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Abstract— Epilepsy affects more than 50 million people
and ranks among the most common neurological diseases
worldwide. Despite advances in treatment, one-third of patients
still suffer from refractory epilepsy. Wearable devices for
real-time patient monitoring can potentially improve the
quality of life for such patients and reduce the mortality rate
due to seizure-related accidents and sudden death in epilepsy.
However, the majority of employed seizure detection techniques
and devices suffer from unacceptable false-alarm rate. In this
paper, we propose a robust seizure detection methodology
for a wearable platform and validate it on the Physionet.org
CHB-MIT Scalp EEG database. It reaches sensitivity of 0.966
and specificity of 0.925, and reducing the false-alarm rate by
34.7%. We also evaluate the battery lifetime of the wearable
system including our proposed methodology and demonstrate
the feasibility of using it in real time for up to 40.87 hours on
a single battery charge.

Clinical relevance— We propose a methodology to increase
classification robustness and reduce the false-alarm rate for
epileptic seizure detection using wearable systems.

I. INTRODUCTION

The World Health Organization (WHO) estimates more
than 50 million people suffering from epilepsy worldwide
[1]. Despite the advances in treatment, approximately three-
quarters of patients do not have access to drugs [1] and
around one-third of the cases are drug-resistant (cases classi-
fied as refractory epilepsy) [2]. Previous studies have demon-
strated that most of the patients with refractory epilepsy
would use a device for long-term epileptic-seizure moni-
toring [3], [4]. Although such device have the potential of
improving quality of life of people with epilepsy (PWE), the
surveys report concerns with social stigma and the possi-
bility of PWE being exposed by wearing such technology.
Moreover, PWE also demonstrate a strong preference for
removable devices resembling usual daily-life accessories.

Most of the existing devices for epileptic-seizure tracking
are watch like, using peripheral measured signals to assess
patient status. In particular, (1) SmartWatch Inspyre™ by
Smart Monitors uses an accelerometer (ACC) to monitor
abnormal and rhythmic movements during seizures, reaching
sensitivity of 92% [5]; (2) Embrace and E4 wristbands (Em-
patica Inc.) feature an electrodermal activity (EDA) sensor
extra to an ACC, reaching sensitivity between 92% and 100%
[5]; (3) Nightwatch, an armband device, also uses an ACC

*This work has been partially supported by the e-Glass project (EPFL
Enable project No. 6.1828), the MyPreHealth Cyber-Human project (Hasler
Foundation project No. 16073), the WiTNESS Promobilia Foundation
project (Ref. 18079), and Sklodowska-Curie GA No. 754354.

R. Zanetti, A. Aminifar, and D. Atienza are with the Embedded Systems
Laboratory (ESL) of the Swiss Federal Institute of Technology (EPFL), 1015
Lausanne, Switzerland {renato .zanetti, amir.aminifar,
david.atienza}@epfl.ch

sensor but, in this case, combined with photoplethysmog-
raphy (PPG). The latter presented 86% of mean sensitivity
on a study with more than one type of night seizures [6].
Although presenting high sensitivity values, these devices
operation focus on the detection of one type of seizure,
characterized by violent body movements, the generalized
tonic-clonic seizures (GTCS).

In spite of advances in analysis and techniques for epilep-
tic seizure assessment, electroencephalography (EEG) is still
an essential tool in the diagnosis and monitoring of PWE
[7]. Video-EEG is the current clinical gold standard in
epileptic seizures diagnosis. However, it is a demanding
procedure typically performed at hospital facilities, while
the patient is kept under camera surveillance as long as
the EEG acquisition lasts (up to I-week). Even though
there are several wireless EEG acquisition systems, existing
commercial equipment are non-portable and/or rely on EEG-
caps.

Specialized wearable technologies can provide a suit-
able solution for mobility constraints and stigma associ-
ated with EEG-systems, enabling long-term and accurate
epileptic seizure monitoring based on biosignals, meanwhile
hidden in inconspicuous packaging. Nevertheless, the use of
resource-constrained platforms in outpatient monitoring is
a challenging problem [8]. The operation in real-world is
error-prone and requires considerable processing power and
extended battery lifetime. Although there are various studies
addressing automatic seizure detection based on EEG and
machine learning [9], [10], [11], [12], to the best of our
knowledge, there is no commercial wearable solution on the
market using EEG to monitor epilepsy patients in outpatient
conditions.

In order to build such a device, the authors of [10] assessed
the possibility of using only two bipolar channels of EEG
over the temporal and frontal lobes in comparison with
using data from full cap. The reduced set of electrodes
embodied on a glasses form factor produces a technological
concept capable of tackling both social stigma and wearabil-
ity problems. In this work, we propose and validate a robust
methodology for epileptic seizure monitoring, based on a
previous wearable system [10], to reduce false-alarm rate in
real-time epileptic seizure detection. The main contributions
of this work are:

1. We propose a robust epileptic seizure detection
methodology based on data fusion, combining multiple
data to improve classification model. We validate the
proposed methodology on the CHB-MIT database [13]
and improve the FAR by 34.70%, compared to the
previous study [10].

2. We implement the proposed methodology on an state-
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Fig. 1.

of-the-art wearable platform, and assess its battery
lifetime. Our results show that it can reach up to 40.87
hours of continuous monitoring on a single battery
charge, which enables a full day of work with a
reduced amount of false-alarms.

II. ROBUST EPILEPTIC SEIZURE DETECTION APPROACH

We propose a seizure detection methodology based on
the edge computing paradigm, thus processing all the avail-
able data on the device. The main processing pipeline is
divided into four blocks (Fig. 1): signal pre-processing,
feature extraction, data fusion, and classification based on
a lightweight machine-learning algorithm. These blocks are
further described in the following subsections.

A. EEG Acquisition and Pre-Processing

As presented in [10], we use only two bipolar channels
of EEG (F7T7 and F8TS, international 10-20 system [14]).
We use an EEG front-end for signal conditioning and a
reduced setup to obtain a minimalist wearable platform for
seizure detection (further described in Section III-B). In
terms of signal pre-processing, we filter the EEG signal
using a bandpass filter (Butterworth, 4" order) with cut-
off frequencies of 0.3 and 45 Hz. Moreover, we apply a
discrete wavelet transform (DWT) to decompose the EEG
signal before extracting nonlinear features to improve the
classification accuracy [15].

B. Feature Extraction

We extract a total of 54 features from each four-second
EEG epoch, namely:

1) bandpower: we estimate the power spectral density
(PSD) by using periodogram method [16]. The PSD estimate
is used to calculate the bandpower in the following frequency
bands: delta [0.5, 4] Hz, theta [4, 8] Hz, alpha [8, 12] Hz,
beta [13, 30] Hz, and gamma [30, 45] Hz. Additionally, we
calculate the total power and power for [0, 0.1] Hz, [0.1,
0.5] Hz, and [12, 13] Hz bands. For each of the eight bands,
we also calculate the relative power to the total power. In
total, we obtain 17 power features from one EEG epoch.

2) entropy: each EEG epoch is decomposed in approxi-
mated (A) and detailed (D) coefficients down to level seven
using a Daubechies 4 (DB4) basis function. We extract
sample entropy [17] from detail coefficients at level six (D6)
and seven (D7). In addition, we extract permutation entropy
[18], Renvi, Shannon and Tsallis entropy [19], from detail
coefficients D3, D4, D5, D6, and D7.
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C. Data Fusion

Data fusion is a technique to bind information from
multiple sources to obtain more consistent, informative or
comprehensive, and accurate representation about a process
or entity [20]. In particular, data fusion can be used to im-
prove epileptic seizure detection robustness to false-positives
by increasing data variability. For instance, the period in
between the onset and offset of an annotated seizure may
have one or more seizure bursts, thus containing periods
of less synchronous epileptic activity. Considering that all
available data of this seizure is used for training a suitable
model to identify an ictal EEG epoch, such less synchronous
part of signal may increase the generalization error of the
model. To tackle this problem, we propose to use an approach
based on data fusion.

Our data fusion approach combines two epochs of EEG
to form a new set of features representing different moments
of a seizure. For each chosen EEG epoch for the previous
work methodology [10], we add a second epoch fusing it
as double set of features. These second set is taken from a
randomly selected EEG epoch, picked before the first EEG
epoch but with a separation time (AT) limited to one-fourth
of the average seizure time per subject (respecting ictal and
inter-ictal periods). This way we can reduce the probability
of having two epochs of less synchronous epileptic activities
in the double set of features and generate a more robust
model to false positives.

D. Seizure Classification

In this paper, we choose Random Forest (RF) as the clas-
sification algorithm as it is lightweight, suitable for resource-
constrained platforms, which has already been shown to
provide promising results for epilepsy detection [21]. The
the strength of individual trees and their diversity contributes
to the performance of a RF ensemble of classification
and regression trees. According to Breiman [22] proposed
method, each tree of a random forest ensemble is grown
independently on a bootstrap sample of the training data,
a method called bagging. In consequence, a RF-based ap-
proach provides major improvement in the classification
accuracy compared to decision trees, while mitigating the
influence of overfitting.

III. EXPERIMENTAL SETUP

In this section, we present the considered epilepsy data,
our target wearable platform, and power measurement set-
tings used during performance evaluation of our proposed
methodology.



A. Epilepsy Database

We use the CHB-MIT Scalp database [13] to evaluate
the performance of seizure detection. It contains data of
23 subjects (5 males and 17 females, 9.9 + 5.6 years old),
sampled at 256 Hz with 16-bit resolution according to the
international 10-20 system (bipolar montage). There are 182
annotated seizures and data is available in a total of 664 files.
In particular, subjects S6 and S16 present only relatively
short seizures (15.30 s + 2.87 s and 840 s + 2.27 s,
respectively) as, on average, a seizure is expected to last,
typically, more than a minute [23]. Therefore, due to the
limited ictal samples, results of these patients were not taken
into account for FAR calculation.

B. Implementation Platform

We considered the platform described in [10], but in-
cluding a hardware update, using validated off-the-shelf
components, for medical applications. Our platform is based
on the: (1) STM32L476 ARM cortex-M4 microcontroller
(1C), running at up to 80 MHz, including 128 kB of RAM
memory and featuring a floating-point unit to speed-up signal
processing; (2) ADS1299 EEG front-end, a complete EEG
system-on-chip in reduced package size; (3) BlueNRG-MS,
Bluetooth low energy (BLE) network processor. Finally,
we also have an ultra-low power triaxial accelerometer as
another sensor that could be included on the seizure detection
methodology. In terms of firmware, our application is based
on the FreeRTOS, a real-time operating system kernel for
embedded devices.

C. Power Measurements

To account for a realistic power consumption value, we
measure the current consumption and determine the appli-
cation duty cycle (i.e. percentage of processing time over
an execution period) to run the feature extraction and model
inference steps of both epileptic seizure detection method-
ology (our proposed and the previous work methodologies
[10]). For this procedure, we use our platform running at
maximum clock (80 MHz) and consider to have an inference
of the subject condition each four seconds. We use a shunt
resistor and circuit based on the AD625 amplifier for current
measurement with a TDS2024 oscilloscope.

D. Performance Metrics

We consider as classification performance metrics the sen-
sitivity (sens), specificity (spec), and their geometric mean
(GMEAN), which are defined as follows:

t t
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GMEAN =+/SENS - SPEC. (2)

We also consider the false-discovery rate (FDR) and false-
alarm rate (FAR) per hour, which are defined as follows:

fp
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SENS =

(1)

FDR = FAR =3600- FDR.  (3)
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Fig. 2. Detection quality (GMEAN) for our proposed methodology (red)
and previous work (blue).

E. Performance Assessment

To evaluate our proposed methodology, we use a per-
sonalized setting for each subject in the database, where
we divide data according to the ictal and inter-ictal phases.
The inter-ictal period in the CHB-MIT Epilepsy database
is approximately 300 times longer than the ictal (summing
up all seizure and available data time). For a realistic
assessment of the FAR, the number of inter-ictal epochs used
is approximately 300 times the ictal (only for testing).

We apply our feature extraction and data fusion approach
per each data file. Each ictal period data is treated as
an unit for training or testing. The same occurs per files
without seizures. We only pick data from the inner half of
the file with no seizure, avoiding proximity to neighboring
seizures. Moreover, all available files per subject are used
during feature extraction. Finally, the data is divided into
training (70%) and testing (30%) sets and we use various
combinations of data units during the split for a 10-fold
cross-validation.

IV. EXPERIMENTAL RESULTS

In this section we present the performance of our proposed
methodology in terms of classification sensitivity, specificity,
and false-alarm rate. Moreover, we also present the battery
lifetime assessment.

A. Seizure Detection Performance

Fig. 2 presents the GMEAN per subject (vertical axis)
for our proposed methodology and for the previous work
[10]. We obtained a GMEAN across all subjects of 0.945
(SENS of 0.966 and SPEC of 0.925) using our proposed
methodology, slightly higher than the GMEAN of 0.932
(SENS of 0.958 and SPEC of 0.908) when using the previous
work approach. Moreover, we can observe a generalized
increment in GMEAN for most of the subjects when using
our proposed methodology, which can be seen already as an
indication of the reduction in the false-positive rate.

Overall, the average FAR dropped from 1.078 to 0.704
(34.7%) per hour, when applying our methodology in com-
parison with the previous work’s. As it can be seen in Fig. 3,
in the best case (Subject 19), our proposed methodology
is able to remove all false positives. In fact the use of
our proposed methodology represents a FAR improvement
higher than 20% for 15 out of 23 subjects. However, in our
worst-case scenario, Subject 5 presents a 12.17% increment
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Fig. 3. FAR improvement among all subjects when using our proposed

methodology vs previous work.

in FAR. This increment in FAR could be explained by an
increment in false positives due to overfitting.

B. Battery Lifetime

Running both methodologies on our platform, we measure
a system current consumption of approximately 18.75 mA
with the p¢C in run mode and 6.55 mA in sleep mode.
Table I shows execution duty cycle (four-second window),
average current consumption and battery lifetime for both
approaches. We activate the sleep mode when uC is idle
for calculations (keeping basic operations as data acquisition
related in interrupt service routines, which introduces about
5% processing overhead), thus we can reduce system average
current consumption. Therefore, by running the processing
approach at maximum speed, which lasts approximately
27.9 ms per EEG epoch for both channels, it is possible
to reduce the duty cycle and the total power consumption.
Considering a battery of 300 mAh, our data fusion proposed
approach could be executed on the wearable platform for
up to 40.87 hours of continuous monitoring on a single
battery charge. The use of our proposed methodology slightly
increases the energy consumption of the device if compared
to the battery lifetime (41.37 hours) achieved employing the
methodology in the previous work but increases FAR by
34.7%. However, both approachs achieve more than a day of
operation, which is considered satisfactory for the majority
of patients surveyed in [4].

TABLE I
ESTIMATED BATTERY LIFETIME.

Methodology D. Cycle (%) Current (mA) Lifetime (h)
Previous work [10] 5.76 7.25 41.37
Our methodology 6.52 7.34 40.87

V. CONCLUSION

Wearable devices can enable long-term monitoring of
epileptic seizures. However, as important as the classification
accuracy, a tracking device needs to be robust to false-
alarm occurrences when used in everyday life. This work
has presented a new methodology to improve the robustness
of a wearable device in terms of FAR. Moreover, we have
introduced a novel data fusion phase to improve robustness
to false positives by picking a second EEG epoch over
the ictal or inter-ictal periods, adding data variability. Our
results show that the proposed methodology reaches 94,5%

of geometric mean between sensitivity and specificity for all
original subjects of the CHB-MIT Epilepsy database, while
reducing FAR by 34.7%. All in all, this methodology can be
used in real-time wearables, thus allowing up to 40.87 hours
of continuous monitoring on a single battery charge.
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