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Cellular memory enhances bacterial chemotactic
navigation in rugged environments
Adam Gosztolai 1,2✉ & Mauricio Barahona 1✉

The response of microbes to external signals is mediated by biochemical networks with

intrinsic time scales. These time scales give rise to a memory that impacts cellular behaviour.

Here we study theoretically the role of cellular memory in Escherichia coli chemotaxis. Using

an agent-based model, we show that cells with memory navigating rugged chemoattractant

landscapes can enhance their drift speed by extracting information from environmental

correlations. Maximal advantage is achieved when the memory is comparable to the time

scale of fluctuations as perceived during swimming. We derive an analytical approximation

for the drift velocity in rugged landscapes that explains the enhanced velocity, and recovers

standard Keller–Segel gradient-sensing results in the limits when memory and fluctuation

time scales are well separated. Our numerics also show that cellular memory can induce

bet-hedging at the population level resulting in long-lived, multi-modal distributions in

heterogeneous landscapes.
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The natural habitat of many microbes is shaped by inherent
micro-scale ruggedness arising from random spatial inho-
mogeneities due to porous or particulate matter1–3) or to

filamentous structures resulting from turbulent advection in the
medium4,5. Microbes typically navigate such rugged attractant
landscapes in search of nutrients and stimulants in a process called
chemotaxis. Chemotaxis is mediated and governed by specialised
biochemical pathways that sense changes in stimulant concentra-
tion, transduce those signals, and induce subsequent adjustments to
the locomotion of the cell6. Such pathways have characteristic
dynamic responses with intrinsic time scales, which are used by
cells to resolve changes in chemoattractant concentrations, i.e., to
perform local gradient-sensing7,8. In addition, the dynamic
response of the biochemical circuits can filter out the high fre-
quencies of noisy signals, to enhance gradient-sensing9–11.

The time scales of such responses can also be viewed as the
basis for a cellular memory, over which signals are processed.
Indeed, microbes sample continuously their chemical environ-
ment along their swimming trajectory, and recent work has
shown that the biochemical memory can be dynamically tuned12

from seconds to minutes13 in response to environmental statis-
tics. Hence, in addition to evaluating the stimulant gradient, cells
could extract informative features of the heterogeneous envir-
onment from the fluctuations they perceive as they swim.

We study the effects of cellular memory in the context of
Escherichia coli (E. coli) chemotaxis, a model system for the
navigation of microbes5, worms14, and eukaryotes15, as well as an
inspiration for the motion of swarm robots16,17 and random
search algorithms18. E. coli chemotaxis entails a run-and-tumble
strategy: runs (i.e., stretches of linear motion at constant velocity)
interrupted by tumbles (i.e., random stops with reorientation
onto a random direction). To generate a drift towards high
chemoattractant concentrations, cells reduce their tumbling rate
upon sensing a favourable gradient, thus lengthening the up-
gradient runs19.

The tumble rate is regulated by a chemotactic pathway with a
bi-lobed temporal response with a characteristic time scale γ,
which we denote the cellular memory. Input signals are con-
volved with this temporal response, with the effect that recent
samples are weighed positively whereas signals in the past are
given a negative weighting20. It has been shown that this response
yields an estimate of the local temporal gradient8,9.

The capability of cells to compute local gradients is the basis
for several coarse-grained models (drift-diffusion equations). The
classic example is the linear Keller–Segel (KS) model21,22, which
describes the behaviour of a population of cells whose mean
velocity aligns instantaneously with the local gradient. The KS
model successfully reproduces a variety of chemotactic phe-
nomena, including experimentally observed distributions under
shallow attractant gradients23. Yet the presence of fluctuations
may lead to an incorrect assessment of the underlying gradient if
using only instantaneous information. Indeed, KS fails to reca-
pitulate situations when cells do not have time to adapt to large
fluctuations, both in experiments24 and in agent-based simula-
tions25–27. These shortcomings suggest the need to consider
additional time scales that play a role in chemotactic transient
responses28, and, specifically, the intrinsic memory of the che-
motactic pathway processing incoming stimuli29,30.

Here, we study how bacteria use their cellular memory as they
swim across a rugged chemoattractant landscape to extract
spatio-temporal information from the perceived signal to
improve their chemotactic navigation. To shed light on the role of
memory, we carry out simulations of an agent-based (AB) model
containing an input-output response function of the E. coli che-
motactic pathway31–33 and compare its predictions to the KS
model, which is based on memoryless local gradient alignment.

The KS agrees well with the AB numerics for constant gradients,
yet it underestimates the drift velocity of the population when the
ambient concentration has spatial correlations, consistent with
cells taking advantage of correlations in addition to local
gradients.

Motivated by these numerical findings, we derive an analytical
formula for the drift velocity in terms of the cellular memory and
the length scale of the spatial correlations of the attractant
landscape. Our model predicts the numerical results and recovers
KS in various limits, thus elucidating the conditions in which
cellular memory provides a chemotactic advantage over mem-
oryless local gradient-sensing. We also show that our results are
consistent with optimal information coding by the chemotaxis
pathway32,34, yet cells are band-limited by their tumbling rate.
Our work thus extends the gradient-sensing viewpoint in che-
motaxis, and provides insight into the role of memory in navi-
gating heterogeneous landscapes.

Results
Gradient-sensing as the classical viewpoint of chemotaxis. A
classical setup for chemotaxis is represented schematically in
Fig. 1a. Cells swim following a run-and-tumble motion: ballistic
motion (‘runs’) at constant velocity v0, interrupted by random re-
orientations (‘tumbles’) occurring at random times governed by a

Fig. 1 Setup of the agent-based model and simulation framework. a Cells
navigate a chemoattractant landscape S(x) using a run and tumble strategy
with characteristic scales and variables as represented in the picture (ℓ0,
λ�1
0 and v0 are the typical run length, run time and ballistic run speed
respectively). The simulations are run in a long domain of length eL � ‘0
over long times eT � λ�1

0 . b The swimming cell senses the attractant
concentration along its trajectory x(t) and modulates its tumbling rate λ(S(x
(t))) by the chemotaxis transduction pathway with response given by Eq.
(1). The dynamic response of the pathway is mediated by the response
kernel K(t) (Eq. (2)). c The shape of the bi-lobed kernel K(t) normalised by
its amplitude Kmax against time.
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Poisson process with rate λ(t)35. As cells swim along their tra-
jectory x(t) (taken here to be one-dimensional for simplicity),
they are exposed to an attractant concentration S(x(t)). Assuming
initial adaptation to the ambient attractant concentration, the
cells modulate their Poisson tumbling rate according to refs. 29,36:

λðtÞ ¼ 1� ΛðtÞ

with ΛðtÞ ¼
Z t

�1
Kðt � uÞSðxðuÞÞdu: ð1Þ

This represents the dynamics of the chemotaxis signal trans-
duction, illustrated on Fig. 1b. Throughout, we use variables non-
dimensionalised with respect to the characteristic length and time
scales:

x ¼ ex
‘0
; t ¼ λ0et; λ ¼

eλ
λ0

; S ¼
eS
Stot

;

where Stot is the total attractant concentration, λ0= 1 s−1 is the
basal tumbling rate, and ℓ0= v0/λ0= 10 μm is the average run
length19.

In Eq. (1), K(t) is the chemotactic memory kernel, measured
through impulse response experiments20, which has a bi-lobed
shape for some attractants in E. coli37,38 (Fig. 1c). A typical form
for K(t) is given by:

KðtÞ ¼ β

γ
e�t=γ t

γ
� t2

2γ2

� �
; ð2Þ

where β is a dimensionless signal gain, and γ ¼ λ0eγ is the cellular
memory, a (dimensionless) relaxation time, as seen by the fact
that the crossing point of the bi-lobed response is t = 2γ (Fig. 1c).
Note that the amplitude of the response kernel is Kmax ¼
ð ffiffiffi

2
p � 1Þe

ffiffi
2

p �2β=γ. Hence an increase in memory decreases the
overall response. The kernel in Eq. (2) can be understood as a
linear filter with three states (Supplementary Note 1), with a
topology that achieves perfect adaptation39,40, sinceR1
0 KðtÞdt ¼ 0. Our setup differs from an alternative model26

based on the dynamics of the CheY protein regulating the
tumbling rate, which typically leads to a one-state linear filter
obtained through linearisation. In Supplementary Note 2, we
show that this alternative model can be equivalently written in the
form of Eq. (1) but with a kernel K(t)= β(δ(t)− (1/γ)e−t/γ) with
a singularity at t= 0 and a single decaying exponential, instead of
the bi-lobed kernel (Eq. (2)).

At long time scales involving many runs and tumbles (t≫ 1),
the swimming behaviour may be approximated by a drift-
diffusion process22,25,41. In this regime, the time evolution of the
population density of cells ρ(x, t) from an initial state ρ(x, 0) is
described by a Fokker–Planck partial differential equation:

∂ρ

∂t
� 1
2
∂2ρ

∂x2
þ ∂

∂x
ðρvÞ ¼ 0; ð3Þ

where vðx; tÞ ¼ evðx; tÞ=v0 is the drift velocity of the cells, and the
diffusion coefficient D ¼ ‘20λ0 drops out as part of the non-
dimensionalisation. Equivalently, ρ(x, t) is the probability of
finding a cell at x after time t from a starting position x0 drawn
from ρ(x, 0).

Typically, derivations in the literature35,41,42 consider the
regime of long memory (compared to the average run) and
shallow perceived gradient (i.e., the attractant does not vary
appreciably over the memory):

1 � γ � β
∂S
∂x

� ��1

: ð4Þ

Under these assumptions, the drift velocity v(x, t) can be shown36

to align with the local gradient (see Supplementary Note 3):

vðx; tÞ ¼ χ
∂S
∂x

¼: vKSðxÞ; ð5Þ

where the chemotactic response coefficient χ follows from the
kinematics and the memory kernel (Eq. (2)):

χ ¼ 2βγ

ð1þ 2γÞ3 : ð6Þ

Equation (3), together with Eqs. (5) and (6), defines the classic
linear Keller–Segel (KS) equation for the time evolution of the
population density under a landscape S(x). We denote the
solution to this equation as ρKS(x, t; S).

However, the KS model is actually valid under the weaker
condition25

jΛj � 1 ðsmall responseÞ; ð7Þ
i.e., the tumbling response remains close to the adapted value. It
can be shown that time scale separation (Eq. (4)) implies small
response (Eq. (7)), but the converse is not necessarily true. Hence
KS can still be valid in the realistic situation when Eq. (4) breaks
down because the cellular memory is commensurate with
environmental fluctuations10,11,32, as long as Eq. (7) holds.
Below, we consider a broad span of memory values (from the well
separated to the commensurate) but always in the small response
regime so that the KS model is valid.

Chemotaxis of cells with memory studied using agent-based
numerics. We consider cells with memory swimming in a rugged
environment with spatial correlations, leading to a temporally
fluctuating input perceived along their trajectories. To study the
effect of memory, we performed agent-based (AB) simulations of
run-and-tumble motion as in refs. 31,32 coupled to a cellular
response (Eqs. (1)–(2)) with memory (see Supplementary Note 1
for details).

Our rugged landscape is a simple linear attractant concentra-
tion profile with additive spatial noise32:

SηðxÞ ¼ α x þ ηðxÞ; ð8Þ
where η(x) is a random spatial variable described by the stochastic
harmonic oscillator Langevin equation:

d
dx

ηðxÞ ¼ θðxÞ

m
d
dx

θðxÞ ¼ � 1
μ
ηðxÞ � θðxÞ þ ση

ffiffiffi
2
μ

s
ξðxÞ:

ð9Þ

Here ξ(x) is a unit white noise, and

α ¼ ‘0
Stot

eα; ση ¼ eση
Stot

; m ¼ em
‘0
; μ ¼ eμ

‘0

are non-dimensionalised parameters corresponding to: attractant
gradient, noise variance, inertia, and spatial correlation length,
respectively. This random landscape has two desirable properties.
First, Sη(x) with m > 0 is continuous and differentiable, so that

∂Sη
∂x

� �
ξ

¼ αþ ∂η

∂x

� �
ξ

¼ α; ð10Þ

where 〈⋅〉ξ denotes averaging over independent realisations of η
(x). Second, Eq. (9) is a regularised spatial Ornstein-Uhlenbeck
(OU) process (Supplementary Fig. 1): as m→ 0, η converges to an
OU process η0(x) which has exponential correlations with
characteristic length μ:

hη0ðxÞη0ðx0Þiξ ¼ σ2ηe
�jx�x0 j=μ ¼: Cηðjx � x0jÞ: ð11Þ
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The OU limit is used below to facilitate our analytical
calculations.

Chemotaxis in constant shallow gradients. We first consider the
landscape with zero ruggedness:

S0 ¼ α x; ð12Þ
which corresponds to ση= 0 or, alternatively, to the limit μ→∞,
when the correlation length diverges. In this case, it has been
shown22,42 that the condition

βα � 1 ðshallow perceived gradientÞ ð13Þ
guarantees that the small response condition (Eq. (7)) also holds.
Hence we expect the AB numerics to be well described by the KS
equation.

To test this prediction, we used the AB model to simulate N=
105 independently generated cell trajectories {xAB(t; S0); t∈
(0, T)}, where T= 4 × 103 (Fig. 2a), from which we obtain
population snapshots, ρAB(x, t; S0). All the simulations were run
in the regime of small βα. In Fig. 2b, we show that the statistics of
the AB simulations are well captured by the continuum KS
solution:

ρABðx; t; S0Þ � ρKSðx; t; S0Þ:
We also compared the drift velocity of the KS solution to the

average velocity of AB cells (computed over the long simulation

time T):

vABðS0Þ :¼
xABðT; S0Þ � xABð0; S0Þ

T

� �
AB

vKSðx; S0Þ ¼ χ
∂S0
∂x

¼ χ α;

ð14Þ

where 〈⋅〉AB denotes averaging over the ensemble of AB cells.
Figure 2c shows that the average velocity of the AB population
matches the drift velocity of the KS model for varying memory γ.

Maximising Eq. (6) shows that the drift velocity vKS achieves a
maximum at an optimal memory:

v�KS :¼ max
γ

vKSðS0Þ at γ�KS ¼ 1=4; ð15Þ

Hence a cell with optimal memory γ�KS has a kernel K(t) with a
zero crossing at t= 1/2, i.e., halfway through the expected length
of a run (see Fig. 1c). KS thus predicts that the drift speed is
maximal when the gradient is measured along a single run, when
the cell can take an unbiased measurement while moving in a
straight line. For the zero-ruggedness landscape, our AB
simulations (Fig. 2c) also display a maximum in the average
velocity of the population when the cells have memory γ ¼ γ�KS .

Figure 2d confirms that the simulations are in the regime of
small response (Eq. (7)) where KS holds. As βα is increased, and
the small response condition (Eq. (7)) is violated, the

Fig. 2 Comparison of agent-based numerics and Keller–Segel approximation in shallow gradients. The AB model is used to produce N= 105 cell
trajectories over T= 4 × 103 (Δx= 5 × 10−5, Δt = 5 × 10−3) with perceived gradient βα= 0.1, βση= 0. The KS model is integrated numerically using a first-
order in time, second-order in space forward-Euler scheme (Δx= 10−4, Δt= 1). a Sample trajectories of the AB model (γ= 0.5) in the deterministic
landscape S0(x). b The evolution of the population density of the AB model (ρAB(x, t; S0), histogram) is well captured by the evolution of the KS equation
(ρKS(x, t; S0), Eq. (3), dashed line, γ= 0.5). The solid blue line indicates the average velocity vAB, which is indistinguishable from the KS drift vKS. The
densities are normalised to unit mass. c The drift velocity from the AB model (vAB, circles) is well predicted by the KS drift velocity (vKS, dashed line). Both
velocities are normalised by the maximal KS drift velocity v�KS, which is reached at a memory of γ�KS ¼ 1=4, shown by the dotted line. d The maximum
tumbling responsemax jΛj (circles) stays well below unity, showing that the small response condition is met for all the simulations. The blue band indicates
the standard deviation of the simulations.
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correspondence between the AB and KS solutions gradually
breaks (see Supplementary Fig. 2).

Chemotaxis in rugged, correlated landscapes. The kernel K(t)
with intrinsic memory γ has been shown to filter high-frequency
input noise11,32. However, cells could also use this memory to
their advantage as they process the correlated fluctuations that
they encounter as they traverse a rugged landscape.

To test this idea, we carried out AB simulations of cells with
memory navigating the spatially correlated landscape (Eq. (8))
and compared it to the predicted KS behaviour. To ensure that
the differences between AB and KS are a direct consequence of
the correlated spatial fluctuations, all our simulations are run in

the small response regime (Eq. (7)) where KS holds, while
keeping a large signal-to-noise ratio (Supplementary Note 4):

α � ση ðlarge signal-to-noise ratioÞ; ð16Þ

Figure 3 shows that the AB cell population travels faster than
predicted by KS going up the gradient of the rugged landscape.
Figure 3a presents simulated AB trajectories for a particular
realisation of the landscape Sη(x), and Fig. 3b compares the time
evolution of the KS solution hρKSðx; t; SηÞiξ to the empirical

distribution from the AB numerics hρABðx; t; SηÞiξ , both averaged

over 102 independent realisations of the landscape Sη(x). Our
numerics show that the AB distribution propagates faster:

Fig. 3 Comparison of agent-based simulations and analytic predictions in rugged landscapes Sη. The AB model is used to produce N= 104 cell
trajectories over T= 4 × 103 (Δx= 5 × 10−5, Δt= 5 × 10−3) in 102 realisations of Sη(x) with perceived gradient βα= 0.05, βση= 10−3. The KS model is
integrated numerically using a first-order in time, second-order in space forward-Euler scheme (Δx= 10−4, Δt= 1). a Sample trajectories of the AB model
(γ= 0.5) in the rugged landscape (μ = 1). Note that the ensemble average drift of the AB cells (solid blue line) is faster than the KS drift (dashed black
line). b The evolution of the population density of the KS model (hρKSðx; t; SηÞiξ , Eq. (3), dashed black line, γ= 0.5, m= 5 × 10−3) generally fails to capture
the evolution of the AB population (hρABðx; t; SηÞiξ , histogram). The densities are normalised to unit mass. c The average drift velocity of the AB model
(hvABðSηÞiξ , circles) as a function of the memory γ is well described by our approximation (Vμ, Eq. (23), red solid line) for all values of μ, but in general not
well captured by the KS drift (vKS, Eq. (5), black dashed line). The AB drift is averaged over realisations of the rugged landscape and both velocities are
normalised by the maximal KS drift v�KS in the deterministic landscape. d The average maximum response amplitude ∣Λ∣ from the AB simulations at
different values of μ (different symbols in the figure) remains much smaller than unity for all combinations of γ and μ (as in Fig. 2d), indicating that the KS
model still holds in the rugged landscape. Yet, as panels b, c show, it does not capture the drift velocity. The blue bands indicate the standard deviation of
the simulations.
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hvABðSηÞiξ > vKS, i.e., the average cell velocity of the AB

simulations (defined in Eq. (14)) averaged over realisations of
the landscape (blue solid line) is larger than the corresponding KS
drift velocity (dashed line).

We have examined this enhanced chemotaxis as a function of
the length scale of the landscape. We show in Fig. 3c that for
correlation lengths around the run length (μ ≈ 1), the KS drift
velocity vKS underestimates the average velocity hvABðSηÞiξ of cells
with memory γ≥ γ�KS ¼ 1=4.

As expected, the average velocity of the AB cells is well
approximated by the KS solution in the limits of both vanishingly
small and infinitely large correlation length:

jjhvABðSηÞiξ � vKSjj ! 0 as μ ! f0; 1g; ð17Þ
which correspond to an uncorrelated landscape or a zero-
ruggedness constant gradient, respectively. Also expected, Eq.
(17) holds in the memoryless limit γ→ 0. In this limit, the kernel
K(t) computes the temporal derivative of the signal (see
Supplementary Note 1), and the tumble rate (Eq. (1)) is λ(t)≃
1− βdS/dt, so that the drift velocity is given by Eq. (5) (see Sect.
2.3 in ref. 41). This result is consistent with fast adaptation
dynamics approaching gradient-sensing31,41.

Note that the system is in the small response regime (Eq. (7))
where KS is applicable (compare Fig. 3d with Fig. 2d). Yet, our
AB numerics show that cells with memory can drift faster than
predicted by mere gradient sensing (KS) when navigating
environments with spatially correlated fluctuations, thus indicat-
ing a role for cellular memory in using spatial information
beyond local gradients.

Derivation of drift speed in rugged landscapes. To capture the
numerically observed enhancement of AB chemotaxis in rugged
landscapes, we extend de Gennes’ analytical derivation of the drift
velocity to incorporate the interaction of memory with the
landscape fluctuations. To facilitate our analysis, in the rest of this
section we work in the OU limit of the landscape, i.e., m→ 0 in
Eq. (9).

Consider a population of cells navigating the rugged landscape
Sη(x). Under chemotaxis, the average duration of runs up the
gradient tþh iAB is larger than the duration of runs down the
gradient t�h iAB. Following de Gennes36, it can be shown that the
(non-dimensionalised) average velocity of the cells is:

vABðSηÞ ¼
tþh iAB � t�h iAB
tþh iAB þ t�h iAB

¼ tþh iAB � 1; ð18Þ

where we use the fact that tþh iAB þ t�h iAB ¼ 2, i.e., the sum of
the average duration of one up-hill and one down-hill run is equal
to two runs. Equation (18) just states that the average cell velocity
is the excess duration of the average up-gradient run beyond the
duration of an average run.

Using the ergodicity of the run-and-tumble process, the
expectation over AB trajectories becomes a time integral:

htþiAB ¼
Z 1

0
s pðs j xðtÞÞ ds ¼

Z 1

0
e�

R s

0
λðtÞdt ds; ð19Þ

where pðs j xðtÞÞ ¼ λðsÞ expð�R s
0λðtÞdtÞ is the conditional prob-

ability density of Poisson tumble times given the path x(t). In the
small response regime (Eq. (7)), we can expand the exponential to
second order to obtain

htþiAB ’ 1þ
Z 1

0
e�s

Z s

0
ΛðtÞdt þ 1

2

Z s

0
ΛðtÞdt

� �2
" #

ds:

We now depart from de Gennes’ derivation and consider the
cell velocity (Eq. (18)) averaged over realisations of the landscape

Sη:

hvABðSηÞiξ ’
Z 1

0
e�s

Z s

0
ΛðtÞdt

� �
ξ

ds

þ 1
2

Z 1

0
e�s

Z s

0
ΛðtÞdt

� �2
* +

ξ

ds;

ð20Þ

where the first term does not depend on the spatial noise:Z s

0
ΛðtÞdt

� �
ξ

¼
Z s

0

Z 1

0
KðuÞhSηðxðt � uÞÞi

ξ
dudt

¼
Z s

0

Z 1

0
KðuÞS0ðxðt � uÞÞdudt;

ð21Þ

and the second term contains the effect of the spatial correlations
as a result of the overlap between the memory kernel and the
spatial covariance (Eq. (11)):Z s

0
ΛðtÞdt

� �2
* +

ξ

¼
Z s

0

Z 1

0
KðuÞS0ðxðt � uÞÞdudt

� �2

þ
Z 1

0
KðwÞ

Z s

0

Z 0

w�t̂

Z 1

0
KðuÞ Cηðxðτ � uÞÞ du

� �
dτdt̂ dw:

ð22Þ
Here τ ¼ t � t̂ þ w represents the delay between the input η0(x(t
− τ)) and the output Λ(t), and the limits of integration reflect
causality.

Collating Eqs. (19)–(22) and integrating, we obtain our
approximation of the drift velocity in rugged landscapes:

hvABðSηÞiξ ’ vKS þ Δvμ ¼: Vμ; ð23Þ
where Eq. (21) gives rise36 to the KS drift velocity (Eq. (5)):

vKS ¼ βα
2γ

ð1þ 2γÞ3 ; ð24Þ

and Eq. (22) leads to the correction due to spatial correlations:

Δvμ ¼
β2σ2η
2

γ2μ 2γ3ð1þ μÞ þ ð1þ γÞ3μ2 þ 6γ2μ� 2μ2
� �

ð1þ γÞ6ð1þ μÞðγþ μÞ3
ð25Þ

For further details, see Supplementary Note 5.
Our approximation Vμ recovers the KS drift velocity in

different limits: for deterministic and uncorrelated landscapes
(Δvμ→ 0 as μ→ {0, ∞}); in the zero and infinite memory limits
(Δvμ→ 0 as γ→ {0, ∞}); as well as in the limit of vanishing
gradient (Vμ→ vKS as α→ 0), since (Eq. (16)) is required to
derive Δvμ.

The effect of memory on the drift speed. Our approximation
(Eq. (23)) makes explicit the fact that cells use both the local
gradient (through vKS) and the spatial correlations (through Δvμ)
to navigate rugged landscapes. Figure 3c shows that, in contrast to
the KS drift, our Vμ predicts the enhanced cell velocity in the AB
simulations, hvABðSηÞiξ , and its dependence on the landscape

length scale μ for a broad range of memory, γ.
Figure 4 compares the predicted maximal velocity and the

optimal memory at which it is achieved,

V �
μ ¼ max

γ
Vμ attained at γ�μ ð26Þ

with the numerical simulations. As expected, we recover the KS
behaviour in both limits of deterministic (μ→∞) and uncorre-
lated (μ→ 0) landscapes, when there is no advantage in using
memory to use the statistical correlations of the environment. The
optimal memory γ�μ thus emerges as a balance between filtering
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and tumbling: for γ> γ�μ, cells improve their noise filtering32 but
lose orientation due to the larger number of tumbles taken
account in their history; on the other hand, for γ< γ�μ, cells are
less likely to tumble, but filtering of environmental noise becomes
suboptimal. Our results in Fig. 4a show that the velocity of cells
with optimal memory is always larger than the gradient-sensing
KS drift velocity (i.e., V �

μ ðμÞ≥ v �
KS ; 8μ), with the largest

improvement at μ≃ 1/2, the point where the length scale of the
environmental correlations are on the order of one half of a run
length. As seen in Fig. 4b, the corresponding optimal memory is
also always larger than the KS memory: γ�μ ≥ γ

�
KS ¼ 1=4. Our

calculations show that it is advantageous to increase the memory
when the correlations are of the same order as the length of the
run (μ= 1); yet for correlations longer than one run (μ ≥ 1), the
presence of random tumblings erode this advantage and the
optimal memory returns to the KS value.

This behaviour is consistent with models of tethered cells
receiving noisy temporal stimuli32. In particular, the mutual
information between input and output with a delay τ is
maximised when maximising the correlation

RηΛðτÞ :¼
hη0ðt � τÞΛðtÞiξ

σησΛ
¼ 1

σησΛ

Z 1

0
KðuÞRηðτ � uÞ du;

ð27Þ

which is a normalised version of the integral in brackets in the
second term of Eq. (22). It was shown32,43 that Eq. (27) is
maximised for a memory corresponding to optimal filtering, and,
consistently, our results reflect the importance of noise filtering.
For navigation, however, the optimality of filtering is not the only
criterion, and it needs to be balanced with the random tumbling
time scale which imposes a threshold on the bandwidth of
correlations that are useful to improve drift speed.

The effect of memory on the heterogeneity of the population.
Thus far, we have shown that our approximation predicts well the
effect of memory on enhancing the cell velocity in rugged land-
scapes, although, as seen in Fig. 3c, it overpredicts the velocity of
AB cells with short memory (γ< γ�KS ¼ 1=4) navigating mildly
rugged landscapes (0.05 < μ < 0.5). The origin of this discrepancy
is in the fact that cellular memory has an effect not only on the
average cell velocity but also on the heterogeneity of the dis-
tribution of AB cells, an effect that is not captured by our
approximation in Eq. (23).

To characterise this behaviour further, we carry out additional
numerical computations. Intuitively, we expect that cells with
short memories will be more sensitive to local irregularities, and
hence more prone to becoming disoriented in rugged landscapes.
At the population level, this could lead to the appearance of
subpopulations of propagating agents. On the other hand, cells
with long memory will average their responses over extended
patches of the landscape, thus being less sensitive to local
fluctuations of the landscape and maintaining the unimodality of
the distribution.

A numerical illustration of this behaviour is presented in
Fig. 5a, where we show the long-term AB numerics of two
population of cells (one with long memories, another with short
memories) starting from an initial Gaussian distribution and
navigating a rugged landscape Sη. In the KS model, it is known
that a Gaussian population remains Gaussian for all times44.
Indeed, our AB numerics show that when cells have relatively
long memories (γ= 1), the population does remain unimodal.
However, the population of cells with short memories (γ = 0.05)
goes from being Gaussian to multimodal (i.e., with separate
subpopulations), as time elapses. This behaviour is persistent over
long times.

To quantify the loss of unimodality, in Fig. 5b we compute the
L2 distance between the AB distribution ρAB(x, t; Sη) and its best
Gaussian fit Gðx; t; SηÞ after a long simulation of T= 4 × 103:

DGðρAB;TÞ
	 


ξ
¼ hjjρABðx;T; SηÞ � Gðx;T; SηÞkjL2iξ : ð28Þ

As discussed above, for a rugged landscape with length scale μ,
the AB distribution becomes increasingly Gaussian for larger γ,
converging to a Gaussian distribution (Fig. 5b, c). For large γ, the
standard deviation becomes largely independent of the landscape
length scale μ (Fig. 5c). This is consistent with the fact that
randomness arises not from the landscape but from tumbling,
which is common to all cells, thus yielding unimodal population
distribution in this limit. When the memory is short, on the other
hand, cells use local information and their trajectories depend
strongly on the starting positions, leading to distributions far
from Gaussian. This dependence on the starting positions is
reduced for cells with longer memory, which perceive and average
overlapping information of the landscape.

These numerical results suggest that cellular memory could
play a role not only in optimising long-term drift velocity
(Fig. 4a) but also in controlling population level heterogeneity45.
A trade-off between both objectives could then allow a more
extended exploration of heterogeneous attractant landscapes by
the cell population.

Fig. 4 Dependence of the maximal drift velocity and the optimal memory
on the environmental correlation length. a The maximum drift velocity
from the agent-based (AB) numerics at various correlation lengths of the
landscape (circles) is well predicted by our approximation (solid line). This
maximum, achieved in rugged gradients, exceeds the corresponding
deterministic Keller–Segel (KS) drift for all μ, and approaches the KS
prediction in the white noise (μ→ 0) and constant gradient (μ→∞) limits.
The drift velocities are normalised with respect to the maximum attainable
KS drift in deterministic landscapes. The error bars indicate the standard
deviation of drift velocity fluctuations across realisations of the rugged
landscape at the optimal memory γ�μ corresponding to this drift speed.
b The optimal memory against the correlation length shows that the
memory at which the drift velocity is maximised is always larger in AB cells
than the optimal KS value: γ�μ=γ

�
KS ≥ 1. The longest optimal memory for a

given correlation length occurs for μ= 1 (dotted line), which equals the
expected run length. Thus, the tumble rate limits the length scale of
perceivable fluctuations.
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Discussion
Chemotactic navigation relies on the processing of sensory
information and its efficient transduction by the cellular
mechanisms that control locomotion. Here we studied the run-
and-tumble motion of E. coli and investigated the role of the
cellular memory inherently to the chemotactic response in
determining the ability of cells to navigate rugged chemoat-
tractant landscapes. In contrast to previous work, which focused
on the deleterious effect of noise on sensing and swimming11,34,
our model explores how the correlations in the attractant, as
encountered through swimming, can be used to enhance che-
motactic performance. To this end, we considered an agent-based
(AB) model of swimming cells with a history-dependent tumble
rate computed by each cell along its trajectory through a signal-
transduction model, and compared it to the classical Keller–Segel
(KS) model, in which cells instantaneously align their velocity to
the chemoattractant gradient independently of their history. Our
results confirm that the KS model accurately predicts the beha-
viour of the AB population when navigating through constant,
shallow chemoattractant gradients31,42. However, when the che-
moattractant landscape has spatially correlated fluctuations
superposed to the gradient, AB cells with short-term memory can
exhibit greater drift velocity than predicted by mere gradient-
alignment.

Building on our numerical observations from the AB model,
we extended work by de Gennes36 to derive an analytical
approximation of the drift velocity that captures the ability of
cells to use spatial correlations. The validity of our derivation
hinges upon the assumption that the tumbling rate remains
close to the adapted state25. We show that this assumption,
which is less restrictive than the standard shallow gradient
assumption22,42, is enough to constrain the relationship between
the time scales of internal response and perceived stimulus.
Specifically, our results hold for rugged environments in the large
signal-to-noise regime, even if the typical shallow gradient

assumption breaks down. Since our model only allows small
tumble biases, the mechanism described here can be fully
attributed to the linear filtering of perceived stimuli, and is,
therefore, distinct from the non-linear response considered in
previous work26,27. Because our analytic derivation of the drift
velocity (Eq. (25)) links population dynamics to cell level para-
meters, it can be used to guide the experimental design to define
parameter regimes where deviations from the Keller–Segel limit
are expected.

Our analytical model predicts an enhancement of the drift
velocity in rugged environments across a range of correlation
lengths and cellular memories (Figs. 3 and 4). This result is
consistent with cells with memory performing a non-local opti-
misation28 beyond local gradient alignment. Importantly, when
the landscape fluctuations are negligibly small or they occur on
long spatial scales, our model recovers the KS model, so that the
best strategy is purely local optimisation, as shown by previous
studies38,46. Our findings are consistent with our fundamental
understanding of bacterial chemotaxis: we find that cells relying
only on instantaneous information tumble more often, leading to
decreased average run length and drift velocity. Hence there is an
ecological benefit for the cell to adjust their memory actively to
match the length scales in the environment13. We also show that
our findings are in agreement with optimal information coding by
the chemotactic pathway32,34 and provide a link between previous
results on memory and filtering in the time-domain10,32 to che-
motactic spatial navigation.

Our model overpredicts the drift velocity of AB cells with short
memory navigating mildly rugged landscapes (Fig. 3c). We
showed that, in this regime, suboptimal filtering due to short
memory results in the segregation of the bacterial population into
long-lived multi-modal distributions (Fig. 5). This numerical
observation suggests another distinct role for cellular memory as
a means to tune how much the ruggedness of the landscape is
reflected in the heterogeneity of the population responses.

Fig. 5 The cellular memory controls the population heterogeneity. a Snapshots of the agent-based population density ρAB(x, T; Sη) in a rugged landscape
Sη (βση= 10−3, μ= 1) measured at T= 4 × 103 for two values of the memory γ (histogram) shown with the best-fit Gaussian curves Gðx; T; SηÞ (red line).
For short memories (where short depends on the correlation length μ) the population loses coherence. b As γ increases, the population becomes
increasingly unimodal Gaussian. This is shown by DGðρAB; TÞ, the distance between the population distribution and the best-fit Gaussian (Eq. (28))
averaged over realisations of the landscape, decreasing to zero. c For large γ, the standard deviation of Gðx; T; SηÞ becomes independent of μ and γ,
indicating that randomness arises only from tumbling.
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Micro-scale ruggedness in the landscape can have diverse
origins. Ruggedness can appear naturally as a result of random
spatial inhomogeneities associated with porous or particulate
media, or due to degrading matter and secretions of other
organisms. Such processes generate gradient structures on scales
smaller or comparable to the mean run-length of bacteria1,5. In
these environments, bacteria experience the spreading pulse of
chemoattractant as a ruggedness in dilute, shallow background
gradients1,47. There is evidence for this effect in native E. coli
environments: in soil, the length scales are estimated to vary
between ~2 μm and 1mm2; in the digestive tract, the chemical
environment is also thought to have fine-grained spatial struc-
ture3. Furthermore, some aquatic microbes also exhibit run-
tumble motion, albeit at higher run speeds of ~100 μms−1 and
with longer mean run lengths of 68–346 μm48. Studies have found
that the habitats of such microbes have inhomogeneities with
length scales of ~10–1000 μm, commensurate with the run
lengths of bacteria. In addition, time-varying spatial ruggedness
can also appear as a result of advection (stirring) of the medium,
which causes it to form a network of thin, elongated filaments4,5

on scales of around 200–1000 μm, again commensurate with the
run length of aquatic microbes.

Our one-dimensional model allows us to gain analytical
insights into the relationship between memory and environ-
mental fluctuations. In particular, we find that the optimal
memory is always smaller than the run length. Hence cells are
‘blind’ to longer correlations in one dimension, a fact that is
consistent with short-term memory being typical of pre-adapted
cells20. In general, however, bacteria can optimise their adaptive
responses (and hence their memory) from seconds to minutes
through receptor methylation13, suggesting the relevance of
longer-scale memory-based sensing. This fact may be linked to
the stronger directional persistence of bacterial motion in two or
three dimensions. With increased directional persistence, we
expect that cells can further improve their drift speed by
increasing their memory to exploit positive feedback from the
environment during up-gradient runs, i.e., by eliciting large
tumble rate reductions in comparison to small changes during
down-gradient runs26,27,29. However, understanding the interplay
between memory and directional persistence would be most
relevant when studied in conjunction with an appropriate
description of 2D or 3D chemoattractant landscapes For instance,
patchy landscapes, which are frequently considered in the eco-
logical theory49, can give rise to complex navigation strategies3

aimed at optimising the use of memory, swimming velocity and
directional persistence. Future theoretical work should therefore
move from quantifying chemotactic performance in terms of the
drift speed in 1D landscapes towards studying swimming in 2D
and 3D heterogeneous landscapes using a generalised perfor-
mance measure, e.g., the amount of encountered attractant28.

Finally, although we have concentrated here on navigation in
bacterial chemotaxis, memory-based search strategies are also
relevant in other biological contexts for higher animals28. At a
more conceptual level, other search and exploration optimisation
processes could benefit from the consideration of agents with
memory as a means to take advantage of spatial correlations. For
instance, processes of visual search rely on specific neurons in the
early visual cortex with a response function commonly approxi-
mated by a bi-lobed function (cf. Fig. 6 in ref. 50). From this
perspective, saccadic eye movements could be thought of as a
navigation over the image with bi-lobed neurons using their
memory to integrate the spatial correlations in the visual field as
explored during the visual search. Our work could also serve as
inspiration for the development of heuristic methods for opti-
misation problems over rugged landscapes, where particles with
memory could be used to complement gradient methods. Future

work would be needed to ascertain the significance of memory for
optimisation in high dimensions spaces and its effect in enhan-
cing the efficiency of visual search.

Data availability
The data generated during the simulations is available with https://doi.org/10.14469/hpc/
6522.

Code availability
The code to carry out the simulations and analysis can be found at https://github.com/
barahona-research-group/Chemotaxis-In-Rugged-Landscapes under https://doi.org/
10.5281/zenodo.3365951.
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