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Abstract
Essentially non-oscillatory (ENO) and weighted ENO (WENO) methods on equidistant
Cartesian grids are widely used to solve partial differential equations with discontinuous
solutions. However, stable ENO/WENO methods on unstructured grids are less well stud-
ied. We propose a high-order ENO method based on radial basis function (RBF) to solve
hyperbolic conservation laws on general two-dimensional grids. The radial basis function
reconstruction offers a flexible way to deal with ill-conditioned cell constellations. We intro-
duce a smoothness indicator based on RBFs and a stencil selection algorithm suitable for
general meshes. Furthermore, we develop a stable method to evaluate the RBF reconstruc-
tion in the finite volume setting which circumvents the stagnation of the error and keeps
the condition number of the reconstruction bounded. We conclude with several challenging
numerical examples in two dimensions to show the robustness of the method.

Keywords Finite volume methods · Euler equations · High-order methods · Unstructured
grids · Radial basis functions

Mathematics Subject Classification 35L65 · 65M08 · 65D05 · 65M12

1 Introduction

Solving systems of hyperbolic conservation lawswith high-ordermethods continues to attract
substantial interest. In two dimensions, the system of conservation law on differential form
is given as

ut + f1(u)x + f2(u)y = 0, x = (x, y) ∈ R
2, t ∈ R+,

u(x, 0) = u0(x), x ∈ R
2,

(1)
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with the conserved variables u : R
2 × R+ → R

N , the flux fi : R
N → R

N and the initial
condition u0. A well-known method to solve hyperbolic conservation laws is the class of
finite volume methods. It is based on a discretization of the domain into control volumes and
an approximation of the flux through its boundaries. Van Leer [33] introduced the MUSCL
approach which is based on an high-order approximation of the flux through the boundaries.
A well-known challenge for high-order methods is the property of the conservation laws
to form discontinuities from smooth initial data [26]. Thus, solutions need to be defined
in the weak (distributional) sense. To prevent stability issues, caused by the discontinuous
solutions, Harten et al. [17] proposed the principle of essentially non-oscillatory (ENO)
methods. A powerful extension of the ENO method is the weighted ENO (WENO) method
[30]. Alternative methods to avoid stability problems and unphysical oscillations are based
on adding artificial viscosity [34] or on the use of limiters [18]. A generalization of the
finite volume method is the class of Discontinuous Galerkin (DG) finite element methods
[7], for which it is necessary to add limiters to ensure non-oscillatory approximations [22].
There exist several approaches that combine RBFs with finite volume methods, e.g. a high-
order WENO approach based on polyharmonics [1], a high-order WENO approach based
on multiquadratics [6], a high-order RBF based CWENO method [21] and an entropy stable
RBF based ENOmethod [20]. However, most of these are suitable only for one-dimensional
grids or are at most second order accurate. We seek to overcome these limitations with a new
RBF-ENO method on two dimensional general grids.

In Sect. 2, we introduce the finite volume scheme based on the MUSCL approach [33]
and describe the basics of RBF interpolation in Sect. 3. Sections 4 and 5 contain the main
contribution. In Sect. 4 we introduce a stable evaluation method for RBF interpolation with
a polynomial augmentation, which circumvents the known error stagnation. In the same
section we include a general proof of the order of convergence for RBFs augmented with
polynomials. In Sect. 5, we introduce a smoothness indicator for RBFs, based on the sign-
stable one-dimensional approach developed in [20]. We combine these results to construct
an arbitrarily high-order RBF based ENO finite volume method. In Sect. 6, we demonstrate
the robustness of the numerical scheme with a variety of numerical examples, while Sect. 7
offers a few concluding remarks.

2 Finite VolumeMethods

We assume a triangular grid of Ω ⊂ R
2, consisting of triangular cells Ci = (xi , xk, x j ) as

illustrated in Fig. 1. The finite volumemethod is based on cell averagesUi = 1
|Ci |

∫
Ci

u(x)dx
over the cell Ci . By integrating (1) over the cell and dividing it by its size |Ci | we recover
after applying the divergence theorem the semi-discrete scheme

dUi

dt
+ 1

|Ci |
3∑

le=1

File = 0, (2)

with the numerical flux File = File (Ui ,Uile ,nile ) with the accuracy condition
∫

Sile

f(u) · nileds(x) = File + O(Δx p), (3)

where f = ( f1, f2), Sile = ∂Ci ∩ ∂Cile ,Uile is the cell average of Cile and nile is the outward
pointing normal vector. The numerical flux File can be expressed using an (approximate)
Riemann solver. A common choice is the Rusanov flux
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Fig. 1 Triangulation for finite
volume method
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ile (U , V ,nile ) = |Sile |

2

(
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) · nile − αile (U , V )|Sile |
2

(
V −U

)
, (4)

with
αile (U , V ) = max{λmax (∇uf(U ) · nile ), λmax (∇uf(V ) · nile )}. (5)

Here, λmax (A) is the biggest eigenvalue of A and nile the normal vector to the interface Sile .
A high-order boundary integral approximation of (3) and a high-order accurate (poly-

nomial) reconstruction s of the local solution can be used to evaluate the first order flux
F(U , V ,nile ) on the quadrature points. This high-order flux can be written as

File =
nQ∑

k=1

ωk F
R
ile (si (xk), sile (xk),nile ), (6)

with the quadrature weights ωk , the quadrature points xk for k = 1, . . . , nQ with nQ ∈ N the
number of quadrature points and the high-order accurate reconstructions si of the solution in
cell Ci . The high-order reconstruction si is based on a stencil of cells which includes Ci . In
all cases, we can apply an arbitrary time discretization technique to recover a fully discrete
scheme, e.g., an SSPRK method [14].

3 Radial Basis Functions

The use of radial basis function for scattered data interpolation has a long history. Their
mesh-free property and flexibility for high-dimensional data makes them advantageous when
compared to polynomials.

3.1 Standard Interpolation

Let us consider the interpolation problem f |X = ( f (x1), . . . , f (xn))T ∈ R
n on the scattered

set of data points X = (x1, . . . , xn)T withxi ∈ R
d for f : R

d → R.Weare seeking a function
s f ,X : R

d → R such that

s f ,X (xi ) = f (xi ), for all i = 1, . . . , n. (7)
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The general radial basis function approximation is given as

s f ,X (x) =
n∑

i=1

aiφ(ε‖x − xi‖) +
m∑

j=1

b j p j (x), (8)

with polynomials p j ∈ Πl−1(R
d) the space of polynomials in R

d of order l − 1, l ∈ N,
m ∈ N the degree ofΠl−1(R

d), a univariate continuous function φ (the radial basis function),
the Euclidean norm ‖·‖ and the shape parameter ε. To ensure uniqueness of the coefficients
ai and b j for all i = 1, . . . , n and j = 1, . . . ,m we introduce the additional constraints

n∑

i=1

aiq(xi ) = 0, for all q ∈ Πl−1(R
d). (9)

To simplify the notation we write

φ(x − xi ) := φ(ε‖x − xi‖), φ : R
d → R. (10)

Finally, we express (7) and (9) by the system of equations
(

A P
PT 0

) (
a
b

)

=
(
f |X
0

)

, (11)

with Ai j = φ(xi −x j ), Pi j = p j (xi ), a = (a1, . . . , an)T and b = (b1, . . . , bm)T . Depending
on the choice of the RBF φ the polynomial term in (8) ensures the solvability of (11).

Definition 1 (Conditionally positive function) A functionφ : R
d → R is called conditionally

positive (semi-) definite of order m if, for any pairwise distinct points x1, . . . , xn ∈ R
d and

c = (c1, . . . , cn)T ∈ R
n \ {0} such that

n∑

i=1

ci p(xi ) = 0, (12)

for all p ∈ Πl−1(R
d), the quadratic form

n∑

j,k=1

c j ckφ(x j − xk), (13)

is positive (non-negative).

For a conditionally positive definite RBF φ of order r (11) has a unique solution if x1, . . . , xn
areΠl−1(R

d)-unisolvent for l � r [35].A subclass of conditionally positive definite functions
are the positive definite functions for which (13) holds but not (12).

Since the matrix A is positive definite for a positive definite function φ, the existence of
an unique solution to (11) is trivial for all l ∈ N, if x1, . . . , xn are pairwise disjoint.

The most commonly used RBFs are listed in Table 1.
Awell-knownproblemwithRBFs is the ill-conditioning of the interpolationmatrix and the

resulting stagnation (saturation) of the error under refinement [9,24].Oneway to overcome the
stagnation error is the augmentation with polynomials [4,5,12]. In this case, the polynomials
take over the role for the interpolation and the RBFs ensure solvability of (11).
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Table 1 Commonly used RBFs
with N �	 ν > 0, k ∈ N and ε > 0

RBF φ(r) Order

Infinitely smooth RBFs

Multiquadratics (1 + (εr)2)ν 
ν�
Inverse multiquadratics (1 + (εr)2)−ν 0

Gaussians exp(−(εr)2) 0

Piecewise smooth RBFs

Polyharmonics r2k−d k

r2k−d log(r) k

3.2 Interpolation of Cell-Averages

The finite volume MUSCL approach is based on the interpolation of cell averages. Let us
consider the interpolation problem f |S = (ū1, . . . , ūn)T ∈ R

n on the stencil S of cells
C1, . . . ,Cn in terms of the cell-averages ū1, . . . , ūn . Based on (8) we have

s f ,S(x) =
n∑

i=1

aiλ
ξ
Ci

φ(x − ξ) +
m∑

j=1

b j p j (x), (14)

with λ
ξ
C f being the average operator of f over the cell C with respect to the variable ξ and

{p1, . . . , pm} the polynomial basis ofΠl−1(R
d) [1]. Thus, we have the interpolation problem

λC j s f ,S = ū j , for all j = 1, . . . , n, (15a)
n∑

i=1

aiλCi (q) = 0, for all q ∈ Πl−1(R
d). (15b)

The solvability of (15) is ensured provided φ is conditional positive definite in a pointwise
sense and {λCi }ni=1 is Πl−1(R

d)-unisolvent [1].

4 Stable RBF Evaluation for Fixed Number of Nodes

As mentioned in Sect. 3, the ill-conditioning of the RBF interpolation is a well-known chal-
lenge. However, RBFs within finite volume methods are of a slightly different nature. In
general, the RBF approximation achieves exponential order of convergence for smooth func-
tions by increasing the number of interpolation nodes in a certain domain. The setting for
finite volume methods is different since the number of interpolation points remains fixed at
a rather low number of nodes and only the fill-distance is reduced.

Based on [11,12] it is known that the combination of polyharmonics and Gaussians with
polynomials overcomes the stagnation error. Bayona [3] shows that under certain assumptions
the order of convergence is ensured by the polynomial part.

We propose to use multiquadratic rather than polyharmonic or Gaussian RBFs to enable
the use of the smoothness indicator, developed in [20]. Since the RBFs are only used to ensure
solvability of the linear system, we can use

ε = 1

Δx
, (16)
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as the shape parameter with the separation distance Δx := mini �= j ‖xi − x j‖ for the inter-
polation nodes x1, . . . , xn with n ∈ N. To control the conditioning of the polynomial part we
use the basis

pi (x) = p̃i (ε(x − x̃)), (17)

for i = 1, . . . ,m with p̃i ∈ {Rd → R, x �→ xα1
1 . . . xαd

d | ∑d
i=1 αi < l, αi ∈ N}, deg( p̃i ) �

deg( p̃i+1) and x̃ ∈ {x1 . . . , xn}. The best choice for x̃ would be the barycenter of the stencil.
However, to use the same polynomials for different stencils in the ENO scheme we choose
the central one.

Remark 1 The interpolation matrix is the same as the one with the interpolation basis p̃i with
i = 1 . . . ,m, theRBFswith shape parameter 1, and the nodes x̃1, . . . , x̃n with x̃i = ε(xi−x1).
This holds true for anyΔx → 0 andΔx̃ = 1. Thus, the interpolation step in the finite volume
method has the same condition number for all refinements as long as the interpolation nodes
have a similar distribution.

4.1 Stability Estimate for RBF Coefficients

In this section, we analyze the stability of the RBF interpolation based on (16) and (17) and
show that the stability of the RBF coefficients depends only on the number of the interpolation
nodes n. Then, for the one-dimensional case we show that the stability of the polynomial
coefficients depends on n and the ratio of the maximum distance between the interpolation
points Dx and the minimum distance Δx . For higher dimension we conjecture that a similar
result holds.

From [28] it follows that

Lemma 1 (Stability estimate [28]) For (11) there holds the stability estimate

‖Δa‖2
‖a‖2

� λmax

λmin

‖Δ f ‖2
‖ f − Pb‖2

, (18)

with λmin := infa �=0,PT a=0
aT Aa
aT a

and λmax the maximal eigenvalue. Further, there exists an
estimate for the polynomial coefficients

‖Δb‖2
‖b‖2

�
λmax,PT P

λmin,PT P

‖PT (Δ f − AΔa)‖2
‖PT ( f − Aa)‖2

, (19)

�
(
1 + λmax

λmin

)λmax,PT P

λmin,PT P

‖PTΔ f ‖2
‖PT ( f − Aa)‖2

, (20)

with the maximal and minimal eigenvalue of PT P, λmax,PT P , λmin,PT P .

Thus, the stability of the method depends on the ratios

λmax/λmin and λmax,PT P/λmin,PT P .

The maximal eigenvalues can be estimated by

λmax = sup
a �=0

aT Aa

aT a
= ‖A‖2 � ‖A‖F � nmax

i, j
|Ai, j |. (21)

Note that λmin is not the smallest eigenvalue of A, but its definition is similar. Schaback [28]
established the following lower bound
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Lemma 2 (Lower bound of λmin [28]) Given an even conditionally positive definite function
φ with the positive generalized Fourier transform φ̂. It holds that

λmin � ϕ0(M)

2Γ (d/2 + 1)

( M

2
√

π

)d
, (22)

with the function
ϕ0(r) := inf‖ω‖2�2r

φ̂(ω), (23)

for M > 0 satisfying

M � 12

Δx

(πΓ 2(d/2 + 1)

9

)1/(d+1)
, (24)

or

M � 6.38d

Δx
, (25)

and with

Γ (x) =
∫ ∞

0
t x−1 exp(−t)dt, Re(x) > 0. (26)

It remains to estimate ϕ0(M) depending on the RBFs. Some estimates for the common
examples in Table 1 are

Lemma 3 (Estimate of ϕ0 for multiquadratics [28]) Let φ be the multiquadratic RBF, then

ϕ0(M) � πd/2Γ (d/2 + ν)M−d−2ν exp(−2M/ε)

Γ (−ν)
. (27)

Note that the lower bound of ϕ0 of Lemma 3 is zero for ν ∈ N.

Lemma 4 (Estimate of ϕ0 for Gaussians [35]) Let φ be the Gaussian RBF, then

ϕ0(M) = (2ε2)−d/2 exp(−M2/ε2). (28)

Lemma 5 (Estimate of ϕ0 for polyharmonics [35]) Let φ(r) = (−1)k+1r2k log(r) be a
polyharmonic RBF, then

ϕ0(M) = (−1)k+122k−1+d/2Γ (k + d/2)k!(2M)−d−2k . (29)

Corollary 1 By using the shape parameter (16) we recover

‖Δa‖2
‖a‖2

� C(n, d)‖Δ f ‖2, (30)

for allx1, . . . , xn, n ∈ NandaconstantC(n, d)whichdependson thenumberof interpolation
nodes n and the dimension d.

Proof From Remark 1 we conclude

a := a(x1, . . . , xn) = a(x̃1, . . . , x̃n) =: ã. (31)

From Lemmas 2 and 3 we obtain

‖Δa‖2
‖a‖2

= ‖Δã‖2
‖ã‖2

� C(n, d,Δx̃)‖Δ f ‖2 = C(n, d, 1)‖Δ f ‖2, (32)

with a constant C(n, d,Δx) which depends on n, d and Δx .

Hence, the stability of the RBF coefficients depends only on the number of interpola-
tion nodes n. This analysis is dimension independent and it remains to estimate the ratio
λmax,PT P/λmin,PT P .
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4.2 Stability Estimate for Polynomial Coefficients

The analysis of theGrammatrixG := PT P ∈ R
m×m ismore challenging. For the polynomial

basis (17) we have

Gi j =
n∑

l=1

pi (xl)p j (xl). (33)

We note that P = P̃ where (P̃)i, j = p̃i (x̃ j ) with x̃ j = ε(x j − x1). In the one-dimensional
case, the following estimate of the condition number holds for the Vandermonde matrix.

Lemma 6 (Conditioning of the Vandermonde matrix in one dimension, [13]) Let Vn be the
Vandermonde matrix (Vn)i, j = zij with zi �= z j for i �= j and z j ∈ C. It holds that

max
j

∏

i �= j

max(1, |zi |)
|z j − zi | < ‖V−1

n ‖∞ � max
j

∏

i �= j

1 + |zi |
|z j − zi | . (34)

Corollary 2
λmax,PT P

λmin,PT P
�

(
Dx

Δx
+ 1

)2(Dx

Δx

)2n n4
( �n/2 − 1�!)4

, (35)

with Dx = maxi �= j |xi − x j |.

Proof We start with the estimate of ‖P‖∞

‖P‖∞ = max
i

n∑

j=1

( xi − x1
Δx

) j−1
� max

i

n∑

j=1

(Dx

Δx

) j−1
�

( Dx
Δx

)n − 1
Dx
Δx − 1

, (36)

� n

(
Dx

Δx

)n

, (37)

To estimate the norm of P−1 we use Lemma 6

‖P−1‖∞ � max
i

∏

j �=i

1 + |x̃ j |
|x̃i − x̃ j | = max

i

∏

j �=i

Δx + |x j − x1|
|xi − x j | ,

� max
i

∏

j �=i

Δx + Dx

| j − i |Δx
=

(
Dx

Δx
+ 1

)

max
i

1
∏

j �=i | j − i | ,

�
(
Dx

Δx
+ 1

)
1

∏
j �=�n/2� | j − �n/2� | �

(
Dx

Δx
+ 1

)
1

∏
j<�n/2� | j |2 ,

�
(
Dx

Δx
+ 1

)
1

( �n/2 − 1�!)2
.

Furthermore, we have the standard estimate

1√
n

‖A‖∞ � ‖A‖2 � ‖A‖∞
√
m, (38)

for A ∈ R
m×n . From [32] we recover

cond2P
T P = (cond2P)2, (39)
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Table 2 Comparison of maximum and minimum condition numbers arising for different polynomial degrees
and different orders of MQs k

deg. poly. 1 2 2 3 3 3 4 4 4 4

k 1 1 2 1 2 3 1 2 3 4

min(Cond) 2.0e02 4.4e02 3.3e04 4.6e03 2.4e04 3.4e09 5.3e04 1.7e05 4.0e08 9.4e13

max(Cond) 2.7e02 7.8e02 1.1e05 8.7e03 7.1e04 6.8e09 4.2e05 2.0e06 1.8e09 9.4e14

when n = m. Combined, this yields

λmax,PT P

λmin,PT P
= ‖P−1‖22‖P‖22 � n2‖P−1‖2∞‖P‖2∞. (40)

Applying Corollary 2 to uniformly distributed nodes in R we obtain Dx/Δx = n − 1 and
the condition number of PT P is uniformly bounded for all Δx by

λmax,PT P

λmin,PT P
� (n − 1)nn3

( �n/2 − 1�!)2
. (41)

The proof of this estimate does not hold true for two-dimensional interpolation. However, we
conjecture that similar bounds hold, as is confirmed in Table 2. Note that the reconstructions
from (6) are based on a stencil in a grid. Thus, Dx/Δx is bounded for these interpolation
problems.

4.3 Approximation by RBF Interpolation Augmented with Polynomials

Considering ansatz (8) for the interpolation problem (7), (9) Bayona shows in [3], under the
assumption of full rank of A and P , that the order of convergence is at least O(hl+1) based
on the polynomial part. With similar techniques we can relax the assumptions of full rank of
A by assuming ϕ to be a conditionally positive definite RBF of order l + 1.

Theorem 1 Let f be an analytic multivariate function and ϕ a conditionally positive definite
RBF of order l + 1. Further, we assume the existence of a Πl(R

d)-unisolvent subset of X. It
follows

‖s f ,X − f ‖∞ � O(hl+1). (42)

Proof Let us consider x0 ∈ R
d where x0 does not have to be a node. By the assumption that

f is analytic, it admits a Taylor expansion in a neighborhood of x0

f (x) =
∑

k�1

Lk[ f (x0)]pk(x − x0), (43)

with Lk[ f (x0)] ∈ R the coefficients for f around x0, e.g., Lk[ f (x0)] = 1
k! f

(k)(x0) for
univariate functions. Thus, we recover

f |X = ( f (xi ))ni=1 =
∑

k�1

Lk[ f (x0)]pk, (44)

with pk = (pk(xi − x0))ni=1.
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Note that ak ∈ R
n , bk ∈ R

m are given by
(

A P
PT 0

) (
ak
bk

)

=
(
pk
0

)

, (45)

and they satisfy (
a
b

)

=
∑

k�1

Lk[ f (x0)]
(
ak
bk

)

. (46)

Since there exists a Πl(R
d)-unisolvent subset and by the well-posedness of (45), we have

ak,i = 0, bk, j = δk, j , (47)

for i = 1, . . . , n and j, k = 1, . . . ,m. This allows us to write the interpolation function as

s f ,X (x) =
n∑

i=1

aiφ(x − xi ) +
m∑

j=1

b j p j (x), (48)

=
m∑

k=1

Lk[ f (x0)]pk(x) +
∑

k>m

n∑

i=1

Lk[ f (x0)]ak,iφi (x) (49)

+
∑

k>m

s∑

l=1

Lk[ f (x0)]bk,l pl(x), (50)

and recover

f (x) − s f ,X (x) =
∑

k>m

Lk[ f (x0)]pk(x) −
∑

k>m

n∑

i=1

Lk[ f (x0)]ak,iφi (x)

−
∑

k>m

m∑

l=1

Lk[ f (x0)]bk,l pl(x) = rm(x) − srm (x). (51)

with rm(x) = ∑
k>m Lk[ f (x0)]pk(x).

Given the estimate of DeMarchi et al. [8]

‖s f ,X‖∞ � C(‖ f ‖�∞(X) + ‖ f ‖�2(X)), (52)

we conclude
‖ f − s f ,X‖∞ = ‖rm − srm ,X‖∞ � Chl+1, (53)

with ‖rm‖∞ � Chl+1. ��

4.4 Numerical Examples

In this section, we seek to verify the results in the finite volume setup (fixed number of
interpolation nodes). Let Ω = [0, 1]2 and f : Ω → R be a function and δ > 0. We
approximate f by dividing the domain into subdomains of size δ × δ and solve in each
subdomain the interpolation problemwith N nodes given fromanHalton sequence [16]. Since
the condition number depends on the maximal distance divided by the separation distance
Dx/Δx , we use the Halton sequences with a separation distance bigger than 0.5δ/

√
N . We

test the following functions

f1(x, y) = sin(2π(x2 + 2y2)) − sin(2π(2x2 + (y − 0.5)2)),
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Fig. 2 Error for the RBF interpolation with polynomial degree 1, 2, 3

f2(x, y) = exp(−(x − 0.5)2 − (y − 0.5)2),

f3(x, y) = sin(2x) + exp(−x),

f4(x, y) = 1 + sin(4x) + cos(3x) + sin(2y).

In Figs. 2 and 3 we show the error of the interpolation problem and confirm the correct
order of convergence for the multiquadratic interpolation augmented with a polynomial of
degree l of order k � l. For polynomial degree l = 4 we observe that the convergence breaks
down for δ < 2−7. This happens at small errors≈ 10−15 and high condition numbers> 1013,
as is shown in Table 2.

Furthermore, we verify the results from Sect. 4. Table 2 supports the conjecture that the
condition number remains constant for a fixed number of interpolation nodes n and a fixed
ratio Dx/Δx .

We also observe that the condition number stays constant for the refined grids, and it is
considerably smaller for first order multiquadratics k = 1 than for the higher order ones.

5 RBF-ENOMethod

In this section, we introduce a new RBF-ENO method on two-dimensional general grids
that can be generalized to higher dimensions. The method is based on the MUSCL approach
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Fig. 3 Error for the RBF interpolation with polynomial degree 4

described in Sect. 2, the RBF-ENO reconstruction introduced in [20], and the evaluation
technique discussed in Sect. 4.

The finite volume method relies on the high-order flux (6) based on the boundary integral
of the Rusanov flux (4) which is approximated by the Gauss-Legendre quadrature [2]. For
the evaluation of the high-order flux we use the RBF reconstruction (14) and to compute the
cell average we use a cubature rule for triangles [10]. The ENO reconstruction (Algorithm 1)
is based on the one introduced by Harten et al. [17]. Thus, we recursively add one cell to the
stencil Si and all its neighbors to a list of possible choices Ni for the next step. In each step,
we add the cell in Ni which results in the stencil that has the smallest smoothness indicator
I S, indicating the smoothness of the solution on a stencil. It is well-known that this strategy
comes with high costs, but is also very robust. As the smoothness indicator we choose a
generalization of the one-dimensional indicator introduced in [20]

I SRBF (s) :=
n∑

i=1

a2i , (54)

for the reconstruction s(x) = ∑n
i=1 aiλ

ξ
Ci

φ(x − ξ) + ∑m
j=1 b j p j (x).

Algorithm 1 Recursive RBF stencil selection algorithm
Let the interpolation cells Si = {Ci1 , . . . ,Cik } and its mean-values ūi1 , . . . , ūik be given.
Let Ni = {C j0 , . . . ,C jl } be the direct neighbors for all C ∈ Si such that Ni ∩ Si = ∅.
Start by initializing Si := {Ci } and Ni := {C | C is neighbor of Ci }.
for j = 0, . . . , n − 2 do
Set S js := Si ∪ {C js } for all s = 1, . . . , l and C js ∈ Ni .
r := argmins I SRBF (S js )
Si := Si ∪ {C jr } and Ni := Ni∪ {C /∈ Si | C is neighbor of C jr and d(C) � dmax } \ {C jr }

end for
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Table 3 Stencil setting
depending on the polynomial
degree l

deg. poly. l 1 2 3

n 5 12 30

dmax 3 5 8

It is important to choose the right degree of the polynomial for each stencil. For a poly-
nomial of degree l we need at least n = (l+2)(l+1)

2 cells, and thus l = −1.5+ 1
2

√
1 + 8n. To

reduce the probability of {λCi j
}nj=1 having no Πl(R

d)-unisolvent subset, we choose

l =
{⌊−2.5 + 1

2

√
1 + 8(n − 1)

⌋
, n � 5,

0 n < 5.
(55)

Furthermore, we usemultiquadratics with a shape parameter based on (16) and the polynomi-
als (17). Since the order of convergence is not influenced by the order of the multiquadratics
and following the observations in Sect. 4.4, we choose first order multiquadratics.

We need to slightly adapt the evaluation method from Sect. 4 to use it for the RBF-ENO
method. The coefficients ai depend on the shape parameter. Thus, we must compare the
smoothness indicator (54) with respect to the same shape parameter. By assuming approxi-
mately uniform equilateral triangles, we approximate Δx as

Δx ≈ min
j

2r j,inscr ≈ 2ri,inscr ≈ √|Ci |, (56)

with the radius r j,inscr of the inscribed circle of the j th cell and |Ci | is the area of the i th
cell. The last estimate comes from

|Ci | = 3
√
3r2i,inscr ≈ 4r2i,inscr , (57)

where we assume Ci to be an equilateral triangle. Hence, we choose the shape parameter

ε = 1√|Ci | , (58)

with the polynomial basis (17).
The advantage of RBFs over polynomials is the ability to deal with a stencil with a variable
number of elements. The condition for RBFs to have a well-defined system of equations is
the existence of a subset which is Πl(R

d)-unisolvent and l must be larger than the order
of the RBF. Thus, we can use a bigger stencil than the dimension of Πl(R

d) to circumvent
cell constellations that are ill-conditioned. To keep the stencil compact we classify each cell
around the central one, depending on its distance d ∈ N, such that

d(C) = 0, if C = Ci ,

d(C) = 1, if C is a direct neighbor of Ci ,

d(C) = 2, if C has a neighbor C̃ with d(C̃) = 1,

. . .

and introduce dmax as the maximal distance. A stable configuration for second to fourth order
methods is given in Table 3.

Note that (55) does not coincide with the values from Table 3. However, from numerical
experiments this combination seems superior.
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Summary of the RBF-ENOmethod

– Finite volume method with a high-order flux (6);
– The Gauss-Legendre quadrature [2] to approximate the boundary integral of the Rusanov

flux (4);
– Reconstruction based on the RBF approach (14) with the polynomial basis (17);
– First order multiquadratics with shape parameter (58);
– Size n of stencil and dmax from Table 3 depending on the order of the method;
– Stencil selection: Algorithm 1 and smoothness indicator (54) with polynomial degree

(55).

6 Numerical Results

In this chapter, we demonstrate the robustness of the second and third order RBF-ENO
method on general grids. For the time discretization we use a third order SSPRK method
[14]. The grids are generated by distmesh2d(), which is based on the Delaunay algorithm
[27].

6.1 Linear Advection Equation

We consider the linear advection equation in two dimensions

ut + aux + buy = 0, (59)

with wave speed a = 1, b = 0 and periodic boundary conditions [26]. This results in a right
moving wave given by the initial condition

u0(x, y) = cos(2πx) cos(2π y) + 10. (60)

Figure 4 shows the error at T = 0.1. We observe a drop of the order of convergence after a
certain level of refinement which is a known phenomena [19,31]. This arises from constantly
switching the stencil. For a very smooth functionwe recover the right order of convergence by
multiplying the smoothness indicator with a penalty term D3 which depends on the distance
to the central cell

D := 1

|Ci |
∑

j∈Si
‖xc, j − xc,i‖2, (61)

with the center xc,i of cell Ci . This gives preference to the central stencil.

6.2 Burgers’ Equation

Next, we consider Burgers equation

ut + 1

2
(u2)x + 1

2
(u2)y = 0, (62)
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Fig. 4 Error for the RBF-ENO method for the linear advection equation in 2D (left 2nd order, right 3rd order)
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Fig. 5 Domain extension, initial value composition and grid

on the domain Ω = [0, 1]2 with the initial conditions

u0 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−1 if x > 0.5, y > 0.5,

−0.2 if x < 0.5, y > 0.5,

0.5 if x < 0.5, y < 0.5,

0.8 if x > 0.5, y < 0.5.

(63)

The Burgers equation illustrates the behavior of the scheme with a non-linear flux and
its ability to deal with discontinuities. Furthermore, the results can be compared with
the exact solution [15]. The solution consists of shocks and rarefaction waves as its one-
dimensional counterpart. To avoid boundary effects we increase the computational domain
to Ω = [−1, 2]2 and keep the initial conditions for the extended square, see Fig. 5. The
solutions at time T = 0.25 for the 3rd and 4th order method are as expected, Fig. 6. There
are some minor oscillations, but they remain small.
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(a) RBF-ENO of order 3.
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(b) RBF-ENO of order 4.

Fig. 6 Solution of the Burgers’ equation at T = 0.25 with N = 37,444 cells, CFL = 0.5
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(b) RBF-ENO of order 3.

Fig. 7 KPP problem at T = 1 with N = 58,646 cells, CFL = 0.5

6.3 KPP RotatingWave

We consider the two-dimensional KPP rotating wave problem

ut + (sin(u))x + (cos(u))y = 0, (64)

in the domain Ω = [−2, 2]2 with periodic boundary conditions and the initial conditions

u0 =
{
3.5π if x2 + y2 � 1,

0.25π otherwise .
(65)

This is a complex non-convex scalar conservation law [23]. The KPP problem was designed
to test various schemes for entropy violating solutions. At time T = 1 the solution forms a
characteristic spiral, which is well-resolved for the second and third order method, as shown
in Fig. 7.
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6.4 Euler Equations

Let us consider the two-dimensional Euler equations

⎛

⎜
⎜
⎝

ρ

m1

m2

E

⎞

⎟
⎟
⎠

t

+

⎛

⎜
⎜
⎜
⎝

m1
m2
1

ρ
+ p

m1m2
ρ

m1
ρ

(E + p)

⎞

⎟
⎟
⎟
⎠

x

+

⎛

⎜
⎜
⎜
⎝

m2
m1m2

ρ
m2
2

ρ
+ p

m2
ρ

(E + p)

⎞

⎟
⎟
⎟
⎠

y

= 0, (66)

with the density ρ, the mass flux m1 and m2 in x- and y-direction, the total energy E , and
the pressure

p = (γ − 1)
(
E − (m2

1 + m2
2)

2ρ

)
. (67)

The mass flux is given by m = ρu. Further, we choose γ = 1.4 which reflects a diatomic
gas such as air.

6.4.1 Isentropic Vortex

The isentropic vortex problem describes the evolution of a inviscid isentropic vortex in a free
stream on the domainΩ = [−5, 5]2. Proposed by Yee et al. [37] it is one of the few problems
of the Euler equations with an exact solution. The initial conditions are

ρ =
[
1 − β2(γ − 1)

8γπ2 exp(1 − r2)
] 1

(γ−1)
, u1 = M cos(α) − β(y − yc)

2π
exp

(
1 − r2

2

)

,

u2 = M sin(α) − β(x − xc)

2π
exp

(
1 − r2

2

)

, r =
√

(x − xc)2 + (y − yc)2,

with the initial vortex strength β, the initial vortex center (xc, yc) and periodic boundary
conditions. The pressure is initialized by p = ργ and α prescribes the passive advection
direction. The exact solution is the initial condition propagating with speed M in direction
(cos(α), sin(α)). The parameters are chosen asM = 0.5,α = 0,β = 5 and (xc, yc) = (0, 0).
We analyze the order of convergence at time T = 1. In Fig. 8 we observe the same behavior
as for the linear advection equation. Again, we overcome this stability issue by introducing a
penalty term D3 which depends on the distance of the cell to its central one (61), and recover
the optimal order of convergence.

6.4.2 Riemann Problem

The initial values for Riemann problems in two dimensions are constant in each quadrant

u0 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(ρA,m1,A,m2,A, EA) if x < 0.5, y < 0.5,

(ρB ,m1,B ,m2,B , EB) if x > 0.5, y < 0.5,

(ρC ,m1,C ,m2,C , EC ) if x < 0.5, y > 0.5,

(ρD,m1,D,m2,D, ED) if x > 0.5, y > 0.5,

(68)

with the physical domainΩ = [0, 1]2, which is enlarged toΩ = [−1, 2]2 to reduce boundary
effects. The values are chosen in such a way that only a single elementary wave appears at
each interface. This results in 19 genuinely different configuration for a polytropic gas [25].
We test two of them, see Table 4.
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Fig. 8 Error for the RBF-ENO method for the isentropic vortex problem. Left 2nd order, right 3rd order

Table 4 Initial values of the Riemann problem

Riemann problem 4 Riemann problem 12
ρ u1 u2 p ρ u1 u2 p

A 1.1 0.8939 0.8939 1.1 0.8 0 0 1

B 0.5065 0 0.8939 0.35 1 0 00.7276 1

C 0.5065 0.8939 0 0.35 1 0.7276 0 1

D 1.1 0 0 1.1 0.5313 0 0 0.4

Fig. 9 Grid for the Riemann
problems
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1

We solve the Riemann problems until time T = 0.25 on the grid shown in Fig. 9. In
Fig. 10 we see that the results of the 4th configuration are well resolved with the 2nd and
3rd order methods, while keeping the oscillations small. Furthermore, Fig. 11 illustrates the
convergence in h for the RBF-ENO method of order 3.
For the Riemann problem 12 at time T = 0.25 the results are of a similar quality, see Figs. 12
and 13.
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(a) RBF-ENO of order 2.
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(b) RBF-ENO of order 3.

Fig. 10 Riemann problem 4 at T = 0.25 with N = 32,946 cells in the extended domain, CFL = 0.5
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Fig. 11 Convergence in h of the Riemann problem 4 at T = 0.25 with CFL = 0.5
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Fig. 12 Riemann problem 12 at T = 0.25 with N = 32,946 cells in the extended domain, CFL = 0.5
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Fig. 13 Convergence in h of the Riemann problem 12 at T = 0.25 with CFL = 0.5

6.4.3 Shock Vortex Interaction

The shock vortex interaction problem was introduced to test high order methods [29]. It
describes the interaction of a right-moving vortex with a left-moving shock in the domain
Ω = [0, 1]2. The initial condition is given by the shock discontinuity

(ρ,m1,m2, E) =
{

(ρL ,m1,L ,m2,L , EL) if x < 0.5,

(ρR,m1,R,m2,R, ER) if x � 0.5,
(69)

with the left state superposed by the perturbation

δu1 = ε
y − uc
rc

exp(β(1 − r2)), δu2 = −ε
x − xc
rc

exp(β(1 − r2)),

δθ = −γ − 1

4βγ
ε2 exp(2β(1 − r2)), δs = 0,

with the temperature θ = p/ρ, the physical entropy s = log p−γ log ρ and the distance r2 =
((x − xc)2 + (y − yc)2)/r2c . The left state is given by (ρL , u1,L , u2,L , EL) = (1,

√
γ , 0, 1)

and the right state by

pR = 1.3, ρR = ρL

(γ − 1 + (γ + 1)pR
γ + 1 + (γ − 1)pR

)
,

u1,R = √
γ + √

2
( 1 − pR√

γ − 1 + pR(γ + 1)

)
, u2,R = 0.

The parameter of the vortex are chosen as ε = 0.3, rc = 0.05, β = 0.204 with the initial
center of the vortex (xc, yc) = (0.25, 0.5). Figure 14 shows the result of the second and
third order RBF-ENO method at the final time T = 0.35 for N = 14,616 cells. The higher
resolution of the third order method is clear. In Fig. 15 we see the convergence of the scheme
for increasing number of cells. We observe minor oscillations for N = 58,646, but they
remain stable.

6.4.4 Double Mach Reflection

The double Mach reflection problem is a standard benchmark for Euler codes that tests its
robustness in the presence of a strong shock. It was introduced by Woodward et al. [36]
and consists of a Mach 10 shock propagating at an angle of 30◦ (α = 60◦) into the ramp,
see Fig. 16. The domain Ω = [0, 4] × [0, 1] contains a ramp starting at xs = 1/6. As
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Fig. 14 Shock vortex interaction problem at T = 0.35 with N = 14,616 cells, CFL = 0.5
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Fig. 15 Convergence in h of the shock vortex interaction problem at T = 0.35 with CFL = 0.5
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Fig. 16 Domain for the double Mach reflection problem

boundary conditions we have on the left side and on the ground in front of the ramp inflow
boundary conditions with the post-shock values. On the ramp we use slip-wall conditions, on
the top we apply the exact time dependent shock location and on the right outflow boundary
conditions with the pre-shock conditions. The solution is simulated until T = 0.2 with the
initial condition

(ρ,m1,m2, E) =
{

(8.0, 57.1597,−33.0012, 563.544) post-shock,

(1.4, 0, 0, 2.5) pre-shock.
(70)

To solve the double Mach reflection problem we must choose the multiquadratics of order
l for a method of order l to get a stable solution, shown in Fig. 17. This suggests that the
proposed stencil selection algorithm in [20] is more stable than just using a first order RBF in
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Fig. 17 Double Mach reflection problem at T = 0.2 with N = 151,216 cells, CFL = 0.5 solved with the
RBF-ENO of order 3

Fig. 18 Double Mach reflection problem at T = 0.2 with N = 41,140 cells, CFL = 0.5 solved with the
RBF-ENO of order 3 on totally unstructured grid
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Fig. 19 Example of totally unstructured grid with N = 2843 cells

the same algorithm. To highlight the ability to deal with fully unstructured grids, we present
a solution with around a quarter of the cells refined in the lower fifth of the domain, Fig. 18.
The solution is based on a grid of the form of Fig. 19 with approximately six times more
cells at each face. Note that the cells in the lower part have around the same size as the ones
in the example from Fig. 17.

7 Conclusions

In thiswork,we propose a newRBF-ENOmethod formulti-dimensional problems on general
grids. We introduced a stable evaluation method for RBFs, augmented with polynomials and
a stencil selection algorithm based on [20]. We showed that the algorithm preserves the
expected accuracy and we demonstrated its robustness for challenging test cases, including
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two classic Riemann problems, the shock-vortex interaction and the double Mach reflection
problem.

However, it is well-known that the strategy of the stencil selection algorithm is coming
with high costs. As shown for the Burgers equation the method is working also in the 4th
order setup, but due to the high number of cells in the stencil it is extremely costly.

In the future, we will combine the stable and flexible RBF-ENOmethod with the standard
(polynomial) WENO method on structured grids, to offset some of the computational cost
of the RBF-ENO scheme.
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