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ABSTRACT:  Despite the essential role that glycans play 
in many biological processes, their isomeric complexity 
makes their structural determination particularly chal-
lenging. Tandem mass spectrometry has played a central 
role in glycan analysis, and recent work has shown that 
fragments generated by collision-induced dissociation 
(CID) of disaccharides can retain the anomeric configu-
ration of the glycosidic bond.  If this result proves to be 
general, it would provide a powerful new tool for glycan 
sequencing. In this work, we use messenger-tagging in-
frared (IR) spectroscopy to investigate the generality of 
anomer retention in CID by exploring different fragmen-
tation channels in glycans of increasing complexity. Our 
results demonstrate that anomericity seems to be retained 
irrespective of fragment size and branching. 

Understanding the structure of glycans is of crucial im-
portance, since glycoproteins at the surface of most living 
cells influence cellular interaction with external entities.1-

3 The isomeric complexity of glycans, together with the 
fact that their synthesis is not template-driven, makes it 
difficult to determine their primary structure by the stand-
ard techniques used for DNA and protein sequencing. De-
termining the anomericity of the glycosidic bond stands 
out as a particular challenge. Very recently, Compagnon 
and coworkers showed spectroscopic evidence that C1 
fragments (Scheme 1) generated by collision-induced dis-
sociation (CID) of lithiated disaccharides retain the ano-
meric configuration of the glycosidic bond,4 and this has 
also been investigated by coupling ion mobility with tan-
dem MS.5-6 This finding raises many questions:  How 
general is anomeric retention in the gas phase? Does it 
apply to larger, more complex glycans?  Does it apply to 
larger fragments? The answers to these questions are 
likely to have profound implications for glycan analysis. 
The anomericity of the glycosidic bond, which can exist 
in either the ⍺ or β configuration, is commonly deter-
mined by coupling exoglycosidase digestion with liquid 
chromatography.7-10 However, this usually involves 
lengthy incubation times and multiple chromatographic 
separations. Techniques such as NMR11 and X-ray 

crystallography12 can provide detailed structural infor-
mation including the anomeric configuration, but they re-
quire a relatively large amount of sample, which is often 
not available in the case of glycans. Tandem mass spec-
trometry (MSn) has the advantage of providing rapid 
structural information while requiring small amounts of 
sample. Branching, bond position, and anomericity can 
be successfully determined by analyzing the fragments 
from relatively small glycans,13-20 although the latter re-
quires observing cross-ring fragments that preserve the 
anomeric configuration of the glycosidic bond.10, 21-22 
Nevertheless, tandem MS is typically unable to fully dis-
tinguish between all isomeric forms.  

 
Scheme 1 – Nomenclature for B/Y and C/Z fragments of 
glycans.23 It should be noted that both the C and Y frag-
ments carry a hydrogen atom to form an intact glycan.  

Infrared (IR) spectroscopy is a promising tool for glycan 
analysis, as the vibrational spectrum is extremely sensi-
tive to the slightest of structural differences. Recently, 
room-temperature infrared multiphoton dissociation 
(IRMPD) has been used to fingerprint monosaccharide 
fragments,4 while cryogenic IR spectroscopy has been 
used by Pagel and coworkers24 as well as our group25-26 
to identify spectral fingerprints of increasingly complex 
sets of isomeric glycans. Cryogenic spectroscopy has the 
advantage of eliminating thermal inhomogeneous broad-
ening, resulting in significantly increased resolution for 
large molecules with congested vibrational spectra.27 In 
this work, we use cryogenic messenger-tagging infrared 
spectroscopy and ultrahigh-resolution ion mobility spec-
trometry (IMS) to investigate the generality of anomeric 
retention upon CID.  
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A detailed description of the instrument used in this study 
can be found elsewhere.28 Briefly, singly sodiated glycans 
are produced in the gas phase by nano-electrospray ioni-
zation (nESI), radially confined in an ion funnel, and ac-
cumulated in a hexapole ion trap. Fragmentation is in-
duced by collisions in the hexapole at a pressure of 10-1 
mbar by accelerating the ions through a potential differ-
ence of ~ 200 V between the funnel exit and hexapole 
bias. Fragments of a specific m/z are selected by a first 
quadrupole mass filter and sent to an octupole ion trap 
enclosed in a copper housing and maintained at 60 K, 
where they are cooled upon collisions with cold helium 
and complexed with a weakly bound nitrogen molecule. 
Nitrogen-tagged ions are irradiated every other trapping 
cycle by a single IR pulse from an optical parametric os-
cillator (OPO) before being sent through a second quad-
rupole mass filter and detected by a channeltron. 
In the event of a resonant IR transition in the irradiated 
ion, the absorbed energy is intramolecularly redistributed, 
leading to the detachment of the weakly bound nitrogen 
tag. The IR spectrum is obtained by monitoring the de-
pletion of the signal at the tagged-ion mass as a function 
of IR wavelength in a laser-on/laser-off experiment. 
We first tested anomeric retention in the C1 fragments of 
Gala(1-3)GalNAc and Galb(1-3)GalNAc by comparing 
their cryogenic vibrational spectra (Figs. 1(a, d) with 
those of the methylated ⍺ and β anomers of galactose 
(Figs. 1(b, c)).  

 
Figure 1: Cryogenic vibrational spectra of the C1 fragments 
of galactose-containing disaccharides (a, d) and of a tetra-
saccharide (e) and their comparison to the methylated 
anomers of galactose (b, c).  

Because methylated galactose does not interconvert at the 
anomeric carbon, the spectra of the substituted monosac-
charides should provide a good model of anomerically 
pure galactose, except for the absence of the anomeric 
OH stretch band, which occurs at 3652.5 cm-1 in the 
a anomer and 3644.5 cm-1 in the b anomer.  Figure 1(e) 
shows the IR spectrum of the C1 fragment generated from 
a tetrasaccharide Galb(1-3)GalNAcb(1-4)Galb(1-4)Glc. 
All spectra of the C1 fragment, which is itself an intact 

galactose, show a clear correspondence with those of the 
respective methylated galactose anomer. This demon-
strates that C1 fragments produced from an ⍺ glycosidic 
linkage represent the anomerically pure ⍺ monosaccha-
ride, and that fragmentation of the β glycosidic linkage 
gives the anomerically pure β monosaccharide, irrespec-
tive of the size of the initial glycan. 
To test whether anomer retention also occurs in N-acety-
lated C-fragments of glycans, we performed similar ex-
periments on two disaccharides and a trisaccharide con-
taining GalNAc at the non-reducing end. Figure 2 com-
pares spectra of C1 fragments to the isomer-specific spec-
tra of the monosaccharide GalNAc obtained using an ap-
paratus that employs ultrahigh-resolution IMS based on 
structures for lossless ion manipulations (SLIM)29-30 to 
separate the two anomers before measuring their spec-
tra.31 Two ion-mobility peaks for GalNAc were resolved 
after 11 cycles on the SLIM board, which represents a to-
tal drift path of ~20 m. The vibrational spectrum of the 
ions contained in the first mobility peak (Fig. 2(c)) 
matches that of the C fragments generated from an ⍺ gly-
cosidic linkage (Figs. 2(a, b)), while the spectrum of the 
ions in the second mobility peak Fig. 2(e) matches the 
fragment generated from a β glycosidic linkage (Fig. 
2(d)). It should be noted that because the two mobility 
peaks were not baseline separated, vibrational bands from 
the major component (Fig. 2(c)) appear in the spectrum 
of the minor component (Fig. 2(d)), but with reduced in-
tensity. However, one can see that the peak at 3465 cm-1, 
for example, is absent from the spectrum of Fig. 2(e), sug-
gesting that the GalNAc fragment from GalNAcb(1-
3)Gal is anomerically pure. 

 
Figure 2:  Cryogenic vibrational spectra of C1 fragments of 
glycans with GalNAc at the non-reducing end. Inset: High-
resolution arrival time distribution of GalNAc.  

 Although we have not assigned the two ion mobility 
peaks (inset, Fig. 2(c/d)) to the ⍺ and β anomers, we have 
shown previously that for small sodiated saccharides 
structurally similar to those presented in this work, the 
two mobility peaks observed by ultrahigh-resolution IMS 
separation correspond to the ⍺ and β anomers.32 
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Furthermore, the fact that the spectrum of the C1 fragment 
generated at an ⍺ glycosidic linkage corresponds exclu-
sively to the spectrum from the first mobility peak, and 
likewise for the β fragment and second mobility peak, 
provides strong evidence that the two mobility peaks ob-
served correspond to the ⍺ and β anomers. If mutarotation 
were to occur upon fragmentation, one would expect a 
mixture of anomers in the fragment spectra, which is not 
observed here. There is thus strong evidence that the pres-
ence of the N-acetyl group does not affect anomeric re-
tention upon dissociation to form a C1 fragment.  
In order to evaluate the generality of anomeric retention 
further, analogous experiments were carried out on the C2 
fragments of the human milk oligosaccharides LNnT and 
LNnH. In Figure 3 we show the cryogenic vibrational 
spectra of the C2 fragment from these species and com-
pare them to the spectra of the a and b anomers of 
Galb(1-4)GlcNAc (Figs. 3(a, b)), which we separately 
measured after separation by SLIM-based ion mobility.33 
The spectra of the C2 fragments from both LNnT (Fig. 
3(c)) and LNnH (Fig. 3(d)) show a good match with the 
spectrum of the slower mobility peak of Galb(1-4)Glc-
NAc (Fig. 3(b)).  This indicates that C2 fragments of the 
linear tetrasaccharide LNnT and the branched hexasac-
charide LNnH also retain the anomericity of the glyco-
sidic bond.  

 
Figure 3:  Cryogenic vibrational spectra of the C2 fragments 
from LNnT (c) and LNnH (d) compared to those from the 
separated anomers of Galb(1-4)GlcNAc (a, b)). Inset: high-
resolution arrival time distribution of Galb(1-4)GlcNAc.33 

Our results extend the findings by Compagnon and 
coworkers4 in a significant way. The higher spectroscopic 
resolution afforded by cryogenic IR spectroscopy to-
gether with ultrahigh-resolution ion mobility provides us 
with the capability of identifying the anomeric forms of 
larger CID fragments by comparing them to anomerically 
pure reference compounds. Our observation of anomer 
retention in the fragmentation of glycans as large as hex-
asaccharides (Fig. 3(d)), and the fact that it occurs for 
fragments larger than C1 (Figs. 3(c) and 3(d)), suggest 
that it may be the rule rather than the exception, arising 
from the large barriers for mutarotation in the gas phase.  

If further studies confirm this generality, it would open 
new possibilities for determination of the primary struc-
tures of biologically relevant glycans and provide an im-
portant new tool for glycomics. 
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