in
the field of digital nutrition, with the aim to lead to a better understanding of the
intricate connections between diets, health in general, and metabolic disorders in
particular. We are outlining the workflow of growing and maintaining the database,
and discuss future plans for a broader geographic expansion.

Keywords: Open data, digital health, nutrition, API, digital epidemiology

https://www.foodrepo.org
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Introduction

Metabolic disorders, such as diabetes or obesity, have become a major public health
concern, with increasingly large parts of the global population affected (WHO | Di-
abetes; WHO | Obesity and overweight). Nutritional epidemiologists hope to better
understand the underlying causes, the potential treatments and prevention strate-
gies by analyzing population and individual patterns through studies that generally
rely on surveying dietary habits. Traditional food-intake survey methods are based
on questionnaires filled by participants at a given frequency. The frequency of diet
records is an important factor contributing to the accuracy of the study (Satija et al.,
2015). Multiple-day diet records might provide good accuracy when not based on
memory, but require strong motivation and time commitment by the participants.
Approaches like multiple / single 24-h recalls – involving a specialized interviewer
performing surveys in person or on the phone with the participants – require less
engagement, but pose issues with missing data as they rely on short-term memory.
Finally, so-called Food Frequency Questionnaires, where participants are asked to
indicate the frequency of intake of certain foods over long periods of time (typically
1 year), demand minimal participants’ commitment, therefore allowing for large co-
hort studies on long-term dietary habits. However, the likelihood of missing or in-
correct data increases as they count on participants’ long-term memory. Overall,
self-reported dietary data present biases which limit their applications, especially
when they heavily rely on participants’ memory (Archer, Pavela, and Lavie, 2015).
Such limitations, which should be properly addressed in further epidemiological
studies, may be overcome with more advanced recording methodologies such as
dietary biomarkers and digital technologies (Subar et al., 2015).

Recent technological advances, and in particular the emergence and almost com-
plete market penetration of smartphones, have offered interesting surveying alter-
natives. In particular, mobile phones have been successfully deployed in several
food-related studies (Sharp and Allman-Farinelli, 2014), for example using food pho-
tography (Chae et al., 2011; Kong and Tan, 2012; Lee et al., 2012; Dibiano, Gunturk,
and Martin, 2013; Zhu et al., 2011; Zhu et al., 2010). Other research has also ex-
plored the possibility of recording dietary habits by asking participants to scan the
barcodes of their consumed food (Siek et al., 2006; Eyles, Jiang, and Mhurchu, 2010).
Although further investigations are required to assess self-reporting biases, these
advances in nutritional research have triggered the release of mobile apps oriented
mainly towards diabetes and weight-loss self-management (Pagoto et al., 2013; Dun-
ford et al., 2014; Stephens, Allen, and Himmelfarb, 2011; Tsai et al., 2007; Azar et al.,
2013), showing the willingness and interest of users to monitor their food intake if it
provides potential health benefits.

The further expansion of self-monitoring for research and medical purposes re-
lies on comprehensive and continuously updated food databases. A few databases
of barcoded products already exist, for example Open Food Facts or the USDA Food
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Composition Database. While they each have their strength, not all of them are openly
accessible or, they often have a limited product coverage, and are often not regularly
updated. For Switzerland, we did not find any database whose product coverage
was sufficiently high, where the data was completely open, and easily accessible
through an Application Programming Interface (API). The last point was particu-
larly important to us, as APIs are necessary for third parties to dynamically use the
data in their products and services. Our approach was therefore to build an openly
accessible database of barcoded food products with sufficiently high coverage, ac-
cessible through a stable API. Rather than focusing on a wide geographic range, we
focused on a small country (Switzerland) in order to obtain the necessary coverage.
The focus on the Swiss market further benefits from the need to support multiple
languages from the beginning, thus making the system readily expandable to other
countries, which we are now planning to do.

Here, we present this system, which we call FoodRepo
(https://www.foodrepo.org), an openly accessible database of barcoded food
products, and we describe the data-acquisition framework, its quality control
and maintenance. Here, the word repository is meant to be understood as a data
repository, where the community can deposit an increasing number of datapoints
on food products. The growing community around FoodRepo and the validation of
new products make our database robust, scalable and self-sustainable in the long
run. Currently, the FoodRepo database mostly holds products sold in Switzerland,
from the main grocery stores in the country. Its international expansion is under
development.

Any item in the database is accessible through the FoodRepo website ( for an
example of products contained in the FoodRepo database, please see fig. 5.1-a ) or
via our API, described in section Usage Notes. The CC-BY-4 license under which
our database is released will allow its exploitation by different type of users, from
academic researchers to commercial partners. For instance, a Swiss consumers asso-
ciation is using FoodRepo data in their NutriScan mobile app (Application NutriScan)
to make the food package information more accessible, and to provide their users
with an overall nutritional score.

Beyond this specific example, the FoodRepo database opens the way for promis-
ing research opportunities in the field of digital epidemiology and personalized nu-
trition. Notably, we foresee that, through dietary live-tracking, this database can
support studies which combine other recent technological developments and new
findings in our understanding of the human metabolism. For example, phone-
connected devices for continuous monitoring of blood glucose levels have recently
been made available to diabetic patients (Pfeiffer, 1989; Aljasem et al., 2001), as well
as numerous direct-to-consumer devices to estimate glucose levels have appeared
on the market. A plethora of other wireless sensors are now also available to record
various physiological parameters such as heart rate or blood pressure, marking a

https://www.foodrepo.org
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new era of ‘high-throughput human phenotyping’ (Elenko, Underwood, and Zo-
har, 2015). Studies that would simultaneously track participants’ parameters, food
intake, glycemic response and physical activity might provide detailed insights on
the variability of individual metabolic responses. Interestingly, one of the factors
which has recently been found to account for a large part of this variability is mi-
crobiota (Griffin et al., 2017; Turnbaugh et al., 2006; Le Chatelier et al., 2013; Zeevi
et al., 2015; Pedersen et al., 2016). Large-scale testing of these hypotheses through
self-tracking could contribute to the assessment of the complex metabolic response
of the human body to different energy sources. This requires detailed records of
food intake that includes nutritional information as well as eating times (Scheer et
al., 2009) and food portion sizes (Ello-Martin, Ledikwe, and Rolls, 2005; Ledikwe,
Ello-Martin, and Rolls, 2005; Young and Nestle, 2002), all challenges that FoodRepo
may help to overcome.

However, we highlight an important limitation of all food databases. Generally,
the curators of such repositories cannot ensure the validity of the data reported by
the producers on the nutrition facts labels. It is indeed well known in the literature
that there might be large discrepancies between the reported nutrients and the actual
food content, due to different factors, such as food pre-processing or the different
industry standards (Ng and Popkin, 2012; Ng and Dunford, 2013; Ahuja et al., 2009;
Merchant and Dehghan, 2006; Phillips et al., 2006; Deharveng et al., 1999). Therefore,
all studies using databases such as the one presented here would do well to assess
the validity of such data and ideally quantify the reporting errors, especially when
using the reported data on nutritional values.

Analyses of the database evolution will give interesting indication on the dietary
trends and on the overall modification of the nutritive quality of packaged food.
Although the database itself does not inform on the buying frequency, the contin-
uous introduction of specific products in the market and thus in the database can
potentially indicate how retailers react to customer demands and changing dietary
habits.

Methods

The database building and maintenance process relies on the following steps: i) col-
lection of product pictures from local retailers, ii) data extraction from the pictures,
iii) validation of the extracted data, and iv) permanent storage in the database (Fig.
5.2). For the initial build of the database, we designed a specific pipeline (bootstrap
workflow, Fig. 5.2-a, which allowed us to validate the first 20,000 food products in
a few months. Given the dynamic nature of our data and the cost of the bootstrap
workflow, we designed a second pipeline (currently under development) which re-
lies on the growing FoodRepo community. This workflow (community-based, Fig.
5.2-b) allows us to keep up with the new and seasonal products introduced to the
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FIGURE 5.1: (a) Screenshot from the webpage of a product on the
FoodRepo website. (b) Schematic representation of the pipeline be-
hind our API. When a user or an application (left column) sends a
call to the API, the request is handled by the server that hosts the API
(middle column). This sends then a query to the server which hosts
the FoodRepo database (right column), where the query is handled
by the Elastic Search engine. The data is returned to the API server
which performs final formatting before giving it back to the user or
the application. (c) Distribution of API response times, color-coded
according to different sections of the back-end pipeline, as shown in
panel b. In green (main plot and inset) the response-times of the Elas-
tic Search server to the application server; in blue the full time needed

for a user to have the data after a call to our API.

https://www.foodrepo.org/ch/products/10839
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market by the retail shops, as well as to ensure the scalability and self-sustainability
of FoodRepo in the long run.

The bootstrap workflow (Fig.5.2-a) consists of 3 main steps. The first step en-
tailed a massive manual data collection from three large groceries stores in Switzer-
land upon approval from the shops (specifically Migros, Coop, and Lidl). We hired
students to take pictures of all barcoded food items in retail shops located in the Lau-
sanne area. To facilitate the data collection, we specifically designed a simple phone
app with which students could scan the products’ barcode and take pictures of the
front and back of the package, the product’s name, ingredients list, and nutrition
facts. These pictures were then automatically uploaded to the database. At the end
of this step, students had collected on average 4.4 pictures per item.
The second step focused on the extraction of information contained in the pictures.
Due to the presence of multi-language ingredients and the often wrinkled surfaces
of item packaging, Optical Character Recognition (OCR) systems could not achieve
a reliable accuracy. We therefore opted for a crowd-sourced solution and in par-
ticular we decided to recruit workers on Amazon Mechanical Turk (AMT). AMT is a
platform connecting requesters to workers, the latter being financially compensated
to achieve tasks requiring human intelligence (HITs - Human Intelligence Tasks).
Here, we designed a graphical user interface (GUI) allowing workers to transcribe
the text they could read from product pictures. Specifically, the GUI presented text
boxes where AMT workers provided the product name, nutritional values (in a ta-
ble format) and ingredients, in every language present on the label (German and/or
French for almost all items; Italian and/or English in addition for some products).
Three different HITs were set up: one for nutrients, one for product name and one
for ingredients. For the last two, we set up qualification rounds for AMT workers
as their transcription involved some language skills. AMT workers could choose to
either enter from scratch the information they saw on the pictures, or to approve /
modify the suggestions given by an OCR system (Text Recognition API Overview |
Google Developers). At the end of the second step, all annotated products were up-
loaded into the database, flagged as ready for validation.
The third step was thus dedicated to data validation, which was based on extensive
manual checking by the FoodRepo team, and was additionally informed by manual
reports from visitors to the FoodRepo website and with error-detection analyses of
nutritional values. Such online reports are encouraged by the presence of a ‘report

an issue’ button on each product web-page, which prompts a visitor to file an is-
sue when spotting a potential error. Details about the error-detection analyses are
given in the Technical Validation section. Before the final validation of the data, the
FoodRepo team as well as students manually checked all products thoroughly.

The community-based workflow (fig. 5.2-b) is similar to the bootstrap workflow,
but instead of counting on AMT workers, it relies on the growing FoodRepo commu-
nity. As new products become available in retail shops, FoodRepo users can submit
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them by uploading the corresponding package pictures, using the FoodRepo smart-
phone app. Currently, the information extraction is still performed by the FoodRepo
team, but additional features are being implemented in the app, which will allow
users to directly type the product details contained on the package. Before user-
provided information is permanently stored in the FoodRepo database, consistent
entries will need to be submitted by at least three different FoodRepo users. If such
consensus will not be reached after seven independent submissions (i.e. there are
still less than three consistent entries), the item will be manually analyzed by the
FoodRepo team for definitive validation and inclusion into the database.
This procedure will ensure minimal intervention from our team, while still guar-
anteeing the reliability of the data. The FoodRepo team is currently fostering the
development of an active community through which the continuity of FoodRepo is
assured, and which will likely accelerate the birth of independent exploitations of
the database, from both public and private partners.

FIGURE 5.2: Schematic overview of FoodRepo data collection and
validation processes. The two workflows are illustrated here. The
bootstrap workflow (a) was based on the joint work of the FoodRepo
team and crowd-sourced workers collecting and validating the data.
This allowed the storage of the first 14,000 or so products in the
database. The community-based workflow (b) allows for long-term
sustainability of the database thanks to customers uploading new
products through FoodRepo mobile app and the continuous support

of the FoodRepo team.

Data Records

All FoodRepo data are stored in a (PostgreSQL: The world’s most advanced open source
database) database, physically hosted on a server in Ireland. For a quick overview of
the dataset, a database dump can be downloaded from the dedicated folder in our
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API repository (FoodRepo database dumps). However, these dumps are not generated
regularly, and we strongly encourage the use of the API which delivers up-to-date
information. For each product, which comes with a unique numerical identifier, the
database contains pictures of the item as found in the shop (usually between three
to seven .jpg files), together with the main information presented on the package,
i.e. the product name, nutritional values, ingredients list, barcode, and country of
origin. The database holds as well the dates of the creation and last modification
of the related item in the database (see Table 5.1 ). The programmatic access to the
database is allowed by an API, described in the section Usage Notes

Technical Validation

As described in the Methods section, during the bootstrap stage (Fig. 5.2-a) the final
validation was performed manually by the FoodRepo team, while in the community
workflow (Fig. 5.2-b), the accuracy of the data is ensured by the consensus test
(the FoodRepo team intervenes only if fewer than three matches are achieved after
the uploads of the same product by seven different users). We highlight here that
FoodRepo strictly reflects the information printed on products packages, even when
suspicious values are present on the labels. All validation processes have thus been
set-up to detect transcription errors.
Within this rationale, computational analyses were implemented for the detection
of outliers, in particular regarding the nutritional values. These tests reflect basic
constraints, such as the mass upper-limit:

p + f + c ≤ 100 (5.1)

where p, f , c are respectively the product’s protein, fat and carbohydrates con-
centrations expressed in grams per 100 grams of product. From equation 5.1, one
can also derive other linear inequalities for a single nutrient or couples of nutrients,
namely p + f ≤ 100, p + c ≤ 100, and c + f ≤ 100. These simple tests allowed
us to detect transcription errors in earlier versions of the database, as illustrated
by the outliers in fig. 5.3-a which shows the distribution of products in the fat-
carbohydrates space with the joint mass boundary.
Similarly, other typos could be spotted by checking that the concentration of a sub-
class of nutrient is smaller than the one of the parent-class. This is the case for in-
stance of sugars VS carbohydrates, or saturated-fat VS fat, shown in fig. 5.3-b.
Another simple relation that helps check products’ nutrition facts can be derived
from the standard approximation of energy density based on nutrients composition
(COUNCIL DIRECTIVE of 24 September 1990 on nutrition labelling for foodstuffs):

E ∼ 4p + 9 f + 4c, (5.2)
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where the product’s energy content E is expressed in kCal/100 g. Combining
expressions 5.1 and 5.2 provides upper and lower boundaries for the energy content
(for example fig. 5.3-c). In this case however, not all dots that fall outside the bound-
aries were due to typos in transcription. Indeed, the approximation in equation 5.2
does not take into account the different contribution to energy of complex carbohy-
drates such as polyols, which account for less than 4 kCal/g. This is why products
such as candies and chewing gums would fall below the energy boundaries.

FIGURE 5.3: Examples of tests implemented with linear boundaries
on nutritional values. Dots outside the boundaries have been in-
spected and corrected whenever data were different from the prod-

ucts packages.

Usage Notes

In order to facilitate the access to the database, we built an openly accessible appli-
cation programming interface (API). Any terminal user, including third party apps
or services, can send API requests to retrieve specific data. The API pipeline is il-
lustrated in fig. 5.1-b. User’s requests are handled on an application server, where
an Elastic Search (ES) application handles the queries on another cloud computing
service, based in Ireland. The ES response is then returned to the user after JSON
formatting and compression (on demand). We checked that handling the request be-
tween the two servers does not critically compromise the total user-response time.
We run series of single-page API calls, every 6 hours, over a week, in order to mea-
sure the full response-time and the application server response-time. We observed
that the latter was consistently fast across all experiments (in the range of 20-50 ms)
and that the bottleneck was rather the transmission between the terminal user and
the application server (the average full response time was about 250 ms - see Fig.
5.1-c).
For a quick introduction to the API endpoints, users are welcome to try them out on
the OpenFood API Documentation. Furthermore, on the project’s GitHub repository,
one can also find usage cases (OpenFood API GitHub repository) in Python, Ruby, Curl
and JavaScript, as well as examples of complex queries which include fuzzy searches
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(Elasticsearch queries example). When fetching a large amount of data, we suggest us-
ing the option of compressed data1 and the possibility to include/exclude specific
fields of each product (see for details the OpenFood API Documentation). In this way,
one could reduce the response payload size by up to a factor of 10.
We remind readers that all contents (other than computer software) made available
by FoodRepo on its websites, apps or services are licensed under the Creative Com-
mons Attribution 4.0 International License. We however would like to highlight the
fact that product images may contain copyrighted data such as brand logos.

Nomenclature

• API: Application Programming Interface - a set of tools and methods that al-
low to types of software to communicate. The FoodRepo API allows other
applications to get and use the data.

• CC-BY-4: Creative-Commons public license, with the ‘Attribution’ term. It
implies that anyone is free to share and transform the content of FoodRepo,
even for commercial purposes, with the obligation to properly give credit
to FoodRepo, and to display any modification without claiming direct en-
dorsement from FoodRepo. For a detailed description, see the license text at
https://creativecommons.org/licenses/by/4.0/

• OCR: Optical Character Recognition - tools that allow for automatic conver-
sion of text contained in images to machine-readable formats.

• AMT: Amazon Mechanical Turk - web platform providing a marketplace,
where workers perform tasks set up by requesters, usually in exchange of
money.

• HIT: Human Intelligence Task - task related performed by workers in crowd-
sourcing platform, such as AMT.

• PostgreSQL: A popular and freely available relational database.

• JSON: a JavaScript-based file format commonly used for browser-server data
exchange.

• Elastic Search: a very popular open-source search-engine.

Conflict of Interest Statement

The authors declare that the research was conducted in the absence of any com-
mercial or financial relationships that could be construed as a potential conflict of
interest.

1This can be done by simply setting in the request header: Accept-Encoding: gzip

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://en.wikipedia.org/wiki/Application_programming_interface
https://creativecommons.org/licenses/by/4.0/
https://en.wikipedia.org/wiki/Optical_character_recognition
https://www.mturk.com
https://docs.aws.amazon.com/AWSMechTurk/latest/AWSMechanicalTurkRequester/Concepts_HITsArticle.html
https://www.postgresql.org
https://www.json.org
https://www.elastic.co/products/elasticsearch
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Fields Sample
Product ID 972
Barcode 7611654884033
Name Chocolat au lait aux noisettes
Quantity 150
Units g
Portion
Quantity

30

Portion
Unit

g

Alcohol by
Volume

0

Origin Switzerland
Ingredients (FR) sucre de canne brut* (Paraguay), cacao en pâte (Pérou),

pâte de noisette 4.5% (Turquie), gousses de vanille*. Teneur
en cacao du chocolat: 32% minimum. * Ingrédients con-
formes aux standards du commerce équitable Fairtrade. 58.6%
du poids total. Dont sucre et produits à base de cacao
avec bilan de masse. Tous les ingrédients agricoles sont is-
sus de l’agriculture biologique (DE) Rohrohrzucker* (Paraguay),
karamellisierte geröstete Haselnüsse 22% (Haselnüsse [Türkei],
Rohrohrzucker [Paraguay], Wasser), Vollmilchpulver (Schweiz),
Kakaobutter* (Dominikanische Republik), Kakaomasse* (Peru),
Haselnusspaste 4.5% (Türkei), Vanilleschoten*, Kakaobestandteil
in der Schokoladenmasse: mindestens 32%, * Nach Fairtrade-
Standards gehandelte Zutaten. Gesamtanteil 58.6%. Davon Kakao-
erzeugnisse und Zuckerarten mit Mengenausgleich. Alle land-
wirtschaftlichen Zutaten stammen aus biologischem Anbau. Al-
lergie: Enthält Haselnuss, Milch. Kann spuren von Mandeln, Soja
enthalten.

Nutrients
(per 100g)

Energy 2410.0 kJ; Energy (kCal) 577.0 kCal; Fat 40 g; Saturated fat
16 g; Carbohydrates 43 g; Sugars 42 g; Fiber 4 g; Protein 10 g; Salt
0.2 g

Created at 2016-05-31, 17:54:07
Updated at 2017-11-16, 10:13:31
Pictures Url to the front picture of the sample product: e.g.

https://goo.gl/PyjjNa

TABLE 5.1: Sample product from the FoodRepo database with its val-
ues for the most relevant fields. While here we only provide the link
to the front image of the product, an API call would provide the links
to all pictures available for the requested products. A complete de-
scription of the fields provided by the API is available in the API doc-

umentation, on the project’s GitHub repository.
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Chapter 6

Conclusions and perspectives

The first contribution of our project on the 1630 Venice plague epidemic (Lazzari
et al., 2019) surely lies in the dataset. Although similar datasets have been already
recorded on other past outbreaks, the records contained in the Patriarchal Archive
of Venice clearly excel for their space-time resolution, as well as for the details
of deaths, considering the scientific knowledge and technology available at that
time. Such dataset, first of all allowed us to discover the presence of a long tail
of infections after the main outbreak (in late 1630), as never reported before in
the literature (to the best of our knowledge). This forced us to look for models
that could indeed reproduce such secondary outbreak, in 1631. We eventually
proposed two approaches, not necessarily mutually exclusive. The first, based on
a deterministic model, manage to well reproduce the entire epidemic curve, but
requires a quick change in SIR model parameters (β, γ), with a resulting small
increase in the basic reproduction number (R0). The second one manages to show
the secondary outbreak as a result of a delayed adaptation of transmission rate to
the number of infected. While the former approach leaves the possibility to changes
in both human behavior or biological factors in the disease dynamics, the latter
focuses on hosts’ behavioral changes and therefore does not require a change in the
pathogen’s transmission route. This would be the case for instance in a scenario in
which bubonic plague evolved into pneumonic plague.
This project would definitely benefit in the future from further data collection. In
particular detailed records of deaths from other parishes will help clarify whether
or not another outbreak was co-occurring in the late 1630 in the city, and was still
reported as plague (due for instance to the lack of medical knowledge of the public
health officers, or/and the necessity to speed up sanitization procedures during
the weeks of high disease incidence). Further resources will be required, as such
data collection it is quite time consuming and requires the deployment of ancient
language experts, that can read and transcribe information contained in the old
parish books.

The work on influenza spread (Smieszek, Lazzari, and Salathé, 2019) leverages
the increasing evidence of the importance of aerosol on disease transmission,
in addition to the droplet-mediated one (Cowling et al., 2013). We were able to
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establish a range for the relative impact of improved ventilation on epidemic
control, with respect to standard immunization procedures. Furthermore, we
performed sensitivity analysis on few parameters (shedding rate, droplet infectivity
and air change rate – whose values were chosen anyways from the literature) in
order to show that the model does not behave abruptly for small variation of such
parameters.
An improved ventilation, closer to the recommended levels would surely have a
positive impact on diseases control. However, the quantification of such benefits
provided in our work still depends on few assumptions, in particular the relative
importance of aerosol- versus droplet-mediated transmission, which we set to
be equal. As in the year of the data collection (Salathé et al., 2010) no influenza
outbreak was detected in that school, it was impossible to compare our simulated
outbreaks with any real data. Apart from the possibility to repeat the study in
the future waiting for an outbreak to happen, a more cost-effective way would be
to run a retrospective validation. Namely, one would have to recover data from
past outbreaks in similar settings such as high schools, where ventilation levels
were recorded, in order to test the model hypothesis, assuming that the underlying
contact networks are similar (down to the structural details relevant to disease
transmission).

Our third work on infectious disease dynamics (Lazzari and Salathé, 2019)
proposes a simple explanation of differences in the incidence of highly infectious
diseases such as measles, across countries with similar vaccination coverages. Our
model uses as main ingredient a coarse-grained representation of social features,
implemented as one-dimensional nodes’ attribute. Although it was not fitted to any
specific outbreaks, the model shows that significant differences in outbreak sizes, up
to 20-fold, are possible across different levels of segregation (for a given vaccination
coverage). Furthermore, such effect it is more pronounced for vaccination coverages
closed to ∼ 80%. Further work could try to first identify the main socio-economical
factors leading to social distancing, and then embed them in a simple network
model for epidemic spreading. An additional significant expansion of this work
would include the combination of another important social phenomenon, relevant
to diseases spread, namely the diffusion of anti-vax sentiment. It has been shown
indeed that clustering of such opinions can lead to higher outbreak size (Salathé
and Bonhoeffer, 2008). Therefore, it would be interesting to show how the effects of
social segregation (unrelated to diseases spread) and clustering of vaccine hesitancy
combine in real-world scenarios.

On a different research line, our FoodRepo database (Lazzari et al., 2018) aims to
fill the need of digital technology in nutritional epidemiology, namely tools which
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can provide higher coverage and time-resolution in intake records, without an in-
crease of the researchers’ and participants’ work-load. Furthermore, the digital ap-
proach has the potential to considerably reduce the error estimations for instance in
calories and single-nutrients intake, which is quite hard to assess, especially with
previous methodologies.

Developers form both public and academic sector have been using the FoodRepo
API1 in the last three years, showing the usefulness of an open database, which tries
to keep up with the constantly evolving market. One of the challenge of such type
of databases is indeed to keep including and transcribing the new food products
constantly appearing in retail shops. The FoodRepo staff is trying to establish a
community around the database, leveraging the use of our end-user mobile app,
that allows the uploading of new products, as well as the transcription of the
information printed on the package. Furthermore, next to quantity we want to
ensure the correctness of the digitized data. For this, both algorithmic and manual
checks are being set up, in order to account for transcription errors, as well as edge
cases, such as typos or other sort of errors present actually on the food package (in
which case FoodRepo choses to report the original package content).
As already mentioned, database like FoodRepo are meant to hopefully help collect
food intake data with minimal burden from both participants and researchers,
through the use for instance of mobile apps, that constantly fetch data from such
repositories. In particular in our lab, the rest of the FoodRepo team has already
developed myFoodRepo2, a mobile app that allows indeed tracking of food intake,
by pictures or barcodes. Tools like myFoodRepo will hopefully allow to quickly scale
up cohort studies on nutritional epidemiology, such as the one ongoing in the lab,
Food&You3, devoted to assess the variability of the glycemic response across healthy
subjects.

Overall, I am glad I had the possibility to touch different research areas, although
the works on infectious diseases dynamics clearly played a larger role than the one
in nutritional epidemiology. Thanks to the diversity of the projects I have been in-
volved, I could work with different types of dataset, together with collaborators
coming from diverse scientific communities and backgrounds. I believe that hav-
ing such interdisciplinary exposure and portfolio is nowadays an important asset
towards which, both academic and industrial research has received a considerable
shift, in the last decade or so. As upcoming fields like personalized medicine will in-
creasingly require such approach, I hope that this will be more and more reflected in
the way also undergraduate programs are designed, especially for those ‘traditional’
disciplines, like biology or physics, that I had the pleasure to cross in these last 6
years.

1Application Programming Interface
2https://www.myfoodrepo.org
3https://www.foodandyou.ch/en

https://www.myfoodrepo.org
https://www.foodandyou.ch/en
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Curriculum vitae

Gianrocco Lazzari
gianrocco.lazzari@epfl.ch

Personal

Born on June 12, 1988. Italian Citizen. Swiss work permit B.

Summary

PhD student at EPFL in computational biology with broad interdisciplinary interests
and computational skills. Main focus in infectious diseases modeling and nutritional
epidemiology. Experience in: stochastic and statistical modeling; complex network
science; data scraping, analysis and visualization applied to different data types,
from nutritional databases to bio-luminescence single-cell video data.

Education

PhD student, prof. Marcel Salathé’s lab, EPFL (2015 – 2020)
EPFL courses as student:
– Applied Data Analysis; dr. Michele Catasta (Stanford)
– Pattern Classification and Machine Learning; dr. Emtiyaz Khan (Riken)
– Responsible Conduct in Biomedical Research; dr. Hirosue Sachiko (former EPFL)
Trainee student, prof. Felix Naef’s lab, EPFL (2014 – 2015)
Project topic: Transcription regulation in cell-cycle.
Signal extraction from single-cell bio-luminescence video data (ImageJ, Matlab) for
cell genealogy reconstruction; unsupervised learning and statistical modeling of sig-
nal data (R).
PhD student, prof. E. van Nimwegen’s lab, University of Basel (2013 – 2014)
Project topic: Stochastic models for genome evolution (Python)
Master of Science, Theoretical Physics, Utrecht University (2011 – 2013)
Main topics: Quantum field theory, Cosmology, Plasma Physics, Computational
Physics, String theory, General Relativity
Bachelor of Science, Physics, University of Catania (Italy) (2007 – 2010)
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Student at Scuola Superiore di Catania (2007 – 2010)
General topics in classical and quantum physics

Main PhD projects

• Modeling of influenza spread in public buildings, aiming to assess the relative
effect of ventilation in outbreak reduction, w.r.t. vaccination strategies. The
diffusion model was based on the contact network of an high-school, measured
in a previous study [1].

• Analysis of FoodRepo data, our open database of swiss barcoded food prod-
ucts, for data quality assessment, data sharing and visualization [2].

• Modeling spread of ancient plague, based on historical data from the 1630
plague outbreak in Venice. The work includes the use of stochastic and de-
terministic modeling of diseases spread, as well unsupervised spatial analysis
of time-series data [3].

• Implementation of a network stochastic model that can explain differences in
outbreak sizes for highly infectious diseases, such as measles, in countries with
similar vaccination coverages [4].

Other projects

• https://hopsuisse.github.io – project realized for the Applied Data Analy-
sis course at EFPL. The project involved web data scraping, analysis and visu-
alization (Python) of running events results in Switzerland.

• https://www.foodrepo.org/ch/nutri-score-visualization-intro – inter-
active visualization of food products of FoodRepo database, in the macronu-
trients space

Teaching

Teaching assistant for EPFL M.Sc./B.Sc. courses:

• Unsupervised and Reinforcement Learning in Neural Networks; fall 2016; dr.
M.-O. Gewaltig

• Physical Biology of the Cell; spring 2016, fall 2017; prof. P. De Los Rios

Languages

Italian (mother tongue); English, French (fluent); Spanish, Portuguese (beginner)

http://www.scuolasuperiorecatania.it/en/content/who-we-are
https://hopsuisse.github.io
https://www.foodrepo.org/ch/nutri-score-visualization-intro
https://www.foodrepo.org
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Computer skills

Python / R (current daily use – modeling, data analysis and visualization, machine
learning)
Interactive data visualization (e.g.: Plotly, Leaflet)
Matlab / ImageJ (previous daily use – image analysis, at EPFL)
Mathematica (previous daily use – master thesis work)

Awards

Winner of the “National Physics and Mathematics Certamen – Fabiana D’Arpa", 6th
ed., 2007, L. da Vinci high school
Winner of the “Giovanni Raciti" prize, 2010 ed. – University of Catania (best B.Sc.
career and thesis of the year)

Other activities

Current PhD students representative for the Computational Biology Doctoral School
(EDCB) at EPFL. Member of doctoral school’s working group on improvements of
phd students’ life conditions in satellite campuses.
Previously involved in different EPFL students associations, such as the ones for
latin dance, mountaineering and sustainable development.

Publications1

1 Smieszek, T., Lazzari, G., & Salathé, M. (2019). Assessing the dynamics and
control of droplet-and aerosol-transmitted influenza using an indoor position-
ing system. Scientific reports, 9(1), 2185.

2 Lazzari, G., Jaquet, Y., Kebaili, D. J., Symul, L., & Salathé, M. (2018). FoodRepo:
An Open Food Repository of Barcoded Food Products. Frontiers in Nutrition,
5, 57.

3 Lazzari, G., Colavizza, G., Drago, D., Zugno, F., Bortoluzzi, F., Erboso, A.,
Kaplan, F., & Salathé, M., (2019) Death in Venice: Two-stage plague outbreak
during the Second Pandemic (1630-31) (in preparation).

4 Lazzari, G. & Salathé, M., (2020) Breaking Apart Contact Networks with Vac-
cination (under review).

5 Lazzari, G., & Prokopec, T. (2013). Symmetry breaking in de Sitter: a stochastic
effective theory approach. arXiv preprint arXiv:1304.0404.

1Google Scholar profile

https://www.epfl.ch/education/phd/programs/edoc-student-representatives/
https://scholar.google.ch/citations?user=DYC1LN8AAAAJ&hl=en&oi=ao




79

Bibliography

Abbott, Alison (2001). “Digital history”. In: Nature 409, p. 556.
Abrate, Mario (1972). Popolazione e peste del 1630 [ie un mille seiciento e trenta] a Car-

magnola. Vol. 1. Centro studi piemontesi.
Adams, WC (1993). “Measurement of breathing rate and volume in routinely per-

formed daily activities, Final report”. In: Human Performance Laboratory, Physical
Education Department, University of California, Davis. Prepared for the California Air
Resources Board, Contract A033-205.

Ahuja, Jaspreet KC et al. (2009). “The impact of revising fats and oils data in the US
Food and Nutrient Database for Dietary Studies”. In: Journal of Food Composition
and Analysis 22, S63–S67.

Alfani, Guido and Samuel K Cohn Jr (2007). “Nonantola 1630. Anatomia di una
pestilenza e meccanismi del contagio (con riflessioni a partire dalle epidemie mi-
lanesi della prima Età moderna)”. In: Popolazione e storia 8.2, pp. 99–138.

Alfani, Guido and Tommy E. Murphy (2017). “Plague and Lethal Epidemics in the
Pre-Industrial World”. en. In: The Journal of Economic History 77.01, pp. 314–343.
ISSN: 0022-0507, 1471-6372. DOI: 10.1017/S0022050717000092. URL: https://
www.cambridge.org/core/product/identifier/S0022050717000092/type/

journal_article (visited on 11/06/2017).
Aljasem, Layla I et al. (2001). “The impact of barriers and self-efficacy on self-care

behaviors in type 2 diabetes”. In: The Diabetes Educator 27.3, pp. 393–404.
Amazon Mechanical Turk. https://www.mturk.com/.
American Society of Heating, Refrigerating and Air-Conditioning Engineers (2016).

ANSI/ASHRAE Standard 62.1-2016: Ventilation for Acceptable Indoor Air Quality.
American Society of Heating, Refrigerating and Air-Conditioning Engineers.

Anderson, Roy M, B Anderson, and Robert M May (1992). Infectious diseases of hu-
mans: dynamics and control. Oxford university press.

Application NutriScan. https://www.bonasavoir.ch/nutriscan.
Archer, Edward, Gregory Pavela, and Carl J. Lavie (2015). “The Inadmissibility of

What We Eat in America and NHANES Dietary Data in Nutrition and Obe-
sity Research and the Scientific Formulation of National Dietary Guidelines”. In:
Mayo Clinic Proceedings 90.7, pp. 911–926.

Atkinson, Michael P and Lawrence M Wein (2008). “Quantifying the routes of trans-
mission for pandemic influenza”. In: Bulletin of mathematical biology 70.3, pp. 820–
867.

https://doi.org/10.1017/S0022050717000092
https://www.cambridge.org/core/product/identifier/S0022050717000092/type/journal_article
https://www.cambridge.org/core/product/identifier/S0022050717000092/type/journal_article
https://www.cambridge.org/core/product/identifier/S0022050717000092/type/journal_article
https://www.mturk.com/
https://www.bonasavoir.ch/nutriscan


80 BIBLIOGRAPHY

Azar, Kristen MJ et al. (2013). “Mobile applications for weight management: theory-
based content analysis”. In: American journal of preventive medicine 45.5, pp. 583–
589.

Azimi, Parham and Brent Stephens (2013). “HVAC filtration for controlling infec-
tious airborne disease transmission in indoor environments: Predicting risk re-
ductions and operational costs”. In: Building and Environment 70, pp. 150–160.

Bamji, Alexandra (2016). “Medical Care in Early Modern Venice”. en. In: Journal of
Social History 49.3, pp. 483–509. ISSN: 0022-4529, 1527-1897. DOI: 10.1093/jsh/
shv060. URL: http://jsh.oxfordjournals.org/lookup/doi/10.1093/jsh/
shv060 (visited on 06/05/2016).

Barclay, Victoria C et al. (2014). “Positive network assortativity of influenza vaccina-
tion at a high school: implications for outbreak risk and herd immunity”. In: PloS
one 9.2, e87042.

Bell, D and J Atkinson (1999). “Centrality measures for disease transmission net-
works”. In: Social Networks 21, pp. 1–21.

Belongia, Edward A et al. (2016). “Variable influenza vaccine effectiveness by sub-
type: a systematic review and meta-analysis of test-negative design studies”. In:
The Lancet Infectious Diseases 16.8, pp. 942–951.

Beltrami, Daniele (1954). Storia della popolazione di Venezia dalla fine del secolo XVI alla
caduta della Repubblica.

Bill Gates: deadly flu epidemic is one of biggest threats to humanity - Insider (2018). https:
//www.insider.com/deadly-flu-epidemic-biggest-threat-bill-gates-

2018-learnings-2018-12.
Bradley, Leslie (1977). “The most famous of all English plagues: a detailed analysis

of the plague at Eyam 1665-6”. In: Local Population Studies Supplement 4, pp. 63–
94.

Brankston, Gabrielle et al. (2007). “Transmission of influenza A in human beings”.
In: The Lancet infectious diseases 7.4, pp. 257–265.

Bubonic plague confirmed in China (2019). https://www.washingtonpost.com/world/
2019/11/18/bubonic-plague-inner-mongolia/.

Cassell, Gail H and John Mekalanos (2001). “Development of antimicrobial agents
in the era of new and reemerging infectious diseases and increasing antibiotic
resistance”. In: Jama 285.5, pp. 601–605.

Cattuto, Ciro et al. (2010). “Dynamics of person-to-person interactions from dis-
tributed RFID sensor networks”. In: PloS one 5.7, e11596.

Chae, Junghoon et al. (2011). “Volume estimation using food specific shape tem-
plates in mobile image-based dietary assessment”. In: Proceedings of SPIE.
Vol. 7873. NIH Public Access, 78730K.

Chen, Szu-Chieh and Chung-Min Liao (2010). “Probabilistic indoor transmission
modeling for influenza (sub) type viruses”. In: Journal of Infection 60.1, pp. 26–
35.

https://doi.org/10.1093/jsh/shv060
https://doi.org/10.1093/jsh/shv060
http://jsh.oxfordjournals.org/lookup/doi/10.1093/jsh/shv060
http://jsh.oxfordjournals.org/lookup/doi/10.1093/jsh/shv060
https://www.insider.com/deadly-flu-epidemic-biggest-threat-bill-gates-2018-learnings-2018-12
https://www.insider.com/deadly-flu-epidemic-biggest-threat-bill-gates-2018-learnings-2018-12
https://www.insider.com/deadly-flu-epidemic-biggest-threat-bill-gates-2018-learnings-2018-12
https://www.washingtonpost.com/world/2019/11/18/bubonic-plague-inner-mongolia/
https://www.washingtonpost.com/world/2019/11/18/bubonic-plague-inner-mongolia/


BIBLIOGRAPHY 81

Christakos, G., R. A. Olea, and H. L. Yu (2007). “Recent results on the spatiotem-
poral modelling and comparative analysis of Black Death and bubonic plague
epidemics”. In: Public Health 121.9, pp. 700–720. ISSN: 0033-3506. DOI: 10.1016/
j.puhe.2006.12.011. URL: http://www.sciencedirect.com/science/article/
pii/S0033350607000145 (visited on 12/17/2018).

Christley, R et al. (2005). “Infection in social networks: using network analysis to
identify high-risk individuals”. In: American Journal of Epidemiology 162, pp. 1024–
1031.

Clauset, Aaron, Mark EJ Newman, and Cristopher Moore (2004). “Finding commu-
nity structure in very large networks”. In: Physical review E 70.6, p. 066111.

COUNCIL DIRECTIVE of 24 September 1990 on nutrition labelling for foodstuffs. http:
//eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:1990L0496:

20081211:EN:PDF.
Cowling, Benjamin J et al. (2013). “Aerosol transmission is an important mode of

influenza A virus spread”. In: Nature communications 4.
Curtis, Daniel R. and Joris Roosen (2017). “The sex-selective impact of the Black

Death and recurring plagues in the Southern Netherlands, 1349-1450”. en. In:
American Journal of Physical Anthropology 164.2, pp. 246–259. ISSN: 00029483. DOI:
10.1002/ajpa.23266. URL: http://doi.wiley.com/10.1002/ajpa.23266
(visited on 11/06/2017).

Daisey, Joan M, William J Angell, and Michael G Apte (2003). “Indoor air quality,
ventilation and health symptoms in schools: an analysis of existing information”.
In: Indoor Air 13.1, pp. 53–64.

Dean, Katharine R. et al. (2018). “Human ectoparasites and the spread of plague in
Europe during the Second Pandemic”. en. In: Proceedings of the National Academy
of Sciences, p. 201715640. ISSN: 0027-8424, 1091-6490. DOI: 10 . 1073 / pnas .

1715640115. URL: http : / / www . pnas . org / lookup / doi / 10 . 1073 / pnas .
1715640115 (visited on 01/16/2018).

Deharveng, G et al. (1999). “Comparison of nutrients in the food composition ta-
bles available in the nine European countries participating in EPIC”. In: European
Journal of Clinical Nutrition 53.1, p. 60.

Demicheli, Vittorio et al. (2013). “Vaccines for measles, mumps and rubella in chil-
dren”. In: Evidence-Based Child Health: A Cochrane Review Journal 8.6, pp. 2076–
2238.

DeWitte, Sharon N (2009). “The effect of sex on risk of mortality during the Black
Death in London, AD 1349–1350”. In: American Journal of Physical Anthropology:
The Official Publication of the American Association of Physical Anthropologists 139.2,
pp. 222–234.

DeWitte, Sharon N. (2010). “Age patterns of mortality during the Black Death in Lon-
don, A.D. 1349–1350”. en. In: Journal of Archaeological Science 37.12, pp. 3394–3400.
ISSN: 03054403. DOI: 10.1016/j.jas.2010.08.006. URL: http://linkinghub.
elsevier.com/retrieve/pii/S0305440310002803 (visited on 11/19/2017).

https://doi.org/10.1016/j.puhe.2006.12.011
https://doi.org/10.1016/j.puhe.2006.12.011
http://www.sciencedirect.com/science/article/pii/S0033350607000145
http://www.sciencedirect.com/science/article/pii/S0033350607000145
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:1990L0496:20081211:EN:PDF
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:1990L0496:20081211:EN:PDF
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CONSLEG:1990L0496:20081211:EN:PDF
https://doi.org/10.1002/ajpa.23266
http://doi.wiley.com/10.1002/ajpa.23266
https://doi.org/10.1073/pnas.1715640115
https://doi.org/10.1073/pnas.1715640115
http://www.pnas.org/lookup/doi/10.1073/pnas.1715640115
http://www.pnas.org/lookup/doi/10.1073/pnas.1715640115
https://doi.org/10.1016/j.jas.2010.08.006
http://linkinghub.elsevier.com/retrieve/pii/S0305440310002803
http://linkinghub.elsevier.com/retrieve/pii/S0305440310002803


82 BIBLIOGRAPHY

Dibiano, Robert, Bahadir K Gunturk, and Corby K Martin (2013). “Food image anal-
ysis for measuring food intake in free living conditions.” In: Medical Imaging:
Image Processing, 86693N.

DiPrete, Thomas A et al. (2011). “Segregation in social networks based on acquain-
tanceship and trust”. In: American journal of sociology 116.4, pp. 1234–83.

Drancourt, Michel, Linda Houhamdi, and Didier Raoult (2006). “Yersinia pestis as
a telluric, human ectoparasite-borne organism”. In: The Lancet infectious diseases
6.4, pp. 234–241.

Dunford, Elizabeth et al. (2014). “FoodSwitch: a mobile phone app to enable con-
sumers to make healthier food choices and crowdsourcing of national food com-
position data”. In: JMIR mHealth and uHealth 2.3, e37.

ECDC: Insufficient vaccination coverage in EU/EEA fuels continued measles circulation
(2019). https://www.ecdc.europa.eu/en/news-events/ecdc-insufficient-
vaccination-coverage-eueea-fuels-continued-measles-circulation.

Elasticsearch queries example. https://github.com/salathegroup/foodrepo_api/
blob/master/v3/code/meta/es_sample_queries_product.md.

Elenko, Eric, Lindsay Underwood, and Daphne Zohar (2015). “Defining digital
medicine”. In: Nature biotechnology 33.5, pp. 456–461.

Ell, Stephen R. (1989). “Three days in October of 1630: detailed examination of mor-
tality during an early modern plague epidemic in Venice”. In: Review of Infectious
Diseases 11.1, pp. 128–139. URL: http://cid.oxfordjournals.org/content/11/
1/128.short (visited on 04/06/2016).

Ello-Martin, Julia A, Jenny H Ledikwe, and Barbara J Rolls (2005). “The influence of
food portion size and energy density on energy intake: implications for weight
management”. In: The American journal of clinical nutrition 82.1, 236S–241S.

Eyles, Helen, Yannan Jiang, and Cliona Ni Mhurchu (2010). “Use of household su-
permarket sales data to estimate nutrient intakes: a comparison with repeat 24-
hour dietary recalls”. In: Journal of the American Dietetic Association 110.1, pp. 106–
110.

Fabian, Patricia et al. (2008). “Influenza virus in human exhaled breath: an observa-
tional study”. In: PloS one 3.7, e2691.

Favero, Giovanni et al. (1991). “Le anime dei demografi. Fondi per la rilevazione
della popolazione di Venezia nei secoli XVI e XVII”. In: Bollettino di demografia
storica 15, pp. 23–110.

Ferguson, Neil M et al. (2005). “Strategies for containing an emerging influenza pan-
demic in Southeast Asia”. In: Nature 437.7056, pp. 209–214.

FoodRepo database dumps. https://github.com/salathegroup/foodrepo_api/tree/
master/data.

Gage, Kenneth L and Michael Y Kosoy (2005a). “Natural history of plague: perspec-
tives from more than a century of research”. In: Annu. Rev. Entomol. 50, pp. 505–
528.

https://www.ecdc.europa.eu/en/news-events/ecdc-insufficient-vaccination-coverage-eueea-fuels-continued-measles-circulation
https://www.ecdc.europa.eu/en/news-events/ecdc-insufficient-vaccination-coverage-eueea-fuels-continued-measles-circulation
https://github.com/salathegroup/foodrepo_api/blob/master/v3/code/meta/es_sample_queries_product.md
https://github.com/salathegroup/foodrepo_api/blob/master/v3/code/meta/es_sample_queries_product.md
http://cid.oxfordjournals.org/content/11/1/128.short
http://cid.oxfordjournals.org/content/11/1/128.short
https://github.com/salathegroup/foodrepo_api/tree/master/data
https://github.com/salathegroup/foodrepo_api/tree/master/data


BIBLIOGRAPHY 83

Gage, Kenneth L. and Michael Y. Kosoy (2005b). “Natural History of the Plague:
Perspectives from More than a Century of Research”. en. In: Annual Review of
Entomology 50.1, pp. 505–528. ISSN: 0066-4170, 1545-4487. DOI: 10.1146/annurev.
ento.50.071803.130337. URL: http://www.annualreviews.org/doi/abs/10.
1146/annurev.ento.50.071803.130337 (visited on 03/22/2016).

Gómez, José M. and Miguel Verdú (2017). “Network theory may explain the vulner-
ability of medieval human settlements to the Black Death pandemic”. en. In: Sci-
entific Reports 7, p. 43467. ISSN: 2045-2322. DOI: 10.1038/srep43467. URL: https:
//www.nature.com/articles/srep43467 (visited on 12/17/2018).

Gordon M., Weiner (1970). “The Demographic Effects of the Venetian Plagues of
1575-77 and 1630-31”. In: Genus 26.1/2, pp. 41–57.

Gralton, Jan et al. (2011). “The role of particle size in aerosolised pathogen transmis-
sion: a review”. In: Journal of Infection 62.1, pp. 1–13.

Griffin, Nicholas W. et al. (2017). “Prior Dietary Practices and Connections to a Hu-
man Gut Microbial Metacommunity Alter Responses to Diet Interventions”. In:
Cell Host & Microbe 21.1, pp. 84–96. ISSN: 19313128. DOI: 10 . 1016 / j . chom .
2016 . 12 . 006. URL: http : / / linkinghub . elsevier . com / retrieve / pii /
S1931312816305170.

Guerra, Fiona M et al. (2017). “The basic reproduction number (R0) of measles: a
systematic review”. In: The Lancet Infectious Diseases 17.12, e420–e428.

Hagberg, Aric A., Daniel A. Schult, and Pieter J. Swart (2008). “Exploring Network
Structure, Dynamics, and Function using NetworkX”. In: Proceedings of the 7th
Python in Science Conference. Ed. by Gaël Varoquaux, Travis Vaught, and Jarrod
Millman. Pasadena, CA USA, pp. 11 –15.

Hand, Eric (2011). “Culturomics: word play”. In: Nature News 474.7352, pp. 436–440.
Hens, Niel et al. (2009). “Mining social mixing patterns for infectious disease models

based on a two-day population survey in Belgium”. In: BMC infectious diseases
9.1, p. 5.

Hill, Andrew B et al. (2016). “Improving global vaccine accessibility”. In: Current
opinion in biotechnology 42, pp. 67–73.

Hufthammer, Anne Karin and Lars Walløe (2013). “Rats cannot have been interme-
diate hosts for Yersinia pestis during medieval plague epidemics in Northern Eu-
rope”. en. In: Journal of Archaeological Science 40.4, pp. 1752–1759. ISSN: 03054403.
DOI: 10.1016/j.jas.2012.12.007. URL: http://linkinghub.elsevier.com/
retrieve/pii/S0305440312005286 (visited on 12/17/2017).

Jefferson, Tom, Vittorio Demicheli, and Mark Pratt (1998). “Vaccines for preventing
plague”. In: Cochrane database of systematic reviews 1.

Jones, Eric, Travis Oliphant, Pearu Peterson, et al. (2001). SciPy: Open source scientific
tools for Python. https://www.scipy.org/.

Keeling, M. J. and C. A. Gilligan (2000a). “Metapopulation dynamics of bubonic
plague”. In: Nature 407.6806, pp. 903–906. DOI: 10.1038/35038073.

https://doi.org/10.1146/annurev.ento.50.071803.130337
https://doi.org/10.1146/annurev.ento.50.071803.130337
http://www.annualreviews.org/doi/abs/10.1146/annurev.ento.50.071803.130337
http://www.annualreviews.org/doi/abs/10.1146/annurev.ento.50.071803.130337
https://doi.org/10.1038/srep43467
https://www.nature.com/articles/srep43467
https://www.nature.com/articles/srep43467
https://doi.org/10.1016/j.chom.2016.12.006
https://doi.org/10.1016/j.chom.2016.12.006
http://linkinghub.elsevier.com/retrieve/pii/S1931312816305170
http://linkinghub.elsevier.com/retrieve/pii/S1931312816305170
https://doi.org/10.1016/j.jas.2012.12.007
http://linkinghub.elsevier.com/retrieve/pii/S0305440312005286
http://linkinghub.elsevier.com/retrieve/pii/S0305440312005286
https://www.scipy.org/
https://doi.org/10.1038/35038073


84 BIBLIOGRAPHY

Keeling, MJ and CA Gilligan (2000b). “Bubonic plague: a metapopulation model
of a zoonosis”. In: Proceedings of the Royal Society of London B: Biological Sciences
267.1458, pp. 2219–2230.

Kermack, William Ogilvy and Anderson G McKendrick (1927). “A contribution to
the mathematical theory of epidemics”. In: Proceedings of the royal society of london.
Series A, Containing papers of a mathematical and physical character 115.772, pp. 700–
721.

Killingley, Ben and Jonathan Nguyen-Van-Tam (2013). “Routes of influenza trans-
mission”. In: Influenza and other respiratory viruses 7.s2, pp. 42–51.

Kim, Jayoung et al. (2019). “Wearable biosensors for healthcare monitoring”. In: Na-
ture biotechnology, p. 1.

Kong, Fanyu and Jindong Tan (2012). “DietCam: Automatic dietary assessment with
mobile camera phones”. In: Pervasive and Mobile Computing 8.1, pp. 147–163.

Kristian Gerhard Jebsen Foundation. http://www.kgjf.org/.
La Torre, Giuseppe et al. (2007). “HPV vaccine efficacy in preventing persistent cer-

vical HPV infection: a systematic review and meta-analysis”. In: Vaccine 25.50,
pp. 8352–8358.

Lau, Max SY et al. (2015). “Inferring influenza dynamics and control in households”.
In: Proceedings of the National Academy of Sciences 112.29, pp. 9094–9099.

Lazzari, Gianrocco and Marcel Salathé (2019). “Effects of assortative social mixing
on infectious diseases dynamics”. In: (under peer-review).

Lazzari, Gianrocco et al. (2018). “FoodRepo: An Open Food Repository of Barcoded
Food Products”. In: Frontiers in Nutrition 5, p. 57.

Lazzari, Gianrocco et al. (2019). “Death in Venice: Two-stage plague outbreak during
the Second Pandemic (1630-31)”. In: (under peer-review).

Le Chatelier, Emmanuelle et al. (2013). “Richness of human gut microbiome corre-
lates with metabolic markers”. In: Nature 500.7464, pp. 541–546.

Ledikwe, Jenny H, Julia A Ello-Martin, and Barbara J Rolls (2005). “Portion sizes and
the obesity epidemic”. In: The Journal of nutrition 135.4, pp. 905–909.

Lee, Christina D et al. (2012). “Comparison of known food weights with image-based
portion-size automated estimation and adolescents’ self-reported portion size”.
In: Journal of diabetes science and technology 6.2, pp. 428–434.

Li, Yiping et al. (2007). “Role of ventilation in airborne transmission of infectious
agents in the built environment–a multidisciplinary systematic review”. In: In-
door air 17.1, pp. 2–18.

Lindsley, William G et al. (2016). “Viable influenza A virus in airborne particles
expelled during coughs versus exhalations”. In: Influenza and other respiratory
viruses.

Manfredini, Matteo, Sergio De Iasio, and Enzo Lucchetti (2002). “The plague of 1630
in the territory of Parma: Outbreak and effects of a crisis”. In: International Journal
of Anthropology 17.1, pp. 41–57.

http://www.kgjf.org/


BIBLIOGRAPHY 85

Mbah, Martial L Ndeffo et al. (2012). “The impact of imitation on vaccination behav-
ior in social contact networks”. In: PLoS computational biology 8.4.

Merchant, Anwar T and Mahshid Dehghan (2006). “Food composition database de-
velopment for between country comparisons”. In: Nutrition Journal 5.1, p. 2.

Mina, Michael J et al. (2019). “Measles virus infection diminishes preexisting anti-
bodies that offer protection from other pathogens”. In: Science 366.6465, pp. 599–
606.

Monecke, Stefan, Hannelore Monecke, and Jochen Monecke (2009). “Modelling the
black death. A historical case study and implications for the epidemiology of
bubonic plague”. In: International Journal of Medical Microbiology 299.8, pp. 582–
593.

Mongolian couple die of bubonic plague after eating marmot (2019). https : / / www .
theguardian.com/world/2019/may/06/mongolian-couple-die-of-bubonic-

plague-after-eating-marmot.
Monthly measles and rubella monitoring report, March 2019. https : / / www . ecdc .

europa . eu / en / publications - data / monthly - measles - and - rubella -

monitoring-report-march-2019.
Moser, Michael R et al. (1979). “An outbreak of influenza aboard a commercial air-

liner”. In: American Journal of Epidemiology 110.1, pp. 1–6.
Mossong, Joël et al. (2008). “Social contacts and mixing patterns relevant to the

spread of infectious diseases”. In: PLoS medicine 5.3.
Mubareka, Samira et al. (2009). “Transmission of influenza virus via aerosols and

fomites in the guinea pig model”. In: Journal of Infectious Diseases 199.6, pp. 858–
865.

Mullen, NA et al. (2011). “Ultrafine particle concentrations and exposures in six el-
ementary school classrooms in northern California”. In: Indoor Air 21.1, pp. 77–
87.

Newman, Mark EJ (2006). “Modularity and community structure in networks”. In:
Proceedings of the national academy of sciences 103.23, pp. 8577–8582.

Ng, Shu Wen and Barry M Popkin (2012). “Monitoring foods and nutrients sold
and consumed in the United States: dynamics and challenges”. In: Journal of the
Academy of Nutrition and Dietetics 112.1, pp. 41–45.

Ng, SW and E Dunford (2013). “Complexities and opportunities in monitoring and
evaluating US and global changes by the food industry”. In: obesity reviews 14.S2,
pp. 29–41.

Noti, John D et al. (2012). “Detection of infectious influenza virus in cough aerosols
generated in a simulated patient examination room”. In: Clinical Infectious Dis-
eases, cis237.

Open Food Facts. https://world.openfoodfacts.org/.
OpenFood API Documentation. https://www.foodrepo.org/api-docs/swaggers/v3.
OpenFood API GitHub repository. https://github.com/salathegroup/foodrepo_

api/tree/master/v3/code.

https://www.theguardian.com/world/2019/may/06/mongolian-couple-die-of-bubonic-plague-after-eating-marmot
https://www.theguardian.com/world/2019/may/06/mongolian-couple-die-of-bubonic-plague-after-eating-marmot
https://www.theguardian.com/world/2019/may/06/mongolian-couple-die-of-bubonic-plague-after-eating-marmot
https://www.ecdc.europa.eu/en/publications-data/monthly-measles-and-rubella-monitoring-report-march-2019
https://www.ecdc.europa.eu/en/publications-data/monthly-measles-and-rubella-monitoring-report-march-2019
https://www.ecdc.europa.eu/en/publications-data/monthly-measles-and-rubella-monitoring-report-march-2019
https://world.openfoodfacts.org/
https://www.foodrepo.org/api-docs/swaggers/v3
https://github.com/salathegroup/foodrepo_api/tree/master/v3/code
https://github.com/salathegroup/foodrepo_api/tree/master/v3/code


86 BIBLIOGRAPHY

Osterholm, Michael T et al. (2012a). “Efficacy and effectiveness of influenza vac-
cines: a systematic review and meta-analysis”. In: The Lancet infectious diseases
12.1, pp. 36–44.

— (2012b). “Efficacy and effectiveness of influenza vaccines: a systematic review
and meta-analysis”. In: The Lancet Infectious Diseases 12, pp. 36–44.

Pagoto, Sherry et al. (2013). “Evidence-based strategies in weight-loss mobile apps”.
In: American journal of preventive medicine 45.5, pp. 576–582.

Pedersen, Helle Krogh et al. (2016). “Human gut microbes impact host serum
metabolome and insulin sensitivity”. In: Nature.

Peter, Georges (1992). “Childhood immunizations”. In: New England Journal of
Medicine 327.25, pp. 1794–1800.

Petrova, Velislava N et al. (2019). “Incomplete genetic reconstitution of B cell pools
contributes to prolonged immunosuppression after measles”. In: Science im-
munology 4.41.

Pfeiffer, EF (1989). “The glucose sensor: the missing link in diabetes therapy.” In:
Hormone and metabolic research. Supplement series 24, pp. 154–164.

Phillips, Katherine M et al. (2006). “Quality-control materials in the USDA national
food and nutrient analysis program (NFNAP)”. In: Analytical and Bioanalytical
Chemistry 384.6, pp. 1341–1355.

Plague outbreak situation reports | WHO | Regional Office for Africa (01/21/2020).
https://www.afro.who.int/health- topics/plague/plague- outbreak-

situation-reports.
Pormann, Peter E (2015). “Interdisciplinarity: Inside Manchester’s’ arts lab’”. In: Na-

ture 525.7569, p. 318.
PostgreSQL: The world’s most advanced open source database. https://www.postgresql.

org/.
Rappuoli, Rino et al. (2014). “Vaccines, new opportunities for a new society”. In:

Proceedings of the National Academy of Sciences 111.34, pp. 12288–12293.
Rosenthal, Sol Roy and C John Clements (1993). “Two-dose measles vaccination

schedules.” In: Bulletin of the World Health Organization 71.3-4, p. 421.
Rossetti, Giulio et al. (2018). “NDlib: a python library to model and analyze diffusion

processes over complex networks”. In: International Journal of Data Science and
Analytics 5.1, pp. 61–79. ISSN: 2364-4168. DOI: 10.1007/s41060- 017- 0086- 6.
URL: https://doi.org/10.1007/s41060-017-0086-6.

Rudnick, SN and DK Milton (2003). “Risk of indoor airborne infection transmission
estimated from carbon dioxide concentration”. In: Indoor air 13.3, pp. 237–245.

Salathé, Marcel and Sebastian Bonhoeffer (2008). “The effect of opinion clustering on
disease outbreaks”. In: Journal of The Royal Society Interface 5.29, pp. 1505–1508.

Salathé, Marcel and James H Jones (2010). “Dynamics and control of diseases in net-
works with community structure”. In: PLoS computational biology 6.4, e1000736.

https://www.afro.who.int/health-topics/plague/plague-outbreak-situation-reports
https://www.afro.who.int/health-topics/plague/plague-outbreak-situation-reports
https://www.postgresql.org/
https://www.postgresql.org/
https://doi.org/10.1007/s41060-017-0086-6
https://doi.org/10.1007/s41060-017-0086-6


BIBLIOGRAPHY 87

Salathé, Marcel et al. (2010). “A high-resolution human contact network for infec-
tious disease transmission”. In: Proceedings of the National Academy of Sciences
107.51, pp. 22020–22025.

Satija, Ambika et al. (2015). “Understanding nutritional epidemiology and its role in
policy”. In: Advances in Nutrition: An International Review Journal 6.1, pp. 5–18.

Scheer, Frank AJL et al. (2009). “Adverse metabolic and cardiovascular consequences
of circadian misalignment”. In: Proceedings of the National Academy of Sciences
106.11, pp. 4453–4458.

Schelling, Thomas C (1971). “Dynamic models of segregation”. In: Journal of mathe-
matical sociology 1.2, pp. 143–186.

Schmid, Boris V. et al. (2015). “Climate-driven introduction of the Black Death and
successive plague reintroductions into Europe”. en. In: Proceedings of the National
Academy of Sciences 112.10, pp. 3020–3025. ISSN: 0027-8424, 1091-6490. DOI: 10.
1073/pnas.1412887112. URL: http://www.pnas.org/lookup/doi/10.1073/
pnas.1412887112 (visited on 12/17/2017).

Schnettler, Sebastian (2009). “A structured overview of 50 years of small-world re-
search”. In: Social networks 31.3, pp. 165–178.

Schofield, Roger (1977). “An anatomy of an epidemic: Colyton November 1645 to
November 1646”. In: Local Population Studies Supplement 4, pp. 95–126.

— (2016). “The last visitation of the plague in Sweden: the case of Bräkne-H oby in
1710–11”. In: The Economic History Review 69.2, pp. 600–626.

Scott, Susan and Christopher J Duncan (2001). Biology of plagues: evidence from histor-
ical populations. Cambridge University Press.

Sharp, Darren B and Margaret Allman-Farinelli (2014). “Feasibility and validity of
mobile phones to assess dietary intake”. In: Nutrition 30.11, pp. 1257–1266.

Shendell, Derek G et al. (2004). “Air concentrations of VOCs in portable and tradi-
tional classrooms: results of a pilot study in Los Angeles County”. In: Journal of
Exposure Science and Environmental Epidemiology 14.1, pp. 44–59.

Siek, Katie A et al. (2006). “When do we eat? An evaluation of food items input into
an electronic food monitoring application”. In: Pervasive Health Conference and
Workshops, 2006. IEEE, pp. 1–10.

Smieszek, Timo (2009). “A mechanistic model of infection: why duration and inten-
sity of contacts should be included in models of disease spread”. In: Theoretical
Biology & Medical Modelling 6, p. 25.

Smieszek, Timo, Gianrocco Lazzari, and Marcel Salathé (2019). “Assessing the dy-
namics and control of droplet-and aerosol-transmitted influenza using an indoor
positioning system”. In: Scientific reports 9.1, p. 2185.

Smieszek, Timo and Marcel Salathé (2013). “A low-cost method to assess the epi-
demiological importance of individuals in controlling infectious disease out-
breaks”. In: BMC Medicine 11.1, p. 35.

https://doi.org/10.1073/pnas.1412887112
https://doi.org/10.1073/pnas.1412887112
http://www.pnas.org/lookup/doi/10.1073/pnas.1412887112
http://www.pnas.org/lookup/doi/10.1073/pnas.1412887112


88 BIBLIOGRAPHY

Smieszek, Timo et al. (2014). “How should social mixing be measured: comparing
web-based survey and sensor-based methods”. In: BMC infectious diseases 14.1,
p. 136.

Stehlé, Juliette et al. (2011). “Simulation of an SEIR infectious disease model on the
dynamic contact network of conference attendees”. In: BMC Medicine 9, p. 87.

Stehlé, Juliette et al. (2011). “High-resolution measurements of face-to-face contact
patterns in a primary school”. In: PloS one 6.8.

Stephens, Janna, Jerilyn K Allen, and Cheryl R Dennison Himmelfarb (2011).
““Smart” coaching to promote physical activity, diet change, and cardiovascu-
lar health”. In: The Journal of cardiovascular nursing 26.4, p. 282.

Stilianakis, Nikolaos I and Yannis Drossinos (2010). “Dynamics of infectious disease
transmission by inhalable respiratory droplets”. In: Journal of the Royal Society
Interface, rsif20100026.

Subar, Amy F et al. (2015). “Addressing Current Criticism Regarding the Value of
Self-Report Dietary Data, 2”. In: The Journal of nutrition 145.12, pp. 2639–2645.

Tellier, Raymond (2006). “Review of aerosol transmission of influenza A virus”. In:
Emerg Infect Dis 12.11, pp. 1657–1662.

— (2009). “Aerosol transmission of influenza A virus: a review of new studies”. In:
Journal of the Royal Society Interface, rsif20090302.

Ten threats to global health in 2019 (2019). https://www.who.int/news-room/feature-
stories/ten-threats-to-global-health-in-2019.

Text Recognition API Overview | Google Developers. https://developers.google.
com/vision/text-overview.

Tran, Thi-Nguyen-Ny et al. (2011). “High Throughput, Multiplexed Pathogen De-
tection Authenticates Plague Waves in Medieval Venice, Italy”. en. In: PLoS ONE
6.3. Ed. by Tara Smith, e16735. ISSN: 1932-6203. DOI: 10.1371/journal.pone.
0016735. URL: http://dx.plos.org/10.1371/journal.pone.0016735 (visited
on 12/17/2017).

Tsai, Christopher C et al. (2007). “Usability and feasibility of PmEB: a mobile phone
application for monitoring real time caloric balance”. In: Mobile networks and ap-
plications 12.2-3, pp. 173–184.

Turnbaugh, Peter J et al. (2006). “An obesity-associated gut microbiome with in-
creased capacity for energy harvest.” In: Nature 444.7122, pp. 1027–31. ISSN: 1476-
4687. DOI: 10.1038/nature05414. URL: http://www.ncbi.nlm.nih.gov/pubmed/
17183312.

Ulvioni, Paolo (1989). Il gran castigo di Dio. Carestia ed epidemie a Venezia e nella Ter-
raferma 1628-1632. Milano.

USDA Food Composition Database. https://ndb.nal.usda.gov/ndb/.
Voirin, Nicolas et al. (2015). “Combining high-resolution contact data with virologi-

cal data to investigate influenza transmission in a tertiary care hospital”. In: In-
fection Control & Hospital Epidemiology 36.3, pp. 254–260.

https://www.who.int/news-room/feature-stories/ten-threats-to-global-health-in-2019
https://www.who.int/news-room/feature-stories/ten-threats-to-global-health-in-2019
https://developers.google.com/vision/text-overview
https://developers.google.com/vision/text-overview
https://doi.org/10.1371/journal.pone.0016735
https://doi.org/10.1371/journal.pone.0016735
http://dx.plos.org/10.1371/journal.pone.0016735
https://doi.org/10.1038/nature05414
http://www.ncbi.nlm.nih.gov/pubmed/17183312
http://www.ncbi.nlm.nih.gov/pubmed/17183312
https://ndb.nal.usda.gov/ndb/


BIBLIOGRAPHY 89

Ward, Joel I et al. (2005). “Efficacy of an acellular pertussis vaccine among adoles-
cents and adults”. In: New England Journal of Medicine 353.15, pp. 1555–1563.

Watts, Duncan J and Steven H Strogatz (1998). “Collective dynamics of ‘small-
world’networks”. In: Nature 393.6684, p. 440.

Weber, Thomas P and Nikolaos I Stilianakis (2008). “Inactivation of influenza A
viruses in the environment and modes of transmission: a critical review”. In:
Journal of infection 57.5, pp. 361–373.

Welford, Mark R. and Brian H. Bossak (2009). “Validation of Inverse Seasonal Peak
Mortality in Medieval Plagues, Including the Black Death, in Comparison to
Modern Yersinia pestis-Variant Diseases”. In: PLoS ONE 4.12, e8401. DOI: 10.
1371/journal.pone.0008401.

Wells, William Firth (1955). Airborne contagion and air hygiene. An ecological study of
droplet infections. Cambridge, MA: Harvard University Press.

Whittles, Lilith K. and Xavier Didelot (2016). “Epidemiological analysis of the Eyam
plague outbreak of 1665–1666”. en. In: Proceedings of the Royal Society B: Biological
Sciences 283.1830, p. 20160618. ISSN: 0962-8452, 1471-2954. DOI: 10.1098/rspb.
2016.0618. URL: http://rspb.royalsocietypublishing.org/lookup/doi/10.
1098/rspb.2016.0618 (visited on 01/20/2017).

WHO | Data, statistics and graphics (2019). https://www.who.int/immunization/
monitoring_surveillance/data/en/.

WHO | Diabetes. http://www.who.int/mediacentre/factsheets/fs312/en/.
WHO | Measles and Rubella Surveillance Data (2019). https : / / www . who . int /

immunization/monitoring_surveillance/burden/vpd/surveillance_type/

active/measles_monthlydata/en/.
WHO | News | Plague (2020). https://www.who.int/news-room/fact-sheets/

detail/plague.
WHO | Obesity and overweight. http://www.who.int/mediacentre/factsheets/

fs311/en/.
WHO | Plague (2020). https://www.who.int/health-topics/plague.
WHO position paper on measles vaccine (2017). https://www.who.int/immunization/

policy/position_papers/WHO_PP_measles_vaccine_summary_2017.pdf?ua=1.
Wilson-Aggarwal, Jared K et al. (2019). “High-resolution contact networks of free-

ranging domestic dogs Canis familiaris and implications for transmission of in-
fection”. In: PLoS neglected tropical diseases 13.7, e0007565.

Wong, Bonnie CK et al. (2010). “Possible role of aerosol transmission in a hospital
outbreak of influenza”. In: Clinical infectious diseases 51.10, pp. 1176–1183.

Xiao, S et al. (2018). “Probable transmission routes of the influenza virus in a noso-
comial outbreak”. In: Epidemiology & Infection, pp. 1–9.

Yang, Wan and Linsey C Marr (2011). “Dynamics of airborne influenza A viruses
indoors and dependence on humidity”. In: PLOS One 6.6, e21481.

https://doi.org/10.1371/journal.pone.0008401
https://doi.org/10.1371/journal.pone.0008401
https://doi.org/10.1098/rspb.2016.0618
https://doi.org/10.1098/rspb.2016.0618
http://rspb.royalsocietypublishing.org/lookup/doi/10.1098/rspb.2016.0618
http://rspb.royalsocietypublishing.org/lookup/doi/10.1098/rspb.2016.0618
https://www.who.int/immunization/monitoring_surveillance/data/en/
https://www.who.int/immunization/monitoring_surveillance/data/en/
http://www.who.int/mediacentre/factsheets/fs312/en/
https://www.who.int/immunization/monitoring_surveillance/burden/vpd/surveillance_type/active/measles_monthlydata/en/
https://www.who.int/immunization/monitoring_surveillance/burden/vpd/surveillance_type/active/measles_monthlydata/en/
https://www.who.int/immunization/monitoring_surveillance/burden/vpd/surveillance_type/active/measles_monthlydata/en/
https://www.who.int/news-room/fact-sheets/detail/plague
https://www.who.int/news-room/fact-sheets/detail/plague
http://www.who.int/mediacentre/factsheets/fs311/en/
http://www.who.int/mediacentre/factsheets/fs311/en/
https://www.who.int/health-topics/plague
https://www.who.int/immunization/policy/position_papers/WHO_PP_measles_vaccine_summary_2017.pdf?ua=1
https://www.who.int/immunization/policy/position_papers/WHO_PP_measles_vaccine_summary_2017.pdf?ua=1


90 BIBLIOGRAPHY

Young, Lisa R and Marion Nestle (2002). “The contribution of expanding portion
sizes to the US obesity epidemic”. In: American journal of public health 92.2,
pp. 246–249.

Yue, Ricci P. H., Harry F. Lee, and Connor Y. H. Wu (2017). “Trade routes and plague
transmission in pre-industrial Europe”. en. In: Scientific Reports 7.1, p. 12973.
ISSN: 2045-2322. DOI: 10.1038/s41598-017-13481-2. URL: http://www.nature.
com/articles/s41598-017-13481-2 (visited on 01/31/2020).

Zeevi, David et al. (2015). “Personalized Nutrition by Prediction of Glycemic Re-
sponses”. English. In: Cell 163.5, pp. 1079–1094. ISSN: 00928674. DOI: 10.1016/j.
cell.2015.11.001. URL: http://www.cell.com/article/S0092867415014816/
fulltext.

Zhu, Fengqing et al. (2010). “The use of mobile devices in aiding dietary assessment
and evaluation”. In: IEEE journal of selected topics in signal processing 4.4, pp. 756–
766.

Zhu, Fengqing et al. (2011). “Multilevel segmentation for food classification in di-
etary assessment”. In: Image and Signal Processing and Analysis (ISPA), 2011 7th
International Symposium on. IEEE, pp. 337–342.

https://doi.org/10.1038/s41598-017-13481-2
http://www.nature.com/articles/s41598-017-13481-2
http://www.nature.com/articles/s41598-017-13481-2
https://doi.org/10.1016/j.cell.2015.11.001
https://doi.org/10.1016/j.cell.2015.11.001
http://www.cell.com/article/S0092867415014816/fulltext
http://www.cell.com/article/S0092867415014816/fulltext

	Abstract
	Acknowledgements
	Introduction
	Death in Venice: A Digital Reconstruction of a Large Plague Outbreak During 1630-1631
	Assessing the Dynamics and Control of Droplet- and Aerosol-Transmitted Influenza Using an Indoor Positioning System
	Breaking Apart Contact Networks with Vaccination
	FoodRepo: An Open Food Repository of Barcoded Food Products
	Conclusions and perspectives
	Curriculum vitae
	Bibliography



