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ABSTRACT: Iron(II) cage complexes with terminal 4-pyridyl groups can be incorporated in metal-organic frameworks (MOFs) via solvent-
assisted ligand exchange (SALE). Paddle-wheeled MOFs with N,N’-di-4-pyridylnaphtalenetetracarboxydiimide pillars were used as starting 
materials. Pillar exchange was nearly quantitative, despite the fact that the cage complexes are long (~ 15 Å) and sterically demanding. The 
reactions provide products of high crystallinity, and the structures of daughter MOFs were determined by single crystal X-ray diffraction. 
The crystallographic analyses showed that some of the SALE experiments led to topological changes of the MOF structures. 

The synthesis of novel metal-organic frameworks (MOFs) can be 
accomplished by postsynthetic modification of existing frame-
work structures.1 This approach provides MOFs with identical to-
pologies, but with new properties, which can be advantageous for 
applications. Work in this area has primarily focused on the alter-
ation of organic linkers by chemical means. Successful heteroge-
neous reactions of MOF linkers include condensation-, addition-, 
and deprotection reactions, as well as oxidation and reduction re-
actions, among others.1

An interesting alternative to the chemical modification of or-
ganic linkers is the complete replacement of one type of linker 
within a MOF by a new one.1a,b,2,3 This process is referred to as 
'solvent-assisted linker exchange' (SALE)2b or postsynthetic ex-
change (PSE) (Scheme 1).2b The first demonstration that SALE can 
be used to replace bridging ligands in 2- and 3-dimensional MOFs 
was reported in 2011 by the group of Choe.4 As starting materials, 
they have used pillared paddle-wheel MOFs constructed from 
tetrakis(4-carboxyphenyl)porphyrin (TCPP), N,N’-di-4-pyri-
dylnaphtalenetetracarboxydiimide (DPNI) linkers, and Zn2(O2C)4 
metal nodes. When the MOFs were suspended in solutions con-
taining 4,4'-bipyridine, a complete replacement of the DPNI pillars 
with the smaller bipyridine was observed. Despite a strong reduc-
tion of the layer-to-layer distance, the MOFs retained their crys-
tallinity, and the products could be characterized by single crystal 
X-ray diffraction.

Solvent

Solvent-Assisted Linker Exchange (SALE)

Scheme 1. Schematic illustration of the SALE technique for a rep-
resentative MOF structure. 

Following this seminal report by Choe and co-workers, the SALE 
technique has been used for the synthesis of numerous other 

MOF structures, many of which are not accessible by standard sol-
vothermal reactions.1a,b,2, In addition to exchange reactions of bi-
pyridyl ligands,4–6 linker exchange was demonstrated for carbox-
ylate,7 imidazolate,7i,8 and triazolate ligands.9 These studies also 
revealed potential problems of the SALE methodology. Incom-
plete ligand exchange was encountered, even after prolonged re-
action times. Moreover, the quality of the crystals tends to de-
grade during SALE, often preventing single crystal X-ray diffraction 
analysis of the daughter materials.4-9 

Boronate ester-capped iron cage complexes ('clathrochelate 
complexes')10 represent interesting building blocks for applica-
tions in supramolecular coordination chemistry.11 These cage 
complexes can be synthesized in one step from readily available 
starting materials. Importantly, they can be decorated with differ-
ent functional groups, including metal-binding donor groups. For 
example, it is possible to prepare clathrochelates with two or 
more pyridyl groups, which are oriented in a divergent fashion. 
While these pyridyl-capped complexes turned out to be valuable 
components for the construction of molecularly defined 
nanostructures,11,12 we had only limited success in using them for 
MOF synthesis.13  

In a recent study, we noticed that iron cages complexes with 
terminal pyridylboronate ester groups are more basic than stand-
ard pyridyl ligands.14 The high proton affinity of these metallolig-
ands is likely related to the presence of the boronate ester group, 
which has a formal negative charge. Highly basic pyridyl ligands 
are expected to be well suited for SALE experiments.5j Therefore, 
we have explored the possibility to incorporate iron cage com-
plexes in MOFs using ligand exchange reactions instead of sol-
vothermal reactions. The SALE technique indeed allowed synthe-
sizing MOFs containing clathrochelate complexes. Notably, the 
quality of the daughter crystals was sufficient for single crystal 
XRD analyses. The results of our investigations are summarized 
below. 

First, we examined ligand exchange reactions using a paddle-
wheel MOF containing a tetracarboxylic acid ligand and DPNI pil-
lars (MOF 1, Scheme 2). The synthesis of MOF 1 was described by 
Hupp and co-workers.15 The bromo substituents on the carbox-
ylate ligand prevent interpenetration. Consequently, 1 features 
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large pores, which were expected to facilitate ligand exchange 
with sterically demanding clathrochelate complexes. 
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Scheme 2. Synthesis of the MOFs 3a–d. 

For SALE experiments with 1, we have used the pyridyl-
capped cage complexes 2a–d (Scheme 2). The complexes were 
prepared from 4-pyridylboronic acid, FeCl2 and the corresponding 
dioxime in analogy to reported procedures.13,16 It is worth noting 
that 2d features a chiral side chain, because the dioxime is derived 
from (R)-Pulgeone. 

 
Figure 1. Progress of the conversion of 1 into 3d as monitored by 
1H NMR spectroscopy (DMSO-d6 + H2SO4, zoom on the aromatic 
region). Sample composition after 1 day (a), after 2 days (b), and 
after 3 days (c). Signals depicted in green correspond to the pro-
tonated DPNI linker, orange for the protonated clathrochelate 2d, 
and red for the carboxylic acid ligand. 

Crystalline 1 was prepared as described by Hupp and co-work-
ers.15 The phase purity was verified by powder XRD (SI, Fig-
ure S14). Ligand exchange was then initiated by suspending crys-
tals of 1 in a DMF solution of 2. The mixture was heated to 80 °C, 
and progress of the reaction was monitored by UV-Vis (SI, Fig-
ure S10) and NMR spectroscopy (prior to NMR analysis, the MOF 
structure was disrupted by addition of H2SO4, Figures S5–S7). 
Clean pillar exchange was observed for all four cage complexes. 
Even for the sterically demanding complex 2d, we observed nearly 
quantitative ligand exchange after 3 days (Figure 1). We have also 
attempted to prepare MOFs of type 3 using standard solvother-
mal reaction conditions, but we were unable to obtain crystalline 
products. 

The phase-purity of 3a–d was established by powder XRD (SI, 
Figures S15–S18). Interestingly, the crystal quality was largely pre-
served during ligand exchange (Figure 2). We were therefore able 
to perform single crystal X-ray analyses of the products 3a and 3d 
(Figure 3).  

 
Figure 2. Photographs of a crystal of 1 before (a) and after (b) im-
mersion into a DMF solution of 2a for 5 days at RT. 

 
Figure 3. Part of the molecular structure of 3a (a and b) and 3d (c 
and d) in the crystal. Color coding: C (gray), Fe (green), Zn (dark 
blue), O (red), B (yellow), N (blue), Br (brown). 

Retention of the parent MOF topology (Pmmm space group) 
was found for both cases. However, slightly reduced interlayer 
distances were observed as a consequence of the shorter lengths 



 

of 2a and 2d when compared to DPNI. The length of the dipyridyl 
pillars is linked to unit cell parameter c, which is decreasing from 
22.313(3) Å (1) to 21.888(1) Å (3a) and 21.806(2) Å (3d), respec-
tively. The increased steric demand of 2d leads to a reduced sol-
vent-accessible volume for 3d (2332.5 Å3) when compared to 3a 
(2974.9 Å3). The clathrochelate pillars in 3a and 3d are highly dis-
ordered, indicating conformational flexibility around the pillar 
axis. Based on the size of the central iron complex, one would as-
sume a largely unhindered rotation for pillar 2a in MOF 3a. For 3d, 
however, the clathrochelate side chains are interdigitated (Fig-
ure 3d), and correlated ligand movements are expected. 

Next, we investigated if pyridyl-capped clathrochelate com-
plexes can be incorporated into pillared MOFs with porphyrin-
based carboxylate ligands. SALE experiments were performed 
with a 2-dimensional MOF termed 'PPF-18' (MOF 4, Scheme 3), 
which was reported by the group of Choe.17 It features layers com-
posed of Zn2(O2C) nodes and metallated tetrakis(4-carboxy-
phenyl)porphyrin (TCPP-Zn) ligands. The layers are connected in 
a pair-wise fashion via DPNI pillars to give a double-layer struc-
ture. Each pillar coordinates to one Zn2(O2C) node and to one Zn-
porphyrin, resulting in an AB stacking pattern of the layers. 

When crystals of 4 (PPF-18) were immersed in a concentrated 
DMF solution of metalloligand 2a, we were able to observe com-
plete pillar exchange after heating to 80 °C for 3 days 
(Scheme 3).18 An NMR analysis of the digested product showed 
that the new MOF structure 5 displayed an increased pillar con-
tent of 2a:TCPP-Zn = 3:1 (SI, Fig. S8). For comparison, the corre-
sponding ratio for 4 is DPNI:TCPP-Zn: = 1:1. The presence of addi-
tional pillars in 5 suggested cross-linking of the double layers. 
Analysis of 5 by single crystal XRD confirmed that a 3-dimensional 
MOF had formed. Unfortunately, we were only able to obtain dif-
fraction data of poor quality, and we therefore refrain from dis-
cussing structural details. Nevertheless, the topology of 5 could 
clearly be established (SI, Fig. S23), and a schematic representa-
tion of the structure is depicted in Scheme 3. In contrast to what 
was found for 4, the Zn2(O2C) nodes in 5 are linked to two pillars, 
resulting in an overall ABBA stacking pattern. It is worth noting 
that a similar topology change from 2D to 3D was observed when 
SALE experiments were performed with PPF-19 and an excess of 
4,4'-bipyridine.4 However, a cross-linking of layers was not suc-
cessful with larger DPNI pillars.19 
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Scheme 3. Synthesis of MOF 5. 

Finally, we have investigated pillar exchange using a TCPP-Zn-
based MOF termed ‘PPF-19’ (MOF 6, Scheme 4). PPF-19 is doubly 
interpenetrated and we anticipated that the SALE process would 
be impeded by the reduced pore size. However, this prediction 
turned out to be wrong, and clean pillar exchange was observed 
when crystalline 6 was heated in a solution of 2a in DMF 
(Scheme 4).18 
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Scheme 4. Synthesis of MOF 7. 

As observed for the other reactions, the SALE process led only 
to a partial degradation of crystal quality. We were therefore able 
to perform a single crystal XRD analysis of MOF 7. As in the case 
of 5, we did not manage to obtain high quality diffraction data. 
The problem is in part related to the fact that the metalloligand in 
7 is highly disordered (SI, Fig. S24). In view of these difficulties, we 
do not discuss any structural details. However, the topology of 7 
could clearly be established. The connectivity of 7 is identical to 
that of 6: Each Zn2(O2C) node is coordinated to four TCPP-Zn lig-
ands and to two dipyridyl pillars 2a. The Zn porphyrin complexes 
are not involved in binding to the N-donor ligands. In contrast to 
what was found for 6, there is no interpenetration in the network 
structure of 7. As a result, we observe large voids, with a solvent-
accessible volume of approximately 4794.2 Å3. Unfortunately, at-
tempts to obtain a material with permanent porosity failed. Net-
work collapse was observed upon removal of the solvent. 

The change in topology from 6 to 7 is likely related to the in-
creased steric demand of the metalloligand 2a when compared to 
DPNI. From a mechanistic point of view, the conversion of an in-
terpenetrated structure into a non-interpenetrated daughter 
structure is intriguing, in particular since we were able to obtain 
single crystals of the product. A dissolution-recrystallization pro-
cess appears to be a likely scenario for the formation of 7 (and 
possibly also for 3 and 5), but further investigations would be 
needed to clarify this point. 

To conclude, we have shown that clathrochelate-based metal-
loligands with terminal 4-pyridyl groups can be incorporated in 
pillared paddle-wheel MOFs by using the SALE technique. Pillar 
exchange was found to be nearly quantitative, despite the fact 
that the metalloligands are long (~ 15 Å) and sterically demand-
ing. We assume that the exchange process is facilitated by the 
high basicity of the metalloligands, which should lead to more sta-
ble metal-ligand interactions.5j,14 Indirect evidence for this as-
sumption is the successful synthesis of the 3D MOF 5, for which 
the analogous DPNI structure could not be prepared.19 A note-
worthy feature of the reactions is the good crystal quality of the 
products. Consequently, we were able to characterize some of the 
products by single crystal XRD. 

The possibility to use the SALE technique for synthesizing 
MOFs containing metal cages offers an interesting perspective for 
future developments. Boronate-ester capped clathrochelates are 
not only known for FeII, but also for FeI, CoI, CoII, CoIII, and RuII.10,20 



 

The method might therefore be used as a simple way to prepare 
heterometallic21 and redox-active MOFs.22 Furthermore, the lat-
eral groups on the cage complex can be varied substantially.10 For 
the present study, we have used four different cage structures, 
including chiral 2d, but more variations can be envisioned. It 
might also be possible to incorporate cages with dichloroglyoxi-
mate ligands, which could be used for postsynthetic modifications 
via nucleophilic substitution reactions.10,23  
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Metal-organic frameworks containing iron(II) cage complexes were obtained by solvent-assisted ligand exchange. 

 


