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Abstract

In this paper, we propose a novel splitting method for finding a zero point of the sum of
two monotone operators where one of them is Lipschizian. The weak convergence the method is
proved in real Hilbert spaces. Applying the proposed method to composite monotone inclusions
involving parallel sums yields a new primal-dual splitting which is different from the existing
methods. Connections to existing works are clearly stated. We also provide an application of
the proposed method to the image denoising by the total variation.
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1 Introduction

The forward-backward-forward splitting method (FBFS) or Tseng’s splitting method first appeared
in [25]. This method was proposed to find a zero point of the sum of two monotone operators acting
on a real Hilbert space (H, 〈· | ·〉), namely,

find x ∈ H such that 0 ∈ Ax+Bx. (1.1)

under the assumption that A : H → 2H is a maximally monotone, B : H → H be a monotone and
µ-Lipschitzian, i.e.,

(∀x ∈ H)(∀y ∈ H) ‖Bx−By‖ ≤ µ‖x− y‖, (1.2)
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and that such a solution exists. The FBFS method operates according to the routine
yn = xn − γBxn
zn = (Id +γA)−1yn
rn = zn − γBzn
xn+1 = xn + rn − yn.

(1.3)

The weak convergence of (xn)n∈N to a solution of (1.1) was proved under the condition 0 < γ < 1/µ.
Inexact version of the FBF method was investigated in [5]. Then, variable metric version and the
stochastic version the FBF method are in [28] and [26], respectively. One of the most important
examples of B is the case when B is a linear skew operator [5] where monotone plus skew model
plays a central role in solving primal-dual monotone inclusions and primal-dual convex optimization
problems. The main idea of [5] was then developed in [8]. Several developments and extensions of
[8] are in [7, 3, 11, 28].

The advantage of this framework is its generality and the main disadvantage of (1.3) is that it
requires two calls of B per one iteration. This issue was recently resolved in [17]. Specifically, they
propose a forward-reflected-backward splitting method (FRBS) for solving (1.1), namely,

γ ∈ ]0,+∞[ , xn+1 = (Id +γA)−1(xn − 2γBxn + γBxn−1). (1.4)

The weak convergence of the iterates generated by (1.4) is proved under the condition γ ∈
]0, 1/(2µ)[. If B is linear and A is the normal cone of some non-empty closed convex set K, the
FRBS method admits the same structure as the reflected projected gradient methods for variational
inequalities [15], namely,

γ ∈ ]0,+∞[ , xn+1 = (Id +γNK)−1(xn − γB(2xn − xn−1)). (1.5)

For any µ-Lipschitzian monotone operator B, the weak convergence of the iterates generated by
(1.5) is proved under the condition γ ∈

]
0, (
√

2− 1)/µ
[
. When NK is replaced by a subdifferential

of some proper lower semicontinuous convex function f , line-search versions (1.5) are proposed in
[16].

The objective of this paper is to investigate the convergence of (1.5) for the problem (1.1) for
any maximally monotone operator A, i.e., we propose to investigate the convergence of the following
reflected forward-backward splitting method (RFBS) for (1.1):{

yn = 2xn − xn−1
xn+1 = (Id +γA)−1(xn − γByn),

(1.6)

where γ > 0.

In Section 2, we prove the weak convergence of (1.6) and provide an application to composite
monotone inclusions involving the parallel sums and Lipschitzian monotone operators. We compare,
in Section 3, the proposed method to several existing methods, for the image denoising by the total
variation.

Notations. (See [1]) The scalar products and the associated norms of all Hilbert spaces used
in this paper are denoted respectively by 〈· | ·〉 and ‖ · ‖. We denote by B(H,G) the space of all
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bounded linear operators from H to G. The symbols ⇀ and→ denote respectively weak and strong
convergence. Let A : H → 2H be a set-valued operator. The domain of A is denoted by dom(A) that
is a set of all x ∈ H such that Ax 6= ∅. The range of A is ran(A) =

{
u ∈ H | (∃x ∈ H)u ∈ Ax

}
. The

graph of A is gra(A) =
{

(x, u) ∈ H ×H | u ∈ Ax
}

. The inverse of A is A−1 : u 7→
{
x | u ∈ Ax

}
.

The zero set of A is zer(A) = A−10. We say that A is monotone if(
∀u ∈ Ax

)(
∀(y, v) ∈ graA

)
〈x− y | u− v〉 ≥ 0, (1.7)

and it is maximally monotone if there exists no monotone operator B such that gra(B) properly
contains gra(A). The resolvent of A is

JA = (Id +A)−1, (1.8)

where Id denotes the identity operator on H. A single-valued operator B : H → H is β-cocoercive,
for some β ∈ ]0,+∞[, if

(∀(x, y) ∈ H2) 〈x− y | Bx−By〉 ≥ β‖Bx−By‖2. (1.9)

The parallel sum of two operator A : H → 2H and B : H → 2H is A�B = (A−1 + B−1)−1.
The class of all lower semicontinuous convex functions f : H → ]−∞,+∞] such that dom f ={
x ∈ H | f(x) < +∞

}
6= ∅ is denoted by Γ0(H). Now, let f ∈ Γ0(H). The subdifferential of

f ∈ Γ0(H) is the maximally monotone operator

∂f : H → 2H : x 7→
{
u ∈ H | (∀y ∈ H) 〈y − x | u〉+ f(x) ≤ f(y)

}
(1.10)

Moreover, the proximity operator of f is

proxf = J∂f : H → H : x 7→ argmin
y∈H

f(y) +
1

2
‖x− y‖2. (1.11)

Various closed-form expressions of the proximity operators are in [1, Chapter 24].

2 Weak convergence

We first prove an auxiliary result which will be used to prove the weak convergence of the sequence
generated by the reflected forward-backward splitting.

Lemma 2.1 Let (xn)n∈N and (yn)n∈N be generated by (1.6). Set

(∀n ∈ N) pn+1 = xn − γByn − xn+1. (2.1)

Suppose that B is β-cocoercive. Then, for every x ∈ zer(A+B),

‖xn+1 − x‖2 + ‖xn+1 − yn‖2 + ‖xn+1 − xn‖2 + ‖pn+1 + γBx‖2 + γ(2β − γ)‖Byn −Bx‖2

≤ ‖xn − x‖2 + ‖pn + γBx‖2 − γ2‖Byn−1 −Bx‖2 + 2γ 〈Byn−1 −Byn | xn+1 − yn〉 . (2.2)

If B is monotone, we remain have (2.2) with β = 0.
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Proof. Let x ∈ zer(A+B) and n ∈ N. By the definition of the resolvent, pn+1 ∈ γAxn+1. We have

〈xn + γByn−1 − xn−1 | xn+1 − yn〉 = −〈pn | xn+1 − yn〉 . (2.3)

Let us recall that

yn = 2xn − xn−1 which is equivalent to xn − xn−1 = yn − xn. (2.4)

Then it follows that

〈yn − xn | xn+1 − yn〉 = −〈pn + γByn−1 | xn+1 − yn〉 , (2.5)

and
〈xn+1 − xn | x− xn+1〉 = −〈pn+1 + γByn | x− xn+1〉 . (2.6)

We have {
2 〈yn − xn | xn+1 − yn〉 = ‖xn − xn+1‖2 − ‖xn − yn‖2 − ‖xn+1 − yn‖2
2 〈xn+1 − xn | x− xn+1〉 = ‖xn − x‖2 − ‖xn − xn+1‖2 − ‖xn+1 − x‖2.

(2.7)

In turn,

‖xn+1−x‖2 +‖xn−yn‖2 +‖xn+1−yn‖2 = ‖xn−x‖2 +2Γn+2γ 〈Byn−1 −Byn | xn+1 − yn〉 , (2.8)

where

Γn = 〈pn + γByn | xn+1 − yn〉+ 〈pn+1 + γByn | x− xn+1〉
= 〈pn | xn+1 − yn〉+ 〈pn+1 | x− xn+1〉+ γ 〈Byn | x− yn〉 . (2.9)

Since γA is monotone and −γBx ∈ γAx, we obtain

〈pn+1 | x− xn+1〉 ≤ 〈pn+1 | x− xn+1〉+ 〈−γBx− pn+1 | x− xn+1〉
= γ 〈Bx | xn+1 − x〉 . (2.10)

Since B is β-cocoercive, we also have

γ 〈Byn | x− yn〉 ≤ γ 〈Bx | x− yn〉 − γβ‖Byn −Bx‖2. (2.11)

Adding (2.10) and (2.11), and using (2.4), the monotonicity of γA, we get

Γn ≤ 〈pn | xn+1 − yn〉+ γ 〈Bx | xn+1 − yn〉 − γβ‖Byn −Bx‖2

= 〈pn + γBx | xn+1 − xn〉 − 〈pn + γBx | xn − xn−1〉 − γβ‖Byn −Bx‖2

≤ 〈pn+1 + γBx | xn+1 − xn〉 − 〈pn + γBx | xn − xn−1〉 − γβ‖Byn −Bx‖2. (2.12)

Let us set
Tn = ‖xn − x‖2 − 2 〈pn + γBx | xn − xn−1〉 . (2.13)

It follows from (2.12) and (2.8) that

Tn+1+‖xn−yn‖2+‖xn+1−yn‖2+2γβ‖Byn−Bx‖2 ≤ Tn+2γ 〈Byn−1 −Byn | xn+1 − yn〉 . (2.14)
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By (2.1), we have pn+1 + xn+1 − xn = −γByn, and hence,

−2 〈pn+1 + γBx | xn+1 − xn〉 = ‖xn+1 − xn‖2 + ‖pn+1 + γBx‖2

− ‖pn+1 + γBx+ xn+1 − xn‖2

= ‖xn+1 − xn‖2 + ‖pn+1 + γBx‖2 − γ2‖Byn −Bx‖2, (2.15)

which implies that

Tn+1 = ‖xn+1 − x‖2 + ‖xn+1 − xn‖2 + ‖pn+1 + γBx‖2 − γ2‖Byn −Bx‖2. (2.16)

Therefore, using (2.4) again, (2.14) becomes

‖xn+1 − x‖2 + ‖xn+1 − yn‖2 + ‖xn+1 − xn‖2 + ‖pn+1 + γBx‖2 + γ(2β − γ)‖Byn −Bx‖2

≤ ‖xn − x‖2 + ‖pn + γBx‖2 − γ2‖Byn−1 −Bx‖2 + 2γ 〈Byn−1 −Byn | xn+1 − yn〉 , (2.17)

which proves the desired result. In the case when B is monotone, setting β = 0, we obtain the
second conclusion.

The main result of this paper is stated in the following theorem where we prove the weak
convergence of the sequence generated by the reflected forward-backward splitting to a zero point
of A+B.

Theorem 2.2 Let (xn)n∈N and (yn)n∈N be generated by (1.6). Suppose that γ ∈
]
0, (
√

2− 1)/µ
[
,

then xn ⇀ x ∈ zer(A+B) and yn ⇀ x ∈ zer(A+B) .

Proof. Since B is monotone, by Lemma 2.1, we have

‖xn+1 − x‖2 + ‖xn+1 − yn‖2 + ‖xn+1 − xn‖2 + ‖pn+1 + γBx‖2 − γ2‖Byn −Bx‖2

≤ ‖xn − x‖2 + ‖pn + γBx‖2 − γ2‖Byn−1 −Bx‖2 + 2γ 〈Byn−1 −Byn | xn+1 − yn〉 . (2.18)

Since B is µ-Lipschitz continuous, for any τ1 > 0 and τ2 > 0, we obtain

2 〈Byn −Byn−1 | yn − xn+1〉 ≤ 2µ‖yn − yn−1‖‖yn − xn+1‖
≤ µ

τ1
‖yn − yn−1‖2 + µτ1‖yn − xn+1‖2

≤ µ

τ1

(
(1 +

1

τ2
)‖yn − xn‖2 + (1 + τ2)‖xn − yn−1‖2

)
+ µτ1‖yn − xn+1‖2

= α1‖yn − xn‖2 + α2‖xn − yn−1‖2 + µτ1‖yn − xn+1‖2, (2.19)

where we set

α1 =
µ

τ1
(1 +

1

τ2
) and α2 =

µ

τ1
(1 + τ2). (2.20)

Therefore, we derive from (2.18) that

‖xn+1 − x‖2 + γα2‖xn+1 − yn‖2 + ‖xn+1 − xn‖2 + ‖pn+1 + γBx‖2 − γ2‖Byn −Bx‖2

≤ ‖xn − x‖2 + ‖xn−1 − xn‖2 + ‖pn + γBx‖2 − γ2‖Byn−1 −Bx‖2

− (1− γα1)‖xn − yn‖2 + γα2‖xn − yn−1‖2 − (1− γ(α2 + µτ1))‖xn+1 − yn‖2. (2.21)
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Therefore, we need the following condition on γ,

0 < γ <
1

α1
=

τ1τ2
µ(1 + τ2)

and 0 < γ <
1

α2 + µτ1
=

τ1
µ(1 + τ2 + τ21 )

. (2.22)

The optimal bound of γ happens when

τ1τ2
µ(1 + τ2)

=
τ1

µ(1 + τ2 + τ21 )
, (2.23)

which implies that
τ2τ

2
1 = 1− τ22 . (2.24)

Hence,

0 < γ2 <
τ2τ2τ

2
1

µ2(1 + τ2)2
=
τ2(1− τ2)
µ2(1 + τ2)

=
(1 + τ2 − 1)(2− (1 + τ2))

µ2(1 + τ2)
. (2.25)

We express the last term as

(1 + τ2 − 1)(2− (1 + τ2))

µ2(1 + τ2)
=

1

µ2
(3− 1− τ2 −

2

1 + τ2
), (2.26)

which attains the maximum when 1+τ2 =
√

2 and hence τ1 =
√

2. It follows that γ2 < µ−2(3−2
√

2).
Thus

0 < γ <

√
2− 1

µ
. (2.27)

We next set

En = ‖xn − x‖2 + ‖xn−1 − xn‖2 + ‖pn + γBx‖2 + γα2‖xn − yn−1‖2 − γ2‖Byn−1 −Bx‖2. (2.28)

Then, we can rewrite (2.21) as

En+1 ≤ En − (1− γµ(1 +
√

2))‖xn − yn‖2 − (1− γµ(1 +
√

2))‖xn+1 − yn‖2. (2.29)

We have

γ2‖Byn−1 −Bx‖2 ≤ 2γ2‖Byn−1 −Bxn‖2 + 2γ2‖Bxn −Bx‖2

≤ 2γ2µ2‖yn−1 − xn‖2 + 2γ2µ2‖xn − x‖2. (2.30)

Then, since γ < (
√

2− 1)/µ, we have γ < 2/µ and hence there exists ε > 0 such that

En ≥ γµ(1− 2γµ)‖xn − yn−1‖2 + (1− 2γ2µ2)‖xn − x‖2

≥ ε
(
‖yn−1 − xn‖2 + ‖xn − x‖2

)
≥ 0. (2.31)

In turn, we derive from (2.29) that
En → ζ ∈ R∑

n∈N ‖xn − yn‖2 < +∞∑
n∈N ‖xn+1 − yn‖2 < +∞.

(2.32)

6



Since (En)n∈N converges, it is bounded and therefore, it follows from (2.31) that (‖xn−x‖)n∈N and
(xn)n∈N are bounded. Hence, (yn)n∈N and (Byn − Bx)n∈N are also bounded. Since xn − yn → 0,
we obtain 〈yn − xn | Byn−1 −Bx〉 → 0. We have

‖pn + γBx‖2 − γ2‖Byn−1 −Bx‖2 = ‖xn−1 − xn‖2 − 2γ 〈xn−1 − xn | Byn−1 −Bx〉
= ‖yn − xn‖2 + 2γ 〈yn − xn | Byn−1 −Bx〉
→ 0. (2.33)

Therefore, ‖xn − x‖ → ζ. Let x be a weak cluster point of (xn)n∈N, then there exists xkn ⇀ x.
Note that xkn − xkn+1 − γBykn + γBxkn+1 → 0 and

xkn − xkn+1 − γBykn + γBxkn+1 = pkn+1 + γBxkn+1 ∈ γ(A+B)xkn+1. (2.34)

Since A + B is maximally monotone, its graph is closed in Hstrong ×Hweak. Therefore, it follows
from (2.34) that x ∈ zer(A+B). Using Opial’s result [18, 19], we obtain xn ⇀ x ∈ zer(A+B).

Proposition 2.3 If B is β-cocoercive for some β ∈ ]0,∞[, then the conclusion of Theorem 2.2
remains valid for γ < β/2.

Proof. By Lemma 2.1, we get

‖xn+1 − x‖2 + ‖xn+1 − yn‖2 + ‖xn+1 − xn‖2 + ‖pn+1 + γBx‖2 + γ(2β − γ)‖Byn −Bx‖2

≤ ‖xn − x‖2 + ‖pn + γBx‖2 − γ2‖Byn−1 −Bx‖2 + 2γ 〈Byn−1 −Byn | xn+1 − yn〉 . (2.35)

Let us estimate the term qn = 2γ 〈Byn−1 −Byn | xn+1 − yn〉. Let ε ∈ ]0,∞[ be such that 0 < γ <
(1− ε)β/2. We have

qn = 2γ 〈Byn−1 −Bx | xn+1 − yn〉+ 2γ 〈Bx−Byn | xn+1 − yn〉

≤ 2γ2

1− ε‖Byn−1 −Bx‖
2 +

2γ2

1− ε‖Byn −Bx‖
2 + (1− ε)‖xn+1 − yn‖2, (2.36)

and thus, we derive from (2.35) that

‖xn+1 − x‖2 + ‖xn+1 − xn‖2 + ‖pn+1 + γBx‖2 + γ2
1 + ε

1− ε‖Byn −Bx‖
2 + ε‖xn+1 − yn‖2

≤ ‖xn − x‖2 + ‖pn + γBx‖2 + γ2
1 + ε

1− ε‖Byn−1 −Bx‖
2 − γ(2β − 4γ

1− ε)‖Byn −Bx‖2. (2.37)

Since γ < (1− ε)β/2, we obtain
‖xn − x‖2 + ‖pn + γBx‖2 + γ2 1+ε1−ε‖Byn−1 −Bx‖2 → ξ ∈ R,∑

n∈N ‖Byn −Bx‖2 <∞,∑
n∈N ‖xn − xn+1‖2 < +∞,∑
n∈N ‖yn − xn+1‖2 < +∞.

(2.38)

Since pn+1 + γBx = γ(Bx− Byn) + xn − xn+1 → 0, it follows that ‖xn − x‖2 → ξ ∈ R and hence
(xn)n∈N is bounded. Let x be a weak cluster point of (xn)n∈N, then there exists a subsequence
(xkn)n∈N of (xn)n∈N such that xkn ⇀ x. Note that Bykn → Bx and xn − yn = xn−1 − xn → 0.
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Since B is maximally monotone, its graph is closed in Hstrong × Hweak, we obtain Bx = Bx and
thus Bykn → Bx. Since A is maximally monotone, its graph is closed in Hstrong ×Hweak, passing
limit from

xkn − xkn+1

γ
−Bykn = pkn+1/γ ∈ Axkn+1, (2.39)

we obtain x ∈ zer(A+B). Therefore, using Opial’s result [18], we obtain xn ⇀ x ∈ zer(A+B).

Remark 2.4 Here are some remarks.

(i) A special case of Theorem 2.2 is in [15] when A = NS , the normal cone operator to a closed
convex set S ⊂ H. The line-search versions for the case where A = ∂f for some f ∈ Γ0(Rd) are
in [16]. The connection to the existing work concerning with solving variational inequalities
can be found in [15, 16]. For the compactness, we do not cite all of them here.

(ii) In the case, B is β-cocoercive, µ = 1/β and the range of the step size is relaxed from]
0, (
√

2− 1)/µ
[

to ]0, 0.5β[ which is relatively small in comparison to the standard forward-
backward splitting [1].

(iii) In the case, B is linear, (1.6) is exactly the same as the one in [17] where the convergence is
proved under the condition γ ∈ ]0, 0.5/µ[. The computational cost of (1.6) and [17] are much
cheaper than that of FBFS in [25].

Corollary 2.5 Let B : H → H be a monotone and µ0-Lipschitzian, µ0 ∈ ]−∞,+∞[, and A : H →
2H be maximally monotone. Let m be a strictly positive integer and let (Gi)1≤i≤m be real Hilbert
spaces. For every i ∈ {1, . . . ,m}, let Ai : Gi → 2Gi be a maximally monotone, and let Bi : Gi → 2Gi

be a maximally monotone such that B−1i is µi-Lipschitzian operator for some µi ∈ ]−∞,+∞[, let
Li : H → Gi be a bounded linear operator such that 0 6= ∑m

i=1 ‖Li‖2. Suppose that

0 ∈ ran
(
A+

m∑
i=1

L∗i (Ai�Bi)Li +B
)
. (2.40)

The primal inclusion is to find x such that

0 ∈ Ax+

m∑
i=1

L∗i (Ai�Bi)Lix+Bx, (2.41)

and the dual inclusion is to find (vi)1≤i≤m ∈ (Gi)1≤i≤m such that

(∀i ∈ {1, . . . ,m}) 0 ∈ Li(A+B)−1(−
m∑
i=1

L∗i vi) +A−1i vi +B−1i vi. (2.42)

Set

µ = max{µ0, . . . , µm}+

√√√√ m∑
i=1

‖Li‖2. (2.43)
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Let γ ∈
]
0, (
√

2− 1)/µ
[
, (x0, x−1) ∈ H2 and, for every i ∈ {1, . . . ,m}, let (vi,0, vi,−1) ∈ G2i . Iterate,

for every n ∈ N,
xn+1 = JγA(xn − γB(2xn − xn−1)− γ

∑m
i=1 L

∗
i (2vi,n − vi,n−1))

For i = 1, . . . ,m

vi,n+1 = JγA−1
i

(vi,n − γB−1i (2vi,n − vi,n−1) + γLi(2xn − xn−1)).
(2.44)

Then xn ⇀ x solves (2.41) and (v1,n, . . . , vm,n) ⇀ (v1, . . . , vm) solves (2.42).

Proof. We use the technique in [8]. Let K = H ⊕ G1 ⊕ . . . ⊕ Gm be the Hilbert direct sum of the
Hilbert spaces H and (Gi)1≤i≤m, where the scalar product and the the associated norm of K are
respectively defined as, for any (x,v) = (x, v1, . . . , vm) ∈ K and (y,w) = (x,w1, . . . , wm) ∈ K,

〈〈· | ·〉〉 :
(
(x,v), (y,w)

)
7→ 〈x | y〉+

m∑
i=1

〈vi | wi〉 , (2.45)

and

‖| : ‖| : (x,v) 7→

√√√√‖x‖2 +
m∑
i=1

‖vi‖2. (2.46)

Let us define{
B : K → K : (x, v1, . . . , vm) 7→ (Bx+

∑m
i=1 L

∗
i vi,−L1x+B−11 v1, . . . ,−Lmx+B−1m vm)

A : K → 2K : (x, v1, . . . , vm) 7→ Ax×A−11 v1 × . . . ,×A−1m vm.
(2.47)

It is shown in [8, Eq. (3.12)] and [8, Eq. (3.13)] that under the condition (2.40), zer(A + B) 6= ∅.
Furthermore, [8, Eq. (3.21)] and [8, Eq. (3.22)] yield

(x, v1, . . . , vm) ∈ zer(A + B)⇒ x solves (2.41) and (v1, . . . , vm) solves (2.42). (2.48)

It is show in [8] that B is monotone and µ-Lipschitzian and using [1, Proposition 20.23], A is also
a maximally monotone operator. Furthermore, it follows from [1, Proposition 23.16] that

(∀x = (x, v1, . . . , vm) ∈ K)(∀γ ∈ ]0,+∞[) JγAx =
(
JγAx, JγA−1

1
v1, . . . JγA−1

m
vm
)
, (2.49)

For every n ∈ N, set xn = (xn, v1,n, . . . , vm,n). Then the proposed algorithm can be rewritten in
the space K as follows

xn+1 = JγA(xn − γB(2xn − xn−1)). (2.50)

In view of Theorem 2.2(ii), (xn)n∈N converges weakly to x = (x, v1, . . . , vm) in zer(A + B). By
(2.48), it follows that xn ⇀ x solves (2.41) and (v1,n, . . . , vm,n) ⇀ (v1, . . . , vm) solves (2.42).

Remark 2.6 Here are some remarks:

(i) The structured primal-dual monotone inclusions (2.41)-(2.42) is firstly introduced in [8] and
then [2, 24, 28, 11, 26]. Various special can be found in the literature [8, 20, 23].

(ii) The iteration (2.44) is different from the one in [8] and (2.44) requires only one call of
B, (Bi)1≤i≤m, (Li)1≤i≤m per itearation.
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(iii) Even when B, (Bi)1≤i≤m are restricted to be cocoercive, (2.44) is different from the one in
[27].

(iv) Using the same idea as in [8], concretes applications to minimization problem involving the
parallel sums are straightforward and we omit them here.

3 Numerical experiment

We provide an application of the proposed method to the image denoising by the total variation
which was investigated in [9, Problem 4.16]. Let z0 ∈ RN×N be the ideal image and z be its
corrupted observation of the form

z = z0 + w, (3.1)

where w is the realization of a noise process. The goal is to recover z0 from z. Let us recall some
notations in [9, Section 4] and the references therein. The discrete gradient operator is defined by

∇ : RN×N → RN×N ⊕ RN×N : (xk,l)1≤k,l≤N 7→
(
η
(1)
k,l , η

(2)
k,l

)
1≤k,l≤N , (3.2)

where

(∀(k, l) ∈ {1, . . . , N}2)


η
(1)
k,l = xk+1,l − xk,l, if k < N ;

η
(1)
N,l = 0;

η
(2)
k,l = xk,l+1 − xk,l, if l < N ;

η
(2)
k,N = 0.

(3.3)

Then the discrete total variation function is defined by

tv : RN×N → R : x 7→ ‖∇x‖2,1 =
∑

1≤k,l≤N

√
|η(1)k,l |2 + |η(2)k,l |2. (3.4)

Now let X be a nonempty closed convex set that model prior knowledge on the ideal image z0. To
recover z0 from z, we focus on solving the following problem

minimize
x∈X

ξ tv(x) +
1

2
‖x− z‖2, (3.5)

where ξ is a strictly positive number, together with its dual problem

minimize
v∈Y

σ̃X(z + ξ div v), (3.6)

where div = −∇∗ [9, Eq. (4.45)], σ̃X is the Moreau envelope of the support function σX [9, Eq.
(2.13)], and Y is given by

Y =
{(
η
(1)
k,l , η

(2)
k,l

)
1≤k,l≤N ∈ RN×N ⊕ RN×N | max

1≤k,l≤N

√
|η(1)k,l |2 + |η(2)k,l |2 ≤ 1

}
. (3.7)

It is shown in [9] that the set of solutions to (3.6) is nonempty. Moreover, if v is a solution to (3.6),
then x∗ = PX(z + ξ div v) is the solution to (3.5). Furthermore, the function v 7→ σ̃X(z + ξ div v)
is the differentiable convex function with 8ξ-Lipschitz continuous gradient. Therefore, the dual
problem can be solved by various methods in the literature. In this section, we will compare the
following methods with ξ = 0.1 and X =

{
x ∈ RN×N | (∀(k, l) ∈ {1, . . . , N}2) 0 ≤ xk,l ≤ 1

}
.
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(i) Tseng’s splitting method (FBFS) with γ = 0.99/(8ξ).

(ii) Forward-reflected-backward splitting method (FRBS) with γ = 0.49/(8ξ).

(iii) Reflected forward-backward splitting method (RFBS) with γ = 0.49/(8ξ).

(iv) Dual forward-backward splitting (DFBS) with γ = 1.99/(8ξ) [9].

We use the parrotgray image with N = 256 and w = N (0, 0.1). The optimal solution x∗ is found by
the primal-dual method in [27]. The results, which are implemented by Octave 4.1, are presented
in Figures 1, 2 and 3.
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Figure 1: Convergence results for the parrotgray image.
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Figure 2: Original parrotgray image (left) and noisy image (right) with w = N (0, 0.1).
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