
Semiclassical Approach to Photophysics Beyond

Kasha’s Rule and Vibronic Spectroscopy Beyond

the Condon Approximation. The Case of Azulene
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Abstract

Azulene is a prototypical molecule with an anomalous fluorescence from the second

excited electronic state, thus violating Kasha’s rule, and with an emission spectrum

that cannot be understood within the Condon approximation. To better understand

photophysics and spectroscopy of azulene and other non-conventional molecules, we

develop a systematic, general, and efficient computational approach combining semi-

classical dynamics of nuclei with ab initio electronic structure. First, to analyze the

nonadiabatic effects, we complement the standard population dynamics by a rigorous
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measure of adiabaticity, estimated with the multiple-surface dephasing representation.

Second, we propose a new semiclassical method for simulating non-Condon spectra,

which combines the extended thawed Gaussian approximation with the efficient single-

Hessian approach. S1 ← S0 and S2 ← S0 absorption and S2 → S0 emission spectra of

azulene, recorded in a new set of experiments, agree very well with our calculations. We

find that accuracy of the evaluated spectra requires the treatment of anharmonicity,

Herzberg–Teller, and mode-mixing effects.

1 Introduction

Azulene molecule is an archetypal system violating Kasha’s rule,1,2 according to which “poly-

atomic molecular entities luminesce with appreciable yield only from the lowest excited state

of a given multiplicity.”3 As a result, azulene has attracted significant experimental4–12 and

theoretical9,10,13–18 attention over the decades. More recently, rigorous experimental and the-

oretical approaches proved useful in identifying, but also refuting, the violation of Kasha’s

rule in other molecular systems.19–23

Spectroscopic and photophysical studies tried to explain why observed fluorescence in

azulene occurs from the second (S2) instead of the first (S1) excited singlet state. The

measured lifetimes of the S1 state of azulene range from ∼ 2 ps in solution4 to ∼ 1 ps in the

gas phase,5,7 indicating that radiationless decay is much faster than the time scale of emission

itself. Surface-hopping and Ehrenfest simulations by Robb et al.13,14 ascribed the ultrafast

decay to the energetically low-lying conical intersection (see Fig. 1) between the S1 state and

the ground electronic state, S0, although the estimated S1 lifetime (∼ 10 fs) was significantly

smaller than the experimental one. Apart from the S1 fluorescence quenching, which is

ubiquitous in a wide range of small and medium-sized organic molecules, anomalous behavior

of azulene shows itself in the characteristic fluorescence from the S2 state. Hindered S2 → S1

internal conversion is attributed to the wide interstate gap (see Fig. 1) and, more precisely,

to the weak nonadiabatic coupling (NAC), giving rise to the moderate, yet distinctive, S2
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emission. It was estimated that fluorescence quantum yield Φf (S2) of the second excited state

outcompetes Φf (S1) by four orders of magnitude, while the nonradiative internal conversion

constant k2→1
IC is 100 times smaller than k1→0

IC .15 The S1 ← S0 absorption spectrum was

correctly reproduced by Franck-Condon simulations,24,25 assuming the validity of Condon

approximation,26 which neglects the dependence of the transition dipole moment on nuclear

coordinates. The most comprehensive study of importance of non-Condon effects in azulene

was the early work of Gustav and Storch,15 who showed that S1 absorption and emission

have dominant Condon contributions, while S2 → S0 emission has important Herzberg-Teller

effects. S2 ← S0 absorption was not considered.

S0 min

S1 min

S2 min

CI

hν

Figure 1: Schematic representation of azulene photophysics involving S1 (right) and S2 state
(left). Absorption, emission, and nuclear dynamics are represented by full, curved, and
dashed arrows, respectively. Potential energy surface cuts are based on CASSCF electronic
structure (see Supporting Information for details). Note that the calculations of adiabatic-
ity, population dynamics, and spectra presented in the results section are based on full-
dimensional ab initio potential energy surfaces and not on this schematic representation.

Motivated by its unusual photophysics and spectroscopy, we use azulene as a test case

for introducing an efficient computational approach for studying various Kasha violating (or

Kasha-obeying) systems. Such theoretical tool seems necessary since experimental verifica-

tion of anti-Kasha behavior may be quite challenging, as demostrated by recent reports.22,23

The proposed methodology consists of two steps: (i) To analyze the influence of NACs on
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the excited-state dynamics, we evaluate the “adiabaticity” with a rigorous measure that is

approximately evaluated semiclassically with the multiple-surface dephasing representation

(MSDR).27,28 Because it can detect more subtle nonadiabatic effects, the adiabaticity goes

beyond the standard analysis based on population dynamics.29–38 (ii) Building on the joint

analysis of adiabaticity and population dynamics, we introduce a new method for computing

vibrationally resolved electronic spectra by combining the single-Hessian39 and extended40–42

thawed Gaussian approximations. The new methodology, augmented with on-the-fly ab ini-

tio electronic structure calculations, is applied to study nonadiabatic, non-Condon, anhar-

monicity, and mode-mixing effects in the first two excited states of azulene.

2 Theory

2.1 Measuring adiabaticity with multiple-surface dephasing rep-

resentation

A natural way to estimate the effect of NACs on the molecular quantum dynamics launched

from a certain electronic state is to analyze the subsequent population dynamics. In higher

dimensions, the time dependence of populations is most often approximated with mixed

quantum-classical methods, in which the molecular wavefunction Ψ is replaced with an

ensemble of N trajectories, each of which is characterized by the classical nuclear position

(q) and momentum (p), propagated with Hamilton’s equations of motion,

q̇j(t) =
∂H(j)(qj, pj)

∂pj
, ṗj(t) = −∂H

(j)(qj, pj)

∂qj
, (1)

and by the electronic wavefunction c, propagated with the time-dependent Schrödinger equa-

tion

i~ċj(t) = H(qj(t), pj(t))cj(t). (2)
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Here j = 1, . . . , N is the index of the trajectory, H(j) is a method-dependent approximate

Hamiltonian associated with the jth trajectory, and H denotes the fully coupled molecular

Hamiltonian expressed in the basis of the S considered electronic states. In general, the bold

face denotes either the S-component vectors (e.g., c) or S × S matrices (e.g. H) acting on

the Hilbert space spanned by the S electronic states. While Ehrenfest dynamics evolves q

and p with the locally mean-field Hamiltonian H
(j)
Ehr := 〈H(qj(t), pj(t))〉cj(t), where 〈A〉c :=

c†Ac denotes the expectation value of electronic operator A in the state c, both Born–

Oppenheimer and surface hopping43 algorithms employ the (diagonal) Born-Oppenheimer

Hamiltonian H
(j)
BO ≡ H

(j)
SH := HBO

nj(t)nj(t)(qj(t), pj(t)), where nj(t) ∈ {1, . . . , S} is the index

of the adiabatic potential energy surface on which the trajectory runs. In addition, in

surface hopping, a stochastic algorithm43 is used to switch (or keep fixed) the current surface

nj(t) according to the current value of cj(t), and a so-called “decoherence correction”44 is

frequently added to improve the accuracy and consistency between the populations obtained

from the electronic wavefunctions cj (“quantum populations”) and from the histogram of nj

(“classical populations”).

However, the NACs may affect more than just the populations of different electronic

states. A more rigorous measure of the importance of NACs is, therefore, the “adiabaticity,”

A(t) := |a(t)|2 , (3)

where

a(t) = 〈Ψ(t)|ΨBO(t)〉 (4)

is the overlap of molecular wavefunctions propagated either exactly or within the Born-

Oppenheimer approximation.27,45,46 More precisely, |Ψ(t)〉 = e−iĤt/~|Ψ(0)〉, where Ĥ is the

fully coupled nonadiabatic molecular Hamiltonian and |ΨBO(t)〉 = e−iĤ
BOt/~|Ψ(0)〉, where

ĤBO is the Born-Oppenheimer Hamiltonian, in which the NACs are neglected. The hat

ˆ denotes nuclear operators. Obviously, for two normalized wave packets, the adiabaticity
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A is a number between 0 and 1, where high adiabaticity, A(t) ≈ 1, indicates that the

Born-Oppenheimer approximation at time t is accurate, whereas low adiabaticity, A(t)� 1,

suggests that nonadiabatic couplings are important and should be taken into account in an

accurate simulation.

Evaluating adiabaticity A(t) exactly in higher-dimensional systems is a formidable, if not

impossible, task because it requires exact quantum propagation. Fortunately, the semiclassi-

cal MSDR provides, in many situations, a very good estimate of adiabaticity at the fraction

of the cost of exact quantum calculation.27,28 Moreover, this semiclassical estimate of adi-

abaticity amplitude 〈Ψ(t)|ΨBO(t)〉 is, typically, much more accurate than the semiclassical

approximations to the wavefunctions Ψ(t) and ΨBO(t) themselves. Within the MSDR, the

adiabaticity amplitude a is approximated as

aMSDR(t) = h−D Tr e

∫
dxρinit

W (x)T ei
∫ t
0 ∆HI

W (x,t′)dt′/~, (5)

where D is the number of nuclear degrees of freedom, Tre denotes the trace over electronic

degrees of freedom (the S electronic states here), x = (q, p) denotes the 2D nuclear phase

space coordinates at time t, and T is the time ordering operator. In addition, ρinit is a density

operator of the initial state, ∆Ĥ := Ĥ− ĤBO is the difference between the exact and Born-

Oppenheimer Hamiltonians, superscript I denotes the interaction picture, and subscript W

indicates a partial Wigner transform27 over nuclear degrees of freedom. In the most common

case of electronically pure states,27 the MSDR of adiabaticity can be evaluated simply as27

aMSDR(t) = c(t)†cBO(t), (6)

where the overbar denotes an average over the ensemble of trajectories, A := N−1
∑N

j=1Aj,

while cBO(t) is the electronic wavefunction propagated with Eq. (2) in which the full Hamil-

tonian H is replaced with HBO. As for the nuclear trajectories (q, p), they can be propagated

with the fewest-switches surface hopping, Ehrenfest, or Born-Oppenheimer dynamics. Over-
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all, the MSDR allows quantitative analysis of the importance of NACs (and beyond47),

adding little additional cost to the (classical) nuclear dynamics itself, while approximately

introducing nuclear quantum effects.27

2.2 Vibrationally resolved electronic spectroscopy

The usual time-dependent approach to one-photon spectroscopy48 treats the light-matter

interaction within the first-order perturbation theory. While it is equivalent to the time-

independent Franck–Condon approach, the time-dependent approach unravels the direct

relationship between vibrationally resolved electronic spectra and molecular wavepacket dy-

namics. In the zero-temperature limit, i.e., assuming only the state |1, g〉, the ground (g)

vibrational state of the ground (1) electronic state, is populated before the interaction with

the electromagnetic field, the linear absorption cross-section can be evaluated as25,48–50

σabs(~ε, ω) =
4πω

~c
Re

∫ ∞

0

dtC(~ε, t)ei(ω+ω1,g)t. (7)

Here

C(~ε, t) = 〈φ(0)|φ(t)〉 (8)

is the wavepacket autocorrelation function for the initial nuclear wavepacket |φ(0)〉 = µ̂|1, g〉

evolved with the excited-state nuclear Hamiltonian Ĥ2, µ̂ is the transition dipole moment

matrix element ~̂µ21 projected on the three-dimensional polarization unit vector ~ε of the

electric field, i.e., µ̂ = ~̂µ21 · ~ε, and ~ω1,g = 〈1, g|Ĥ1|1, g〉 is the zero point energy. Emission

spectrum, expressed as the emission rate per unit frequency, is computed similarly,25,50 as

σem(~ε, ω) =
4ω3

π~c3
Re

∫ ∞

0

dtC(~ε, t)∗ei(ω−ω2,g)t, (9)

where the autocorrelation function C(~ε, t) is still given by Eq. (8), but the initial state

|φ(0)〉 = µ̂|2, g〉, obtained by multiplying the ground (g) vibrational state of an excited (2)
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electronic state by the transition dipole moment, is propagated on the ground-state surface.

Finally, the spectrum averaged over all molecular orientations is evaluated simply as42,51

σav.(ω) = (1/3)
∑

i σ(~ei, ω), where ~ei (i = x, y, z) denotes the unit vector along the i-axis.

Different methods exist for simulating vibrationally resolved absorption and emission

spectra of polyatomic molecules. The most standard approach is based on constructing

global harmonic models52–57 for the ground- and excited-state potential energy surfaces,

which requires only a few ab initio calculations. The main advantages of the harmonic

approximation are the existence of analytical expressions for the autocorrelation functions

and the straightforward incorporation of temperature effects at nearly no additional cost.

However, the method neglects potentially significant anharmonicity effects.

In an earlier work in our group,47,58 we showed that the semiclassical MSDR, after a small

extension, could be used to approximate vibronic spectra, including nonadiabatic effects, but

missing high resolution features. In contrast, the thawed Gaussian approximation,59 is rather

accurate at reproducing moderately resolved vibronic spectra,41,42,60,61 but cannot account

for the nonadiabatic effects. As a result, the thawed Gaussian propagation is limited to

systems in which the Born–Oppenheimer approximation holds; in such systems, however, it

consistently outperforms commonly used global harmonic methods because it can partially

account for the anharmonicity of the potential energy surface.

2.3 Evaluating spectra beyond Condon and harmonic approxima-

tions with single-Hessian extended thawed Gaussian approxi-

mation

The thawed Gaussian approximation propagates a Gaussian wavepacket

ψ(q, t) =
1

(π~)D/4
√

detQt

exp

{
i

~

[
1

2
(q − qt)T · Pt ·Q−1

t · (q − qt) + pTt · (q − qt) + St

]}
,

(10)
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here written using Hagedorn’s parametrization,62–65 in an effective time-dependent potential

given by the local harmonic approximation

VLHA(q, t) = V (qt) + V ′(qt)
T · (q − qt) +

1

2
(q − qt)T · V ′′(qt) · (q − qt) (11)

of the true potential V (q) around the center of the wavepacket. In Eq. (10), qt and pt are

the expectation values of position and momentum, St is the classical action, and Qt and Pt

are D ×D complex matrices satisfying the relations39,63–66

QT
t · Pt − P T

t ·Qt = 0, (12)

Q†t · Pt − P †t ·Qt = 2iI, (13)

where I is the D × D identity matrix. Without any further approximation than the local

harmonic approximation in Eq. (11), the solution of the time-dependent Schrödinger equation

is equivalent to propagating the Gaussian’s parameters as59,65,67

q̇t = m−1 · pt, ṗt = −V ′(qt), (14)

Q̇t = m−1 · Pt, Ṗt = −V ′′(qt) ·Qt. (15)

For Herzberg–Teller spectra,68 where the transition dipole moment is a linear function

of position, the initial wavepacket,

φ(q, 0) = [µ(q0) + µ′(q0)T · (q − q0)]ψ(q, 0), (16)

is no longer a simple Gaussian. Nevertheless, such a wavepacket also preserves its form in

the local harmonic potential (11),40–42 namely

φ(q, t) = [µ(q0) + µ′(q0)T ·Q0 ·Q−1
t · (q − qt)]ψ(q, t), (17)
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where ψ(q, t) is the Gaussian wavepacket (10) propagated with the standard thawed Gaus-

sian equations of motion for the parameters [Eqs. (14)–(15)]. This extended thawed Gaussian

approximation has been recently applied to compute spectra beyond the Condon approxi-

mation.41,42 In general, the Herzberg–Teller effect becomes important in weak or forbidden

transitions, where the constant, Condon term of the transition dipole moment is small.

However, it is hard to predict a priori whether this effect contributes to the spectrum.

The thawed Gaussian approximation requires not only potential energies and gradients

but also Hessians at each point along the trajectory. This can become rather costly for

accurate ab initio calculations of large molecules.36,60,69–80 For this reason, two of us have

proposed the single-Hessian thawed Gaussian approximation,39 where V ′′(qt) of Eq. (15) is

replaced with the reference Hessian V ′′ref(qref) evaluated at a single (reference) point qref. The

method was shown to perform well and consistently better than the standard global harmonic

approaches in systems exhibiting moderate anharmonicity effects.39 Moreover, it provides an

estimate of the effect of anharmonicity on spectra at little additional computational cost:

compared to the global harmonic method, it requires in addition only a single ab initio

classical trajectory.

In Ref. 39, the single-Hessian thawed Gaussian approximation was used only for Gaus-

sian wavepackets (10). Here, we combine the single-Hessian idea with the extended thawed

Gaussian approximation in order to accelerate calculations of Herzberg–Teller spectra. Re-

markably, Eq. (17) is unaffected with this change. In contrast, the conservation of energy,

derived for the single-Hessian thawed Gaussian wavepacket in Ref. 39, does not hold in gen-

eral for the extended thawed Gaussian wavepacket, for which the time derivative of the total

energy is

dE

dt
= ~Re[µ(q0)µ′(q0)T ·Q0 ·Q†t · bt], (18)

with bt := (V ′′(qt) − V ′′ref(qref)) · m−1 · pt (see Supporting Information). Although the time

derivative of energy (18) is non-zero in general, the energy is conserved in purely Herzberg–

Teller spectra, i.e., if the constant, Condon, term µ(q0) is zero.
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3 Computational and experimental details

To estimate adiabaticity with the MSDR, the underlying nuclear dynamics was based on

Born-Oppenheimer dynamics, standard Tully’s fewest-switches surface hopping,43 surface

hopping with the energy-based decoherence correction ,81 or Ehrenfest dynamics. Ab initio

trajectories were propagated using forces and NAC vectors obtained with CASSCF electronic

structure. However, to simulate vibrationally resolved spectra, it is crucial to include dynam-

ical correlation effects which are missing in CASSCF. To avoid cumbersome CASPT2 ab ini-

tio treatment, we employed the second-order algebraic diagrammatic construction [ADC(2)]

method, which includes important correlation effects for a balanced treatment of so-called

La and Lb states (S2 and S1 states in azulene, respectively).82 A so-called “adiabatic Hes-

sian”,39,53 which is evaluated at the optimized geometry of the final electronic state, was used

as the reference Hessian for the single-Hessian thawed Gaussian propagation. Dynamics and

spectra simulations were performed with an in-house code coupled to Gaussian16,83 Mol-

pro2012,84,85 and Molpro201586,87 electronic structure packages. For further details about

dynamics simulations, electronic structure, and spectra computations, see Supporting Infor-

mation.

The absorption spectra were recorded using a PerkinElmer Lambda 950 UV/Vis/NIR

spectrophotometer in cyclohexane at room temperature with azulene concentration of 10−5 M

for S2 spectrum and 10−3 M for the weaker S1 band. As for the emission, the spectra were

recorded using a Horiba Jobin-Yvon Fluorolog-3 with a photomultiplier tube as a detector,

the concentration was 10−5 M in cyclohexane, and the sample was excited at 280 nm.

11



Adiabaticity Population

0 50 100 150
0

0.5

1

S
1
ad
ia
ba
tic
ity
/p
op
ul
at
io
n

(a)

0 50 100 150
0

0.5

1

Time [fs]

S
2
ad
ia
ba
tic
ity
/p
op
ul
at
io
n

(b)

Figure 2: Adiabaticity [Eqs. (3)–(6)] and population decay for an ensemble of trajectories
initiated at: a) S1 state or b) S2 state, and evolved with the fewest switches surface hopping
algorithm43 with decoherence correction.81

4 Results and discussion

4.1 Population dynamics and adiabaticity

Nonadiabatic dynamics, approximated with the decoherence-corrected surface hopping, was

initiated in either the first or second excited state (Figure 2). Subsequent populations of S1

and S2 states illustrate well the violation of Kasha’s rule in azulene. On one hand, the system

excited to S1 decays quickly to the ground state due to the accessible conical intersection

seam. On the other hand, the system excited to S2 remains in that state, indicating that

nonradiative decay is negligible. Interestingly, the S1 population decay appears as at least a

biexponential process, where only the slower time constant is comparable to experiments.7

Despite the appealing picture provided by the population analysis, populations alone are
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not sufficient to account for all non-Born-Oppenheimer effects, including the subtle effects

of wavepacket displacement and interferences, including geometric phase, induced by NACs,

even on a single potential energy surface.27,88 Adiabaticity is, indeed, a more rigorous way

to evaluate the importance of NACs. The MSDR, in turn, makes it possible to estimate

adiabaticity with little additional computational cost. As shown in Fig. 2, S1 adiabaticity

significantly drops already after 10 fs, which corresponds to the first arrival of the wavepacket

to the conical intersection region, and gradually approaches zero within 150 fs. In the same

time interval, S2 adiabaticity remains quite high. Overall, the computed adiabaticity provides

additional support for the disparate behaviors of S1 and S2. Interestingly, the S1 adiabaticity

computed with the simple Born-Oppenheimer dynamics (see Fig. S2), which contains no

information about populations whatsoever, resembles that of Fig. 2a. In contrast, mean-

field Ehrenfest dynamics and standard surface hopping (without decoherence correction)

yield higher adiabaticity of dynamics started from the S1 state and lower adiabaticity of

dynamics started from S2; similar trends are observed for the initial-state populations (see

Figs. S2–S5).

4.2 Absorption and emission spectra of azulene

Both population dynamics and adiabaticity suggest that the dynamics of a wavepacket ini-

tially in the S2 electronic state can be described rather well within the Born–Oppenheimer

approximation, unlike the dynamics started in the S1 state, which exhibits fast nonradiative

decay to the S0 ground state. Therefore, one would expect the thawed Gaussian approx-

imation, a method that neglects nonadiabatic effects, to perform better for the S2 ← S0

absorption spectrum than for the S1 ← S0 absorption spectrum.

Surprisingly, the simulated S1 ← S0 absorption spectrum (see Fig. 3a) agrees rather well

with the experiment. It appears that, despite being considerably different from the true

nonadiabatically evolved wavepacket, the thawed Gaussian wavepacket results in a correct

autocorrelation function. Since only the part of the wavepacket that remains on the initial
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Figure 3: Vibrationally resolved (a) S1 ← S0 absorption, (b) S2 ← S0 absorption, and (c)
S2 → S0 emission spectra of azulene. Calculations using adiabatic single-Hessian thawed
Gaussian approximation (see Sec. 2.3 and Table S1) for the wavepacket dynamics and ei-
ther Condon [µ(q) ≈ µ(q0)] or Herzberg–Teller [Eq. (16)] approximations for the transition
dipole moment are compared with the experiment. To facilitate this comparison, all com-
puted spectra are shifted in frequency by a constant (see Table S2) and are rescaled to unit
maximum intensity, except for those computed within the Condon approximation, which are
scaled by the maxima of the corresponding Herzberg–Teller spectra.
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state contributes to the autocorrelation function (8), a more convenient measure of nonadia-

batic effects on spectra is obtained by dividing the adiabaticity by population. Adiabaticity

is equal to the initial-state population when the nonadiabatic coupling affects only the am-

plitude but not the shape of the nuclear wavepacket on the initial surface. The ratio between

the adiabaticity and initial-state population, shown in Fig. S6, decays less dramatically than

the adiabaticity, which justifies partially the accuracy of the spectra computed using the

Born–Oppenheimer wavepacket dynamics. In addition, rather short times are needed for

the computation of the spectrum because it is only moderately resolved. One could expect

the wavepacket autocorrelation function to exhibit increasingly more nonadiabatic effects

at later times, implying that these effects would have to be included in the simulation of

the high-resolution absorption spectrum. As already reported in Refs. 24 and 25, the S1

absorption spectrum can be computed easily within the Condon approximation and even

using global harmonic models. Nevertheless, we observe an improvement of the computed

spectrum by using the on-the-fly thawed Gaussian method that partially accounts for an-

harmonicity (see Fig. 4a); including the Herzberg–Teller contribution, however, does not

improve the spectrum (Fig. 3a).

S2 absorption and emission spectra are also well described by the single-Hessian extended

thawed Gaussian approximation. The corresponding potential energy surface is harmonic

in the regions visited by the nuclear wavepacket, which is confirmed by comparing spectra

computed with thawed Gaussian and global harmonic approaches (see Figs. 4b and 4c). In

contrast to the S1 spectrum, for describing the S2 spectra, the Herzberg–Teller contribution

due to coupling with higher excited electronic states41,42,89 is essential (see Figs. 3b and 3c).

This effect has only been analyzed qualitatively in the emission spectrum of azulene, but

never in the S2 absorption spectrum.15

Furthermore, the Herzberg–Teller coupling is responsible for the breakdown of mirror

image symmetry between the absorption and emission spectra, which is formally valid only

for a displaced harmonic oscillator model within the Condon approximation.90,91 In general,
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Figure 4: Vibrationally resolved (a) S1 ← S0 absorption, (b) S2 ← S0 absorption, and (c)
S2 → S0 emission spectra of azulene. Calculations using adiabatic single-Hessian thawed
Gaussian approximation (“semiclassical,” see Sec. 2.3 and Table S1) or adiabatic global
harmonic approach (as described in Ref. 55)—both combined with the Herzberg–Teller ap-
proximation [Eq. (16)] for the transition dipole moment—are compared with the experiment.
To facilitate this comparison, all computed spectra are rescaled to unit maximum intensity
and shifted in frequency by a constant (see Table S2).
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Figure 5: Vibrationally resolved S2 absorption and emission spectra of azulene computed
with (a) only Condon (constant) term, (b) only Herzberg–Teller (linear) term, (c) both
Condon and Herzberg–Teller terms in the expansion of the transition dipole moment [with all
calculations using the adiabatic single-Hessian (extended) thawed Gaussian approximation
(see Sec. 2.3 and Table S1)]. To facilitate comparison between absorption and emission, all
spectra are rescaled to unit maximum intensity and shifted in frequency by a constant.
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changes in the force constant, mode coupling, anharmonicity, and Herzberg–Teller coupling

can all break this symmetry. In Fig. 5a, we show that the Condon absorption and emission

spectra retain (to a large extent) this symmetry, whereas the mirror image symmetry is

broken completely in the case of Herzberg–Teller spectra (see Fig. 5c). Such effect of the

Herzberg–Teller coupling is well known,90,92–94 but is commonly interpreted in terms of the

cross terms that arise when both Condon and Herzberg–Teller contributions to the spec-

trum are significant. This is not the case here, as significant asymmetry is observed even for

the pure Herzberg–Teller contribution (where the constant Condon term is set to zero, see

Fig. 5b). In azulene, the breakdown of the mirror image symmetry between absorption and

emission is a result of an interplay between the Herzberg–Teller and mode-mixing (Duschin-

sky) effects. Indeed, the symmetry is mostly recovered if either of the two effects is “turned

off” (see Fig. 5a, where Herzberg–Teller coupling is set to zero, and Fig. S7, where mode

mixing is neglected). More precisely, coupling between the modes modifies only slightly the

dynamics of the Gaussian wavepacket, hence the similarity between the spectra in Figs. 5a

and S7a, but affects considerably the linear, Herzberg–Teller term of the extended thawed

Gaussian wavepacket (17), which explains the difference between the spectra in Figs. 5b and

S7b. The Duschinsky effect on the absorption spectrum is largely due to couplings between

the Herzberg–Teller active modes (see Fig. S8 where only those couplings are neglected).

In contrast, the emission spectrum is only weakly affected by the mode-mode couplings

(compare the emission spectra in Figs. 5c and S7c).

Small discrepancies between the simulated spectra and experiments are likely due to the

accuracy of the electronic structure method. We found that the accuracy of the computed

S2 ← S0 absorption spectrum depends strongly on the degree of dynamic correlation in-

cluded in the ab initio method (see Fig. S1). Accounting for finite-temperature and solvent

effects, which are in our calculations included only phenomenologically through Gaussian

broadening, might further improve the accuracy.54,95–101
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5 Conclusion

To conclude, we presented a systematic and general semiclassical approach for studying pho-

tophysics beyond Kasha’s rule and spectroscopy beyond Condon’s approximation. We vali-

dated the method on the challenging case of azulene, where the proposed approach allowed us

to consider the interplay of nonadiabatic, anharmonicity, mode-mixing, and Herzberg–Teller

effects, as well as the importance of dynamical electron correlation in the electronic struc-

ture methods used. The presented methodology allows one to perform in-depth studies of

photochemistry and photophysics of various molecular systems at a moderate computational

cost.
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(58) Zimmermann, T.; Vańıček, J. Efficient on-the-fly ab initio semiclassical method for

computing time-resolved nonadiabatic electronic spectra with surface hopping or

Ehrenfest dynamics. J. Chem. Phys. 2014, 141 .

(59) Heller, E. J. Time-dependent approach to semiclassical dynamics. J. Chem. Phys.

1975, 62, 1544–1555.
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Computational details

Minima of S0, S1, and S2 states, as well as minimum energy conical intersection between S0

and S1 were optimized at SA5-CASSCF(4,6)/6-31G* level. To compute the potential energy

surface cuts in Fig. 1, we performed linear interpolation of internal coordinates between the

optimized geometries, while the section of the surface beyond the S2 minimum was based

on internal coordinate extrapolation. All dynamics simulations were performed for 800 time

steps of 8 a.u. (0.1935 fs) each, therefore, for the total time of ≈ 155 fs. The velocity Verlet

algorithm was used to integrate classical equations of motion.

Multiple-surface dephasing representation (MSDR)

Ensembles of N = 112 ab initio trajectories were propagated with each nuclear dynam-

ics method (i.e., Born-Oppenheimer, fewest-switches surface hopping, or Ehrenfest dynam-

ics). Note that by “Ehrenfest dynamics” we mean a locally mean field dynamics,S1 i.e.,

an independent Ehrenfest dynamics of each trajectory in the ensemble. For nonadiabatic

dynamics, ground and four excited states were taken into account. Energies, gradients,

and nonadiabatic couplings were computed with state-averaged complete active space self-

consistent field [SA5-CASSCF(4,6)/6-31G*] electronic structure method, as implemented in

Molpro2012.S2,S3 Compared to CASSCF with larger active spaces [(6,6),(10,10)], which give

an incorrect ground state minimum structure with Cs symmetry, CASSCF(4,6) has a correct

C2v minimum. Initial positions and momenta were sampled from the Wigner distribution

of a vibrational ground state of a harmonic fit to the ground potential energy surface. As-

suming the vertical excitation, the whole ensemble of trajectories was launched from either

the S1 or S2 state. Surface hopping simulations were performed both withoutS4 and with an

energy-based decoherence correction,S5 which was applied at every nuclear time step, with

a parameter α = 0.1 Hartree.
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On-the-fly ab initio thawed Gaussian propagation and spectra

For computing vibronic spectra, three electronic structure methods were tested: (i) (time-

dependent) density functional theory (in combination with the B3LYP functional and TZVP

basis set, which were used in Ref. S6); (ii) SA5-CASSCF(4,6)/6-31G* (used also for MSDR

calculations); (iii) second-order Møller–Plesset perturbation theory (MP2) for ground state

combined with the second-order algebraic diagrammatic construction [ADC(2)] scheme for

the excited states (cc-pVDZ basis set). Gaussian 16 packageS7 was used for (time-dependent)

density functional theory calculations, while Molpro2015S8 was used for CASSCF, MP2,

and ADC(2) methods. For ADC(2) calculations, we used Laplace transformed density-fitted

local ADC(2) implementation in Molpro [keyword LT-DF-LADC(2)].S9 Spectra computed

with these electronic structure methods—including the Herzberg–Teller term of the transi-

tion dipole moment, but only within the adiabatic global harmonic approximation for the

potential energy—are compared in Fig. S1.
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Figure S1: S1 ← S0 and S2 ← S0 absorption spectra computed using different electronic
structure methods.

The trajectories needed for evaluating the S1 ← S0 and S2 ← S0 absorption spectra

with the single-Hessian extended thawed Gaussian approximation were propagated with the
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excited-state ADC(2) gradients, starting from the ground-state geometry optimized at the

MP2 level. Similarly, the trajectory needed for computing the S2 → S0 emission spectrum

started at the S2 minimum [found by geometry optimization at the ADC(2) level of the-

ory] and was run using MP2 gradients of the ground-state potential energy surface. In all

cases, the initial wavepacket was the ground vibrational state of the harmonic potential fit

to the potential energy surface of the initial electronic state. Gaussian wavepacket propaga-

tion was performed in normal-mode coordinates obtained by diagonalizing the mass-scaled

initial-state Hessian, so that the initial wavepacket was a simple product of one-dimensional

Gaussian functions. For each single-Hessian thawed Gaussian propagation, the reference

Hessian was chosen as the adiabatic Hessian of the final electronic state (see Table S1).

Table S1: Parameters used in the calculations of various spectra with the adiabatic single-
Hessian extended thawed Gaussian approximation.

S1 absorption S2 absorption S2 emission
Initial geometry q0 qeq(S0) qeq(S0) qeq(S2)
Reference Hessian V ′′ref V ′′S1

V ′′S2
V ′′S0

Reference geometry qref qeq(S1) qeq(S2) qeq(S0)

Derivatives of the electronic transition dipole moment with respect to nuclear coordinates

are not readily available in quantum chemistry packages. We evaluated them by finite

differences, i.e., by computing the transition dipole moments at geometries displaced by 0.01

a.u. from the optimized initial-state geometry. Fortunately, these numbers can be extracted

from the output of the ab initio numerical excited-state force or Hessian calculation.S10–S12

Spectral broadening was introduced by multiplying the autocorrelation function with a

Gaussian damping function, which is equivalent to convolving the spectrum with another, but

related Gaussian function. To facilitate the comparison between computed and experimental

spectra, we introduced a constant energy shift in each spectrum. Because the constant shift

error arises mostly due to the incorrect ab initio vertical energy gap, the same shifts were

applied to Condon and Herzberg–Teller spectra. Broadening and energy shift parameters

are given in Table S2.
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Table S2: Half-width at half-maximum (HWHM) of the Gaussian broadening functions and
horizontal energy shifts applied to spectra computed with global harmonic models or thawed
Gaussian approximation (TGA). All values are expressed in cm−1. Exceptionally, in Fig. 5
of the main text and Fig. S7, HWHM was 200 cm−1 for both S2 absorption and emission
spectra.

S1 absorption S2 absorption S2 emission
HWHM 140 200 250
Energy shift (Global harmonic) -5470 -6230 -6050
Energy shift (TGA) -5740 -6480 -6040

Energy non-conservation in the single-Hessian extended

thawed Gaussian approximation

In the single-Hessian thawed Gaussian approximation,S13 the potential energy is approxi-

mated along the trajectory as

VSH(q, t) = V (qt) + V ′(qt) · (q − qt) +
1

2
(q − qt)T · V ′′ref(qref) · (q − qt). (1)

The time derivative of the total energy (based on VSH) of the extended thawed Gaussian

wavepacket is

dE

dt
=

d

dt
〈φ(t)|Ĥeff(t)|φ(t)〉 (2)

= 〈φ(t)| d
dt
V̂SH(t)|φ(t)〉 (3)

= 〈φ(t)|bTt · (q̂ − qt)|φ(t)〉 (4)

= 2Re{µ(q0)〈ψ(t)|µ′(q0)T ·Q0 ·Q−1
t · [(q̂ − qt)⊗ (q̂ − qt)T ] · bt|ψ(t)〉} (5)

= ~Re[µ(q0)µ′(q0)T ·Q0 ·Q†t · bt], (6)

where bt := (V ′′(qt)− V ′′ref(qref)) ·m−1 · pt. Equation (3) follows because the thawed Gaussian

solves exactly the Schrödinger equation with Ĥeff = 1
2
p̂T · m−1 · p̂ + V̂SH(t). In Eq. (5) we

used the fact that the Gaussian probability density |ψ(q, t)|2 is an even function centered at
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qt, i.e., the integrals of terms that are linear and cubic in (q − qt) vanish and in Eq. (6) we

used the relation 〈ψ(t)|(q̂ − qt)⊗ (q̂ − qt)T |ψ(t)〉 = (~/2)Qt ·Q†t for the position variance in

state ψ.

Adiabaticity and population dynamics evaluated with

different nuclear dynamics methods
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Figure S2: Adiabaticity of the quantum dynamics initiated at the S1 (upper panel) or S2

(lower panel) state. Several nuclear dynamics methods are compared.
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Type of method: Quantum/classical population:
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Figure S3: Population of the S1 state during the dynamics initiated at S1 (upper panel) and
population of the S2 state during the dynamics initiated at S2 (lower panel) computed with
different nuclear dynamics methods.
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Figure S4: Populations of states S0–S4 obtained with different nuclear dynamics simulations
initiated at S1.
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Figure S5: Populations of states S0–S4 obtained with different nuclear dynamics simulations
initiated at S2.
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Adiabaticity divided by initial-state population
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Figure S6: Adiabaticities divided by the initial-state populations (both computed using
surface hopping dynamics with decoherence correction, i.e. results shown in Fig. 2 of the
main text) for the dynamics started at: (a) S1, (b) S2. Gaussian decay functions used for
broadening the corresponding absorption spectra show the time scales relevant for spectra
calculations.

S10



Asymmetry between S2 ← S0 absorption and S2 → S0

emission spectra
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Figure S7: Vibrationally resolved S2 ← S0 absorption and S2 → S0 emission spectra of
azulene computed with (a) only Condon (constant) term, (b) only Herzberg–Teller (linear)
term, (c) both Condon and Herzberg–Teller terms in the expansion of the transition dipole
moment. Same as Fig. 5 of the main text, but neglecting the Duschinsky rotation between
the ground- and excited-state normal mode coordinates, which is accomplished by setting
the off-diagonal elements of the reference (adiabatic) Hessian (expressed in the initial-state
normal mode coordinates) to zero.
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Figure S8: Same as Fig. S7 but here neglecting only the coupling between the Herzberg–
Teller active modes (listed in Table S3) in the simulations of the absorption spectra; the
emission spectra are the same as in Fig. 5 of the main text.

Table S3: Derivatives of the transition dipole moment (in atomic units) of the azulene S2 ←
S0 electronic transition with respect to the normal mode coordinates. Only the largest terms
of the transition dipole moment gradient are shown, derivatives with respect to other normal
modes are either negligible or zero. The derivatives of the z component of the transition
dipole moment are all zero (the molecule lies in the xy plane).

Frequency / cm−1 ∂µx/∂q × 102 ∂µy/∂q × 102

1784 −0.86 0.00
1660 −2.50 −5.31
1646 −1.51 0.69
1584 0.00 0.90
1514 1.28 −0.65
1490 1.08 2.32
1409 −0.55 0.00
1235 −0.60 −1.29
1074 0.00 1.05
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Peng, D.; Pflüger, K.; Pitzer, R.; Reiher, M.; Shiozaki, T.; Stoll, H.; Stone, A. J.;

Tarroni, R.; Thorsteinsson, T.; Wang, M. MOLPRO, version 2012.1, a package of ab

initio programs. 2012; see http://www.molpro.net.

(S4) Tully, J. C. Molecular dynamics with electronic transitions. J. Chem. Phys. 1990, 93,

1061–1071.

(S5) Granucci, G.; Persico, M. Critical appraisal of the fewest switches algorithm for surface

hopping. J. Chem. Phys. 2007, 126, 134114.

(S6) Dierksen, M.; Grimme, S. Density functional calculations of the vibronic structure of

electronic absorption spectra. J. Chem. Phys. 2004, 120, 3544–3554.

(S7) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheese-

man, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.;

S13



Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Men-

nucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-

Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.;

Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.;

Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.;

Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Mont-

gomery, J. A., Jr.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Broth-

ers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.;

Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.;

Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.;

Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16 Revision C.01.

2016; Gaussian Inc. Wallingford CT.

(S8) Werner, H.-J.; Knowles, P. J.; Knizia, G.; Manby, F. R.; Schütz, M.; Celani, P.;
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