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The effect of Landau damping is often calculated assuming a Gaussian beam distribution in all transverse
degrees of freedom, which agrees reasonably well with beam measurements. However, the stability of the
beam is strongly dependent on the details of the distribution. The present study focuses on the slow
evolution of the transverse bunch distribution, for a bunch excited by a coherent white noise source,
damped by a transverse feedback system, and with detuning dependent on the transverse actions. The
mechanism is modeled by the Fokker-Planck equation. It corresponds to a diffusion that is zero for particles
with tune equal to the average tune of the bunch, and which is growing quadratically with the tune in the
vicinity. The evolving distributions are then used to calculate the evolving stability diagrams, and thus the
long-term evolution of the Landau damping. The relative effective octupole current is reduced faster for
stronger noise, stronger linear detuning coefficients and weaker damper gain. The relevant parameters for
this mechanism are scanned. With relevant parameter values for the LHC, this mechanism can cause a
reduction of the effective octupole current by at most 10%=h.
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I. INTRODUCTION

In synchrotrons, the beam is kept stable partially by
Landau damping due to the tune spread within each bunch.
The stability diagram [1] in plane j ∈ fx; yg can be
calculated as

1

ΔQcoh;j
¼ −

Z
∞

0

dJx

Z
∞

0

dJy
Jj

∂ΨðJx;JyÞ
∂Jj

Q −QjðJx; JyÞ þ iϵ
; ð1Þ

and corresponds to the stability limit for the complex tunes
ΔQcoh;j of the coherentmodes. Because the stability diagram
does not depend on the equilibrium distributionΨ, but on the
derivative of it, the stability can be changed significantly by
a small change in the distribution. The stability diagram can
be derived from the linearized Vlasov equation. Within this
approximation, the transverse equilibrium distribution is
typically considered constant [2]. The stability diagram of
different equilibrium distributions have been calculated in
the past [3–6]. The effect of longitudinal rf noise on the beam

losses has also been studied [7,8], while transverse noise and
diffusion has been given less attention, especially with a
focus on loss of stability.
In a recent experiment in the LHC, transverse Landau

damping was lost due to transverse noise driven diffusion
[9,10]. Such an instability cannot be explained by the
linearized Vlasov equation. It is expected that an accurate
description of this mechanism involves the presence of both
noise and wakefields [3]. Here, we consider an analytical
theory explaining how the transverse equilibrium distribu-
tion changes slowly in the presence of transverse coherent
noise, due to the combined effects of a transverse tune
spread and a transverse feedback. The higher-order slow
change of the distribution due to the wakefields themselves
has at this stage been neglected, but may be required to
explain the observed loss of Landau damping. A theory for
a single transverse plane (1D), which has already been
published [11], will here be extended to both transverse
planes (2D). The stability of the slowly evolving beam,
under the influence of wakefields, is at each time step
evaluated by the linearized Vlasov equation through the
stability diagram. The ultimate goal is to have an analytical
model that predicts how fast the stability threshold is
approached, to guide the search for optimal machine and
beam parameters, mitigating this mechanism and maxi-
mizing the latency, relevant for HL-LHC and other future
projects.
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II. THEORY

The calculation consists of 4 steps: Sec. II A Derive an
expression for the change of the action for each particle
after a kick, taking into account both the tune spread and
the transverse feedback; Sec. II B Consider the change of
action as a Wiener process with a drift, and derive the
Fokker-Planck equation for the particle density distribution
of the bunch; Sec. II C Solve the Fokker-Planck equation to
get the time evolution of the distribution, both analytically
and numerically; Sec. II D Calculate the evolving stability
diagram numerically with PySSD [12], as the distribution
evolves with time.
The 4-step calculation may be applied to various sources

of tune spread. Here we shall discuss the case when the tune
spread is achieved with Landau octupoles (II E).

A. Transverse feedback and decoherence

We will consider particles of a bunch in a circular
accelerator, using for either transverse plane normalized
canonical coordinates for the particles [13]

x ¼ Xffiffiffiffiffiffiffi
βε0

p ¼
ffiffiffiffiffi
2J

p
cosðϕÞ;

p ¼ −
1ffiffiffiffiffiffiffi
βε0

p
�
αX þ β

dX
ds

�
¼ −

ffiffiffiffiffi
2J

p
sinðϕÞ; ð2Þ

where X is the offset from the design orbit, s is the position
in the beamline, α and β are Twiss parameters, ε0 is the
initial beam emittance and ϕ is the canonical conjugate of
J, which is the normalized absolute particle action, given in
units of ε0. It follows that J can be written as

J ¼ 1

2
ðx2 þ p2Þ; ð3Þ

and the emittance is given relative to the bunch centroid

ε

ε0
¼ 1

2
hðx − hxiÞ2 þ ðp − hpiÞ2i; ð4Þ

where the angle brackets signify the average over the bunch
distribution.
If a bunch is kicked away from the design orbit by

Δp ¼ k, the action of a particle is changed to

Jk ¼ J0 − k
ffiffiffiffiffiffiffi
2J0

p
sinðϕ0Þ þ

1

2
k2; ð5Þ

where J0 and ϕ0 are the action and phase of the particle
prior to the kick. Assuming a uniform phase distribution
per action, the average action growth per initial action is

hΔJðk; J0Þiϕ0
¼ 1

2
k2; ð6Þ

independent of the initial action. If the bunch decoheres
completely, shifting the centroid to the origin, it is trivial to
show that the subsequent emittance growth is

Δε
ε0

¼ k2

2
; ð7Þ

where ε0 was the emittance before the kick. This process
requires that the individual particles have an incoherent
tune offsetΔQ relative to the tuneQc of the bunch centroid.
On the other hand, if there is no tune spread, but instead a
transverse feedback that over multiple turns can push the
bunch back to its design orbit with a gain g, the emittance
growth, and correspondingly the action change, will be
reduced.
The goal of this paper is to understand the change in the

distribution after a kick, when there is both a transverse
tune spread and a transverse feedback. There already exists
an expression for the subsequent emittance growth in such
a configuration [14]. We will take a similar approach,
which was detailed in [11]. In contrast to previous research,
we are not interested in the average change, but rather the
change of action of each individual particle, which in this
formalism is given by

ΔJ ¼ k2

2

ð1 − g
2
Þ24π2ΔQ2

ðg
2
Þ2 þ ð1 − g

2
Þ4π2ΔQ2

þ k
ffiffiffiffiffiffiffi
2J0

p �
1 −

g
2

�

×
cosðϕ0Þðg2Þ2πΔQ − sinðϕ0Þð1 − g

4
Þ4π2ΔQ2

ðg
2
Þ2 þ ð1 − g

2
Þ4π2ΔQ2

¼ 1

2
k2L2 þ k

ffiffiffiffiffiffiffi
2J0

p
½M cosðϕ0Þ þ N sinðϕ0Þ�

¼ 1

2
k2L2 þ k

ffiffiffiffiffiffiffi
2J0

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ N2

p
cos

�
ϕ0 − atan

�
M
N

��
;

ð8Þ

where L,M, andN are functions ofΔQ and g. The step-by-
step derivation is given in the Appendix A. The first term of
Eq. (8) is an average growth, while the second term is a
spread based on the phase of the particle. By averaging over
the distribution, one gets the same expression for the
emittance growth as in [14], assuming a uniform phase
distribution. Equation (8) simplifies to Eq. (5) in the limit
g ≪ ΔQ, and to 0 in the limit g ≫ ΔQ.
The expression in Eq. (8) has been derived under the

assumption that the reduction of the transverse offset comes
from the transverse feedback, not the decoherence
(g ≫ ΔQ). Furthermore,

M2 þ N2 ¼ L2 þ ð1 − g
2
Þ2ðg

4
Þ2ð2πΔQÞ4

½ðg
2
Þ2 þ ð1 − g

2
Þð2πΔQÞ2�2 ; ð9Þ

where the second term on the right-hand side is negligible
for all relevant values of ΔQ and g. Hence, one can rewrite
Eq. (8) as
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ΔJ ¼ 1

2
k2L2 þ k

ffiffiffiffiffiffiffi
2J0

p
L cosðϕ̃0Þ; ð10Þ

where ϕ̃0 ¼ ϕ0 − atanðMNÞ, which will still be uniformly
distributed for each J0, and

L2ðg;ΔQÞ ¼ ð1 − g
2
Þ24π2ΔQ2

ðg
2
Þ2 þ ð1 − g

2
Þ4π2ΔQ2

; ð11Þ

with a maximum value of ð1 − g
2
Þ ≈ 1.

In the derivation of Eq. (10), the incoherent tune offset
ΔQ was assumed constant. However, in general it depends
on J, which changes during this process. Right after the
kick, the action is changed to Jk, given by Eq. (5). Due to
the feedback, the action will be reduced back toward J0.
The variation of action during the process will be taken into
account by calculating the average of Eq. (10) from J0 to Jk
in the following manner

ΔJ ¼ 1

Jk − J0

Z
Jk

J0

ΔJðJ0Þ þ ðJ0 − J0Þ
∂ΔJ
∂J

����
J¼J0

dJ0

¼ ΔJðJ0Þ þ
Jk − J0

2

∂ΔJ
∂J

����
J¼J0

¼ ΔJðJ0Þ þ
1 − g

4

1 − g
2

· k2sin2ðϕ0ÞJ0
∂L2

∂J þOðk4Þ: ð12Þ

Note that the only impact of the variation of J after the kick
is through the action dependence of ΔQðJÞ. The values of
J0 and ϕ0 are supposed to be taken prior to the kick. Terms
that will become zero when averaging over ϕ0 were
dropped.

B. Fokker-Planck equation in action

In Sec. II A we derived Eq. (12), an expression
for the change of action after a kick k, and how it depends
on the action-phase coordinates prior to the kick,
ΔJðk; J0;ϕ0;ΔQ0; gÞ, from here on referred to as Δ.
Next, we have to derive how this change of action will
change the distribution Ψ. To do so, we write the master
equation [15,16], a convolution of the distribution before
the changeΔwith the probability distribution of the change

ΨðJ; tþ τÞ ¼
Z

∞

−∞
ΨðJ − Δ; tÞφðΔ; J − Δ;ΨÞdΔ: ð13Þ

The particle distribution is assumed uniformly distributed
in ϕ. The dependence of Δ on ϕ has been taken into
account in the probability distribution φðΔÞ. By doing so,
the two-dimensional problem has become a one-dimen-
sional one. All terms on the right-hand side are evaluated at
time t.
When one kick k becomes a coherent white noise source,

the change of action can be considered a stochastic process,
described by the Fokker-Planck equation [17]

∂tΨ ¼ −∂JðUΨÞ þ ∂2
JðJDΨÞ; ð14Þ

with drift and diffusion coefficients

UðJ;ΨÞ ¼
Z

∞

−∞

Δ
τ
φðΔ; J;ΨÞdΔ; ð15aÞ

DðJ;ΨÞ ¼ 1

J

Z
∞

−∞

Δ2

2τ
φðΔ; J;ΨÞdΔ; ð15bÞ

where τ is the time interval between each kick. The
normalization of D by J will be convenient in the
following. Equation (14) follows directly from a Taylor
expansion of Eq. (13). See a short derivation in
Appendix B.
The probability distribution for the change of action after

a kick, derived from Eq. (10), can be written as

φðΔ; J;ΨÞ ¼ FðkÞdk
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Jk2L2 − ðΔ − k2

2
L2Þ2

q ; ð16Þ

and it is defined only between the singularities. FðkÞ is the
probability distribution of the kicks, assumed to have zero
mean and standard deviation σk.
The next step is to calculate the coefficients UðJ;ΨÞ and

DðJ;ΨÞ. The integral overΔmust be done first, as its limits
depend on k. The coefficients become

DðJ;ΨÞ ¼ σ2k
2τ

· L2; ð17aÞ

UðJ;ΨÞ ¼ Dþ 1 − g
4

1 − g
2

J
dD
dJ

: ð17bÞ

The second term of U comes from the inclusion of
dynamically evolving ΔQ during the decoherence process.
The last step is to insert the expressions for U and D in

Eq. (17) into the Fokker-Planck equation in Eq. (14). The
first term of U cancels ∂J½∂JðJÞDψ �. In the assumed limit
of small g, the second term cancels the term ∂J½J∂JðDÞψ �.
Thus, the Fokker-Planck equation turns into the well-
known diffusion equation

∂tΨ ¼ ∂J½JD∂JðΨÞ�: ð18Þ

This equation could also be obtained by assuming a time
reversal symmetry on the microscopic level. That is, the
probability of going from Ja to Jb is equal to the process of
going back, or φðJb − Ja; JaÞ ¼ φðJa − Jb; JbÞ.
If we would have assumed constant tunes during the

feedback and decoherence process of a single kick, theD in
Eq. (18) would have been inside the inner derivative. That
partial differential equation (PDE) would have corre-
sponded to a stochastic process where the probabilities
of reducing and increasing the action by Δ from an initial
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action J0 were equal, or φðΔ̄þ Δ; J0Þ ¼ φðΔ̄ − Δ; J0Þ,
where Δ̄ ¼ k2L2=2 is assumed small. Such a process can
easily be modeled with a macroparticle simulation, and an
excellent agreement was found in [11]. However, it is not
an accurate model of real beam dynamics, and will not be
investigated further. It is a subtle, but important distinction
from the process modeled by Eq. (18).

1. Extension to 2D action space

We will now extend the theory from a single transverse
plane to both transverse planes. The transverse detuning in
high energy synchrotrons is usually generated by octupole
magnets in a controlled way so that it depends on both
transverse actions [1]. The expression for the linear
detuning will be discussed in Sec. II E.
We want to go from Eq. (14) to a general 2D Fokker-

Planck equation like

∂tΨ ¼
X1
j¼0

∂
∂Jj

�
−UjΨþ

X1
i¼0

∂
∂Ji ð

ffiffiffiffiffiffiffiffi
JjJi

p
DjiΨÞ

�
; ð19Þ

where the indexes i and j go over the two transverse planes,
with definitions of Uj and Dji as before. This equation can
be obtained by doing a 2D Taylor expansion as in
Appendix B. As for a single plane, we still have Uj ∝
σ2kj þOðσ4kjÞ and Djj ∝ σ2kj þOðσ4kjÞ. Since the external
noise in the two planes are considered uncorrelated,
hkxkyi ¼ 0, the coupling diffusion coefficients can be
considered negligible, because Dxy¼Dyx∝σ2kxσ

2
ky≪Djj.

The Fokker-Planck equation in 2D transverse action
space, which corresponds to Eq. (18) for one transverse
plane, can therefore be written as

∂Ψ
∂t ¼ ∂

∂Jx
�
JxDxx

∂Ψ
∂Jx

�
þ ∂
∂Jy

�
JyDyy

∂Ψ
∂Jy

�
: ð20Þ

The diffusion coefficients are given as before,

Djj ¼
σ2kj
2τ

· L2½gj;ΔQjðJx; JyÞ�; ð21Þ

where we have explicitly written that L2 depends on the
detuning and feedback gain in the given transverse plane.

C. Solving the Fokker-Planck equation

In Sec. II B we studied the Fokker-Planck equation, and
found that the problem at hand could be written as Eq. (18)
in 1D and Eq. (20) in 2D. The next goal is to solve the
Fokker-Planck equation, which will be done in three steps:
(i) Change the amplitude variable to r ¼ ffiffiffiffiffi

2J
p

, interpreted
as the radius in ðx; pÞ-phase space; (ii) Find an analytical
solution for two special cases; (iii) Write a numerical PDE
solver for the general case.

1. Change of variable

The independent variables will be changed first of all in
order to express the initial beam distribution with a familiar
Gaussian, and second of all because a uniformly spaced
grid in r will better encompass the details of the change
than a uniformly spaced grid in J. Therefore, the numerical
solver that will be introduced in Sec. II C 3, will converge
faster when using a grid in r than in J.
The change of variables is achieved by using the chain

rule, ∂J· ¼ ∂JðrÞ∂r·, where ∂JðrÞ ¼ 1=r. Then, the two
following expressions for the change in the distribution are
equivalent

∂tΨ ¼ ∂
∂J

�
JD

∂Ψ
∂J −UΨ

�
;

¼ 1

r
∂
∂r

�
r
D
2

∂Ψ
∂r −UΨ

�
: ð22Þ

Note that the expressions for D and U have not been
altered, as they are considered to be known functions.

2. Analytical solution

An analytical solution will be presented for the special
case of g ¼ 0. In this case the Fokker-Planck equation takes
the form

∂tΨ ¼ D0

2

1

r
∂
∂r

�
r
∂Ψ
∂r

�
;

D0 ¼
σ2k
2τ

: ð23Þ

This is the diffusion equation with a constant diffusivity
D0=2. This is equal to what one expects from an incoherent
noise source with the same variance σ2k [18]. If the initial
distribution in ðx; pxÞ is a Gaussian with average action
hJiðt ¼ 0Þ ¼ 1, it will remain a Gaussian as

ΨðtÞ ¼ 1

1þD0t
exp

�
−

r2

2ð1þD0tÞ
�

¼ 1

hJi exp
�
−

J
hJi

�
: ð24Þ

This thus corresponds to an emittance growth rate of D0.
In another extreme limit, g ≫ ΔQ and ΔQ → 0, the

Fokker-Planck equation takes the form

∂tΨ ¼ 0: ð25Þ

The offsets from the kicks will be damped, without
modifying the distribution, as expected.

3. Numerical solution

In the interesting regime, when both the feedback and the
detuning will be relevant, the coefficients will depend on
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the transverse actions, and we require a numerical solver to
determine how the distribution will change. A PDE solver
using the finite volume method (FVM) has been imple-
mented and connected to a stability diagram calculator,
which will be introduced in Sec. II D. The code will be
referred to as PyRADISE (python radial diffusion and
stability evolution).
The FVM has been applied because it ensures mass

conservation in the interior region. The region of interest,
and its discretization in a uniform Nx × Ny grid, is
presented in Fig. 1. In the following, we assume that the
solver uses the transverse actions as independent variables.
The density in a certain cell,Ψi;j, is considered independent
of ðJx; JyÞ, and the distribution evolution comes from the
diffusion and drift parameters at the four edge points, and
density in the closest cell beyond each edge. At J ¼ 0,
physics dictates that there must be a reflective boundary
condition (BC), and at J ¼ Jmax, one can choose between a
homogeneous or inhomogeneous Neumann or Dirichlet
BC. In the examples that follow, the BC at Jmax ¼ 20 is
absorbing, representing an aperture in a real machine,
the centroid tune, Qc, is kept constant, and the grid is
700 × 700 in 2D. The time integration is performed by
scipy.integrate.solve_ivp [19], using a method
based on a backward differentiation formula and a sparse
Jacobian. The output is an array Ψði; j; kÞ, giving the
density at the desired discrete times tk, in all cells centered
at ci;j in the 2D cell grid.

D. Stability diagram

The stability diagram must be calculated for each time
tk. Therefore, PySSD [12] is integrated in PyRADISE to

numerically perform the integral in Eq. (1), using a uniform
trapezoidal discretization in ðJx; JyÞ, and thus calculate the
stability diagrams for all distributions coming from the
PDE-solver described in Sec. II C. Note from Eq. (1) that
what we are interested in is the derivative of Ψ with respect
to the action. The distributions can therefore no longer be
assumed to be piecewise constant, as in the FVM. First,
the derivative with respect to Jx is taken at the eastern
(and western) edges as ðΨiþ1;j −Ψi;jÞ=Δx, and equiva-
lently for the derivative with respect to Jy at the northern
and southern edges. Then, the derivatives are linearly
interpolated between the cell edges. Finally, the integral
is performed numerically with Q ¼ ReQþ iϵ, where
ϵ → 0.

E. Detuning by Landau octupoles

The Landau octupoles are put in the LHC to produce a
tune spread in order to keep the beam stable through
Landau damping. The octupoles cause a tune spread in both
transverse planes, relative to the average, which can be
expressed as [1]

ΔQx=y ¼ ax=yðJx=y − hJx=yiÞ þ bx=yðJy=x − hJy=xiÞ;
ax=y ¼ 520 · Ioctεx=y;0;

bx=y ¼ −364 · Ioctεy=x;0; ð26Þ

where Jj are the normalized actions, aj and bj are detuning
coefficients that determine the tune spread amplitude [20],
and εj;0 are the initial transverse geometrical emittances.
The factors 520 and −364 in Eq. (26) depend on the
β-functions at the locations of the octupoles. The values can
be increased by a factor ∈ ð2; 4Þ by use of telescopic optics
[21]. For a typical normalized emittance of 2.0 μm and
proton energy of 6.5 GeV, the geometrical emittance will be
εx=y;0 ¼ 289 pm. The maximum octupole current in the
LHC is 550A. Thus, the maximum detuning coefficient is
amax ¼ 8.26 × 10−5, according to Eq. (26). This expression
for ΔQ should be inserted into the expression for L2 in

FIG. 1. Illustration of the FVM grid in PyRADISE. A uniform
Nx × Ny cell grid covers the independent variables, either in the
form of J or r, from 0 to their respective maximal values. Each
cell in the grid has a center ci;j ¼ ½ðiþ 1

2
Þ · Δx; ðjþ 1

2
Þ · ΔyÞ�, and

four edge points e, w, n, s, which are half a cell width or height in
the respective compass directions. It follows naturally that
ei;j ¼ wiþ1;j, etc.

FIG. 2. Action dependence of L2 for a horizontal damper gain
gx ¼ 0.01 and different values for the octupole detuning coef-
ficient ax, in the simplified case that bx ¼ 0 [11].
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Eq. (11). In a simplified model, when bx ¼ 0, L2 takes the
shape illustrated in Fig. 2. We will focus our investigations
on the diffusion caused by the combination of the active
transverse feedback and detuning caused by Landau octu-
poles, because of its relevance for operation of the LHC.

III. VERIFICATION

A. Change of action after a single kick

First, we numerically evaluate the accuracy of Eq. (10).
We have considered a 1D model with no dependence on the
vertical plane, with gx ¼ 0.1, ax ¼ 5 × 10−4 and bx ¼ 0.
Simulations in this configuration have been run with 107

macroparticles, for 150 turns, after a single horizontal kick
of various amplitudes k (in units of the beam size). The
results of two numerical models are compared. The phase
advance per particle has been kept constant in one set of
simulations, and evolving dynamically as J changes in
another. The first abides by the assumptions used to derive
Eq. (10), while the second is closer to the actual beam
dynamics, used to derive Eq. (12).
The dependence of hΔJi and hΔJ2i on J0 is presented in

Fig. 3. They are compared to the theory given by Eq. (10)
and modified theory including dynamical tunes given by
Eq. (12). The modification did not change the expected

value for hΔJ2i to first order. The simulated curves for
hΔJi have more statistical noise, as the average is propor-
tional to k2, while the spread is proportional to k

ffiffiffiffiffi
J0

p
, which

is why the curves stop at J0 ¼ 4 and were not calculated for
k < 0.1. The agreement is excellent between Eq. (10) and
the simulations with constant tune, denoted by Qð0Þ. The
expression in Eq. (10) has thus been verified numerically,
using the same assumptions. The agreement is acceptable,
for this study, for the simulations run with dynamically
evolving tunes, QðtÞ. The difference appears not to
diminish for smaller kicks k. The dependence on the
dynamical tunes does have an impact. The difference is
similar for hΔJi and hΔJ2i, using the modified theory.

B. Fokker-Planck vs macroparticle simulation

In the derivation of Eq. (10), it was assumed that the
amplitude of the stochastic process was solely dependent
on the particle parameters before the kick. That does not
represent actual beam dynamics well [11]. The tunes do
change during the decoherence process following the kick,
which has been accounted for in Eq. (12). Such a process
can be modeled by the Fokker-Planck equation in Eq. (18).
The distribution then evolves toward a step where ΔQ ¼ 0,
as seen in Fig. 4. Here, we have studied a 1D toy
configuration with ax ¼ 5 × 10−5, bx ¼ 0, and gx ¼
0.01, in the horizontal plane. The time is scaled to hours
of operation in the LHC, with a noise of σk ¼ 5 × 10−4.
The edge develops at r ¼ ffiffiffi

2
p

≈ 1.4, whereΔQ ¼ 0. This is
the effect of the diffusion: Ψ increases at J ≲ JðΔQ ¼ 0Þ
and at large J, and is depleted at J ≳ JðΔQ ¼ 0Þ and at
J ∼ 0. In other words, Ψ flattens in the two regions
separated by JðΔQ ¼ 0Þ ¼ 1.
In simulations with multiple small uncorrelated kicks,

the distribution does evolve approximately as dictated by
the PDE in Eq. (18), with minor differences [11]. The
continuum model does not include the oscillations of
the centroid after the kicks, before it has been damped.
The amplitude of these oscillations are assumed small,

FIG. 3. Change of action after a single kick of amplitude k as a
function of the particles’ initial action. Macroparticle simulations
were run with constant tunes, Qð0Þ, and dynamically evolving
tunes, QðtÞ. They are compared to a theory assuming constant
tunes, and a modified theory*, given by Eq. (10) and Eq. (12),
respectively.

FIG. 4. Distribution evolution with ax ¼ 5 × 10−5, bx ¼ 0,
gx ¼ 0.01, and noise of σk ¼ 5 × 10−4, based on Eq. (18). The
time is given by the color scale, going to 100 h.
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compared to the beam size. Nevertheless, it will lead to a
nonzero diffusion across the border of zero diffusion
coefficient at ΔQ ¼ 0. Therefore, even though a clear step
can develop in macroparticle simulations, the evolution
calculated with Eq. (18) becomes inaccurate as the dis-
tribution approaches a hard step. We will abide by this
constraint in the following.
The effect we are trying to study, the evolution of the

stability diagram due to amplitude dependent transverse
diffusion, caused by the combined effect of amplitude
dependent detuning and active feedback, is difficult to
assess with macroparticle simulations. Relevant parameters
for this effect in the LHC are g ∼ 0.1, ΔQ ∼ 10−4,
σk ∼ 10−4, Np ∼ 1011 particles per bunch, T ∼ 107 turns.
There are multiple numerical obstacles: (i) The process is
according to Fig. 2 strongly dependent on the ratio
ΔQ=g ∼ 10−3 ≪ 1, and altering it will correspond to a
different machine configuration; (ii) The centroid
offset depends on the noise and feedback gain as
h

ffiffiffiffiffiffiffiffi
hxi2

p
i ¼ σk=

ffiffiffiffiffi
2g

p
∼ 2 × 10−4 ≪ 1, neglecting the damp-

ing from the decoherence. If the centroid offset becomes
significantly larger, e.g., if one increases σk to reduce the
necessary number of turns in the simulation, the detuning
per particle will be averaged over a wider range, leaving
the assumption of a weak noise perturbation, and the
diffusion becomes closer to uniform; (iii) Due to a limited
number of macroparticles, the ideal feedback causes
unphysical, numerical stochastic cooling. This effect
is weaker for larger Np=g (perhaps with exponents larger
than 1); (iv) The rate of change in the distribution is
for small ΔQ=g proportional to Tσ2kΔQ2=g2. Bringing
it all together, a good simulation will have a large
NpT · ΔQ2=g2 · σ2k=g ∼ NpT · 4 × 10−14. The complexity
of the simulations will approximately be proportional to
NpT, which will have to be large. Experience has shown
that NpT ≥ 1013, with Np ∼ T, is necessary to get an
estimate of this effect, but with further improvement
achievable for higher NpT. Assuming a perfect simulation,
it is also required to have an even higher Np to interpolate
the macroparticle bunch to get an agreeable expression for
∂JðΨÞ. For numerical calculations of the stability diagram,
good statistics up to r ¼ 6 is necessary.

IV. RESULTS

We will now present results obtained with PyRADISE,
using the Fokker-Planck equation in Eq. (20). First, we will
display the change in the distribution from solving the
PDE. Then, we will consider the change in the stability
diagram that is caused by the change in the distribution.
Finally, we will present the change of the effective detuning
strength, which will be defined in Sec. IV B, in several
scans of the relevant parameters. In all configurations we
will keep ax ¼ ay ¼ a, bx ¼ by ¼ b and gx ¼ gy ¼ g, and
the subscript will not be included in the following.

A. Distribution and stability evolution in 2D

Now, we consider a more realistic model for the LHC,
with a ¼ 5 × 10−5, g ¼ 0.01, and σkj ¼ 5 × 10−4, as in
Fig. 4, but also including the dependence of the detuning in
one plane on the action in the other plane, by setting
b ¼ −3.5 × 10−5. This noise amplitude is compatible with
recent experiments in the LHC [9]. First, we consider a
configuration with noise in the horizontal plane only, then,
with equal noise in both planes. The number of turns T
have been scaled to a time variable t ¼ T=frev, where
frev ¼ 11.245 kHz is the revolution frequency in the LHC.
The relative change of the distribution after 12 h, with

noise in the horizontal plane only, is displayed in Fig. 5(a).
This is the same trend for each value of Jy, as in Fig. 4. The
only difference is that JxðΔQx ¼ 0Þ now depends on Jy.
Therefore, it is more difficult to see that the projection of
the new distribution in the ðx; yÞ-plane is not Gaussian, than
with b ¼ 0. The stability in the horizontal plane evolves as
in Fig. 5(b), and in the vertical plane as in Fig. 5(c). After
24 h, the horizontal stability diagram is partly inside the
black dashed curve, which is the stability diagram of
the initial distribution with half the detuning strength.
The vertical stability decreases initially slightly at positive
ReΔQcoh, but there is no extreme reduction of the
stability for any real tune shift. However, at ReΔQcoh ≈
−0.8 × 10−4, the drilling of a hole has begun. This is due to
the uncommon appearance of a positive distribution gra-
dient, ∂Ψ=∂Jy > 0, close to ΔQx ¼ 0.
The relative change of the distribution after 12 h, with

equal noise in both transverse planes, is displayed in
Fig. 6(a). The evolution is driven by both horizontal and
vertical diffusion. Where the horizontal diffusion is zero,
the particles only diffuse vertically, leading to a zero
distribution gradient, ∂Ψ=∂Jy ≈ 0. Due to perfect sym-
metry between the two planes, the stability in both planes
evolves as in Fig. 6(b). The evolution of the stability
diagram is in this case qualitatively similar to the sum of the
evolutions in both planes when there was only horizontal
noise. There is a reduction of the stability limit at
ReΔQcoh ∼ 0, especially for weakly negative real coherent
tune shifts, where the most problematic coherent modes in
the LHC reside [2]. After 24 h, the stability limit has been
reduced to almost that of the initial distribution with half
the detuning strength.

B. Relative effective detuning strength

A stability diagram has been calculated for each dis-
tribution Ψðt ¼ tkÞ with the correct detuning coefficients,
as described in Sec. II D and presented in Figs. 5, 6. In
addition, stability diagrams have been calculated for the
initial distribution Ψðt ¼ 0Þ with scaled detuning coeffi-
cients ðas; bsÞ ¼ s · ða; bÞ. The relative effective detuning
strength at time tk is defined as the largest factor s that
corresponds to a stability diagram that is completely
inscribed in the stability diagram for distributionΨðt ¼ tkÞ.
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The evolution of the relative effective detuning strengths
for the two cases in Sec. IVA are presented in Fig. 7.
The decrease of the stability limit is evident, except in
the vertical plane when there was no vertical noise.
The effective detuning strengths are after 24 h, in these
cases, reduced to as low as 42% of the octupole detuning

one actually has in the machine. That the relative effective
detuning strength eventually becomes smaller than 0.5,
is visualized by the red curves in Fig. 5(b) that cross the
dashed black line corresponding to a relative detuning
strength of s ¼ 0.5. As seen by the evolution of the stability
diagrams in the previous section, the stability does also

(a)

(b)

FIG. 6. Evolution with equal noise and detuning in both planes:
(a) of the distribution; (b) of the stability diagram. The stability
diagram evolves equally in both planes, due to symmetry. The
black dashed curve in the stability diagram corresponds to the
stability diagram of the initial distribution with half the detuning
strength.

FIG. 7. Evolution of the relative effective detuning strengths,
corresponding to the distribution evolutions in Figs. 5 and 6.

(a)

(b)

(c)

FIG. 5. Evolution with noise in the horizontal plane only: (a) of
the distribution; (b), (c) of the stability diagrams in the horizontal
and vertical planes, respectively. The black dashed curves in the
stability diagrams correspond to the stability diagrams of the
initial distribution with half the detuning strength.
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(a) (b)

(c) (d)

(e) (f)

FIG. 8. Scan of a, g, σkx, σky, σIx, and b=a, given by the legends. The relative effective detuning strength is explained in Sec. IV B. The
relative difference in (e) and (f) is given by Eq. (27). The configuration in Fig. 5 is the same as a=a0 ¼ 1, g0=g ¼ 1, σkx=σ0 ¼ 1,
b=a ¼ −0.7, relðσkx − σkyÞ ¼ 1, and relðσkx − 10σIxÞ ¼ 1, respectively in order from (a) to (f).
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increase for certain values of ReΔQcoh, the relative effective
detuning strengths correspond to a worst-case scenario.

C. Parameter dependence

It is of both academic and operational interest to
investigate how the impact of this mechanism scales
with the most important parameters, a, b, g, and σkj. We
have varied these parameters to look for the optimal
and worst configurations. The parameters were varied
relative to a0 ¼ 5 × 10−5, b0 ¼ −0.7a0, g0 ¼ 0.01, σkx0 ¼
σ0 ¼ 5 × 10−4, and σky0 ¼ 0, as in the configuration in
Fig. 5.
In the limit g ≫ a, which is relevant for machine

operation, the diffusion coefficients in Eq. (21) mostly
depend on the parameter σkja=g. This is confirmed by the
scans of a=a0, g0=g and σkx=σ0, presented in Figs. 8(a),
8(b), and 8(c), respectively. There is a small difference for
the largest values of a=g, as expected. Note that the largest
two values of σkxa=g are included for completeness, but
they are not realistic in the LHC as of now. The scans of
a=a0 and g0=g were repeated while keeping σkxa and
σkx=g, respectively, constant. In these scans, there were no
clear dependences on a or g. Note that an increase of a
corresponds to an increase of the stable area for ΔQcoh.
Here, we study the relative change of this area. With a
larger a, there is a larger initial margin for a given mode to
go unstable, but the reduction of the margin is also faster,
according to these results.
We have also studied the ratio b=a. This ratio is typically

about −0.7 in the LHC, but it is possible to operate with
other ratios, as it mainly depends on the ratio of the
transverse β-functions at the locations of the octupoles [1].
Note that varying b=a will change the shape of the stability
diagram. Generally, it is desired to keep b=a negative to
generate Landau damping for coherent modes of both
positive and negative ReΔQcoh [5]. The scan of b=a is
presented in Fig. 8(d). The evolution of the vertical stability
is worst for b=a ∈ f−1; 1g. In these configurations, the
horizontal and vertical isotune curves (curves of equal
tunes) in 2D action space are equal. Therefore, the positive
derivative ∂Ψ=∂Jy, which is visible in Fig. 5(a), will add up
for certain Q in Eq. (1), such that the stability limit on
ImΔQcoh becomes negative. The evolution of the horizontal
stability is not strongly dependent on b=a.
Next, the vertical noise was increased, and the scan is

shown in Fig. 8(e). The noise amplitudes σkx and σky were
varied such that maxðσkx; σkyÞ ¼ σ0, and the relative differ-
ence relðσkx − σkyÞ was scanned, which we have defined as

relðα − βÞ ¼ α − β

αþ β
; α; β ≥ 0: ð27Þ

Due to an otherwise perfect symmetry, the change of
the relative effective horizontal detuning strength for

relðσkx − σkyÞ ¼ d is equal to the relative effective vertical
detuning strength for relðσkx − σkyÞ ¼ −d. The relative
effective detuning strength in a plane is reduced the fastest
with noise in only that plane, and the least with noise in
only the other plane, as was already seen in Sec. IVA.
At last, we introduced an incoherent noise amplitude σIj,

to model in a simplified manner the stochastic process
generated by intrabeam scattering [22]. The incoherent
noise amplitude corresponds to a uniform diffusion coef-
ficient DI ¼ σ2I =2τ. Such a uniform diffusion will cause a
distribution to become more Gaussian, and will therefore
counteract the destabilizing change in the distribution,
driven by the coherent noise. A scan with noise in the
horizontal plane only is shown in Fig. 8(f). The vertical
noise was kept at zero. The horizontal noise amplitudes σkx
and σIx were varied to scan relðσkx − 10σIxÞ from −1 to 1,
keeping σkx ¼ σ0, except for when the relative difference is
−1, in which case σkx ¼ 0 and σIx ¼ σ0=2. The incoherent
noise is beneficial for long-term beam stability. However,
after ∼4 h, there was a reduction of the stability for
relðσkx − 10σIxÞ ≤ −0.67. It has been found that this
happens because the beam size grows toward the aperture
at Jmax, such that the beam becomes Gaussian with its tails
collimated at a certain amplitude [5,23]. With the strongest
incoherent noise, the beam size was doubled after 142 min,
and 83% of the bunch intensity was lost after 24 h. For
strong incoherent noise, the nonuniform diffusion due to
the coherent noise is actually beneficial for long-term

FIG. 9. The initial reduction of the relative effective detuning
strength, from the scans that are given in more detail in Fig. 8.
The value corresponds to the change during the first hour, after
starting with a Gaussian transverse distribution. The vertical scale
is linear on the interval ½−10−2; 10−2�, and logarithmic otherwise.
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stability. The increase of the relative effective detuning
strength beyond 1.5 is not of interest.
The initial change of the relative effective detuning

strength per hour, for all the parameter scans, is presented
in Fig. 9. The reduction is faster due to noise in the same
plane, with b=a ¼ −1, and with no incoherent noise. To a
certain extent, it does not matter how one changes σkxa=g.
Except at large values of this parameter, there is never a
reduction of the relative effective detuning strength faster
than 10%=h. Hence, this effect cannot reduce the stability
substantially within a latency time of ≲30 min, which has
been observed in the LHC [9].

V. CONCLUSION

The intrabunch motion of particles have in this study
been considered in detail. It has been found that due to the
combined mechanism of linear detuning and transverse
feedback, the change of action after a kick depends on the
tune of the individual particle, relative to the average tune
of the distribution. By considering the change of action
after an initial kick, due to a noise source, as a stochastic
process, the Fokker-Planck equation has been derived from
a master equation. The resulting diffusion coefficient is 0
for particles with tune equal to the average tune of the
bunch, and grows quadratically with the tune from there.
While incoherent noise, such as intrabeam scattering,
causes the distribution to tend to a Gaussian, the coherent
noise causes the distribution to tend to a step function.
The change in the distribution from a Gaussian toward a

step, changes the stability diagram as well. The change of
the stability limit has been studied through the change of
the relative effective detuning, a worst-case measure. The
relative effective detuning strength in the horizontal plane
decreased faster, and thus approached an instability faster,
with: (i) larger absolute values of the detuning coefficients
a and b (ΔQx ¼ aJx þ bJy); (ii) smaller damper gain g;
(iii) stronger coherent noise in the same plane σkx;
(iv) coherent noise in only the opposite plane, combined
with b=a ¼ −1; (v) larger ratio of the coherent noise
amplitude in the same plane to that in the other plane,
σkx=σky; (vi) larger ratio of the coherent noise to the
incoherent noise σkx=σIx. The relative effective detuning
strength was reduced by up to 58% in a realistic configu-
ration, over a time period of 24 h. It was not found a
reduction of the relative effective detuning strength higher
than 10%=h with LHC relevant parameters. Hence, this
mechanism does not explain the latencies measured in
the LHC.
The mechanism considered here is not critical for beam

stability in the LHC. Previous considerations [3] and recent
developments [24,25] imply that a more critical mechanism
is a diffusion that is peaked and narrow in frequency space,
driven by wakefields, requiring a nonlinear treatment, or
by a narrow band noise source, centered inside the beam

spectrum. In the future, it will be of interest to include that
mechanism in the formalism presented here.
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APPENDIX A: CHANGE OF ACTION

In this Appendix, we derive the expression for the
change of action in Eq. (10). To do so, we refer to the
centroid of the bunch as

z ¼ hxi þ ihpi: ðA1Þ

The tune of the centroid is denoted Qc, and its transverse
offset will be reduced by the transverse feedback toward the
design trajectory by a factor called the gain g. Assuming a
perfect, immediate feedback, the evolution of the centroid
from one turn to the next is given by

z1 ¼ z0e−i2πQc

�
1 −

g
2

�
: ðA2Þ

The initial centroid offset, z0 ¼ ik, will after n turns be

zn ¼ z0e−i2πQcn

�
1 −

g
2

�
n
!n→∞

z0e−i2πQcne−
g
2
n; ðA3Þ

with a damping time of τ ¼ 2=g turns. It is assumed that the
reduction of the centroid amplitude due to the tune spread is
negligible compared to that of the transverse feedback.
The position of an individual particle, with a constant

tune offset ΔQ from the centroid, is referred to as

y ¼ xþ ip: ðA4Þ

After many turns, when the centroid tends to the origin in
the limit of ng ≫ 1, the position will become

yn¼e−i2π
P

n−1
j¼0

ðQcþΔQjÞ
�
y0−z0

g
2

Xn−1
j¼0

�
1−

g
2

�
j
ei2π

P
j−1
l¼0

ΔQl

�

¼e−i2πðQcþΔQÞn
�
y0−z0

g
2

1

1−ð1− g
2
Þei2πΔQ

�
; ðA5Þ

where y0 is the position of the particle just after the kick z0.
In going from line 1 to line 2, one has assumed that Qc and
ΔQ are constant during the process, and one has taken the
sum of the geometric series. Assuming the kicks are small,
this expression can easily be extended to include more
kicks as z0 →

P
m
j¼0 ikje

i2πQj.
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Equation (A5) can be rewritten as

yn ¼ e−i2πðQcþΔQÞn
�
r0 þ z0

ð1 − g
2
Þð1 − ei2πΔQÞ

1 − ð1 − g
2
Þei2πΔQ

�
; ðA6Þ

where r0 is the position of the particle prior to the kick, compared to y0 ¼ r0 þ z0, which is the position immediately after
the kick.
It follows from Eq. (3) that

2Jn ¼ x2 þ p2 ¼ y�y ¼ jyj2; ðA7Þ

where the � signifies that it is the complex conjugate. Filling in, remembering that r0 and z0 are complex numbers,

2J ¼ ei2πðQcþΔQÞn
�
r�0 þ z�0

ð1 − g
2
Þð1 − e−i2πΔQÞ

1 − ð1 − g
2
Þe−i2πΔQ

�
× e−i2πðQcþΔQÞn

�
r0 þ z0

ð1 − g
2
Þð1 − ei2πΔQÞ

1 − ð1 − g
2
Þei2πΔQ

�

¼ jr0j2 þ jz0j2
ð1 − g

2
Þ2ð1 − e−i2πΔQÞð1 − ei2πΔQÞ

1þ ð1 − g
2
Þð1 − g

2
− e−i2πΔQ − ei2πΔQÞ þ

�
r�0z0

ð1 − g
2
Þð1 − ei2πΔQÞ

1 − ð1 − g
2
Þei2πΔQ þ c:c:

�

¼ 2J0 þ jz0j2f1 þ ðr�0z0f2 þ c:c:Þ; ðA8Þ

where the factors depending on g and ΔQ have been renamed f1 and f2.
We will now make use of the well-known expressions

2 cosðxÞ ¼ eix þ e−ix; ðA9Þ

2i sinðxÞ ¼ eix − e−ix; ðA10Þ

cosð2xÞ ¼ 1 − 2sin2ðxÞ; ðA11Þ

eix ¼ cosðxÞ þ i sinðxÞ: ðA12Þ

By insertion for f1 one finds that

f1 ¼
ð1 − g

2
Þ2ð−4i2Þsin2ðπΔQÞ

1þ ð1 − g
2
Þð1 − g

2
− 2 cosð2πΔQÞÞ ¼

ð1 − g
2
Þ24sin2ðπΔQÞ

ðg
2
Þ2 þ ð1 − g

2
Þ4sin2ðπΔQÞ : ðA13Þ

For f2, we first multiply with and divide by the complex conjugate of the denominator to get

f2 ¼
ð1 − g

2
Þð1 − ei2πΔQÞ

1 − ð1 − g
2
Þei2πΔQ ·

1 − ð1 − g
2
Þe−i2πΔQ

1 − ð1 − g
2
Þe−i2πΔQ ¼

�
1 −

g
2

� ½2 − g
2
− 2 cosð2πΔQÞ þ ðg

2
Þe−i2πΔQ�

1þ ð1 − g
2
Þ2 − ð1 − g

2
Þ2 cosð2πΔQÞ

¼
�
1 −

g
2

� ð4 − gÞsin2ðπΔQÞ − iðg
2
Þ sinð2πΔQÞ

ðg
2
Þ2 þ ð1 − g

2
Þ4sin2ðπΔQÞ : ðA14Þ

To get an expression for the last parenthesis in Eq. (A8), we note that for a complex number c, cþ c� ¼ 2Rec, and that
r�0z0 ¼ p0kþ ix0k. Dividing by 2, and setting ΔJ ¼ Jn − J0, gives

ΔJ ¼ k2

2

ð1 − g
2
Þ24sin2ðπΔQÞ

ðg
2
Þ2 þ ð1 − g

2
Þ4sin2ðπΔQÞ þ k

�
1 −

g
2

�
x0ðg2Þ sinð2πΔQÞ þ p0ð4 − gÞsin2ðπΔQÞ

ðg
2
Þ2 þ ð1 − g

2
Þ4sin2ðπΔQÞ ; ðA15Þ

which is identical to Eq. (8) when Taylor expanding the sine functions to first order in the limit ΔQ ≪ 1, and using the
expressions for x0 and p0 in Eq. (2).
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APPENDIX B: DERIVING FOKKER-PLANCK

In this Appendix we aim at deriving the Fokker-Planck
equation described by Eqs. (14)–(15). We begin by finding
the master equation, similarly to what was done in [15], by
taking a convolution of the distribution before the change,
ΨðtÞ, with the probability distribution of the change, φðΔÞ,

ΨðJ; tþ τÞ ¼
Z

∞

−∞
ΨðJ − Δ; tÞφðΔ; J − Δ;ΨÞdΔ; ðB1Þ

where Δ represents the change of action. The action will
only change in the plane of the kick.
The next step is to Taylor expand the integrand around J,

to get to the third order

ΨðJ; tþ τÞ ¼
Z

∞

−∞
fΨðJÞφðΔ; JÞ

− Δ · ∂J½ΨðJÞφðΔ; JÞ�

þ Δ2

2
· ∂2

J½ΨðJÞφðΔ; JÞ�gdΔ; ðB2Þ
where we have omitted the dependence on Ψ and t for
readability. The distribution ΨðJ; tÞ and the derivative ∂J·
does not depend onΔ, and can be taken outside the integral,
while the change magnitude Δ is a variable that does not
depend on J, and can be taken inside the partial differ-
entiation. The integral of the first term is the normalization
integral, which is 1, and we get

ΨðJ; tþ τÞ −ΨðJ; tÞ ¼ −∂J

�
ΨðJÞ

Z
∞

−∞
ΔφðΔ; JÞdΔ

�

þ ∂2
J

�
ΨðJÞ

Z
∞

−∞

Δ2

2
φðΔ; JÞdΔ

�
:

ðB3Þ

Divide by the time τ of this process to get a time derivative
on the left, and we arrive at the Fokker-Planck
equation [17]

∂tΨ ¼ −∂JðUΨÞ þ ∂2
JðDΨÞ; ðB4Þ

with drift and diffusion coefficients given respectively by

UðJ;ΨÞ ¼
Z

∞

−∞

Δ
τ
φðΔ; J;ΨÞdΔ; ðB5Þ

DðJ;ΨÞ ¼
Z

∞

−∞

Δ2

2τ
φðΔ; J;ΨÞdΔ: ðB6Þ

D is normalized by J in Eq. (14) for later convenience.

[1] J. S. Berg and F. Ruggiero, Landau damping with two-
dimensional betatron tune spread, CERN Report
No. CERN-SL-AP-96-071-AP, 1996.

[2] N. Mounet, The LHC transverse coupled-bunch instability,
Ph.D. thesis, Inst. of Physics, École polytechnique fédérale
de Lausanne, Lausanne, Switzerland, 2012, CERN-
THESIS-2012-055.

[3] X. Buffat, Transverse beams stability studies at the
Large Hadron Collider, Ph.D. thesis, Inst. of Physics,
École polytechnique fédérale de Lausanne, Lausanne,
Switzerland, 2015, CERN-THESIS-2014-246.

[4] A. G. Ruggiero and G. V. Vaccaro, Solution of the
dispersion relation for longitudinal stability of an intense
coasting beam in a circular accelerator (Application to the
ISR), CERN Report No. CERN-ISR-TH-68-33, 1968.
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