Longitudinal neural and vascular structural dynamics produced by chronic microelectrode implantation

Implanted microelectrode arrays sense local neuronal activity, signals which are used as control commands for brain computer interface (BCI) technology. Patients with tetraplegia have used BCI technology to achieve an extraordinary degree of interaction with their local environment. However, current microelectrode arrays for BCIs lose the ability to record high-quality neural signals in the months-to-years following implantation. Very little is known regarding the dynamic response of neurons and vasculature in the months following electrode array implantation, but loss of structural integrity near the electrode may contribute to the degradation of recording signals. Here, we use in-vivo dual-modality imaging to characterize neuronal and vasculature structures in the same animal for 3 months following electrode insertion. We find ongoing neuronal atrophy, but relative vascular stability, in close proximity to the electrode, along with evidence suggesting links between rare, abrupt hypoxic events and neuronal process atrophy.


Published in:
Biomaterials, 238, 119831
Year:
Apr 01 2020
Publisher:
Oxford, ELSEVIER SCI LTD
ISSN:
0142-9612
1878-5905
Keywords:
Laboratories:




 Record created 2020-04-03, last modified 2020-04-20


Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)