Introducing a Paper-Based Programming Language for
Computing Education in Classrooms

Aditya Mehrotra®
aditya.mehrotra@epfl.ch
Mobots Group EPFL

Christian Giang®
christian.giang@epfl.ch
Mobots Group EPFL

Noé Duruz
noe.duruz@epfl.ch
Mobots Group EPFL

TME Lab, SUPSI-DFA

Julien Dedelley
julien.dedelley@epfl.ch
Mobots Group EPFL

Andrea Mussati
andrea.mussati@epfl.ch
Mobots Group EPFL

Melissa Skweres
melissa.skweres@epfl.ch
LEARN Center for Learning Sciences
EPFL

Francesco Mondada
francesco.mondada@epfl.ch
Mobots Group EPFL

ABSTRACT

Past research has shown that the use of tangible programming
platforms in computing education can enhance students’ inter-
est, engagement, and collaboration within workgroups. However,
to this day, the adoption of such interfaces in classrooms has re-
mained relatively scarce. This is possibly due to the expenses and
efforts necessary to acquire, set up and maintain such platforms. In
this context, the use of paper as a principal means of interaction
represents an inexpensive and versatile solution, that additionally
harnesses the prevalence of paper in classrooms. This work, there-
fore, introduces PaPL, an easily reproducible platform for paper-
based programming languages. The platform was evaluated in two
exploratory user studies. The first study aimed at investigating
the interaction of over 100 senior year high school students with
the platform under varying conditions of group size and usage
constraints. In the second study, the platform was tested with 32
sixth-graders and 2 teachers to evaluate its usage in an authentic
context. The results indicate that group size may affect active dis-
cussion and error count, while usage constraints may affect active
discussion of students interacting with the platform. Moreover, the
classroom study shows promising results with regard to the use of
PaPL in formal education.

CCS CONCEPTS

« Applied computing — Collaborative learning; Interac-
tive learning environments; - Human-centered computing
— User interface design; Empirical studies in interaction design.

“Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

ITiCSE °20, June15-19, 2020, Trondheim, Norway

© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6874-2/20/06...$15.00
https://doi.org/10.1145/3341525.3387402

KEYWORDS

Computing education; educational robotics; group collaboration;
tangible programming
ACM Reference Format:
Aditya Mehrotra, Christian Giang, Noé Duruz, Julien Dedelley, Andrea Mus-
sati, Melissa Skweres, and Francesco Mondada. 2020. Introducing a Paper-
Based Programming Language for Computing Education in Classrooms. In
Proceedings of the 2020 ACM Conference on Innovation and Technology in Com-
puter Science Education (ITiCSE °20), June 15-19, 2020, Trondheim, Norway.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3341525.3387402

1 INTRODUCTION

Recently, more and more countries have recognized the importance
of integrating digital literacy, computational thinking, and related
concepts into their school curricula. These competencies have been
considered essential skills for future generations and therefore sev-
eral national education systems have placed emphasis on their
integration into compulsory schooling [1-4, 6]. To introduce chil-
dren to fundamental computer science concepts at an early stage,
usually graphical programming languages such as Scratch [19],
Blockly [8], or Alice [5] are used. These interfaces aim at facilitat-
ing the learning process by providing a more structured and playful
environment. Programs can be created by simple drag and drop
actions, combining different blocks to control either educational
robots or virtual agents on the screen.

Although such interfaces may indeed facilitate the introduction
of basic computer science concepts, they also have certain limita-
tions. In the classroom, children usually work in groups and share
a device to solve programming tasks. This is both, to teach and
invoke social norms, and due to limited resources. However, com-
puters usually provide single user input devices, often resulting
in unbalanced participation opportunities among group members.
As shown previously [12], providing equal opportunities for multi-
ple children to interact with a digital environment, can positively
impact their levels of engagement and motivation.

In this regard, the use of tangible programming languages (TPLs)
appear to be an interesting approach to address the issue. TPLs usu-
ally consist of blocks that can be assembled in the physical world

https://doi.org/10.1145/3341525.3387402
https://doi.org/10.1145/3341525.3387402

to control virtual agents or educational robots. Previous work has
demonstrated that compared to purely screen-based graphical pro-
gramming languages, TPLs may improve collaboration in a group
[11], increase situational interest [11, 14, 20] and have a positive
impact on learning [14, 24]. By enhancing the dynamics within
workgroups [16], they may also better exploit socio-constructivist
learning approaches. This is especially interesting for educational
robotics activities, in which students usually work in small groups
to solve a given problem situation [9]. Moreover, TPLs provide op-
portunities to implement more playful ways of learning, especially
to engage the interest of younger children. By involving tangible
objects, TPLs represent a more physical alternative to introducing
computer science in classrooms. This might be valuable to address
the concerns of many teachers and parents, who are still reluctant
about the use of screens in classrooms. Despite these affordances,
the use of TPLs in formal education settings is still relatively scarce.
Considering the existing expenses for computers, tablets and/or
educational robots, the additional effort necessary to acquire, set
up and maintain such platforms can represent a key argument
against their use. Although teachers have expressed appreciation
for TPLs, it seems like the current drawbacks have hindered a more
widespread use of such interfaces.

To promote the use of tangible programming in classrooms,
this work, therefore, introduces PaPL, a platform for paper-based
programming languages. Based on computer vision algorithms, it
provides an inexpensive and customizable solution, that does not
require schools to purchase any extra accessories. Instead, it aims at
better utilizing existing technological resources such as computers
and tablets with standard webcams. Moreover, by integrating paper
as a principal means of interaction, it provides teachers and stu-
dents with the possibility of self-fabrication and customization of
the programming blocks. To this day, paper is a ubiquitous material
in classrooms and it incorporates five important design principles
for classroom orchestration: control, visibility, flexibility, physical-
ity, and minimalism [7]. Considered a “generic tangible medium
which can carry any kind of representation” [26], paper has been
used to create user interfaces for different domains, such as office
applications [25], interactive slideshows [17], physical 3D modeling
for CAD [23] and vocational training of logisticians [26]. The phys-
icality of paper-based interfaces can enable new ways to structure
learning activities. For instance, it allows instructors to easily adapt
usage constraints, such as limiting the set of available commands
to reinforce reflection [7]. However, there has not been much work
investigating the potential of paper-based interfaces for computing
education, particularly in classroom settings. Moreover, though
tangibles have been proven beneficial to improve collaboration, it
was suggested that varying group sizes may alter the ways learners
interact with tangible interfaces [21]. Indeed, the effect of group size
on learning with computer technology has been widely discussed
before [13]. However, this question has so far not been addressed
for tangible programming interfaces. This work, therefore, aims
at contributing to the current body of literature through two ex-
ploratory user studies addressing the following research questions:
(1) How do group size and usage constraints affect the learners’
interaction with a paper-based programming language? (2) What
are the potential benefits of using a paper-based programming
language in classrooms?

2 METHODS
2.1 The PaPL platform

PaPL is a platform developed to implement paper-based program-
ming languages. In order to ensure its appropriateness for class-
room use, the design of the platform was guided by development
heuristics for educational robotics systems [10]. Using standard
webcams of computers and tablets for computer vision algorithms,
it provides a framework for developing paper-versions of existing
programming languages.

Usage Mirror Set-up External Camera Set-up
Constraint (Mirr) (Cam)

@ CamFreeG2
blocks

Free access to | MirrFreeG2 =
=

n

=
(Free) | MirrFreeG3 @@d CamFreeG3 ‘“‘)ﬁ 000
000 = 888

gaa 00t

Limited access | MirrLimG2 @ CamLimG2 /@

to blocks a0 [

(Lim) MirrLimG3 o) CamLimG3 o) _
fg ® f'5®

Figure 1: Schematic overview of all set-ups

The platform interprets paper blocks arranged on a program-
ming sheet currently in two possible configurations for the camera
set-up (Fig. 1). One option is to attach a mirror to the integrated
webcams of laptops and direct it at the programming sheet with
the paper blocks, which is placed on the laptop’s keyboard (Mirr
configuration). As an alternative, an external webcam can be con-
nected to the laptop, which then has to be manually directed at
the programming sheet with the paper blocks every time a new
program needs to be captured (Cam configuration). On one hand,
the latter acts as a usage constraint, while on the other, it also allows
for more spatial freedom and may, therefore, represent a simulation
for the use of tablet cameras.

For the current study, the PaPL platform was used to create
a paper version of the programming language Thymio VPL [22].
Thymio VPL is an event-based, graphical programming language
that was developed for the educational robot Thymio [15]. For
Thymio PaPL, the event-based programming paradigm has been
preserved: programs are created by associating one of the orange
Event blocks with one or more of the blue Action blocks (Fig. 2).
Multiple Event-Action sets, placed on different lines of the program-
ming sheet, can be combined to realize more complex behaviors
of the robot (e.g. a line follower). A detailed description would go
beyond the scope of this paper, we refer the interested reader to the
related work set out below. Conceived as an introductory platform
preceding Thymio VPL, the programming blocks of Thymio PaPL
were redesigned to make them more simple and intuitive. Programs
can be loaded on the robot using a keyboard shortcut.

2.2 User study with high school students

2.2.1 Study objective. Addressing the first research question pre-
sented in the Introduction, the main objective of this user study
was to explore the effects of the group size, the imposed usage

lalmal
=

Proximity Sensor Buttons

AR alo
ala

Ground Sensor Motors LEDs

Figure 2: Thymio PaPL programming blocks

constraints and the configuration of the camera set-up on the learn-
ers’ interactions with Thymio PaPL. The Cam configuration also
represents a usage constraint, since this set-up, in contrast to Mirr
configurations, does not facilitate a smooth sequence to load the
program instructions. Thus, a three-way two-level full factorial
design was implemented which involved students taking part in
a programming activity using Thymio PaPL under eight different
experimental conditions (Fig. 1). The levels of the three influencing
factors are described hereafter. (1) The number of participants in
the group: two (G2) or three (G3). (2) Usage constraint imposed
on programming blocks: free access to use all blocks for any par-
ticipant (Free) or an equal number of blocks distributed amongst
the participants (Lim). (3) Usage constraint imposed by the config-
uration of the camera set-up: an integrated webcam with mirror
attachment directed at the program sheet and a continuous video
feed (Mirr) or an external webcam that has to be manually directed
at the program sheet (Cam). To facilitate a valid comparison, all
other aspects of experimental design—tasks, aesthetics, feedback,
and so forth—remained constant.

2.2.2 Participants and Experimental Protocol. The study took place
on two consecutive days with over 100 high school students aged
between 18 and 19. Students were recruited from a university ori-
entation event based on voluntary participation. All students gave
their informed consent to participate in the study. Prior to the exper-
imental sessions, the participants were asked about their familiarity
with the Thymio robot and its programming languages. Although
a few participants had heard about the robot, none of them had
actively programmed it before. With six sessions on each day, a
session hosted around 8-12 students for 20 minutes to conduct the
activity. All sessions were organized in the same conference room,
which included four experimental set-ups, each representing one
of the four configurations described in Fig. 1. The set-ups were
configured back-to-back so a group working on one system could
not easily see the other groups. Each set-up was provided with a
Thymio, a set of 22 Thymio PaPL blocks, a programming sheet and
the task descriptions (Fig. 3).

An experimental session started with a five-minute introduction
to the Thymio robot given by the same researcher. After the intro-
duction, the participants were randomly grouped into dyads (G2)
or triads (G3) and allotted one of the four set-ups. They were then
presented the tasks and asked to solve them one after the other.
The activity consisted of six tasks with increasing difficulty and a
bonus task in case of completion before the end of the allotted time.
The first three tasks introduced basic algorithm building concepts

Figure 3: Students interacting with the CamFree set-up

and were formulated using explicit instructions (e.g. Task 1: “When
I press the forward button, Thymio lights up in blue and moves for-
ward. When I press the central button, Thymio lights up in yellow and
stops”). In contrast, the last three assignments were more complex
and less explicit (e.g. Task 6: “Thymio automatically follows a black
line. At the end of the line, it turns around and continues to follow the
line in the opposite direction”). During the programming tasks, each
set-up was followed by a researcher taking the role of an observer
in monitoring the group’s interaction with the platform and among
participants. The observers did not help the groups in completing
the tasks but provided support in case of technical issues. Moreover,
they approved correct solutions, allowing groups to advance to the
next task. After each session, the observers switched to a different
set-up to reduce observational bias.

2.2.3 Measures. After the completion of the first two sessions,
some modifications were applied to the experimental protocol.
Specifically, it was decided to include an identical demonstrative
example prior to the presentation of the tasks for all four set-ups.
Moreover, all observers shared their experiences gathered so far
in order to streamline the observation protocols. Due to these ad-
justments, it was decided that these sessions would be considered
pilot runs to adjust experimental protocols and train observers for
objective monitoring. The data from these groups were therefore
not considered for analysis. Additionally, in order to allow for a
balanced comparison between the different experimental condi-
tions, groups from conditions with more samples were randomly
excluded. Hence, the analysis was based on data from 32 groups (4
for each condition) representing 80 participants.

All programs loaded by the groups were logged for later analysis.
The log files were then used to analyze the amount and type of
errors made by the groups. Group collaboration was measured by
the time spent in active discussion and monitored by the observers
through direct observation. An active discussion was classified as
any situation where one or more people of the group would be
talking about the task at hand. The observations were recorded on
a tablet using the mobile application Actograph (SymAlgo Tech-
nologies, Paris, France). The observers also kept track of the tasks
completed by each group and gathered qualitative observations by
taking written notes during the activity.

2.3 Classroom study

2.3.1 Study objective. To test the platform in an authentic context,
the second experimental study focused on its use in a classroom
environment. Thus, the objectives were to determine (1) the in-
teraction of the target audience with Thymio PaPL and (2) the
ability of the platform to facilitate the teacher’s supervision of the
programming activity.

2.3.2 Participants and Experimental Protocol. This study with 32
students and 2 teachers from two sixth-grade classes lasted around
two hours. The students were 10-11 years old and parental consent
was obtained prior to the study, allowing for the students’ partic-
ipation. Likewise, both teachers gave their informed consent to
participate in the study. None of the students or teachers reported
prior experience with Thymio or its programming interfaces. The
experiment started with a plenary session, during which all students
were given a five-minute introduction to the robot. Subsequently,
the students were divided into groups of 2-3 (within their class) and
given 25 minutes to explore the robot’s pre-programmed modes
under the supervision of one researcher. Meanwhile, 6 laptops with
Thymio VPL were prepared in one room, while in the other room, 6
Thymio PaPL set-ups were provided in the CamFree configuration
(Fig. 1). Another researcher briefed both teachers on the use of the
Thymio PaPL and Thymio VPL interfaces. The teachers were also
presented the solution sheets for the subsequent activities.

The exploration activity ended with a Parson’s Puzzle [18] con-
taining five Thymio programming questions. Each question de-
scribed a program specification, for which the students had to
determine the correct combination of Thymio programming blocks.
The puzzles were attempted by each student individually. While the
students of one class had to solve the questions using Thymio PaPL
blocks (class A), the other class was presented the same questions
with Thymio VPL blocks (class B). The questions were similar to the
three easy ones from the first study (see Section 2.2.2). After this,
the teachers and their students were sent to the classrooms with
the set-up corresponding to their Parson’s puzzle (i.e., class A to the
Thymio PaPL set-ups and class B to the Thymio VPL set-ups). In
the next five minutes, the students were given a short introduction
to the respective interface by a researcher. This was followed by
20 minutes of programming activity, during which the students
were asked to solve the same five tasks as presented in the Parson’s
Puzzle.

The whole activity was administered by the teachers, who were
asked to conduct this as a regular class. In both classrooms, one
researcher took the role of an observer and another, the role of
technical support, whenever required. Following the programming
activity, both classes were asked to complete the same Parson’s
Puzzle as before. Finally, in the last part of the experimental ses-
sion, both classes switched set-ups, i.e. class A now worked with
Thymio VPL and class B with Thymio PaPL. The students were
given two new tasks, with a difficulty comparable to the last three
questions of the first study (see Section 2.2.2). Again, both classes
were introduced to the new platform and then given 20 minutes to
solve the tasks.

2.3.3 Measures. The scores obtained in the Parson’s Puzzles were
used as a measure for the intuitiveness of the Thymio PaPL/VPL

Table 1: Task completion for each condition

Set-up condition G2 (Dyads) G3 (Triads)
Tasks 1-5 Task 6 Tasks 1-5 Task 6
MirrFree 4/4 2/4 4/4 4/4
MirrLim 4/4 2/4 4/4 4/4
CamFree 3/4 2/4 4/4 2/4
CamlLim 4/4 2/4 4/4 3/4

platforms. Each correct answer was awarded one point, leading to
a maximum possible score of sixteen points. Parson’s Puzzle scores
were compared before (Pre) and after the programming activity
(Post) to analyze improvements in both groups. The activity of the
teachers was tracked by an observer on Actograph. Specifically,
observers monitored the interaction of the teacher with the groups
during the whole duration. The teachers were not informed about
these observations beforehand to prevent any change in behavior.
Five days after the experimental study, both teachers met with the
researchers for a 20-minute interview.

3 RESULTS
3.1 User study with high school students

Table 1 summarizes the number of groups in each condition that
were successful in finishing the presented tasks. While tasks 1-5
were completed by all groups except for one in the CamFreeG2
condition, the sixth task proved itself as a challenge. This more
complex assignment, in which the students had to program a line
follower with Thymio, required the participants to transfer their
learnings from the first five tasks. On progressing to the sixth task,
most groups needed multiple trials to test their programs. The
conditions for dyads (G2) showed a similar success rate for each
condition with only two groups providing the correct solution. This,
however, was more diverse for the triads (G3). All four groups in
MirrFree and MirrLim and three groups in CamLim condition were
successful in completing all tasks. Though, only two groups in
CamFree condition finished all tasks.

Further to quantify performance, the errors made by the groups
were analyzed using the program log files saved during the activity.
Following this analysis, errors were classified into six categories
based on the frequency of occurrence. (1) EA: Event-Action asso-
ciation errors (e.g. an Action block without any associated Event
block), (2) EEA: Use of multiple Events for a single Action (e.g.
ground sensors detect white block and ground sensors detect black
block with move forward block), (3) EAA: Multiple Actions of the
same category associated with a single Event (e.g. center button
block with move forward block and turn right block), (4) GR: Errors
related to the incorrect use of the infrared ground sensor, (5) PGR:
Errors related to misinterpretation of proximity for ground sensor,
and (6) INC: Loading an incomplete solution on the robot. From the
error analysis, it was observed that dyads tended to commit more
errors than triads (Fig. 4).

While groups in the G2 conditions committed 21-26 total er-
rors, G3 groups only made 16-20 errors overall. Some conditions
appeared to be particularly favorable for G3 groups. In MirrFree

- INC — EAA
PGR EEA

2
) =il -

Error Count

o

MirrFree MirrLim CamFree CamLim MirrFree MirrLim CamFree CamLim

Figure 4: Error count by category

Table 2: Active discussion in percentage

Set-up condition G2 (Dyads) G3 (Triads)
Mean SD Mean SD

MirrFree 81.4 212 699 374
MirrLim 89.7 5.7 91.9 9.2
CamkFree 83.1 183 824 202
CamLim 89.1 11.3 95.3 5.8

and MirrLim settings, G3 groups made around one-third fewer er-
rors than G2 groups in the same settings. In contrast, CamFree and
CamLim settings did not show strong differences between G2 and
G3 groups. Remarkably, a significant number of “EEA” errors were
found for all G2 groups, while this type of error was not found for
G3 groups.

Based on the observation data, the active discussion state during
the activity was analyzed for all groups in the eight conditions
(Table 2). On average, groups in MirrLim and CamLim tended to
have more discussions for both dyads and triads. In contrast, groups
in MirrFree and CamFree settings appeared to be less communicative.
Moreover, the variance among groups in these conditions was much
larger compared to the other two conditions.

3.2 Classroom study

Parson’s Puzzle scores from students in both classes are shown
in Fig. 5. Class A reached much higher scores (15.4+1.2 points)
than Class B (9.6+4.6 points) before the programming activity. A
Mann-Whitney U test validated a statistically significant difference
(p<0.01). After performing the tasks with the robot, the performance
of both classes improved. While all students of Class A were able
to achieve a perfect score (16 points), students in Class B still had
varying results (12.6+5.0 points). Though the difference between
both groups decreased, it was still statistically significant (p<0.01).

The distribution of time spent with each group was evaluated for
both teachers based on observational data (Fig. 6). Teacher A, start-
ing with the Thymio PaPL platform, spent around half of their time
attending to particular groups. While some groups needed more
attention (e.g. group 2), others needed less (e.g. group 5). Through-
out the 20 minutes of activity, the teacher followed all groups at
least once. Moreover, the other half of the time, the teacher was not
engaged with any specific group but monitoring the classroom in
general. When switching to the Thymio VPL platform, the teacher’s
behavior changed drastically. More than half of the time was now

Parson’s Puzzle Scores
3

Class A
Class B

Pre Post

Figure 5: Parson’s Puzzle scores before (Pre) and after (Post)
the programming activity

spent attending to a specific group. In this activity, only two groups
had direct supervision of the teacher and the time spent in overall
classroom monitoring decreased with respect to the first activ-
ity. Teacher B, who first performed the activity with Thymio VPL
showed a similar trend in behavior. In the VPL set-up, the teacher
spent almost all of their time with particular groups and only a
small fraction of their time on overall classroom monitoring. Yet
only 5 out of 6 groups benefited from direct supervision. When
switching to the PaPL platform, the teacher now spent significantly
more time on overall classroom monitoring and in addition, all
groups were now receiving teacher attention.

Group 1 Group 2 Group3 [l Group 4 M croups [lGroup6 Monitoring
8.6 19.33 9.74 .“ 45.85 33.52 . 55.25
Teacher A PaPL Teacher A VPL
Group 1 Group2 [llGroup3 [l Group 4 Group5 [lGroup 6 = Monitoring
Teacher B VPL Teacher B PaPL
100 50 25 0 25 50 75 100
Session 1 Percentage Time Spent (%) Session 2

Figure 6: Proportion of time teachers spent with particular
groups during the programming activities

Five days after the study, the two teachers met the researchers
again for a 20-minute interview. During the interview, the teachers
were asked to reflect on the activities with both platforms and share
their thoughts. The group discussion was moderated by a researcher,
who prepared the questions beforehand. As a main result, both
teachers agreed that the PaPL platform was easier to understand and
therefore particularly suited for beginners. Teacher A suggested that
introducing PaPL first, could help students build a more concrete
foundation before going over to the more complex VPL platform.
Moreover, they acknowledged that PaPL has more potential to
promote collaboration and communication. They stated that when
using PaPL, students had to argue more before programming and it
would encourage more experienced students to explain things to the
less experienced ones. The teachers appreciated the fact that their
activity was monitored and showed great interest in the analysis
of their behavior. Teacher B stated that during the programming
activities they applied a “fire-fighting” strategy, always addressing
the next group that asked for support. Whenever the teacher felt
that all of their students could work independently, they changed

to the overall classroom monitoring state. Finally, the teachers also
acknowledged that all students should get an appropriate, however,
not necessarily equal, amount of the teacher’s attention. In this
context, they agreed that the PaPL platform allowed them to be
more balanced since it provided a well-framed environment. In
contrast, the VPL platform, providing more functionalities, may
appear more overwhelming, especially for teachers who have less
experience with computer technology.

4 DISCUSSION AND FUTURE WORK

The goal of this work was to study the usage of a paper-based
programming language in computing education. Two exploratory
studies examined different aspects of the devised platform.

In the first study, participants were asked to perform program-
ming tasks using the platform under different conditions. The re-
sults showed that both group size and usage constraints may influ-
ence the way students interact with the platform. Triads appeared
to be more successful in the completion of difficult tasks compared
to dyads. Moreover, they also committed fewer errors during pro-
gramming activities. This result is in line with the findings of Lou
et al. [13] who suggested that groups of three to five members
achieve better task performance in comparison to dyads. However,
the authors also highlighted that group size larger than two did
not have significant positive effects on individual learning. Instead,
for students learning in pairs, there was a small but significant
positive effect. Lou et al. argued that "the difference may be due to
the physical constraints associated with computer use". It might be
that the physicality of the PaPL platform helps to overcome these
limitations, promoting both group collaboration and individual
achievement for groups larger than two, as seen from their perfor-
mance. Capitalizing on socio-constructivist learning approaches,
the PaPL activities may encourage students to compare alternative
solutions and correcting each other’s misconceptions. The analy-
sis of the errors showed that the “EEA” category occurred in all
settings for dyads. This was not the case for triads in any setting.
This suggests that the inclusion of another participant to the group
provides more thorough scrutiny to this specific error type, the
slip-up of which is assumed to be more probable for the given tasks.

The tangibility of the interface may also favor exploratory behav-
ior which can often lead to certain group members taking charge
and leading others. In some cases, introverted or less experienced
students tend to lose interest and fall short in individual learn-
ing. Therefore, one of the constraints imposed on the students
in the high school study was access to the blocks. Putting usage
constraints on paper-based user interfaces has been applied be-
fore to encourage reflection in the training of logistics apprentices
[7]. In the present study, imposing fixed assignments of program-
ming blocks to students appeared to increase active discussion time
among the group. In contrast, the behavior of groups, where no
constraint was imposed on the blocks, was more varying and thus,
less predictable. This condition could, therefore, represent an inter-
esting approach to foster collaboration and reflection in computer
education, especially in cases when some group members are more
introverted or less experienced. PaPL supports the practice of such
constraints, which teachers cannot easily implement with purely
screen-based solutions.

As a way to explore another usage constraint, two different cam-
era set-ups were tested. Interestingly, Mirr configurations seemed
to be especially effective for triads leading to higher task completion
rates and lower error count. The configurations, however, did not
have the same effect on dyads. Therefore, group size may also have
an effect on how different configurations are utilized and should
be carefully considered when tangible programming interfaces are
used. On the other hand, the difference in error count and comple-
tion rate in Cam configurations is not remarkable which suggests
that the constraint may also flatten the effects of group size.

The results of the second study demonstrated strong potential
in regards to the use of paper-based programming languages in
classrooms. Even before the programming activities, students pre-
sented to the Thymio PaPL blocks were able to attain high scores in
the Parson’s Puzzle tests. After the activity, they further improved
and all students achieved maximum scores. On the other hand, stu-
dents working with the screen-based Thymio VPL blocks reached
lower scores in both tests. Providing an intuitive platform with "low
floors" was argued to be an essential design element in computing
education [19]. This might be particularly important to promote
motivation, interest, and self-efficacy in novices. The interview
with the teachers suggested that introducing Thymio PaPL prior to
Thymio VPL could help students build better foundations and may,
therefore, represent a smoother entry point to computing educa-
tion. The teachers further acknowledged the potential of the PaPL
platform to promote collaboration and communication. Thanks
to its simplicity and intuitiveness, the platform may also support
inexperienced teachers in running and orchestrating computing ed-
ucation lessons. The observations of the teachers’ activities showed
that both teachers provided more balanced support to all groups
when they were working with the PaPL platform. Furthermore,
they also had more time for overall classroom monitoring. This
allows them to diagnose the progress of all the groups and provide
more support where necessary.

Nevertheless, the results of the studies presented in this work are
subject to the limitations of the small sample sizes and particularly
the brevity of the interventions. In order to draw more substantial
conclusions, future studies should include larger samples, longer
interventions as well as methods to evaluate the effective learning
gains in the long-term. Such studies are needed to provide real evi-
dence about the advantages of paper-based programming languages
for computing education. Moreover, it should be investigated to
what extent such approaches can be favorable and when should
the transition to more complex systems be considered. Finally, this
work has explored the PaPL framework for event-based program-
ming. However, it could also be studied how PaPL can be used for
sequential programming paradigms involving control structures
such as loops and conditions.

ACKNOWLEDGMENTS

The authors would like to thank all students and teachers that
participated in the study. This work has been partially supported
by the Swiss National Science Foundation through the National
Centre of Competence in Research Robotics, Gebert Riif Stiftung
through “CTTS: Computational Thinking Tools for Schools” and
Hasler Stiftung.

REFERENCES

(1]

A

~
[

=
0

[10]

(11

[12

[13]

[14]

G Berry, G Dowek, S Abiteboul, JP Archambault, C Balagué, GL Baron, C de la
Higuera, M Nivat, F Tort, and T Viéville. 2013. L’enseignement de I'informatique
en France Il est urgent de ne plus attendre. Rapport de I’Académie des sciences
(2013).

Stefania Bocconi, Augusto Chioccariello, and Jeffrey Earp. 2018. The Nordic
approach to introducing Computational Thinking and programming in compul-
sory education. Report prepared for the Nordic@ BETT2018 Steering Group. doi:
https://doi. org/10.17471/54007 (2018).

Royal Society (Great Britain). 2012. Shut down or restart?: The way forward for
computing in UK schools. Royal Society.

European Commission. 2016. A new skills agenda for Europe: Working together
to strengthen human capital, employability and competitiveness.

Stephen Cooper, Wanda Dann, and Randy Pausch. 2003. Teaching objects-first in
introductory computer science. In ACM SIGCSE Bulletin, Vol. 35. ACM, 191-195.
Bundesrat der Schweizerischen Eidgenossenschaft. 2017. Bericht tber
die zentralen Rahmenbedingungen fiir die digitale Wirtschaft. Schweiz-
erische Eidgenossenschaft. Abgerufen von https://www. newsd. admin.
ch/newsd/message/attachments/46892. pdf (2017).

Pierre Dillenbourg. 2013. Design for classroom orchestration. Computers &
Education 69 (2013), 485-492.

Neil Fraser. 2015. Ten things we’ve learned from Blockly. In 2015 IEEE Blocks and
Beyond Workshop (Blocks and Beyond). IEEE, 49-50.

Christian Giang, Morgane Chevalier, Lucio Negrini, Ran Peleg, Evgeniia Bonnet,
Alberto Piatti, and Francesco Mondada. 2018. Exploring escape games as a
teaching tool in educational robotics. In International Conference EduRobotics
2016. Springer, 95-106.

Christian Giang, Alberto Piatti, and Francesco Mondada. 2019. Heuristics for the
Development and Evaluation of Educational Robotics Systems. IEEE Transactions
on Education (2019).

Michael S Horn, Erin Treacy Solovey, and Robert JK Jacob. 2008. Tangible
programming and informal science learning: making TUIs work for museums. In
Proceedings of the 7th international conference on Interaction design and children.
ACM, 194-201.

Kori M Inkpen, Wai-ling Ho-Ching, Oliver Kuederle, Stacey D Scott, and Garth BD
Shoemaker. 1999. This is fun! we’re all best friends and we’re all playing: support-
ing children’s synchronous collaboration. In Proceedings of the 1999 conference on
Computer support for collaborative learning. International Society of the Learning
Sciences, 31.

Yiping Lou, Philip C Abrami, and Sylvia d’Apollonia. 2001. Small group and
individual learning with technology: A meta-analysis. Review of educational
research 71, 3 (2001), 449-521.

Edward F Melcer and Katherine Isbister. 2018. Bots & (Main) Frames: exploring the
impact of tangible blocks and collaborative play in an educational programming

[15

[16]

=
)

(18

[19

[20

[21

[22

[23

[24

[25

[26

game. In Proceedings of the 2018 CHI Conference on Human Factors in Computing
Systems. ACM, 266.

Francesco Mondada, Michael Bonani, Fanny Riedo, Manon Briod, Léa Pereyre,
Philippe Rétornaz, and Stéphane Magnenat. 2017. Bringing robotics to formal
education: The thymio open-source hardware robot. IEEE Robotics & Automation
Magazine 24, 1 (2017), 77-85.

Andrea Mussati, Christian Giang, Alberto Piatti, and Francesco Mondada. 2019. A
Tangible Programming Language for the Educational Robot Thymio. In 2019 10th
International Conference on Information, Intelligence, Systems and Applications
(IISA). IEEE, 1-4.

Les Nelson, Satoshi Ichimura, Elin Renby Pedersen, and Lia Adams. 1999. Palette:
a paper interface for giving presentations. In Proceedings of the SIGCHI conference
on Human Factors in Computing Systems. ACM, 354-361.

Dale Parsons and Patricia Haden. 2006. Parson’s programming puzzles: a fun and
effective learning tool for first programming courses. In Proceedings of the 8th
Australasian Conference on Computing Education-Volume 52. Australian Computer
Society, Inc., 157-163.

Mitchel Resnick, John Maloney, Andrés Monroy-Hernandez, Natalie Rusk, Evelyn
Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian
Silverman, et al. 2009. Scratch: programming for all. Commun. ACM 52, 11 (2009),
60-67.

Theodosios Sapounidis, Stavros Demetriadis, and Ioannis Stamelos. 2015. Eval-
uating children performance with graphical and tangible robot programming
tools. Personal and Ubiquitous Computing 19, 1 (2015), 225-237.

Bertrand Schneider, Patrick Jermann, Guillaume Zufferey, and Pierre Dillenbourg.
2010. Benefits of a tangible interface for collaborative learning and interaction.
IEEE Transactions on Learning Technologies 4, 3 (2010), 222-232.

Jiwon Shin, Roland Siegwart, and Stéphane Magnenat. 2014. Visual programming
language for Thymio II robot. In Conference on Interaction Design and Children
(IDC’14). ETH Ziirich.

Hyunyoung Song, Francois Guimbretiére, Chang Hu, and Hod Lipson. 2006.
ModelCraft: capturing freehand annotations and edits on physical 3D models. In

Proceedings of the 19th annual ACM symposium on User interface software and
technology. ACM, 13-22.

Amanda Strawhacker, Amanda Sullivan, and Marina Umaschi Bers. 2013. TUI,
GUIL HUI: is a bimodal interface truly worth the sum of its parts?. In Proceedings
of the 12th International Conference on Interaction Design and Children. ACM,
309-312.

Pierre Wellner. 1991. The DigitalDesk calculator: tangible manipulation on a desk
top display. In Proceedings of the 4th annual ACM symposium on User interface
software and technology. ACM, 27-33.

Guillaume Zufferey, Patrick Jermann, Aurélien Lucchi, and Pierre Dillenbourg.
2009. TinkerSheets: using paper forms to control and visualize tangible simula-
tions. In Proceedings of the 3rd international Conference on Tangible and Embedded
interaction. ACM, 377-384.

	Abstract
	1 Introduction
	2 Methods
	2.1 The PaPL platform
	2.2 User study with high school students
	2.3 Classroom study

	3 Results
	3.1 User study with high school students
	3.2 Classroom study

	4 Discussion and future work
	Acknowledgments
	References

