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Abstract	
The introduction and widespread use of antiretroviral therapy against Human Immunodeficiency 

Virus (HIV) has had a remarkable effect on disease progression and the longevity of infected individuals. 
However, the establishment of a latent viral reservoir and the inability of antiretroviral compounds to 
purge it has resulted in HIV infection becoming a chronic disease with a high prevalence of comorbidities, 
adding significant strain to the healthcare systems as well as the affected patients. Human genetic variation 
has previously been shown to influence HIV pathogenesis as well as the risk of developing multiple com-
mon diseases in the general population. However, the influence of genetic variation on HIV positive indi-
viduals under suppressive antiretroviral therapy remains largely unknown.  

This thesis examines the role of human genetic variation in determining the size and long-term dynamics of 
the viral reservoir, genetic risk factors for developing HIV-related non-Hodgkin lymphoma (NHL), and how 
genetic risk scores (GRS) can improve the prediction of chronic kidney disease (CKD) in HIV-infected indi-
viduals. Taken together, these studies delineate the role of human genetic variation in phenotypic out-
comes that are highly relevant in the era of suppressive antiretroviral treatment, while also suggesting that 
newly developed genetic risk scores will be capable of enhancing the predictive power of current clinical 
risk scores.   

 

Keywords	
HIV, genetics, GWAS, exome sequencing, genetic risk scores, cancer, chronic kidney disease, latency 

 



 

 vi 

	

 	



vii 

Résumé	
L'introduction et l'utilisation à grande échelle des traitements antirétroviraux contre le virus de 

l'immunodéficience humaine (VIH) ont eu un effet remarquable sur la progression de la maladie et la lon-
gévité des personnes infectées. Cependant, la création d'un réservoir viral latent et l'incapacité des médi-
caments antirétroviraux à le purger ont fait de l'infection par le VIH une maladie chronique avec une haute 
prévalence de comorbidités, ajoutant une contrainte importante aux systèmes de santé ainsi qu'aux pa-
tients affectés. Il a déjà été démontré que la variation génétique humaine influence la pathogénèse du VIH 
ainsi que le risque de développer de nombreuses maladies communes dans la population générale. Toute-
fois, l'influence de la variation génétique sur les personnes séropositives au VIH sous traitement antirétrovi-
ral efficace reste encore largement inconnue.  

Cette thèse examine le rôle de la variation génétique humaine dans la détermination de la taille et de la 
dynamique à long terme du réservoir viral, les facteurs de risque génétiques pour le développement d’un 
lymphome non hodgkinien (LNH) lié au VIH, et comment les scores de risque génétique (GRS) peuvent amé-
liorer la prédiction de la maladie rénale chronique (MRC) chez les personnes vivant avec le VIH. Ensemble, 
ces études permettent de mesurer l’influence de la variation génétique humaine sur des phénotypes ex-
trêmement importants à l’ère des thérapies antirétrovirales suppressives ; elles suggèrent d’autre part que 
de nouvelles approches fondées sur les scores de risque génétique seront capables d'améliorer le pouvoir 
prédictif des scores de risque clinique actuels.     

 

Mots-clés	

VIH, génétique, GWAS, séquençage de l'exome, scores de risque génétique, cancer, maladie rénale chro-
nique, latence 
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 Introduction	
Since the identification of Human Immunodeficiency Virus (HIV) as the cause of acquired immuno-

deficiency syndrome (AIDS) in the 1980s, HIV infection has become one of the most significant public health 
issues of our time. In 2018 an estimated 37.9 million (32.7-44.0 million) individuals were living with HIV 
globally, causing 770,000 (570,000-1.1 million) AIDS-related deaths in just that year alone (1). The high hu-
man toll has prompted an unprecedented effort by the biomedical research community, resulting in a 
wealth of information on the pathogenesis of HIV disease and the immune system in general, resulting in 
the rapid development of life-changing drugs that can efficiently fight the infection. Since the first an-
tiretroviral drug was introduced in 1987, more than 25 different compounds have been developed for the 
treatment of HIV (2), resulting in a remarkable improvement in the quality of life and longevity of people 
living with HIV. However, while antiretroviral therapy (ART) is capable of efficiently suppressing HIV replica-
tion and restoring CD4+ T cell counts, the drugs are not capable of eradicating the virus from its cellular 
reservoir. This has resulted in the HIV infection shifting from an acute to a life-long (e.g., chronic) illness 
accompanied by an elevated prevalence of comorbidities usually associated with more advanced ageing.  

Currently, the main challenges of the HIV research community remain treatment optimization, vaccine de-
velopment, developing a cure, as well as the prevention and management of comorbidities. The following 
chapters will focus on subjects related to the latter two areas from a host genetic perspective: dynamics of 
the latent HIV reservoir and risk factors associated with the development of comorbidities.  

 

1.1 HIV	pathogenesis	and	the	viral	reservoir	
Upon HIV infection, the disease progression follows three major phases. First, a short period knows as the 
acute phase occurs where high amounts of viral RNA can be observed in the blood accompanied by a sub-
stantial loss of CD4+ T cells and flu-like symptoms (Figure 1.1). The end of the acute phase and transition to 
the chronic phase is marked by a partial recovery of CD4+ T cell numbers and a decrease in viral RNA. If the 
infection is left untreated, the CD4+ T cell counts will slowly diminish during the chronic phase at highly 
variable paces while the viral RNA remains relatively stable (so called “set point viral load”) for several 
years, until the individual develops overt immunodeficiency and AIDS-related illnesses. However, the initia-
tion of ART is capable of restoring the CD4+ T cell counts to some degree and severely delaying or prevent-
ing the progression to AIDS. Although current therapies cannot eradicate the virus, they are capable of re-
ducing the viral RNA levels to below the limit of detection of classical assays (< 50 copies of viral RNA per 
mL), thus preventing further CD4+ T cell decline. 

The establishment of a latent viral reservoir during primary infection remains the main barrier preventing a 
cure for HIV. The viral reservoir is defined as cell types or anatomical sites in which replication competent 
virus can accumulate and persist stably over time. Following the entry into primarily activated CD4+ T cells, 
HIV will integrate its reverse-transcribed DNA into the host genome, leading to productive infection with a 
fast and efficient viral replication cycle (3). While most of the infected CD4+ T cells will be short-lived due to 
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immune surveillance and HIV-induced pathogenicity, some will revert to a long-lived resting memory state 
following the conventional way in which immunologic memory is established (4, 5).  

 

Figure 1.1. HIV phenotypes for host genetic studies over the time course of HIV infection with treatment intervention. 
Figure is modified from Wikimedia Commons 

 

It is not entirely understood how the reservoir is persistently maintained in individuals under ART, but iden-
tifying the sources and factors influencing the HIV reservoir during ART is key for the development of po-
tentially curative therapies (6, 7). Currently, clonal expansion of HIV-infected cells, long-term persistence, 
or ongoing cycles of active HIV replication are all considered as potential mechanisms through which the 
reservoir is maintained (8–11). In particular, continuous replication in lymphoid tissues in patients on ART 
has been reported as an important mechanism for maintaining the HIV reservoir (11). This remains contro-
versial, as demonstrated by recent work by Bozzi et al. that found no evidence of ongoing HIV replication in 
patients on ART (12). Furthermore, the authors did not find any evidence of any local replication in blood or 
tissues, but only of clonal expansion of already infected cells. The latter is substantiated by the fact that 
treatment intensification does not seem to affect the decay of the viral reservoir (13). 

Studies on the long-term dynamics of the HIV reservoir during therapy have produced a wide range of es-
timates on the decay rate of the viral reservoir, including large inter-individual differences, ranging from 
reservoir half-lifes of 2.5 months to reports of increases in reservoir size over time (14–22). A recent study 
in the Swiss HIV Cohort Study confirmed this variability, with 26.8% of the individuals displaying increases in 
their reservoir size over time, while the general reservoir decay rate for the remaining individuals de-
creased over time (23).     

Multiple factors have been found to influence both the size of the viral reservoir and its decay rate. In par-
ticular viral blips and low-level viremia are both associated with increase in reservoir size and reduced de-
cay rates (24, 23). The other factors that have been convincingly associated with reservoir size are CD4+ T 
cell counts and viral load prior to ART initiation, time from HIV infection to ART initiation, HIV subtype, eth-
nicity, and transmission route (23).  
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1.2 The	rise	of	HIV	comorbidities	in	the	ART	era	
The introduction of ART has drastically increased the longevity and the quality of life of HIV infected indi-
viduals (25). Yet, the nature of this now chronic infection means that individuals infected with HIV have a 
highly increased risk of developing multiple comorbidities, most of which usually associated with ageing. 
Numerous cohort studies have established that HIV infection is associated with an increased risk of liver 
disease due to hepatitis B virus (HBV) and hepatitis C virus (HCV) co-infections (26), chronic kidney disease 
(CKD) (27, 28), acute myocardial infarction (29), ischemic stroke (30), heart failure (31), hypertension (32), 
osteoporosis and fractures (33, 34), as well as several types of cancer (35–37).  

The rate of observed comorbidities increases with age, as also seen in the general population for these 
diseases, but is more common in HIV patients than in the general population (38). Furthermore, with the 
increased ageing of the HIV population, the prevalence of these comorbidities is also rising (39, 40). Models 
of the ageing HIV positive population in the Dutch ATHENA cohort predicts that by 2030, 73% of HIV posi-
tive individuals will be above 50 years old, up from 28% in 2010, with 84% of the patients having at least 
one comorbidity. The latter represents a substantial increase from 29% of the HIV positive individuals in 
2010. Additionally, 28% of the HIV positive individuals are in 2030 predicted to suffer from three or more 
comorbidities (41).  

A consequence of the increased prevalence of comorbidities is the potential for drug-drug interactions in 
the management of these comorbidities together with ART. Frequent drug-drug interactions for patients on 
ART have previously been reported, especially for cardiovascular drugs (42). Overall, the development of 
comorbidities in HIV patients is associated with decreased survival rates compared to HIV infection only 
(43). Thus, healthcare management of the ageing HIV population will increase in complexity over time, put-
ting a serious strain on hospitals and clinics in limited-resource areas.    

The high prevalence of comorbidities in the HIV positive population is considered to be caused by increased 
inflammation levels. Several studies have found elevated levels of multiple biomarkers of inflammation, 
including CRP, IL-6, CXCL10, soluble CD14, among others, in HIV suppressed individuals compared to HIV 
negative individuals (44, 45). The increased levels of these biomarkers reflect the chronic inflammation 
sustained in well-treated HIV positive individuals. In the general population, low-grade inflammation has 
also been linked to the risk of developing diabetes, cardiovascular diseases (CVDs), CKD, depression, as well 
as mortality (reviewed in (46)). The cause of the increased inflammation in HIV positive individuals is 
thought to be multi-factorial (Figure 1.2). Continuous low-level HIV production and replication during ART is 
considered a key driver of the low-level inflammation seen in HIV patients. Although the majority of pro-
viruses are classified as defective at the chronic infection stage, when most individuals initiate ART (47, 48), 
these defective proviruses are still capable of transcribing HIV-RNA transcripts stimulating innate immunity 
pathways and causing low-levels of inflammation (49).   

Frequent co-infections with HBV, HCV (50), human herpesvirus-8 (HHV-8) (51), Epstein-Barr virus (EBV) (52) 
and cytomegalovirus (CMV) (53) also contribute to the elevated inflammatory levels and constitute addi-
tional independent risk factors for the development of multiple types of comorbidities.   

Traditional risk factors such as smoking, alcohol, and recreational drug use is more prevalent in HIV patients 
than in the general population (54–56). ART toxicity has also been associated with the development of cer-
tain comorbidities, including CKD (57). More prolonged exposure to both HIV itself and ART also increases 
the probability of developing comorbidities (58).     
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Damage to the gastrointestinal tract (GI) caused by HIV infection can also cause increased systemic inflam-
mation contributing to the pathogenesis of comorbidities. This is due to the translocation of microbial 
products from the lumen of the GI tract into the circulation (59). In untreated HIV patients, viral load is 
correlated with levels of soluble CD14, a marker of inflammation, and levels of intestinal fatty acid-binding 
protein (I-FABP), a marker of GI tract enterocyte damage (60). The loss of interleukin-17 (IL-17) TH17 cells 
has been suggested to contribute to increased microbial translocation (61). Additionally, a lower number of 
TH17 cells has been associated with an increase in the fraction of T regulatory (Treg) cells, causing further 
immunosuppression and contributing to the maintenance of the chronic inflammatory state observed in 
HIV positive individuals (62).  

 

 

Figure 1.2. Causes, mechanisms and consequences of inflammation in HIV infected individuals. Figure is from Deeks 
SG, 2013 

 

The notion of an “accelerated ageing” process in HIV patients stems from the accumulation of all the risk 
factors mentioned above and the associated low-grade inflammation (63, 64). Chronically infected HIV indi-
viduals display premature ageing of the immune system believed to be caused by the accumulation of se-
nescent CD8+ T cells producing pro-inflammatory cytokines (65, 66). Furthermore, HIV infected individuals 
display increased coronary artery ageing in the range of approximately 15 additional years compared to the 
general population (67). Similarly, the prevalence of having more than one comorbidity among HIV positive 
individuals equals that of 10-15 years older individuals in the general population (38). However, the exact 
causes of the accelerated ageing remain unclear. For CVD, a common HIV comorbidity (68), the reported 
cause(s) of the increased risk has been inconsistent, including inflammation caused by the retrovirus itself, 
the use of ART causing dyslipidemia, as well as traditional risk factors such as smoking and sedentarity (69).   
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1.3 Human	genetic	variation	
Genetic variation influences thousands of human traits, with many still to be discovered. Shaped by evolu-
tionary bottlenecks, local adaptation, and selective pressures over thousands of years, genetic variation is 
observed at millions of sites across the human genome. It is what makes each of us unique. In recent years, 
remarkable progress has been made in our understanding of human genetic variability and its association 
with disease susceptibility. This has primarily been driven by declining costs, improved DNA genotyping and 
sequencing technology and bioinformatics tools, paving the way for the establishment of large catalogs of 
human genetic variation within large-scale initiatives like The HapMap project (70), The 1000 Genomes 
Project (71) and more recently gnomAD (72) and The UK Biobank (73). Each individual carries between 4.1 
and 5 million single nucleotide polymorphisms (SNPs) (71) and most human traits are influenced to some 
degree by genetic variation. In particular, this genetic variation has been shown to shape our individual 
immune responses to pathogens (74) as well as our susceptibility to diseases (75).  

 

1.4 Methods	for	genetic	studies		

1.4.1 Genome-wide	association	studies	

The completion of the Human Genome Project (76, 77) and subsequent population studies like The Hap-
Map Project (70) and The 1000 Genomes Project (71), allowed for the development of a novel experimental 
design, the genome-wide association study (GWAS). In GWAS, the whole genome is systematically scanned 
for associations between genetic variants and the trait of interest. Beside genome-wide coverage, the main 
advantage of GWAS is its completely unbiased approach without assumptions as to the location of the as-
sociated variant(s). Before the introduction and adaptation of GWAS, genetic research (on complex traits) 
was primarily carried out in the form of candidate gene studies. This type of study usually focused solely on 
a couple of cherry-picked genetic variants hypothesized to influence the trait under question. However, the 
lenient threshold for significance often used in these studies (P < 0.05), has meant that it has not been pos-
sible to replicate the majority of the reported associations in subsequent studies (78).  

The widespread adoption of GWAS in recent years, with some cohorts now including millions of individuals 
(79), has been facilitated by the development of relatively cheap genotyping arrays. These chips contain 
between 200,000 – 5 million SNPs spread across the genome. A key aspect underlying GWAS is the reliance 
and selection of tagging SNPs based on the linkage disequilibrium (LD) between them. LD is a measure of 
the correlation between genetic variants within the population. Genetic variants with a high LD exhibit simi-
lar allele frequencies as they tend to segregate together as part of genomic regions known as haplotypes. 
By exploiting this knowledge and using fully sequenced haplotype reference panels, it is possible to infer 
(e.g., impute) the missing SNPs on the genotyping arrays to obtain genome-wide coverage of the majority 
of common variants in the human population. Common variants are typically designated as having a minor 
allele frequency (MAF) above 1-5% in the population, while rare variants will have a MAF below 1%.  

Similar approaches to imputation using large reference panels has also been shown to be highly effective in 
determining alleles of genes in highly polymorphic regions like the major histocompatibility complex (MHC) 
and killer cell immunoglobulin-like receptor (KIR) regions (80, 81).   

The number of GWAS has increased significantly in recent years. Many such studies have had a widespread 
impact on our understanding of complex traits. According to the NHGRI-EBI GWAS Catalog, from 2008 to 
2018, the number of published GWAS rose from 139 to 5687 studies and resulted in the identification of 
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71673 SNP-trait associations (82). Furthermore, the strict threshold of genome-wide significance imple-
mented in GWAS (P < 5e-8) has meant that the replication rate of identified associations has been relatively 
high, even across studied population groups (83).    

The identification of variants associated with a trait or disease of interest is only the first step. From there, 
the determination of the actual causal variant(s) is not straightforward. While the LD structure of the ge-
nome allows for the usage of SNP arrays, it also complicates the determination of the causal variant(s) 
(known as fine-mapping) and their effect on specific genes or pathways. Multiple bioinformatic approaches 
for conducting fine-mapping have been developed, and this is an area of continuous development. The use 
of information on different population LD structures, chromatin marks, transcription factor binding sites, 
and expression quantitative trait loci (eQTL) co-localization are all variables implemented in various fine-
mapping approaches. Nevertheless, imperfect imputation and lack of tagging of rare variants in SNP array-
based GWAS mean that this approach cannot identify the true causal variant(s) in cases where these are 
either rare or located in untagged haplotypes.  

While the causal variant(s) are not always identified, a general conclusion from GWAS has been that most 
traits are polygenic. This means that genetic variants mapping to multiple loci across the genome contrib-
ute to the examined phenotypic variation. Thus, at the individual level, the combined contribution of all 
these variants may differ tremendously. The implication is that the effect size of each associated variant 
identified through GWAS is usually very small.       

1.4.2 Genome	sequencing	studies	

In recent years, further advances in sequencing technologies have enabled the previously cost-prohibited 
implementation of high-throughput sequencing (NGS), like whole genome sequencing (WGS) and exome 
sequencing. The main advantage of WGS or exome sequencing over genotyping arrays is that it makes im-
putation of missing SNPs and HLA alleles redundant, thus allowing for more precise determination of causal 
variant(s).  

As with the genotyping data described above, association studies for common variants identified by means 
of WGS are also considered GWAS. The main distinction, besides the still-elevated costs, being the density 
of variants covered and more reliable coverage of rare variants. Thus, when only searching for associations 
with common variants, using genotyping chips is still the most cost-effective approach. However, exome 
and WGS approaches have the added benefit of allowing for the testing for the burden of rare variants 
across genes or pathways, which cannot be reliably performed using genotyping data. Furthermore, these 
sequencing approaches also allow for the analysis of large structural variants (≥ 50 base pair long) such as 
copy number variations (CNVs), rearrangements, and insertions of transposable elements.  

Exome sequencing represents a cheaper alternative to WGS for studies interested in including rare protein-
altering variants. Exome sequencing, as the name suggests, focuses solely on the 1-2% of the genome cod-
ing for proteins. By using capture probes targeting the coding exons of each gene, these can be isolated and 
sequenced as high coverage at much lower costs than WGS. Thus, exome sequencing is a powerful and 
cost-effective method for identifying rare protein-coding variants. However, it fails to provide any direct 
information on genetic variation outside the coding regions.     
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1.5 Host	genetics	of	HIV	pathogenesis	
To date, the main goal of the HIV genetic research has been on identifying genetic variations influencing 
susceptibility to infection or viral control and progression to AIDS, to improve therapy options (Figure 1.2) 
(84). This work has primarily been driven by the early finding that individuals with a homozygous 32 base 
pair long deletion within the C-C motif chemokine receptor (CCR5) gene, known as the CCR5∆32 deletion, 
are resistant to HIV acquisition (85, 86). Multiple other genetic variations have also been proposed to con-
fer resistance to HIV acquisition in candidate gene studies. Still, only the homozygous CCR5∆32 deletion has 
been replicated in other cohorts or GWAS (87). Additionally, the presence of a single CCR5∆32 allele has 
also been associated with a slower progression to AIDS (86, 88). The level of viral RNA following the acute 
phase is relatively constant, known as the set-point viral load (spVL). Still, large inter-individual differences 
exist and are often used as a marker of the pace of disease progression due to its correlation with progres-
sion to AIDS (89). In fact, the first HIV GWAS examined the genetic determinants of HIV host control using 
spVL as outcome, discovered a major role of the HLA class I allele, HLA-B*57, on the level of viral load and 
rate of CD4+ T cell decline (90), which has later been replicated in both African and European populations 
(88, 91). The largest GWAS to date on spVL, involving 6315 individuals of European descent, identified only 
the known HLA-B*57:01 allele, and the CCR5∆32 deletion has significant (88). Furthermore, 24.6% of the 
observed variation in spVL could be attributed to common genetic variants (e.g., minor allele frequency 
above 5%), with variants outside the MHC or CCR5 regions only explaining 5% of the total variation. GWAS, 
however, does not include rare variants and, as such, does not assess the impact of all functional variants. 
The contribution of rare functional variants to spVL was examined by exome sequencing of 1327 individuals 
of European descent. This study did not uncover any new associations for either rare or common variants 
outside of the MHC region (92). Notably, no WGS studies have been performed in HIV infected individuals 
as of this date.  

1.5.1 Relationship	between	host	and	viral	diversity	

The HIV genome is characterized by its high mutation rate due to the high error rate of the reverse tran-
scriptase enzyme and replication rate, allowing for the generation of a large degree of variation, which can 
affect its virulence, drug resistance and ability to evade host immune responses (93). This viral diversity is, 
in addition to host genetic variation, known to affect disease progression, with subtype diversity of just the 
polymerase gene explaining around 5.7% of the variance in spVL (94). Later studies in the Swiss HIV Cohort 
Study using near-full length viral sequences increased the degree of spVL variance attributed to the viral 
sequence up to 30% (95, 96). In a combined host/viral analysis it was found that the majority of the vari-
ance explained by the viral diversity (23.6% in total) could be explained by variation in viral epitopes or 
other HLA-associated positions (95), indicating that this is the result of viral evolution due to host immune 
pressure via HLA recognition by cytotoxic T-cells. Thus, while viral diversity is shaped by the evolutionary 
pressure of the host immune system, it in turn also affects the virulence and outcome of HIV disease. How-
ever, to which degree viral sequence diversity affects the risk of developing comorbidities or the viral reser-
voir remains unknown.   

1.5.2 Influence	of	host	genetics	following	treatment	initiation	

Most genetic studies on HIV have been conducted on ART-naïve patients, to determine factors associated 
with viral control and progression, as described above. However, as treatment policies have evolved to-
wards earlier intervention, clinically relevant outcomes have also been modified. Reflecting this change, the 
focus of the genetic research in the HIV population must be altered to support these new challenges. The 
goals of human genetic research in the treated HIV population are to identify host genetic variants influenc-
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ing the risk of developing comorbidities, guiding vaccine response and development, as well as the effort to 
create a cure (Figure 1.2). To this date, little is known about the genetic influence on these traits, as no 
genome-wide studies, besides those presented in chapters 3 and 4 of this thesis, have so far been per-
formed looking at genetic variants associated with the known comorbidities in the HIV population. A few 
candidate gene studies have been published, but the track-record of this type of study suggests that their 
results are unreliable. The only relevant genome-wide study previously undertaken, although in untreated 
individuals, looked for genetic determinants of gut damage and microbial translocation as a consequence of 
HIV pathogenesis in 717 individuals. However, it did not discover any significant genetic variants associated 
with microbial translocation or chronic inflammation, as determined by plasma levels of soluble CD14 and I-
FABP (60).  

Despite the lack of previous research in the HIV setting, lessons from studies in the general population on 
CVD, diabetes, CKD and various cancers highlights the importance of human genetic variation in the deter-
mination of individual risk, which will also impact HIV positive individuals. In the general population, the 
heritability estimates (e.g., the extent to which common genetic variation contribute to a trait) for the most 
common comorbidities ranged from 16% for the NHL subtype diffuse large B cell lymphoma (DLBCL) (97), to 
21-33% for CKD (98) and 40-60% for CAD (99). Traits with a high degree of SNP-based heritability are more 
likely to also include a high degree of genetic-based variation in the HIV population, making them prime 
areas for future HIV genetic research.  
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1.6 Genetic	risk	scores	and	predicting	future	adverse	events	
A primary goal for the healthcare system is to be able to predict the risk or occurrence of disease accurate-
ly. For most common diseases, including HIV comorbidities, clinical risk scores have already been generated 
and implemented to help guide clinical decision making (28). However, these scores do not consider the 
genetic factors, since the development of genetic risk scores (GRS) is still in its infancy.   

In recent years, data from large GWAS has been shown to be useful for predicting genomic risk through the 
calculation of GRS (sometimes called polygenic risk scores (PRS)). GRS relies on the combined effect from all 
variants tested in a GWAS to calculate the genomic risk of an individual, as determined by the pres-
ence/absence and effect size of the deleterious allele at each associated SNP. Due to the distribution of 
SNPs across the genome, the combined GRS are like many other biomarkers normally distributed across the 
tested cohort. Thus, a GRS value for a single individual is often meaningless by itself but has to be com-
pared in the context of a similar population group to identify outliers of increased or lowered risk across 
the distribution (Figure 1.3).   

 

Figure 1.3. Distribution of GRS score for CAD across 288,978 individuals in the UK Biobank from (100). The coloring 
represents the proportion of the individuals with a three-, four- or fivefold increased risk of CAD versus the rest of the 

population. 

 

Three main types of genetic risk scores have been proposed. 1) Simple risk score based on a few SNPs, in 
which the number of risk alleles carried by each individual is combined while ignoring their estimated effect 
sizes. These types of scores are often based on a few significant SNPs from GWAS or candidate gene stud-
ies. 2) GRS using the estimated effect sizes of each included significant SNP from an earlier large and well-
powered GWAS.  3) Genome-wide GRS based on up to around a million SNPs. These scores incorporate 
effect sizes of all tested SNPs while accounting for LD, from a selected GWAS to capture all their small ef-
fects. The term GRS or polygenic risk score (PRS) is often used interchangeably between scores type 2 and 
3.  

The earliest GRS consisted of only the genome-wide significant variants found in the reference GWAS. 
However, as the polygenic nature of most complex traits became clear and it was shown that variants be-
low the genome-wide significant threshold contributed to a large fraction of the SNP heritability (101), the 
use of GRS including all variants gained traction. Notably, these GRS explain more of the variance than the 
previous, smaller versions. This improvement has also been aided by the fact that the accuracy of a GRS is 
highly dependent on the heritability of the trait examined as well as the power of the GWAS for which the 
allelic effects sizes are obtained.  
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The major breakthrough for GRS came when it was shown that a genome-wide GRS had the same predic-
tive power for breast cancer, diabetes type 2, and CAD risk as known single high-risk (e.g., mendelian) vari-
ants (100). Additionally, since GRS are based on germline DNA, they can even be calculated at or prior to 
birth, making early-life screening possible. Such an approach has been verified by a GRS ability to predict, at 
a significant degree, future-life obesity in new-born babies (102). However, despite the promising results of 
GRS so far, important questions regarding their usefulness across population groups remain to solved. Dif-
ferences in LD patterns and allele frequencies between population groups means that GRS based on GWAS 
in one population do not perform well in other populations (103, 104).  

1.6.1 Genetic	risk	scores	in	the	HIV	population	

In the HIV population, the development and testing of GRS have been limited so far. The rare ones that 
have been tested only included a limited set of variants. Despite this, they were able to identify patients 
with a high risk of developing CAD (105) as well as individuals with a high risk of early treatment discontin-
uation (106). For diabetes, individuals with the most unfavorable GRS based on 22 SNPs identified in previ-
ous GWAS in the general population, had a significantly increased risk of developing diabetes compared to 
individuals with a favorable GRS. However, the addition of the GRS to a clinical risk model did not improve 
the predictive power of the model (107). Another GRS consisting of 42 SNPs, was found to explain the same 
variance in dyslipidemia as ART drugs, a well-established contributor to dyslipidemia (108). No GRS utilizing 
all genome-wide variants have been generated and used in the HIV population prior to the one presented 
in chapter 5.  

 

1.7 Aims	and	overview	of	the	thesis		
The aim of this thesis was to examine the host genetic contributions to clinically important HIV phenotypes 
in patients on therapy. The first aim was to identify genetic factors influencing the HIV reservoir size or its 
decay rate, as this could potentially point to clinically actionable genes or pathways to accelerate the decay 
of the reservoir, paving the way for developing a cure. Meanwhile, the current lack of a cure, along with the 
ageing HIV population, has resulted in an ever-increasing prevalence of comorbidities in HIV infected indi-
viduals, affecting their quality of life and straining the healthcare systems in resource-limited countries. 
Thus, the second aim was to examine the role of common genetic variants explaining the increased preva-
lence of one of these comorbidities, non-Hodgkin lymphoma, in the HIV population. Last, the third aim was 
to examine how the development and addition of genetic risk scores can improve current clinical risk scores 
for HIV-related chronic kidney disease.  

Chapter 2 describes a study aimed at identifying host genetic factors influencing the size of the HIV reser-
voir and its long-term dynamics in treated HIV infected patients.   

In Chapter 3, the focus moves to genetic risk factors associated with the development of a common HIV 
comorbidity, non-Hodgkin lymphoma, using data from three international HIV cohorts.    

In Chapter 4, a new approach combining genetic and clinical data to predict HIV infected individuals’ risk of 
developing a common HIV comorbidity, chronic kidney disorder, is described.  

Chapter 5 provides a discussion and perspectives on the future directions of genetic research in the HIV 
population during therapy.  

Finally, Chapter 6 summarizes the conclusions that can be made from the thesis.  
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2.1 Abstract	
Introduction. A major hurdle to HIV-1 eradication is the establishment of a latent viral reservoir early after 
primary infection. Several factors are known to influence the HIV-1 reservoir size and decay rate on sup-
pressive antiretroviral treatment (ART), but little is known about the role of human genetic variation. 

Methods. We measured the reservoir size at three time points over a median of 5.4 years, and searched for 
associations between human genetic variation and two phenotypic readouts: the reservoir size at the first 
time point and its decay rate over the study period. We assessed the contribution of common genetic vari-
ants using genome-wide genotyping data from 797 patients with European ancestry enrolled in the Swiss 
HIV Cohort Study and searched for a potential impact of rare variants and exonic copy number variants 
using exome sequencing data generated in a subset of 194 study participants.  

Results. Genome- and exome-wide analyses did not reveal any significant association with the size of the 
HIV-1 reservoir or its decay rate on suppressive ART.  

Conclusions. Our results point to a limited influence of human genetics on the size of the HIV-1 reservoir 
and its long-term dynamics in successfully treated individuals.   
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2.2 Introduction	
Combination antiretroviral treatment (ART) has turned the previously lethal infection by human immuno-
deficiency virus type 1 (HIV-1) into a chronic disease. Despite this significant achievement, HIV-1 as retrovi-
rus, self-integrating its genome into the host chromosome, persists indefinitely in infected individuals dur-
ing treatment [1–4], and life-long ART is required to control the infection.  

A major hurdle to HIV-1 eradication is the establishment, already during primary infection, of a latent viral 
reservoir of HIV-1 DNA persisting as provirus in resting memory CD4+ T cells [1,2,5–8]. At the molecular 
level, chromatin remodeling, epigenetic modifications, transcriptional interference, and availability of tran-
scription factors have been considered as possible mechanisms contributing to HIV-1 latency [9]. The viral 
reservoir is measurable through different methods, including viral outgrowth assay and intracellular HIV-1 
DNA quantification [10,11]. Currently, there is no consensus on the best HIV-1 reservoir biomarker. Total 
cell-associated HIV-1 DNA, easy to measure in different cell and tissue samples and applicable to large pop-
ulations, has been shown to be a good proxy for the reservoir size [12]. Indeed, while HIV-1 DNA measure-
ment is able to detect both integrated and nonintegrated viral genomes coding for intact or defective vi-
ruses [13], total HIV-1 DNA levels have been shown to correlate with viral outgrowth [14], and to predict 
the time to viral rebound at treatment interruption [15]. Moreover, the substantial loss of nonintegrated 
HIV-1 DNA genomes following ART initiation suggests that total HIV-1 DNA after prolonged suppression is 
largely accounted for by integrated viral genomes [16].  

After an initial rapid decay following ART initiation, changes of the viral reservoir size over time display wide 
inter-individual variability. By limiting dilution culture assay, the half-life of the viral reservoir was first esti-
mated to be 44 months (95% confidence interval 27.4-114.5) in individuals with undetectable viremia [4]. A 
more recent study showed a slow decline of total HIV-1 DNA with a half-life of 13 years after the first four 
years of suppressive ART [17]. Generally, different studies show a broad variability of the average decay 
rate, from 2.5 months to no measurable decay [18–26]. One study even reported an increase in the viral 
reservoir size in as much as 31% of patients in the 4-7 years following ART initiation [27], and recent data 
from our group confirm this observation, reporting an increase in the reservoir size in 26.8% of individuals 
in the 1.5-5.5 years after ART initiation [28].   

Several factors are known to influence the decay rate of the viral reservoir: initiation of ART during acute 
HIV-1 infection substantially accelerates the decay rate, while viral blips and low-level viremia during ART 
slow it down, as shown in previous studies [22] and in recent data from our cohort [28]. Conversely, treat-
ment intensification, i.e.  treating with additional drugs, does not appear to influence the decay rate, sug-
gesting that residual replication is not the main driver of the viral reservoir [29] or that it may happen in 
sanctuary sites.  

Human genetic variants have been shown to influence the outcome of various infections, including HIV. 
Previous genome-wide association studies (GWAS) addressed the role of common genetic polymorphisms 
in several HIV-related phenotypes, including plasma viral load (HIV-1 RNA) at set point, exceptional capacity 
to control viral replication, pace of CD4+ T lymphocyte decline, time to clinical AIDS, rapid progressor status 
or long-term non-progressor status (LTNP) [30–37], and, in one single study, the amount of intracellular 
HIV-1 DNA, measured at a single time point during the chronic phase of infection [38]. Rare genetic variants 
that are detectable through DNA sequencing technologies have been investigated far less. However, a large 
exome sequencing study did not reveal any convincing association of such variants with the natural history 
of HIV disease [39].  
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To date, no studies have addressed the role of human genetic variation in determining the initial viral res-
ervoir size and the reservoir decay rate over time. In the current study, we searched for host genetic factors 
associated with the HIV-1 reservoir size and its long-term dynamics in a cohort of 797 HIV-1 positive indi-
viduals on suppressive ART for at least five years.  

 

2.3 Methods		

2.3.1 Ethics	statement		

The SHCS was approved by the local ethical committees of the participating centres: Kantonale Ethikkom-
mission Zürich (KEK-ZH-NR: EK-793); Ethikkommission beider Basel (“Die Ethikkommission beider Basel hat 
die Dokumente zur Studie zustimmend zur Kenntnis genommen und genehmigt.”); Kantonale Ethikkommis-
sion Bern (21/88); Comité departmental d’éthique des specialités médicales es de médecine communauta-
rie et de premier recours, Hôpitaux Universitaires de Genève (01–142); Commission cantonale d’éthique de 
la recherche sur l’être humain, Canton de Vaud (131/01); Comitato etico cantonale, Repubblica e Cantone 
Ticino (CE 813); Ethikkommission des Kantons St. Gallen (EKSG 12/003), and written informed consent was 
obtained from all participants. 

2.3.2 Study	participants	

The SHCS is an ongoing, nation-wide cohort study of HIV-positive individuals, including more than 70% of all 
persons living with HIV in Switzerland. Clinical and laboratory information has been prospectively recorded 
at follow-up visits every 3-6 months since 1988 [40]. The general enrolment criteria have been described 
previously [28]. Additionally, availability of genome-wide genotyping data from previous studies or of a 
DNA sample for genotyping was required for inclusion in this study (Figure 2.1). DNA samples used in this 
study were collected as part of the regular follow-up visits between May 2007 and October 2017.  

 

Figure 2.1. Patient selection flowchart. Specific inclusion and exclusion criteria are listed for each selection step. ART 
(antiretroviral therapy); PBMCs (peripheral blood mononuclear cells); PI (protease inhibitor); PCA (principal compo-
nent analysis).      

 

18,688 individuals (Swiss HIV Cohort Study, 19/12/2014)

Inclusion criteria:
• HIV-1 infection
• Receiving ART for ≥ 5 years
• No treatment interruption of > 7 days
• No virological failure defined as two consecutive
 measurements > 200 HIV-1 RNA copies/ml plasma
• PBMCs available for three time points: 
 1.5 +/- 0.5 years, 3.5 +/- 0.5 years, and 
 5.5 +/- 1 year, after initiating first-line ART

1932 individuals

Exclusion criteria:
• Start on less potent ART regimens, i.e., mono/ or dual
 therapy, less potent/unboosted PI (NFV, SQV etc.)

1382 individuals

• Received ≥ 3 PBMC samples (mandatory 1st - 3rd time point)

1166 individuals

• Successful total HIV-1 DNA quantification in ≥ 3 PBMC samples
 (mandatory 1st - 3rd time point)

1057 individuals

• Successfully genotyped

995 individuals

• European ancestry (by PCA)

797 individuals 194 individuals+ Exome sequencing
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2.3.3 Quantification	of	total	HIV-1	DNA	

The collection of longitudinal cryopreserved peripheral blood mononuclear cells (PBMCs) from eligible par-
ticipants and the quantification of total HIV-1 DNA by droplet digital PCR has been described previously 
along with the calculation of the reservoir decay rate [28].  Briefly, this study utilized total HIV-1 DNA quan-
tifications from three time points at a median of ~1.5 years, ~3.5 years, and ~5.4 years after initiation of 
ART.   

2.3.4 Genotyping	and	genome-wide	association	analyses	

Genome-wide genotyping data were obtained from previous GWAS that used various microarrays, includ-
ing the HumanCore-12, HumanHap550, Human610, Human1M and Infinium CoreExome-24 BeadChips (Il-
lumina Inc., San Diego, CA, USA), or generated from   

DNA extracted from peripheral blood mononuclear cells using the HumanOmniExpress-24 BeadChip (Illu-
mina Inc., San Diego, CA, USA).    

Genotypes from each genotyping array were filtered and imputed separately, with variants first flipped to 
the correct strand with BCFTOOLS (v1.8) according to the human GRCh37 reference genome and filtered 
based on a less than 20% deviation from the 1000 genomes phase 3 EUR reference panel. Genotypes were 
phased, and missing genotypes were imputed with EAGLE2 [41] and PBWT [42] respectively, using the 1000 
Genomes Project Phase 3 reference panel on the Sanger Imputation Service [43]. Study participants were 
filtered based on European ancestry as determined by principal component analysis (PCA) using EI-
GENSTRAT (v6.1.4) [44] and the HapMap project [45] as reference populations (Figure S2.1A). Imputed 
variants were filtered by minor allele frequency (MAF) < 5%, missingness > 10%, deviation from Hardy-
Weinberg equilibrium (PHWE < 1e-6) and imputation quality score (INFO < 0.8). The remaining genotypes 
were then combined using PLINK (v1.90b5) [46] prior to analyses.  

To carry out the GWASs, genome-wide genotypes were tested for association with each of the two study 
phenotypes (reservoir size or reservoir decay rate) in two separate genome-wide association analyses. Sta-
tistical significance was set to the standard genome-wide significance threshold of P < 5e-8 to correct for 
multiple testing. The associations were computed using linear mixed models with genetic relationship ma-
trixes calculated between pairs of individuals according to the leave-one-chromosome-out method as im-
plemented in GCTA mlma-loco (v1.91.4beta) [47,48], only including age and sex as covariates, to avoid 
masking of true associations by confounders. To further assess the contribution of variables previously 
shown to be associated with either reservoir size or decay rate, we ran multiple genome-wide association 
analyses, each including age, sex, and one single covariate, for each of the two study phenotypes. Finally, 
we conducted a GWAS including all the covariates except those showing mutual correlations. These covari-
ates included time on ART, time to viral suppression, infection stage (acute or chronic), HIV-1 RNA pre-ART, 
last CD4+ T cell count pre-ART, HIV-1 subtype, transmission group, and occurrence of blips or low-level 
viremia during treatment. 

Classical HLA alleles at the four-digit level and variable amino acids within HLA proteins were imputed using 
SNP2HLA (v1.03) with the T1DGC reference panel consisting of 5,225 individuals of European ancestry [49]. 
Association analyses with the imputed HLA alleles and multi-allelic amino acids was performed using linear 
regressions in PLINK and multivariate omnibus tests, respectively.  For all HLA analyses age, sex and the first 
principal component was included as covariates. 
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Genotypes at specific loci, i.e. the CCR5∆32 deletion (rs333) and the HLA-B*57:01 allele, known to influence 
the setpoint viral load (spVL) [50,51], available from genome-wide genotyping data, were tested for associ-
ation with the reservoir size and its decay rate in 797 patients. High quality genotyping information on the 
CCR5∆32 deletion was available for most individuals (N = 687), while all had available HLA information.  

2.3.5 Exome	sequencing	and	analysis	

All coding exons were captured using either the Illumina Truseq 65 Mb enrichment kit (Illumina Inc., San 
Diego, CA, USA) or the IDT xGen Exome Research Panel v1.0 (Integrated DNA Technologies Inc., Coralville, 
IA, USA) and sequenced on the Illumina HiSeq4000.  Sequence reads were aligned to the human reference 
genome (GRCh37) including decoys with BWA-MEM (v0.7.10) [52]. PCR duplicates were flagged using Pi-
card tools (v2.18.14) and variant calling performed using GATK (v3.7) [53].  

To ensure a high-quality variant set across capture kit batches, all samples were merged and variants fil-
tered based on sequencing depth (DP ≥ 20) and genotype quality (GQ ≥ 30) using BCFTOOLS (v1.8). Fur-
thermore, individual genotypes were set as missing in cases of low depth (DP < 10) or low quality (GQ < 20). 
The effect of the included variants was annotated with SnpEff (v4.3T) [54]. 

For single variant association analysis, the VCF file was converted to PLINK format using BCFTOOLS and 
PLINK. Only variants with a MAF above 5%, missingness per variant below 5% and absence of severe devia-
tion from Hardy-Weinberg equilibrium (PHWE > 1e-6) were retained for the subsequent association analyses 
using PLINK. Sex, age and the first principal component were included as covariates. Only individuals of 
European descent were retained for the analyses, as determined by PCA (Figure S2.1B).       

The combined effect of rare protein-altering variants (MAF < 5%), defined as either missense, stop-gain, 
frameshift, essential splice variant or an indel by SnpEff, on the reservoir size and decay rate was analyzed 
using optimal sequence kernel association tests (SKAT-O) [55]. For the decay rate, individuals were split into 
two groups due to the non-normal distribution; one exhibiting a very high decay over time (< -0.03 -
log10(DNA)) and another with a stable reservoir size (≥ -0.03 and ≤ 0.03 -log10(DNA)). For this case-control 
analysis we used the SKATbinary function with linear weighted variants as implemented in the SKAT R 
package. In both cases, the analyses were adjusted for age, sex, and the first principal component.  

Classical HLA class I and II alleles at the four-digit level were imputed from the exome sequencing data us-
ing HLA*LA [56]. All reads mapping to the MHC region or marked as unmapped were extracted using 
Samtools (v1.8) and used as input into HLA*LA. For association analyses, the 4-digit HLA alleles were ex-
tracted and analyzed using PyHLA [57] assuming an additive model, a minimum frequency of 5% and includ-
ing age, sex and the first principal component as covariates.  

2.3.6 Copy	number	variation	

Copy number variations (CNVs) were called from exome sequencing data using CLAMMS [58]. CNVs were 
called for all samples in batches according to the exome capture kit used. Within batches, samples were 
normalized based on coverage and potential intra-batch effects adjusted for through the use of recom-
mended mapping metrics extracted with Picard tools (v2.18.14). After CNV calling, samples with the num-
ber of CNVs two times above the median were excluded (N = 2). CNV association analyses were performed 
for duplications and deletions separately for common CNVs (frequency > 5 %) with PLINK adjusting for age 
and sex. Potential rare CNVs (frequency < 5%) impacting immune related genes were examined by overlap-
ping called CNVs with curated immune-related genes from Immport [59] which were also listed as protein 
coding in GENCODE (v25).    
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2.3.7 Statistical	analyses	

All statistical analyses were performed using the R statistical software (v3.5.2), unless otherwise specified. 

 

2.4 Results		

2.4.1 Host	genetic	determinants	of	the	reservoir	size	and	long-term	dynamics	

To investigate the effects of host genetic variation on the size of the HIV-1 reservoir 1.5 years after ART 
initiation and its long-term dynamics under ART over a median duration of 5.4 years, we performed a 
GWAS, including 797 well-characterized HIV-1 positive individuals. All study participants were enrolled in 
the SHCS and were of European ancestry with longitudinal total HIV-1 DNA measurements available (Table 
2.1). The median HIV-1 reservoir size was 2.76 (IQR: 2.48-3.03) log10 total HIV-1 DNA copies/1 million ge-
nomic equivalents measured ~1.5 years after initiation of ART (Figure S2.2A). The median decay rate be-
tween 1.5-5.4 years after initiation of ART was -0.06 (IQR: -0.12-0.00) log10 total HIV-1 DNA copies/1 mil-
lion genomic equivalents per year (Figure S2.2B). With our sample size we had 80% power to detect vari-
ants with a MAF of 10% explaining at least 5% of the variance in HIV-1 reservoir size or decay rate [60].  
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Table 2.1. Patient characteristics 

Total number of individuals  

  Genotyped 797 

  Genotyped + exome sequenced 194 

Age at first HIV-1 DNA sample in years    
   median (IQR) 44 (38, 50) 

Sex    

   Female 123 (15.4%) 
   Male 674 (84.6%) 

Transmission group    

   HET 241 (30.2%) 
   IDU 77 (9.7%) 

   MSM 448 (56.2%) 

   Other 31 (3.9%) 
HIV-1 subtype    

   B 550 (69.0%) 

   Non-B 128 (16.1%) 
   Unknown 119 (14.9%) 

Occurrence of blips or low-level viremia    

   Blips 200 (25.1%) 
   Low-level viremia 68 (8.5%) 

   None 529 (66.4%) 

Time on ART    
   median (IQR) 1.50 (1.28, 1.69) 

Infection stage    

   Acute 140 (17.6%) 
   Chronic 657 (82.4%) 

Time to viral suppression    

   median (IQR) 0.34 (0.23, 0.51) 
Log10 HIV-1 plasma RNA pre-ART per mL    

   median (IQR) 480 (248, 684) 

CD4+ cell count pre-ART cells/µL blood    
   median (IQR) 186 (90, 270) 

HIV-1 reservoir size    

   median (IQR) 2.76 (2.48, 3.03) 
HIV-1 reservoir decay rate    

   median (IQR) -0.06 (-0.12, -0.00) 

Transmission group indicates the self-reported route of infection (heterosexual (HET), intravenous drug usage (IDU), 
men who have sex with men (MSM), and other (including transfusions and unknown)). The occurrence of viral blips 
was defined by measurements of ≥ 50 HIV-1 RNA copies/mL plasma within a 30-day window. Individuals with consecu-
tive measurements of ≥ 50 HIV-1 RNA copies/mL plasma for longer durations were classified as exhibiting low-level 
viremia. Time to viral suppression was the time from initiation of ART to the first viral load measurement below 50 
copies/mL HIV-1 plasma RNA. HIV-1 reservoir size was measured in log10 total HIV-1 DNA/1 million genomic equiva-
lents ~1.5 years after initiating ART. The HIV-1 reservoir decay rate was based on the three measurements of total 
HIV-1 DNA levels taken at the median of 1.5, 3.5 and 5.4 years after initiation of ART. 
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First, we performed GWAS using age and sex as covariates. We did not observe any genome-wide signifi-
cant variant (P < 5e-8) associated with either HIV-1 reservoir size or long-term dynamics (Figure 2.2 and 
S2.3). However, as we have previously determined, multiple factors are associated with the HIV-1 reservoir 
size and its decay rate [28], some of which are correlated (Figure S2.4). Thus, we performed additional 
analyses iteratively including these factors to test whether they could mask genetic associations. We ran 
multiple GWAS each adjusting for age, sex, plus one of the associated covariates, as well as all of the co-
variates together. The addition of the covariates did not have any significant effect on the results nor the 
genome-wide inflation factor (lambda) (Table S1). 

 

Figure 2.2. Association results with HIV-1 reservoir size. Manhattan plot with association p-values (-log10(P)) per genet-
ic variant plotted by genomic position. Dashed line indicates the threshold for genome-wide significance (P = 5e-8). No 
variants were found to be genome-wide significant.    

 

Genetic variation in the HLA region has previously been associated with multiple HIV-related outcomes, 
including spVL [51]. To test whether specific HLA variants were associated with reservoir size or long-term 
dynamics, we imputed the HLA alleles and amino acids for all 797 individuals from the genotyping data. In 
line with the previous results, we did not observe any genome-wide significant associations with any HLA 
allele or amino acid.  

2.4.2 Impact	of	protein-coding	and	rare	variants	

To assess the impact of rare variants as well as protein-coding variants missed by genotyping arrays on the 
HIV-1 reservoir size and long-term dynamics, we performed exome sequencing in 194 of the 797 study par-
ticipants. Patients were selected at the two extremes of the observed reservoir decay rate: either very rap-
id, or absent (no change in reservoir size over ~5.4 years), while individuals with increasing HIV-1 reservoir 
sizes were excluded (N=12). Thus, the long-term dynamics phenotype was binarized for subsequent anal-
yses of the decay rate, while the HIV-1 reservoir size phenotype remained normally distributed (Figure 
S2.5).  

To ensure that no common variants, missed by the genotype chips, were associated with the HIV-1 reser-
voir size or long-term dynamics, we performed a GWAS for common variants using age and sex as covari-
ates. As with the genotyping data, we observed no genome-wide significant variants for either phenotype 
(Figure S2.6).   
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We then examined the potential role of rare variants (MAF < 5%) with a functional impact defined as either 
missense, frameshift, stop gained, splice acceptor or donor.  Since HIV-1 primarily infects CD4+ T cells, we 
only included variants within genes expressed in these cells as determined by Gutierrez-Arcelus et al. [61]. 
The significance threshold after correcting for the number of tests performed was P = 1.21e-5. We did not 
observe any significant associations for either the HIV-1 reservoir or the decay rate. The AMBRA1 gene 
showed the strongest association with HIV-1 reservoir size (P = 4.15e-5, not significant) (Figure S2.7).     

To confirm the lack of HLA association seen with the genotyping data, we imputed the HLA haplotypes from 
the exome data using HLA*LA. Again, we did not observe any significant HLA association with the study 
outcomes.   

2.4.3 Copy	number	variations	

To examine the role of large exonic CNVs not captured by standard genotyping and exome pipelines, we 
called CNVs from the mapped sequencing reads of the exome samples using the software CLAMMS. The 
contribution of common CNVs to HIV-1 reservoir size and long-term dynamics was analyzed by association 
analyses including age, sex and the first principal component as covariates. No significant association was 
observed after Bonferroni correction (Figure S2.8). We also searched for rare CNVs in curated immune-
related genes from Immport [59] but did not discover any suggestive immune-related CNVs .  

2.4.4 Influence	of	HLA-B*57:01	and	the	CCR5∆32	deletion	on	reservoir	size	and	 long-term	
dynamics	

We have previously shown that pre-ART RNA viral load levels are associated with the HIV-1 reservoir size 
and the occurrence of blips [28]. The HLA-B*57:01 allele and the CCR5∆32 deletion are well known genetic 
variants influencing HIV-1 spVL [50,51], and could thus also be associated with the with the HIV-1 reservoir 
size or its decay rate. However, we did not observe any nominal association (all P > 0.05) with either reser-
voir size or its long-term dynamics for HLA-B*57:01 and CCR5∆32 (Figure S2.9).   

 

2.5 Discussion	
We used a combination of genomic technologies to assess the potential role of human genetic factors in 
determining both the HIV-1 reservoir size and its long-term dynamics in a well-characterized, population-
based cohort. We studied 797 HIV-1-positive individuals of European origin under suppressive ART over a 
median of 5.4 years, for whom extensive clinical data are available, allowing detailed characterization and 
correction for potential confounders [28]. We measured the HIV-1 reservoir size at three time points and 
selected two phenotypes for our genomic study: the reservoir size at ~1.5 years after ART initiation and the 
slope of the reservoir decay rate calculated over the three time points. Previous HIV host genetic studies 
mostly focused on phenotypes reflecting the natural history of HIV-1 infection, prior to ART initiation, in-
cluding spontaneous viral control and disease progression [30–37]. A single study specifically tested for 
associations between common genetic variants and the amount of intracellular HIV-1 DNA, measured at a 
single time point during the chronic phase of infection prior to initiation of any antiretroviral therapy [38]. 
Here, in contrast, we longitudinally assessed samples collected from patients under suppressive ART to 
search for human genetic determinants of the long-term dynamics of the HIV-1 reservoir during treatment.  

We first conducted a GWAS on 797 individuals to test for association between common genetic variants 
and the phenotypes. Given the small proportion of non-European subjects in the initial study cohort, we 
only included patients of European ancestry to avoid any false positive associations or masking of true posi-
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tive associations due to different allele frequencies in small proportions of individuals belonging to differ-
ent subpopulations (Figure 2.1) [62]. Regardless of including or not independent covariates other than the 
standard ones (i.e., sex and age), no genetic variant reached the genome-wide significance threshold for 
association with any of the two phenotypes. This may reflect a small effect size of genetic variants on the 
HIV-1 reservoir size and decay rate. We acknowledge that a larger sample size and thus increased statistical 
power may allow detecting genetic variants with a smaller effect size associated with the phenotypes. 
However, it should be noted that this study is by far the largest today that has investigated the size and 
decay of the HIV-reservoir in well characterized and well suppressed HIV-positive individuals over a longer 
time period.  Alternatively, the control of the HIV-1 reservoir size and its long-term dynamics may be under 
the control of viral or host factors other than the individual germline genetic background. A previous report 
from our group had shown a correlation between viral blips during the first 1.5 years of suppressive ART 
and the HIV-1 reservoir size 1.5 years after ART initiation, and between viral blips after 1.5-5.4 years of sup-
pressive ART or low-level viremia and a slower decay rate [28]. Importantly, viral blips are generally thought 
to reflect transient increases in viral replication, and probably occur under multifactorial influence from 
viral and host factors [63–70], with these latter possibly including, but not being limited to, germline genet-
ic variation. The biological relations between viral reservoir, decay rate, viral blips, and the contribution of 
the individual genetic background still need full elucidation.  

Standard GWAS is designed to detect associations with common genetic variants (i.e., with a MAF of at 
least 0.05), with little power to investigate the role of rare variants. Thus, to further assess the contribution 
of rare variants in individuals at the extreme of the decay rate distribution, we used exome sequencing in a 
selected subset of 194 study participants with very high decay rate, or conversely, a stable reservoir size 
over time (Figure S2.5). Here again, our analyses did not detect significant associations with the pheno-
types. Although not reaching statistical significance, a rare genetic variant with potential functional impact 
in AMBRA1 had a p-value for association just below the corrected threshold. The expression of AMBRA1, a 
core component of the autophagy machinery, has previously been associated with long-term viral control 
in HIV-1 non-progressors [71]. Future studies may further elucidate whether genetic variation in AMBRA1 
may account for inter-individual differences in the long-term dynamics of the HIV-1 reservoir.  

Large deletions or duplications of genomic material may be implicated in human phenotypes, with CNVs 
impacting the exonic regions being more likely to have a functional role. Thus, we further investigated 
whether any common or rare CNV spanning exonic regions was associated with the phenotype.  Again, no 
CNV was statistically associated with the phenotypes both in the exome-wide analyses and in analyses fo-
cused on immune-related genes.  

An inherent limitation of our exome-based association analyses was their inability to detect rare variants 
outside the coding or splice-site regions. The exonic regions account for approximately 1-2% of the whole 
human genome. Because many regulatory sequences are located in extra-genic sites, our analysis did not 
fully investigate the role of highly conserved, non-coding genetic regions in influencing the phenotypes 
linked to HIV-1 latency. 

Additionally, we focused on specific genetic variants, i.e., the HLA haplotypes and the CCR5∆32 deletion, 
previously demonstrated to have a role in HIV-1 related phenotypes [30,51]. Indeed, previous studies un-
raveled a robust association between variation in the HLA region and the HIV-1 spVL [30]. Likewise, hetero-
zygosity for the CCR5∆32 deletion has been shown to influence spontaneous HIV-1 control [51]. Thus, we 
imputed HLA genotypes from genotyping and exome data, and studied the CCR5∆32 deletion, without, 
however, detecting any significant associations with the phenotypes or the covariates (Figure S2.9).  Specif-
ically, we found no correlation between HLA genotypes and HIV-1 RNA plasma levels prior to ART initiation, 
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apparently contrasting with the previous findings of an association between HLA-B*57:01 haplotype and 
spVL. This probably reflects historical changes in the therapeutic approach following a diagnosis of HIV-1 
infection, given that ART is currently initiated soon after clinical diagnosis, before most patients reach a 
stable plateau of plasma viral load.   

In our study, the quantification of the reservoir size at different time points may have been influenced by 
factors as, for example, blips and low-level viremia, which may have reduced our ability to detect significant 
genetic effects. It is also possible that, in the future, novel methods to assess the viral reservoir will allow 
the detection of significant contributions of genetic factors [72]. So far, it remains unanswered whether the 
initial response to acute infection, the containment of ongoing replication, and the control of latently in-
fected cells are under the influence of the same or different molecular networks. It needs to be noted that 
in previous work we have shown that host genetic factors as defined by GWAS did not explain the severity 
of symptoms during acute HIV-infection, although severity of symptoms correlated well with viral load and 
CD4 cell counts [73].  

 

2.6 Conclusion	
In conclusion, our study suggests that human individual germline genetic variation has little, if any, influ-
ence on the control of the HIV-1 viral reservoir size and its long-term dynamics. Complex, likely multifacto-
rial biological processes govern HIV-1 viral persistence. Larger studies will possibly clarify the role of com-
mon or rare genetic variants explaining small proportions of the variability of the phenotypes related to 
viral latency.  
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2.8 Supplementary	tables	and	figures	
Supplementary Table 2.1. GWAS sensitivity analysis 

Phenotype Covariates min P Lambda 

HIV-1 reservoir size 

Basic (age + sex) 1.64E-06 1.02 
RNA pre-ART 2.78E-06 1.01 
CD4 pre-ART 1.54E-06 1.02 
Time on ART 1.96E-06 1.02 
Time to suppression 1.13E-06 1.02 
Stage 1.10E-06 1.02 
T_group.HET 1.71E-06 1.02 
T_group.IDU 1.82E-06 1.02 
T_group.MSM 1.68E-06 1.02 
T_group.OTHER 1.53E-06 1.02 
Subtype - B 1.21E-06 1.02 
Subtype - Non B 1.69E-06 1.02 
Subtype - Unknown 1.52E-06 1.02 
Blips 9.99E-07 1.02 
Low-level viremia 2.76E-06 1.01 
No blips or viremia 1.43E-06 1.02 
All 2.39E-06 1.01 

HIV-1 reservoir decay rate 

Basic (age + sex) 2.05E-06 1.00 
RNA pre-ART 2.12E-06 1.00 
CD4 pre-ART 1.98E-06 1.00 
Time on ART 1.97E-06 1.00 
Time to suppression 1.91E-06 1.00 
Stage 2.03E-06 1.00 
T_group.HET 2.02E-06 1.00 
T_group.IDU 1.94E-06 1.00 
T_group.MSM 1.94E-06 1.00 
T_group.OTHER 2.21E-06 1.00 
Subtype - B 2.08E-06 1.00 
Subtype - Non B 2.14E-06 1.00 
Subtype - Unknown 2.11E-06 1.00 
Blips 2.21E-06 1.00 
Low-level viremia 2.24E-06 1.00 
No blips or viremia 2.07E-06 1.00 
All 2.26E-06 0.99 

Covariates indicates the covariates added in the linear mixed model together with age and sex. Transmission group 
indicates the self-reported route of infection (heterosexual (HET), intravenous drug usage (IDU), men who have sex 
with men (MSM), and other (including transfusions and unknown)). The occurrence of viral blips was defined by 
measurements of ≥ 50 HIV-1 RNA copies/mL plasma within a 30-day window. Individuals with consecutive measure-
ments of ≥ 50 HIV-1 RNA copies/mL plasma for longer durations were classified as exhibiting low-level viremia. Time 
to viral suppression was the time from initiation of ART to the first viral load measurement below 50 copies/mL HIV-1 
plasma RNA. All, indicates that all independent covariates listed in the table was added to the model. Min P is the 
minimal observed p-value in the corresponding GWAS. Lambda indicates the genomic inflation factor. All values were 
~1.00, indicating an absence of genomic inflation of the test statistics due to confounding factors. 
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Supplementary Figure 2.1. Principal component analyses (PCA) with population references from the HapMap project. 
(A) The 797 genotyped individuals (black crosses) colocalizing with the HapMap reference samples from CEU (North-
ern Europeans from Utah) and TSI (Tuscans from Italy). (B) The 194 individuals also exome sequenced (black crosses) 
cluster as expected still with CEU and TSI. 

 

 

 

Supplementary Figure 2.2. The HIV-1 reservoir size and decay rates for 797 genotyped individuals on ART for a median 
of 5.4 years. (A) Histograms of the HIV-1 reservoir size in log10 total HIV-1 DNA/1 million genomic equivalents meas-
ured ~1.5 after initiating ART. (B) Histogram of the HIV-1 reservoir decay rate in log10 total HIV-1 DNA/1 million ge-
nomic equivalents per year based on the three measurements of total HIV-1 DNA levels taken at the median of 1.5, 
3.5 and 5.4 years after initiation of ART. 
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Supplementary Figure 2.3. GWAS results for the HIV-1 reservoir size and decay rate. (A) Quantile-quantile plot for the 
GWAS of HIV-1 reservoir size showing the observed -log10(P) (black dots, y-axis) versus expected -log10(P) under the 
null hypothesis (red line). Lambda indicates the genomic inflation factor. Values ~1 indicates the lack of genomic infla-
tion due to confounding factors (B) Quantile-quantile plot for the GWAS of the HIV-1 decay rate between 1.5 – 5.5 
years after ART initiation. (C) Manhattan plot for the GWAS of the HIV-1 decay rate with association p-values per ge-
netic variant plotted by genomic position. Dashed line indicates the threshold for genome-wide significance (P = 5e-8). 
No variants were found to be genome-wide significant.   
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Supplementary Figure 2.4. Correlations between known determinants of the HIV-1 reservoir size and decay rate and 
other variables. The size and color intensity of the circles indicates the level of correlation between variables. 
Blips.blips refers to the occurrence of viral blips defined by measurements of ≥ 50 HIV-1 RNA copies/mL plasma within 
a 30-day window. Blips.llv refers to individuals exhibiting low-level viremia defined as consecutive measurements of ≥ 
50 HIV-1 RNA copies/mL plasma for more than 30 days. Transmission group (T_group) indicates the self-reported 
route of infection (heterosexual (HET), intravenous drug usage (IDU), men who have sex with men (MSM), and other 
(including transfusions and unknown)). Time to viral suppression was the time from initiation of ART to the first viral 
load measurement below 50 copies/mL HIV-1 plasma RNA. HIV-1 reservoir size was measured in log10 total HIV-1 
DNA/1 million genomic equivalents ~1.5 years after initiating ART.  

 
 

 

Supplementary Figure 2.5. The HIV-1 reservoir size and decay rates for the 194 exome sequenced individuals. (A) His-
togram of the HIV-1 reservoir size in log10 total HIV-1 DNA/1 million genomic equivalents measured ~1.5 after initiat-
ing ART. (B) The non-normal distribution of the decay rate (long-term dynamics) meant that the individuals were split 
into cases with a decreasing HIV-1 reservoir and controls with no change in their HIV-1 reservoir size over 5.4 years. 
The blue lines indicate the cutoff points. Individuals with increasing HIV-1 reservoir sizes were excluded (N=12).  
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Supplementary Figure 2.6. Associations with common variants in 194 exome sequenced individuals. (A) Quantile-
quantile plot for GWAS of HIV-1 reservoir size showing the observed -log10(P) (black dots, y-axis) versus expected -
log10(P) under the null hypothesis (red line). (B) Quantile-quantile plot for GWAS of the HIV-1 decay rate between 1.5 
– 5.5 years after ART initiation. (C) Manhattan plot for GWAS of the HIV-1 reservoir size with association p-values per 
genetic variant plotted by genomic position. Dashed line indicates the threshold for genome-wide significance (P = 5e-
8). No variants were found to be genome-wide significant. (D) Manhattan plot for the GWAS of the HIV-1 decay rate. 
No variants were found to be genome-wide significant. 

 

C

D

A B

              

               

                 

                   

               

               

                



 

52 

 

Supplementary Figure 2.7. Association results for rare functional variants with optimal sequence kernel association 
tests (SKAT-O). (A) Manhattan plot for rare variant association analysis using SKAT-O of the HIV-1 reservoir size with 
association p-values per genetic variant plotted by genomic position. Dashed line indicates the threshold for genome-
wide significance following Bonferroni correction (P = 1.21e-5). No variants were found to be genome-wide significant. 
(B) Manhattan plot for the rare variant association analysis of the HIV-1 decay rate. No variants were found to be 
genome-wide significant. 
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Supplementary Figure 2.8. Association results for common exonic copy number variations (CNVs). (A) Manhattan plot 
for CNV deletions with association p-values per CNV plotted by genomic position. The association of each CNV with 
either reservoir size (yellow dots) or decay rate (blue dots) is indicated. (B) Manhattan plot for CNV duplications with 
association p-values per CNV plotted by genomic position. The association of each CNV with either reservoir size (yel-
low dots) or decay rate (blue dots) is marked. 
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Supplementary Figure 2.9. Effect of CCR5∆32 deletion and the HLA-B*57:01 allele on HIV-1 reservoir size and decay 
rate in 797 individuals. Statistical differences between groups were determined by Wilcoxon signed-rank tests. (A) 
Violin plots showing the HIV-1 reservoir size in log10 total HIV-1 DNA/1 million genomic equivalents of individuals 
carrying either none, one or two alleles of the CCR5∆32 deletion as tagged by the rs333 SNP. (B) Violin plot with the 
HIV-1 reservoir size levels grouped by presence of the HLA-B*57:01 allele. (C) Violin plot showing HIV-1 reservoir de-
cay rates of individuals with and without the CCR5∆32 deletion. (D) Violin plot with the decay rates of individuals with 
and without the HLA-B*57:01 allele.   
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3.1 Abstract	
Human immunodeficiency virus (HIV) infection is associated with an increased risk of non-Hodgkin lym-
phoma (NHL). Even in the era of suppressive antiretroviral treatment, HIV-infected individuals remain at 
higher risk of developing NHL compared to the general population. To identify potential genetic risk loci, we 
performed case-control genome-wide association studies and a meta-analysis across three cohorts of HIV+ 
patients of European ancestry, including a total of 278 cases and 1924 matched controls. We observed a 
significant association with NHL susceptibility in the C-X-C motif chemokine ligand 12 (CXCL12) region on 
chromosome 10. A fine mapping analysis identified rs7919208 as the most likely causal variant (P = 4.77e-
11), with the G>A polymorphism creating a new transcription factor binding site for BATF and JUND. These 
results suggest a modulatory role of CXCL12 regulation in the increased susceptibility to NHL observed in 
the HIV-infected population. 
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3.2 Introduction	
Human immunodeficiency virus (HIV) infection is associated with a markedly increased risk of several types 
of cancer compared to the general population.1–3 This elevated cancer risk can be attributed partly to viral-
induced immunodeficiency, frequent co-infections with oncogenic viruses (e.g., Epstein-Barr virus (EBV), 
hepatitis B and hepatitis C viruses, human herpesvirus 8 (HHV-8) and papillomavirus), and increased preva-
lence of traditional risk factors such as smoking.4,5 However, all of these risk factors may not entirely ex-
plain the excess cancer burden seen in the HIV+ population.6 

A previous study performed in the Swiss HIV Cohort Study (SHCS) identified two AIDS-defining cancers, 
Kaposi sarcoma and non-Hodgkin lymphoma (NHL) as the main types of cancer found among HIV positive 
patients (NHL representing 34% of all identified cancers).4 The relative risk of developing NHL in HIV pa-
tients was highly elevated compared to the general population (period-standardized incidence ratio (SIR) = 
76.4).4 High HIV plasma viral load, absence of antiretroviral therapy (ART) as well as low CD4+ T cell counts 
are known predictive factors for NHL.7,8 The introduction of ART into clinical practice has led to improved 
overall survival and restoration of immunity by decreasing viral load and increasing CD4+ T cell counts, and 
has led to a decreased risk of developing NHL. However, the risk remains substantially elevated compared 
to the general population (SIR = 9.1 (8.3–10.1))9 and NHL still represents 20% of all cancers in people living 
with HIV in the ART era.10 NHLs associated with HIV are predominantly aggressive B-cell lymphomas. Alt-
hough they are heterogeneous, they share several pathogenic mechanisms involving chronic antigen stimu-
lation, impaired immune response, cytokine deregulation and reactivation of the oncogenic viruses EBV and 
HHV-8.11 

The emergence of genome-wide approaches in human genomics has led to the discovery of many associa-
tions between common genetic polymorphisms and susceptibility to several diseases including HIV infec-
tion and multiple types of cancer.12,13 Recent genome-wide association studies (GWAS) of NHL have identi-
fied multiple susceptibility loci in the European population.14–22 These variants are located in the genes 
LPXN21, BTNL223, EXOC2, NCOA114, PVT114,22, CXCR5, ETS1, LPP, and BCL222 for various subtypes of NHL, as 
well as BCL6 in the Chinese population.24 Strong associations with variation in human leukocyte antigen 
(HLA) genes have also been reported.15,18,22 However, in the setting of HIV infection, no genome-wide anal-
ysis has been reported concerning the occurrence of NHL and the specific mechanisms driving their devel-
opment remain largely unknown. 

Here we report the results of the first genome-wide analysis of NHL susceptibility in individuals chronically 
infected with HIV. We combined three HIV cohort studies from France, Switzerland and the USA and 
searched for associations between >6 million single nucleotide polymorphisms (SNPs) and a diagnosis of 
NHL. We identified a novel genetic locus near CXCL12 as associated with the development of NHL among 
HIV+ individuals.  
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3.3 Results	

3.3.1 Study	participants	and	association	testing	

To identify human genetic determinants of HIV-associated NHL, we performed case-control GWAS in three 
groups of HIV+ patients of European ancestry (SHCS, ANRS and MACS). The characteristics of the study par-
ticipants are presented in Table 1. In total, genotyping data were obtained for 278 cases (NHL+/HIV+) and 
1924 matched controls (NHL-/HIV+). With this sample size, we had 80% power to detect a common genetic 
variant (10% minor allele frequency) with a relative risk of 2.5, assuming an additive genetic model and 
using Bonferroni correction for multiple testing (Pthreshold = 5e-8).25 

 

Table 3.1. Summary of included samples and studies 

Cohort 
Cases Controls Lambda Genotyping chips Years of NHL 

diagnosis 
Control inclu-
sion criteria 

SHCS 
Age (median) 
Sex (%Male) 

145 
61 
91% 
 

1090 
58 
80% 

1.00 Illumina HumanOm-
niExpress-24, Hu-
man1M, Human610, 
HumanHap550, Hu-
manCore-12 

2000 - 2017 HIV < 2005, no 
cancer diagno-
sis as of 2017 & 
matched with 
age 

ANRS 
Age (median) 
Sex (%Male) 

61 
50 
89% 
 

562 
34 
87% 

1.00 Illumina Human Om-
ni5 Exome 4v 1-2, 
Illumina 300 

2008 - 2015 No cancer 
diagnosis 

MACS 
Age (median) 
Sex (%Male) 

72 
69 
100% 

272 
68 
100% 

1.01 Illumina 1MV1, 
Human1M-Duo, 
HumanHap550 

1985 - 2013 Matched to 
cases in terms 
of age, treat-
ment & time of 
infection 

 

 

 

 

 

 

 

 

 

 

 



 

65 

After genome-wide imputation and quality control, 6.2 million common variants were tested for associa-
tion with the development of NHL using linear mixed models including sex as a covariate. Results were 
combined across cohorts using a weighted Z-score-based meta-analysis (Figure 3.1A). The genomic inflation 
factor (lambda) was in all cases very close to 1 [1.00–1.01], indicating an absence of systematic inflation of 
the association results (Figure 3.1B; Supplementary Figure 3.2). 

 

 

Figure 3.1. Genome-wide association analysis. (A) Schematic of analysis pipeline. (B) Quantile-quantile plot of the 
observed -log10(p-value) (black dots, y-axis) versus expected -log10(p-values) under the null hypothesis (red line) to 
check for any genomic inflation of the observed p-values. No genomic inflation is observed, with the genomic inflation 
factor lambda = 0.99. (C) Manhattan plot of all obtained p-values for each variant included in the meta-analysis. The 
genome-wide threshold (P = 5e-8) for significance is marked by a dotted line. Only variants at the CXCL12 locus were 
found to be significant. 
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3.3.2 Association	results	

We observed significant associations with the development of HIV-related NHL at a single locus on chromo-
some 10, downstream of CXCL12 (Figure 3.1C). A total of 7 SNPs in this locus had p-values lower than the 
genome-wide significance threshold (P < 5e-8), with rs7919208 displaying the strongest association (Table 
3.2). This association was only detected in the SHCS and ANRS cohorts and not among MACS study partici-
pants (Supplementary Table 3.1).  

 

Table 3.2. Significant association with HIV-related NHL 

Chr 
Pos SNP Ref Alt P OR 

10 44673557 rs7919208 A G 4.77e-11 1.23 
10 44677967 rs149399290 T C 3.09e-08 1.20 
10 44678218 rs17155463 T A 3.09e-08 1.20 

10 44678262 rs17155474 C T 3.09e-08 1.20 
10 44678454 rs17155478 T C 3.09e-08 1.20 
10 44678898 rs12249837 G A 3.09e-08 1.20 
10 44680902 rs10608969 T TAAAGA 3.09e-08 1.20 

Variants significantly associated with HIV-related NHL in a weighted Z-score-based meta-analysis of all individuals 
included in the SHCS, ANRS and MACS cohorts. Odds ratios (OR) were transformed from betas using the formula OR = 
exp(beta). 
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3.3.3 Fine	mapping	of	the	CXCL12	locus		

To identify the causal variant(s) among associated SNPs and determine their potential functional effects, 
we used a multi-level fine mapping approach, combining the statistical fine mapping tool PAINTOR to ob-
tain a 99% credible set and the deep learning framework DeepSEA to predict any effects on chromatin 
marks and transcription factor binding these variants may have.    

Using PAINTOR, we identified a single variant, rs7919208, having a high posterior probability (= 100%) of 
being causal among the 99% credible set based on the integration of the association results, LD structure 
and enrichment of genomic features in this locus (Figure 3.2).  

 

Figure 3.2. Fine mapping of genome-wide significant hits with PAINTOR. (A) The 99% credible set and posterior proba-
bilities of being the causal variant. The genomic positions are listed on the x-axis. Bottom tracks represent DNAase and 
chromatin marks obtained from GM12878 cells as well as TFBS from the Roadmap Epigenomics Project and ENCODE 
in the region. (B) Locus plot of the associated variants, highlighting the LD relationship, based on the SHCS cohort. The 
top variant rs7919208 is marked by a black diamond. 

 

Consistent with the PAINTOR result, DeepSEA also identified rs7919208 as the sole variant, among the 99% 
credible set, predicted to have a functional impact by significantly increasing the probability of binding by 
the B cell transcription factors BATF (log2 fold-change = 3.27) and JUND (log2 fold-change = 2.91) (Supple-
mentary Table 3.2). Further analysis of the genomic sequence surrounding rs7919208 and the JASPAR tran-
scription factor binding site (TFBS) motifs for BATF and JUND revealed that rs7919208 G->A polymorphism 
creates the TFBS motif required for the binding of these transcription factors (Figure 3.3A).  
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3.3.4 Long-range	chromatin	interactions	

To assess the potential functional links between the TFBS created in the presence of the minor allele of 
rs7919208 and the nearby genes, we performed an analysis of promoter capture Hi-C data and topological-
ly associating domains (TADs). We used the well-characterized GM12878 lymphoblastoid cell line produced 
by EBV transformation of B lymphocytes collected from a female European donor as model. 

 

Figure 3.3. Novel transcription factor binding site and long-range interactions. (A) Canonical motifs of BATF and JUND 
with the underlying genomic reference sequence and the nucleotide change caused by rs7919208. (B) Promoter cap-
ture Hi-C analysis in the GM12878 cell line of the region with the predicted causal variant and CXCL12. Variants and 
their level of association in the meta-analysis are marked in the inner grey circle. Genome-wide significant variants are 
colored green. Purple lines indicate significant interactions between promoter and other genomic regions. (C) TADs in 
the GM12878 cell line in the region of CXCL12. The yellow and blue boxes indicate the called TADs from the Hi-C con-
tact map above. The plot is centered on rs7919208. 

First, to examine the interaction potential of the rs7919208 region with nearby promoters, we analyzed 
available promoter capture Hi-C data obtained from the GM12878 cell line. This analysis revealed a signifi-
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cant interaction between the rs7919208 region and the CXCL12 promoter, suggesting a possible modulating 
impact of rs7919208 on the transcription of that gene (Figure 3.3B). Second, to further validate this ob-
served genomic interaction, we analyzed available TAD calls from GM12878 cells26, using the 3D Genome 
Browser for visualization27 (Figure 3.3C). We observed that rs7919208 is located within a large TAD togeth-
er with CXCL12, signifying the interaction potential of the new TFBS at rs7919208 and CXCL12.  

3.3.5 Transcriptomic	effects	of	rs7919208	

We did not observe any association between rs7919208 and mRNA expression levels of CXCL12 in periph-
eral blood or PBMCs from multiple publicly available datasets, including GTEx (v7)28, GEUVADIS29 and the 
Milieu Intérieur Consortium30 (Supplementary Figure 3.3). Of note, CXCL12 expression levels were very low 
in all datasets.   

HIV infection causes many profound transcriptomic changes.31 Thus, in order to examine the effect of 
rs7919208 on CXCL12 in the context of HIV infection, we extracted RNA from PBMCs of 452 individuals in 
the SHCS with available genotyping data and sequenced them using the Bulk RNA Barcoding and sequenc-
ing (BRB-seq) approach.32 However, the expression levels of CXCL12 were below the limit of detection for 
most individuals, preventing an eQTL analysis.  

3.3.6 No	replication	of	susceptibility	loci	found	in	the	general	population	

To assess whether the genetic contribution to the risk of developing NHL is similar or distinct in the HIV+ 
population compared to the general population, we extracted the p-values of all variants found to be ge-
nome-wide significant in previous GWAS performed in the general population14,21–24,33 and compared them 
to our results. We did not replicate any of the previously published genome-wide associated variants, even 
at nominal significance level (P < 0.05), despite sufficient statistical power for many of the variants, thus 
indicating that the genetic susceptibility of NHL is distinct between the HIV+ and the general population 
(Supplementary Table 3.3). To further examine this possibility, we tested whether the NHL/HIV+ associated 
variant rs7919208 is associated with an increased risk of NHL in the general population.  We performed a 
series of case/control GWAS of four NHL subtypes (CLL, DLBCL, FL and MZL) as well as a combined GWAS 
with all NHL subtypes (Supplementary Table 3.4; Supplementary Figure 3.4) and assessed the association 
evidence at rs7919208. We found no association between rs7919208 and any of the subtypes in the gen-
eral population, even at nominal significance.  

 

3.4 Discussion	
In this genome-wide analysis, including a total of 278 NHL HIV+ cases and 1924 HIV+ controls from three 
independent cohorts, we identified a novel NHL susceptibility locus on chromosome 10 near the CXCL12 
gene. The strong signal observed in the meta-analysis was driven by the associations detected in the SHCS 
and ANRS cohorts and there was no evidence of association in the MACS cohort.  Notably, most NHL cases 
in the MACS cohort date back to the pre-ART era, while only NHL cases diagnosed after the year 2000 were 
included in the SHCS and ANRS analyses. Conceivably, NHL occurring in the early years of the HIV pandemic 
may have been primarily driven by severe immunosuppression, which could have obscured any influence of 
human genetic variation among the cases in the MACS sample.  Precise phenotype definition is crucial in 
designing large-scale genetic studies since any environmental noise tends to decrease the likelihood of 
identifying potential genetic influences. 
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NHL is a relatively rare cancer even among HIV infected individuals, making it difficult to collect the large 
numbers of cases that would typically be included in contemporary genome-wide genetic studies. Indeed, a 
recent study from the Data Collection on Adverse events of Anti-HIV Drugs (D:A:D) group showed an NHL 
incidence rate of 1.17/1000 person-years of follow-up over the past 15 years (392 new cases in >40,000 
HIV-infected individuals).8 Still, we were able to obtain clinical and genetic data from a total of 278 patients 
with confirmed NHL diagnosis. By matching them with a larger number of controls from the same cohorts, 
we had enough power to identify associated variants of relatively large effects in the CXCL12 region.   

Several groups have already suggested a potential role for CXCL12 variation in HIV-related NHLs. A prospec-
tive study correlated increased CXCL12 expression with subsequent NHL development in HIV-infected chil-
dren but not in uninfected children.34 The number of A alleles at the CXCL12-3’ variant (rs1801157) has also 
previously been associated with an increased risk of developing HIV-related NHL during an 11.7 year follow-
up period.35 Thus, our data further support the role of CXCL12 as a critical modulator of the individual risk 
of developing NHL in the HIV population.  

The role of CXCL12 and its receptor chemokine receptor 4 (CXCR4) in cancer in the general population is 
well established, with the levels of CXCL12 and CXCR4 found to be increased in multiple types of cancer and 
to be associated with tumor progression.36,37 Furthermore, in vivo inhibition of either CXCR4 or CXCL12 
signaling is capable of disrupting early lymphoma development in severe combined immunodeficient (SCID) 
mice transfused with EBV+ PBMCs.38 These results and others have already led to the development and 
testing of several small molecules targeting either CXCL12 or CXCR4 to inhibit tumor progression.36  

We could not identify any significant relationship between rs7919208 and the expression levels of CXCL12 
in PBMCs or EBV transformed lymphocytes. This can be due to multiple factors such as the low expression 
levels of CXCL12 in most tissues, aside from stromal cells, or that rs7919208 through creation of the BATF 
and JUND binding site represent an induced or dynamic eQTL. These types of eQTLs are often found in re-
gions deprived of regulatory annotations, since these have been examined in static cell types.39 HIV-
induced overexpression of BATF40 could also explain why rs7919208 is only a risk factor in the HIV popula-
tion and not in the general population. Allele specific expression (ASE) analyses constitutes a novel method, 
with more power, which can uncover the effect of heterozygous variants on a given gene. In fact, recent 
ASE data from Pejman Mohammadi at the Scripps Research Institute within GTEx (v8) showed a significant 
positive effect of rs7919208 on the expression of CXCL12 in fibroblasts (P = 0.0006), supporting our findings 
that this variant increases the expression of CXCL12. Furthermore, the fact that this signal was only ob-
served in fibroblasts, the GTEx tissue most closely assembling stromal cells, underscores the clinical im-
portance of these cells in the development of HIV-related NHL.  

Previous analyses in the general population have discovered both shared and distinct associations for NHL 
subtypes.14,21–24,33 However, similar analyses were not possible in our sample since NHL subtype information 
was not available for many of our cases. Furthermore, information on serostatus for relevant co-infections 
with EBV or other oncogenic viruses was not available and could therefore not be assessed. In particular, 
EBV has been largely associated with the development of NHL and other lymphomas and is considered a 
driver of a subset of NHLs in the general population.41 Variants in the HLA region have consistently been 
associated with all NHL subtypes in HIV uninfected populations regardless of EBV serostatus. We did not 
find any evidence of HLA associations in our analyses of HIV-related NHL. This lack of replication of HLA 
variants and of all other previously identified risk variants from the general population suggests that dis-
tinct genes or pathways influence susceptibility to NHL in the HIV+ population compared to the general 
population.42  
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In summary, we have identified variants significantly associated with the development of NHL in the HIV 
population. Fine mapping of the associated locus and subsequent analyses of TADs, promoter capture Hi-C 
data as well as deep-learning models of mutational effects on transcription factor binding, points to a caus-
ative model involving the gain of a BATF and JUND transcription binding site downstream of CXCL12 capa-
ble of physically interacting with the CXCL12 promoter. These results suggest an important modulating role 
of CXCL12 in the development of HIV-related NHL.  

 

3.5 Methods	

3.5.1 Ethics	statement	

The Swiss HIV Cohort Study (SHCS), the Primo ANRS and ANRS CO16 Lymphovir cohorts (ANRS) and the 
Multicenter AIDS Cohort Study (MACS) cohorts have been approved by the competent ethics committees / 
institutional review boards of all participating institutions. A written informed consent, including consent 
for human genetic testing, was obtained from all study participants.  

3.5.2 Study	participants	and	contributing	centers	

Swiss HIV Cohort Study (SHCS) 

The SHCS is a large, ongoing, multicenter cohort study of HIV-positive individuals that includes >70% of 
adult living with HIV in Switzerland. At follow-up visits every 6 months, demographic, clinical, laboratory, 
and ART information has been prospectively recorded since 1988.43 Cancer diagnoses are verified thor-
oughly using checking charts including information on biopsies and imaging. To minimize potential treat-
ment bias and population stratification, we only considered as cases patients diagnosed with NHL between 
2000 and 2017 and of European ancestry, as determined by principal component analysis (PCA) (Supple-
mental Figure 3.1A). Controls were matched based on age, ancestry, CD4+ T cell counts and viral load re-
sults. To be eligible as controls, they also had to be diagnosed with HIV prior to 2005 and have no regis-
tered cancer diagnosis of any type as of 2017. Patients were genotyped using Illumina HumanOmniExpress-
24 Beadchips, or genotypes were obtained in the context of a previous GWAS in the SHCS on various plat-
forms including Illumina HumanCore-12, HumanHap550, Human610 and Human1M Beadchips.    

French Primo ANRS and ANRS CO16 Lymphovir cohorts (ANRS) 

The French ANRS CO16 lymphovir cohort of HIV related lymphomas enrolled adult patients at diagnosis of 
lymphoma in 32 centers between 2008 and 2015.44 Pathological materials were centralized, and diagnoses 
of NHL were based on World Health Organization criteria. Patients were genotyped using Illumina Human 
Omni5 Exome 4v beadchips. Additional cases and controls were included from the ANRS PRIMO Cohort, 
which has been enrolling patients during primary HIV-1 infection in 95 French Hospitals since 1996.45 Pa-
tients were genotyped using Illumina Sentrix Human Hap300 Beadchips. Only patients of European ances-
try, as determined by PCA, were included in the study (Supplemental Figure 3.1B). 

The Multicenter AIDS Cohort Study (MACS) 

The MACS has enrolled gay and bisexual HIV infected men in 4 US cities since 1984. The NHL cases were 
predominately diagnosed prior to the year 2000. Data collected include demographic variables (age, race, 
ethnicity and HIV transmission category), CD4+ T cell count, HIV viral load and tumor histology. Eligible cas-
es had a diagnosis of HIV-related NHL, available genotyping data and at least one CD4+ T cell count ob-
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tained within 2 years of the NHL diagnosis. Controls were matched on MACS study site, age at NHL diagno-
sis (+/- 2 years) and CD4+ T cell count at NHL diagnosis (within the following groups 0-99 / 100 -199 / 200-
499 / >499 cells/µL). Patients were genotyped using Illumina HumanHap550 and Human1M Beadchips.46 As 
in the other cohorts, only individuals of European ancestry were included, as determined by PCA (Supple-
mentary Figure 3.1C). 

3.5.3 Quality	control	and	imputation	of	genotyping	data	

The genotyping data from each cohort was filtered and imputed in a similar way, with each genotyping 
array processed separately to minimize potential batch effects. All variants were first flipped to the correct 
strand orientation with BCFTOOLS (v1.8) using the human genome build GRCh37 as reference. Variants 
were removed if they had a larger than 20% minor allele frequency (MAF) deviation from the 1000 ge-
nomes phase 3 EUR reference panel or if they showed a larger than 10% MAF deviation between genotyp-
ing chips in the same cohort. 

The QC filtered genotypes were phased with EAGLE247 and missing genotypes were imputed using PBWT48 
with the Sanger Imputation Service49, taking the 1000 Genomes Project Phase 3 panel as reference. Only 
high-quality variants with an imputation score (INFO > 0.8) were retained for further analyses.  

 Genome-wide association testing and meta-analysis 

To search for associations between human genomic variation and the development of HIV-related NHL, we 
first performed separate GWAS within each cohort (SHCS, ANRS and MACS) prior to combining the results 
in a meta-analysis.   

For each cohort separately, the imputed variants were filtered out using PLINK (v2.00a2LM)50 based on 
missingness (> 0.1), minor allele frequency (< 0.02) and deviation from Hardy-Weinberg Equilibrium (PHWE < 
1e-6). Determination of population structure and calculation of principal components was done using EI-
GENSTRAT (v6.1.4)51 and the HapMap3 reference panel52. All individuals not clustering with the European 
HapMap3 samples were excluded from further analyses. The samples were screened using KING (v2.1.3)53 
to ensure no duplicate or cryptic related samples were included. Single-marker case-control association 
analyses were performed using linear mixed models, with genetic relationship matrices calculated between 
pairs of individuals according to the leave-one-chromosome-out principle, as implemented in GCTA mlma-
loco (v1.91.4beta).54,55 Sex was included as a covariate, except in the MACS cohort, which only includes 
men.  

The results of the three GWAS were combined across cohorts using a weighted Z-score-based meta-analysis 
in PLINK (v1.90b5.4), after exclusion of the variants that were not present in all three cohorts.   

3.5.4 Fine	mapping	of	associated	regions	

Fine mapping of the CXCL12 locus was performed using PAINTOR (v3.1)56 to identify the most likely causal 
variant(s). All variants within 200kb of the top associated SNP and with a p-value below 0.005 were includ-
ed in the model. The linkage disequilibrium (LD) matrix was created using PLINK and genotype data from 
the SHCS cohort. PAINTOR was first run against all genomic annotation databases provided with the soft-
ware, including the FANTOM5, ENCODE and the Roadmap Epigenomics Project. For the final model, the top 
5 annotations based on improvement to model fit and cell type relevance were selected to obtain the pos-
terior probabilities and the 99% credible set of the variants most likely to be causal based on the associa-
tion from Bayes’ factors. 
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3.5.5 Predictive	effect	of	potentially	causal	variants	

The potential functional impact of the predicted causal variants was assessed using DeepSEA57, a deep 
learning-based sequence model trained on available chromatin and transcription factor data from ENCODE 
and Roadmap Epigenomics. DeepSEA provides a functional significance score for each variant, which is a 
measure of the evolutionary conservation and the significance of the magnitude of the predicted chromatin 
effects. For the variants with a functional significance score of less than 0.01, we analyzed the predicted 
changes in specific chromatin modifications or transcription factor (TF) binding probabilities. Chromatin or 
TF binding changes with E-values below 0.001 and normalized probabilities of observing a binding event 
above 0.2 were considered relevant. The TF position weight matrices (PWMs) for TFs with a high probability 
of binding (normalized probability ≥ 50%) were obtained from the JASPAR CORE 5.0 database.58 

3.5.6 Long-range	chromatin	interactions	

Predicted topological associating domains (TADs) near the genome-wide significant locus in GM12878 lym-
phoblastoid cells were obtained from publicly available data26 and visualized using the 3D Genome Brows-
er.27  

Potential interactions between the genome-wide significant locus and promoters of nearby genes were 
analyzed using publicly available promoter capture Hi-C data in GM12878 lymphoblastoid cells. The Hi-C 
data was processed through the CHiCAGO pipeline and visualized with CHiCP.59,60 Interaction scores ≥ 5 
were considered significant, as described previously.61  

3.5.7 Expression	quantitative	trait	loci	(eQTL)	analyses	

The role of rs7919208 as an eQTL was examined in GEUVADIS29 and in response to various pathogens, alt-
hough not including HIV, in the Milieu Intérieur Consortium cohort.30 Furthermore, eQTL information was 
also obtained from the GTEx (v7)28 Portal on 03/22/2019. 

Bulk RNA Barcoding and sequencing (BRB-seq)32 was performed on RNA from peripheral blood mononucle-
ar cells (PBMCs) of 452 individuals from the SHCS with available genotyping data. 

3.5.8 Comparison	to	GWAS	hits	in	the	general	population		

An attempt at replicating variants previously associated with NHL in the general population was performed 
by extraction of the p-values of the SNPs reported to be associated in previous NHL GWAS. A variant was 
considered replicated if it had a nominally significant association p-value (P < 0.05) plus similar effect direc-
tion in the meta-analysis. 

The effect of rs7919208 in the general population cohorts was assessed directly using the NIH database for 
Genotypes and Phenotypes (dbGaP) accession # phs000801 cohorts for chronic lymphocytic leukemia (CLL), 
DLBCL (Diffuse large B-cell lymphoma), FL (Follicular lymphoma) and MZL (Marginal zone lymphoma) and 
corresponding controls.14,22,23,62 The genotype data was imputed, processed and analyzed using the same 
pipeline and methods as described above for the HIV cohorts, with duplicate samples identified and re-
moved using KING and including age and sex as covariates. 

3.5.9 Statistical	analyses	

All statistical analyses were performed using the R statistical software (v3.3.3), unless otherwise specified. 
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3.5.10 Data	sharing	statement	

Full summary statistics will be made available in the GWAS catalog (https://www.ebi.ac.uk/gwas) upon 
publication. The raw genotype data can be obtained through the respective cohorts.  
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3.7 Supplementary	tables	and	figures	
 

Supplementary Table 3.1. Cohort level association statistics for genome-wide significant variants in the meta-analysis 

SNP ANRS 
BETA 

ANRS 
P 

SHCS  
BETA 

SHCS 
P 

MACS 
BETA 

MACS 
P 

rs7919208 0.32 2.78E-10 0.12 2.66E-03 -0.06 0.57 

rs149399290 0.28 7.93E-07 0.13 2.30E-03 -0.03 0.79 

rs17155463 0.28 7.93E-07 0.13 2.30E-03 -0.03 0.79 

rs17155474 0.28 7.93E-07 0.13 2.30E-03 -0.03 0.79 

rs17155478 0.28 7.93E-07 0.13 2.30E-03 -0.03 0.79 

rs12249837 0.28 7.93E-07 0.13 2.30E-03 -0.03 0.79 

rs10608969 0.28 7.93E-07 0.13 2.30E-03 -0.03 0.79 

The analyses were performed using linear mixed models with GCTA within each cohort. No associations were seen in 
the MACS cohort. P-values and beta values are presented to show the level and direction of the association. 
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Supplementary Table 3.2. Top predicted changes associated with rs7919208 allelic variation in GM12878 

Transcription 
factor 

Effect 
(Log2fold 
change) 

E-value Normalized 
Prob. 
(Reference) 

Normalized 
Prob.  
(Alternative) 

BATF 3.27 0.00004 0.13 0.60 

JUND 2.91 0.00009 0.12 0.50 

MEF2A 2.06 0.00026 0.09 0.28 

MEF2C 1.98 0.00022 0.08 0.26 

BCL11A 2.19 0.00040 0.07 0.25 

P300 1.74 0.00055 0.08 0.22 

IRF4 2.12 0.00033 0.06 0.21 

Significant changes induced by rs7919208 as predicted by DeepSEA for transcription factors with a normalized proba-
bility (Prob.) above 0.20 in the GM12878 lymphoblastoid cell line. The E-value is the expected proportion of variants 
with a larger predicted effect between the reference and alternative allele for a certain chromatin feature based on 
predicted effects calculated for variants in The 1000 Genomes Project. 
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Supplementary Table 3.3. Comparisons with genome-wide significant variants identified in GWAS of NHL in the gen-
eral population 

SNP Gene Publication Sub-
type 

META 
P 

SHCS 
P 

ANRS 
P 

MACS 
P 

OR Mea
n 
MAF 

POW-
ER 
(P<0.0
5) 

PO
P 

rs1164461
71 

EXOC2 Cerhan et al.14 DLBCL NA NA NA 0.08 2.2
0 

0.01 58% EU
R 

rs1219558
2 

HLA 
region 

Skibola et al.22 FL 0.33 0.47 0.51 NA 1.7
8 

0.41 100% EU
R 

rs1228996
1 

LPXN Vijai et al. 
(2013)21 

DLBCL+
FL 

0.88 0.40 0.14 0.46 1.2
9 

0.22 74% EU
R 

rs1325499
0 

PVT1 Skibola et al.22 FL 0.75 NA 0.58 0.82 1.1
8 

0.32 48% EU
R 

rs1325529
2 

PVT1 Cerhan et al.14 DLBCL 0.83 NA 0.72 0.90 1.2
2 

0.32 62% EU
R 

rs1720361
2 

HLA class 
II 

Skibola et al.22 FL NA 0.82 NA NA 1.4
4 

0.38 98% EU
R 

rs1774956
1 

BCL2 Skibola et al.22 FL 0.74 NA 0.72 0.98 1.3
4 

0.10 61% EU
R 

rs2523607 HLA-B Cerhan et al.14 DLBCL 0.50 0.30 0.77 NA 1.3
2 

0.08 49% EU
R 

rs2922994 HLA-B Vijai et al. 
(2015)23 

MZL 0.55 0.30 0.66 NA 1.6
4 

0.08 93% EU
R 

rs3130437 HLA class 
I 

Skibola et al.22 FL 0.33 0.47 NA 0.46 1.2
3 

0.38 68% EU
R 

rs4733601 PVT1 Cerhan et al.14 DLBCL 0.29 NA 0.38 0.57 1.1
8 

0.49 51% EU
R 

rs4937362 ETS1 Skibola et al.22 FL 0.62 0.61 0.90 NA 1.1
7 

0.45 47% EU
R 

rs4938573 CXCR5 Skibola et al.22 FL 0.60 0.25 0.72 0.18 1.3
4 

0.19 81% EU
R 

rs6444305 LPP Skibola et al.22 FL NA NA NA NA 1.2
1 

NA NA EU
R 

rs6457327 HLA Lim et al.53 DLBCL+
FL 

0.66 0.80 0.85 0.18 1.3
0 

0.35 85% EU
R 

rs6773854 BCL6 Tan et al.22 DLBCL 0.30 0.51 0.73 0.07 1.4
4 

0.21 95% CH
N 

rs7948087
1 

NCOA1 Cerhan et al.14 DLBCL NA NA NA NA 1.3
4 

0.08 54% EU
R 

rs9461741 BTNL2 Vijai et al. 
(2015)23 

MZL 0.97 0.72 0.67 NA 2.6
6 

0.03 99% EU
R 

Comparisons with genome-wide significant variants identified in published GWAS of NHL in the general population. 
The NHL subtypes includes DLBCL (Diffuse large B-cell lymphoma), FL (Follicular lymphoma) and MZL (Marginal zone 
lymphoma). P-values for the HIV meta-analysis and the individual cohort GWAS are shown per variant. The statistical 
power to replicate the published variants under an additive model at P < 0.05, given their published odds ratios (OR) 
and the mean observed minor allele frequencies (MAF) in the HIV cohorts is also listed. Most of the published GWAS 
was on European (EUR) patients and Chinese (CHN).  
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Supplementary Table 3.4. The effect of rs7919208 in GWAS in the general population 

Subtype Cases Controls Lambda P (rs7919208) OR (rs7919208) 

CLL 1033 2635 1.04 0.29 0.97 

DLBCL 2173 2635 1.04 0.65 1.01 

FL 1753 2635 1.03 0.36 0.97 

MZL 617 2635 1.01 0.56 0.98 

Combined 5556 2635 1.04 0.60 0.99 

The association of rs7919208 in the general (non-HIV) population across NHL subtypes. Lambda indicates the genome-
wide inflation factor for the GWAS performed for each subtype to ensure the test-statistics observed are valid. The 
calculated p-values and odds ratios for rs7919208 are listed for each GWAS. 
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Supplementary Figure 3.1. Principal component analyses (PCA) with the HapMap project. The black crosses represent 
individuals genotyped and included in this study. Individuals of European ancestry colocalizes with the HapMap refer-
ence samples from CEU (Northern Europeans from Utah) and TSI (Tuscans from Italy). (A) The SHCS cohort. (B) The 
ANRS cohort. (C) The MACS cohort. 
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Supplementary Figure 3.2. Quantile-quantile plots for the initial cohort level GWAS. Lambda indicates the genome-
wide inflation factor. Values ~1 denotes the lack of genomic inflation due to confounding factors. (A) Plot for the 
GWAS in the SHCS cohort. (B) Plot or the GWAS in the ANRS cohort. (C) Plot for the GWAS in the ANRS cohort. 

 

 

 

 

 

 

 

 



 

81 

 

Supplementary Figure 3.3. eQTL information on rs7919208. (A) Expression levels of CXCL12 in EBV transformed lym-
phocytes from the GEUVADIS consortium according to the rs7919208 genotype. Differences between genotype 
groups were tested using Wilcoxon rank-sum tests with the obtained p-values shown on the figures. (B) Relationship 
between CXCL12 and the rs7919208 genotype in GTEx across EBV transformed lymphocytes, Spleen and Whole Blood. 
(C) Relationship between CXCL12 expression and rs1919208 using Nanostring in the Milieu Interieur Consortium for 
stimulated and non-stimulated (NS) PBMCs. Stimulants used were Mycobacterium bovis (BCG), Candida albicans, 
Escherichia coli, Influenza A virus (IAV), Staphylococcus aureus and Staphylococcal enterotoxin B (SEB). 
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Supplementary Figure 3.4. Quantile-quantile plots for the general population NHL GWAS. Lambda indicates the ge-
nome-wide inflation factor. Values ~1 denotes the lack of genomic inflation due to confounding factors. (A) Plot for 
the GWAS of all NHL subtypes combined. (B) Plot for GWAS of chronic lymphocytic leukemia (CLL). (C) Plot for Diffuse 
large B-cell lymphoma (DLBCL). (D) Plot for Follicular lymphoma. (E) Plot for Marginal zone lymphoma (MZL). 
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4.1 Abstract								
Background: In HIV, the relative contribution of genetic background, clinical risk factors, and antiretrovirals 
to chronic kidney disease (CKD) is unknown. 

Methods: We applied a case-control design and performed genome-wide genotyping in white Swiss HIV 
Cohort participants with normal baseline estimated glomerular filtration rate (eGFR >90 mL/min/1.73 m2). 
Uni- and multivariable CKD odds ratios (OR) were calculated based on the D:A:D score that summarizes 
clinical CKD risk factors and a polygenic risk score that summarizes genetic information from 86613 single 
nucleotide polymorphisms.. 

Results: We included 743 cases (79% male; median age, 42 years; baseline eGFR 106 mL/min/1.73 m2) with 
confirmed eGFR drop to <60 mL/min/1.73 m2 (n=144) or >25% eGFR drop to <90 mL/min/1.73 m2 (n=599), 
and 322 controls (eGFR drop <15%; 81% male; median age, 39 years, baseline eGFR 107 mL/min/1.73 m2). 
Polygenic risk score and D:A:D score contributed to CKD. In multivariable analysis, CKD ORs were 2.13 (95% 
confidence interval, 1.55-2.97) in participants in the 4th (most unfavorable) vs. 1st (most favorable) genetic 
score quartile; 1.94 (1.37-2.65) in the 4th vs. 1st D:A:D score quartile; and 2.98 (2.02-4.66), 1.70 (1.29-2.29), 
and 1.83 (1.45-2.40), per 5-years exposure to atazanavir/ritonavir, lopinavir/ritonavir, and tenofovir 
disoproxil fumarate, respectively. Participants in the 1st genetic score quartile had no increased CKD risk, 
even if they were in the 4th D:A:D score quartile.   

Conclusions: Genetic score increased CKD risk similar to clinical D:A:D score and potentially nephrotoxic 
antiretrovirals. Irrespective of D:A:D score, individuals with the most favorable genetic background may be 
protected against CKD. 
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4.2 Introduction	
Chronic kidney disease (CKD) is a major long-term concern in HIV-positive persons.[1-4] The D:A:D study, 
the largest consortium of observational HIV studies with rigorous endpoint ascertainment and validation, 
has documented clinical and HIV-related risk factors for CKD, which can be summarized in a 9-item risk 
score.[5] HIV-positive persons with low, medium and high risk D:A:D score had a 1:393, 1:47, and 1:6 
chance of developing CKD over 5 years.[5] In addition, the D:A:D study described atazanavir/ritonavir 
(ATV/r), lopinavir/ritonavir (LPV/r), and tenofovir disoproxil fumarate (TDF) as being associated with an 
increased CKD incidence rate in HIV-positive persons with normal kidney function at baseline.[6]   

CKD has a strong hereditary component.[7-9] Genetic studies of CKD in HIV have focused on HIV-associated 
nephropathy (HIVAN) which develops predominantly in persons of African ancestry with untreated HIV 
infection, and there is a strong association with APOL1 gene variants.[10,11] Candidate gene studies have 
suggested an association of e.g. ABCC2 polymorphisms and TDF-associated kidney dysfunction in HIV, but 
were limited by the assessment of single or few gene variants only, by their cross-sectional design, and 
small study populations.[12,13]  

Genome-wide association studies (GWAS) have now identified >50 common genetic variants that reproduc-
ibly contribute to CKD in the general population.[7-9] The aim of the present study was therefore to quanti-
tate the contribution of genome-wide genetic variation to CKD in HIV-positive participants. Analyzed in the 
context of clinical risk factors (summarized in the D:A:D score) and potentially nephrotoxic antiretroviral 
drugs, we hypothesized that genetic background may partially explain CKD risk in HIV. Our study represents 
the most comprehensive genetics–CKD evaluation undertaken to date in HIV-positive persons.  

 

4.3 Methods	

4.3.1 Study	population	

Eligible participants included HIV-positive persons enrolled in the Swiss HIV Cohort Study (www.shcs.ch), 
with >3 months follow-up after 1.1.2004. The study was approved by the respective local ethics commit-
tees. Participants provided written informed consent for genetic testing. Baseline was defined as first esti-
mated glomerular filtration rate (eGFR) measured after 1.1.2004. CKD cases included participants with 
normal baseline eGFR (>90 mL/min/1.73 m2; using the CKD-EPI formula) who developed a CKD event during 
follow-up, as defined in the D:A:D study[6] and in the renal subproject of the START trial, i.e. eGFR drop to 
<60 mL/min/1.73 m2, confirmed over a >90 day period. Because only 1% of D:A:D study participants with 
normal baseline eGFR later experienced an eGFR drop to <60 mL/min/1.73 m2 [6]), we also included partic-
ipants who developed mild CKD, defined as >25% eGFR drop to <90 mL/min/1.73 m2, confirmed over a >90 
day period. To better separate the phenotypes of cases and controls, and thereby to increase power to 
detect genetic effects, [14,15] only participants with <15% eGFR drop at last SHCS follow-up were eligible as 
controls. Only controls with GWAS genotyping data already available were included. Because previous CKD 
GWAS in the general population were conducted in populations of predominantly European descent,[7-9] 
the study was restricted to participants of European descent.  
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4.3.2 Case-control	matching	

We performed 1:1 matching. The last available eGFR measurement of controls had to be after the CKD 
event date of the corresponding case. Matching was done using incidence density sampling, 11 i.e. controls 
were required to have the first available eGFR measurement +/- 1 year of the corresponding case. In other 
words, controls were matched on similar follow-up duration, and their observation period was at similar 
calendar times, in an effort to correct for differences in potentially nephrotoxic ART compounds in use at 
different times and other differences during the study period. More specifically, cases and controls were 
put in random order and cases were sequentially matched to a control, which was then removed from the 
list of potential controls. While baseline characteristics of cases at the time of their first available eGFR de-
termination remained unchanged, controls could be matched to different cases in the 2000 re-sampled 
datasets. As a consequence, their baseline characteristics (i.e. eGFR measurement within +/- 1 year of the 
first available eGFR of the respective case, and last eGFR measurement after the CKD event date of the 
corresponding case) could vary. Therefore, we present averaged values of the time-varying baseline charac-
teristics of controls. 

Since we had more cases than controls, only a subset of cases was successfully matched, and we therefore 
repeated the matching process 2000 times with random re-sampling from cases and controls.[16] This 
bootstrap resampling method yielded effect estimates (CKD odds ratio) for both D:A:D score and genetic 
score with appropriately narrow confidence intervals (Supplementary Figure 4.1).  

4.3.3 Genotyping	and	Quality	Control	

DNA samples obtained from peripheral blood mononuclear cells were genotyped with the Infinium CoreEx-
ome-24 BeadChip (Illumina, San Diego, CA), or in the context of previous GWAS in the SHCS.  

SHCS control participants were previously genome-wide genotyped using various platforms including the 
HumanCore-12, HumanHap550, Human610, Human1M and HumanOmniExpress-24 BeadChips (Illumina, 
San Diego, CA). Each cohort was filtered and imputed separately, with variants first flipped to the correct 
strand with BCFTOOLS (v1.8) according to the human GRCh37 reference genome and filtered based on a 
<20% deviation from the 1000 genomes phase 3 EUR reference panel. Genotypes were phased and missing 
genotypes were imputed with EAGLE2 and PBWT respectively,[28,29] using the 1000 Genomes Project 
Phase 3 reference panel on the Sanger Imputation Service.[30] Study participants were filtered based on 
European ancestry, while imputed variants were filtered by minor allele frequency (>1%), missingness 
(>10%), deviation from Hardy-Weinberg equilibrium (P < 1e-6) and an imputation quality score (INFO>0.8). 
The filtered genotypes were then combined using PLINK (v1.90b5) prior to analyses.[31]  

4.3.4 Non-genetic	CKD	risk	factors	

Only variables included in the D:A:D score[5] were used, i.e. mode of HIV transmission, hepatitis C co-
infection, age, baseline eGFR, gender, CD4 nadir, hypertension, prior cardiovascular disease, and diabetes 
mellitus. Each antiretroviral agent is recorded with start and stop dates in the SHCS database. We adjusted 
only for those ART exposures that contributed to CKD in patients with normal baseline eGFR in the D:A:D 
study,[6] i.e.  cumulative exposure to ATV/r, LPV/r, and TDF. Hypertension was defined as blood pressure 
>140/90 mmHg or use of antihypertensive medication. Diabetes mellitus was diagnosed with confirmed 
plasma glucose >7.0 mmol/L (fasting) or >11.1 (non-fasting), or use of antidiabetic medication.  
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4.3.5 Genome-wide	Polygenic	Risk	Score	

The effect estimate for each SNP included in the polygenic risk score (“genetic score”) was obtained from 
the summary statistics in a recent genetic meta-analysis reference paper of eGFR.[7] The genetic score was 
calculated with PRSice (v1.1.3b),[17] using p-value thresholding to identify the best model, because includ-
ing common variants of smaller effect sizes in addition to only the genome-wide significant variants has 
been shown to increase the predictive power of genetic risk scores. [18-20] The final genetic score model 
included 86’813 independent SNPs after clumping.[7] 

Prior to matching of the imputed SNPs with the SNPs included in the reference paper, the imputed SNPs 
were filtered by missingness (>10%), minor allele frequency (>1%), Hardy-Weinberg equilibrium (P <1e-6) 
and also clumped (r2=0.8), to control for SNPs in linkage disequilibrium. 

We excluded future case patients from potentially serving as controls until the CKD event date,[32] because 
it makes no sense that individual genetic background could both be permissive for and protective against 
CKD. Also, extending on previous non-genetic studies,[28,29] we avoided re-using control patients for mul-
tiple cases because, according to Robins,[33]  this would cause biased results if cases themselves do not 
serve as controls until CKD diagnosis. 

4.3.6 Statistical	analyses	

Univariable and multivariable conditional logistic regression analyses were used to estimate associations of 
the different quartiles of the genetic and D:A:D scores with CKD events for each of the 2000 case-control 
sets. The indicators of quartiles and not the scores themselves were included in the models.  In multivaria-
ble analyses, we included the cumulative exposure to ATV/r, LPV/r, and TDF per 5 years use until the event 
date among cases, or, for controls, up to the CKD event date of the corresponding case. To assess any po-
tential effect modification of the D:A:D score by the genetic score, we added a model with an interaction 
term between genetic and D:A:D scores. The average odds ratio was then calculated as the antilog of the 
mean of the 2000 log-transformed odds ratios, and the 95% confidence interval was based on the 2.5 and 
97.5 percentiles. We used Stata/SE 15.1 (StataCorp, College Station, TX, USA). 

4.3.7 Sensitivity	analyses	

To capture the genetic effect in subgroups of participants who develop different degrees of kidney impair-
ment, we performed sensitivity analyses, defining CKD as either (i) eGFR drop to <60 mL/min/1.73 m2; (ii) 
eGFR drop  >25% to <70 mL/min/1.73 m2  ; (iii) or as eGFR drop to <60 mL/min/1.73 m2  OR of >40%. In fur-
ther sensitivity analyses, we excluded participants treated with; (i) dolutegravir, (ii) any integrase inhibitor, 
(iii) cobicistat, and (iv) rilpivirine, because these ART agents can increase serum creatinine (eGFR) without 
changing the actual GFR [21][22]. To quantify the potential bias introduced by the imbalance of matching 
frequencies we added a sensitivity analysis in which cases and controls were weighted with the inverse 
probability of being sampled, i.e. participants who were sampled less often were attributed more weight. 

4.3.8 Exploratory	 genome-wide	 association	 analysis	 and	 analysis	 of	 previously	 published	
candidate	SNP	

In an exploratory GWAS, we separately tested all genotyped or imputed SNPs on the genetic arrays for as-
sociation with CKD. We also attempted to replicate previously published associations between candidate 
SNPs (Supplementary Table 4.1) and CKD by extraction of the p-values from the exploratory GWAS. A SNP 
was considered replicated if found nominally significant (P<0.05).  
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The SNPs included in exploratory GWAS were filtered as for the genetic score by missingness (>10%), minor 
allele frequency (>1%), Hardy-Weinberg equilibrium (P <1e-6). The associations were computed using linear 
mixed models with genetic relationship matrixes calculated between pairs of individuals after the leave-
one-chromosome-out principal as implemented in GCTA mlma-loco (v1.91.4beta) with age as covariab-
le.[34,35] The genomic inflation factor, lambda, was 1.02. 

 

4.4 Results	

4.4.1 Participants,	CKD	events	

 We included 743 cases with confirmed eGFR drop to <60 mL/min/1.73 m2 (n=144) or eGFR drop >25% to 
<90 mL/min/1.73 m2 (n=599). We included 335 controls with eGFR drop of <15% during the observation 
period, of whom 322 were successfully matched to a case. All cases were matched 377-2000 (out of 2000) 
times, with a median (IQR) of 660 (565-916) times. Only 6 cases were matched <500 times. All analyses are 
therefore based on 1065 participants whose baseline characteristics are shown in Table 4.1. There were 
20% women and the median age at CKD event date was 41 years. Cases and controls had similar baseline 
eGFR (106 mL/min/1.73 m2); cases were slightly older, less likely to be injection drug users or to be hepati-
tis C co-infected, had lower CD4 nadir, were more likely to have diabetes, and exposure to ATV/r, LPV/r, 
and TDF was longer.  
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Table 4.1. Characteristics of cases and controls 

Notes. Data are no. (%) of participants, unless otherwise indicated. *at baseline +/- 1 year. **all CKD cases and con-
trols, irrespective of whether ever treated with the respective ART drug or not. ***only those CKD cases and controls 
who were ever treated with the respective ART drug. CI, confidence interval; eGFR, estimated glomerular filtration 
rate; IDU, injection drug use; MSM, men who have sex with men; n.a., not applicable 

 

 

  Entire Case Popula-
tion (n=743) 

Cases with eGFR 
drop to <60 

mL/min/1.73 m2  

(n=144) 

Controls (n=322) 

Male gender, n (%)  587 (79) 109 (76) 261 (81) 

Age (years), median (interquartile 
range)  42 (36-47) 45 (41-54) 39 (34-44) 

Baseline eGFR (mL/min/1.73 m2), 
median (interquartile range)  106 (99-113) 100 (95-107) 107 (98-115) 

Median (IQR) time from baseline 
to CKD date (years), median (IQR)  7.74 (4.98 - 10.81) 9.72 (7.37-12.18) n.a. 

Presumed mode of HIV transmis-
sion, n (%) heterosexual 201 (27) 39 (27) 87 (27) 

 MSM 380 (51) 64 (44) 126 (39) 

 IDU 137 (18) 34 (24) 101 (31) 

 other 25 (3) 7 (5) 8 (2) 

Current* smoking, n (%)  410 (55) 78 (54) 241 (76) 

Hepatitis C co-infection, n (%)  198 (27) 42 (29) 141 (44) 

Duration of atazanavir-ritonavir 
treatment (years), median (IQR) 

All participants** 

Ever exposed*** 

0 (0-0.97) 

2.49 (0.78-4.94) 

0 (0-2.77) 

3.61 (1.42-6.81) 

0 (0-0.0) 

1.63 (0.18-3.48) 

Duration of lopinavir-ritonavir 
treatment (years), median (IQR) 

All participants** 

Ever exposed*** 

0 (0-1.17) 

2.11 (0.70-4.92) 

0 (0-1.55) 

2.76 (1.11-5.2) 

0 (0-0.10) 

1.65 (0.62-4.00) 

Duration of tenofovir disoproxil 
fumarate treatment (years), me-
dian (IQR) 

All participants** 

Ever exposed*** 

4.52 (1.76-7.03) 

5.11 (2.67-7.38) 

6.68 (2.76-9.18) 

7.19 (3.85-9.60) 

1.75 (0-5.21) 

4.19 (1.47-6.05) 

CD4+ T-cell count nadir (IQR), 
(cells/μL)  209 (64-370) 152 (43-295) 280 (150-405) 

Hypertension  89 (12) 22 (15) 40 (12) 

Prior cardiovascular disease  12 (1.6) 3 (2.1) 5 (1.6) 

Diabetes mellitus  23 (3.1) 6 (4) 5 (1.6) 
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4.4.2 CKD	risks	according	to	clinical	D:A:D	score,	genetic	score,	and	ART,	univariable	anal-
yses	

CKD odds ratio was associated with D:A:D score, genetic score, and cumulative ATV/r, LPV/r, and TDF expo-
sure in univariable analyses (Figure 4.1A). Compared to the first (most favorable) D:A:D score quartile, par-
ticipants in the 2nd, 3rd, and 4th (most unfavorable) quartiles had CKD odds ratios (OR) of 1.51 (95% confi-
dence interval, 1.11-2.03), 1.77 (1.36-2.35), and 2.32 (1.70-3.06), respectively. Compared to the 1st (most 
favorable) genetic score quartile, participants in the 2nd, 3rd, and 4th (most unfavorable) quartiles had CKD 
OR of 1.12 (0.86-1.46), 1.46 (1.16-1.84), and 1.88 (1.47-2.45), respectively. Cumulative 5-year exposure to 
ATV/r, LPV/r, and TDF was associated with CKD OR of 2.93 (2.05-4.45), 1.64 (1.32-2.06), and 1.96 (1.59-
2.52), respectively.  

 

Figure 4.1. CKD odds ratio according to quartiles of genetic score, quartiles of D:A:D score, and per 5-year antiretrovi-
ral exposures. Uni- and multivariable conditional logistic regression of associations with CKD. Results are pooled esti-
mates from 2000 re-sampled 1:1 case-control pairs involving 743 cases and 322 controls. Multivariable models are 
adjusted for all variables displayed, i.e. for genetic score, D:A:D score, and drug exposures, respectively. 
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4.4.3 CKD	risks	according	to	clinical	D:A:D	Score,	genetic	score,	and	ART,	multivariable	anal-
yses	

CKD odds ratio remained associated with D:A:D score, genetic score, and cumulative ATV/r, LPV/r, and TDF 
exposure in multivariable analyses (Figure 4.1A). Compared to the first D:A:D score quartile, participants in 
the 2nd, 3rd, and 4th quartiles had CKD odds ratios (OR) of 1.43 (1.00-2.00), 1.53 (1.11-2.10), and 1.94 (1.37-
2.65), respectively. Compared to the 1st genetic score quartile, participants in the 2nd, 3rd, and 4th quartiles 
had CKD OR of 1.25 (0.89-1.77), 1.70 (1.26-2.27), and 2.13 (1.55-2.97), respectively. Cumulative 5-year ex-
posure to ATV/r, LPV/r, and TDF was associated with CKD OR of 2.98 (2.02-4.66), 1.70 (1.29-2.29), and 1.83 
(1.45-2.40), respectively.  

 

4.4.4 Interaction	of	clinical	and	genetic	risk	score,	adjusted	for	ART	exposure	

To evaluate whether genetic background modifies the clinical CKD odds ratio captured in the D:A:D score, 
we introduced an D:A:D score - genetic score interaction term to the multivariable model. The low CKD risk 
in the most favorable 1st D:A:D score quartile was not significantly modified by the participant’s genetic 
score quartile (Figure 4.2, Supplementary Table 4.2). Participants in the 2nd D:A:D score quartile only had a 
significantly increased CKD odds ratio when they were in the most unfavorable (4th) genetic score quartile, 
when compared to the most favorable profile (D:A:D quartile 1, genetic score quartile 1). For participants in 
the highest (4th) CKD risk D:A:D score quartile there was no evidence for an increased CKD odds ratio when 
they had the most favorable genetic score (1st quartile).  

 

Figure 4.2. CKD odds ratios according to quartiles of genetic score and quartiles of D:A:D score, adjusted for antiretro-
viral exposures. The first of these 16 groups, i.e., participants who are in D:A:D score quartile 1 and in genetic score 
quartile 1, is the reference (odds ratio = 1, without confidence interval). The adjusted odds ratios and 95% confidence 
intervals displayed here in Figure 4.2 are tabulated in Supplementary Table 4.2. Results from two conditional logistic 
regression analyses of associations with CKD. Results are pooled estimates from 2000 re-sampled 1:1 case-control 
pairs involving 743 cases and 322 controls. The leftmost four bars show estimates for quartiles of the D:A:D risk score 
adjusted for drug exposure to ATV/r, LPV/r, and TDF, without consideration of genetic score. Participants are then 
stratified into 16 groups by genetic score quartile (quartile 1, 2, 3, and 4) and by D:A:D score quartile (quartile 1, 2, 3, 
and 4), and these odds ratios are also adjusted for ATV/r, LPV/r, and TDF exposure.  
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4.4.5 Sensitivity	analyses	–	additional	CKD	case	definitions	

When restricting the analyses to CKD cases with eGFR drop to <60 mL/min/1.73 m2 (n=144), this case popu-
lation was older, had lower baseline eGFR, and time to CKD event was longer compared to the entire case 
population (Table 4.1). CKD odds ratio remained associated with D:A:D score, genetic score, and cumulative 
ATV/r, LPV/r, and TDF exposure in uni- and multivariable analyses (Figure 4.1B). In multivariable analysis, 
compared to the first D:A:D score quartile, participants in the 2nd, 3rd, and 4th quartiles had CKD OR of 1.22 
(.78-1.97), 2.71 (1.93-3.94), and 11.97 (7.61-22.17), respectively. Compared to the 1st genetic score quartile, 
participants in the 2nd, 3rd, and 4th quartiles had CKD OR of 2.74 (1-90-4.18), 2.33 (1.67-3.46), and 2.79 
(1.81-4.43), respectively (see also Supplementary Table 4.3).  

Results were similar when applying the intermediate CKD case definitions (i.e. >25% eGFR drop to <70 
mL/min/1.73 m2 [n=449]; or as eGFR drop to <60 mL/min/1.73 m2  OR of >40%; n=204) (Supplementary 
Table 4.3). 

4.4.6 Sensitivity	analyses	–	exclusion	of	certain	ART	agents	

When participants treated with dolutegravir (n=146) were excluded, genetic score remained significantly 
associated with CKD but the effect size was slightly attenuated (Supplementary Table 4.4). For example, in 
the 4th vs. 1st genetic score quartile, CKD OR was 1.80 (1.34-2.47) and 1.96 (1.33-2.95) in univariable and 
multivariable models, respectively. When all participants treated with any integrase inhibitor (n=244) were 
excluded, genetic score remained significantly associated with CKD but the effect size was attenuated 
(Supplementary Table 4.5). For example, in the 4th vs. 1st genetic score quartile, CKD OR was 1.58 (1.15-
2.20) and 1.68 (1.10-2.61) in univariable and multivariable models, respectively. When participants treated 
with rilpivirine and cobicistat were excluded, results remained essentially unchanged (Supplementary Ta-
bles 4.6 and 4.7).  

4.4.7 Sensitivity	analysis	–	weighting	of	 cases	and	controls	with	 the	 inverse	probability	of	
being	sampled	

Results remained very similar when patients who were sampled less often get more weight (Supplemen-
tary Table 4.8; Supplementary Figure 4.3 and 4.4). 

4.4.8 Exploratory	GWAS,	candidate	SNP	replication	analysis	

In exploratory GWAS, no SNPs were found to be genome-wide significant (P<5e-8, Supplementary Figure 
4.2). Of 59 previously published candidate SNPs, 2 SNPs replicated as nominally significant, with P-values of 
0.03 and 0.05 in the GWAS (Supplementary Table 4.1). 

 

4.5 Discussion	
Our findings suggest that in white HIV-positive individuals an unfavorable genetic background increases the 
incidence of CKD approximately 2-fold. This genetic effect size was similar to the well validated D:A:D score 
[5,6], and similar to the CKD effect of 5 years treatment with LPV/r or TDF, but smaller than the CKD effect 
of 5 years ATV/r treatment. The genetic score appears robust, because in multivariable analyses and in 
sensitivity analyses, it remained independently associated with CKD after adjusting for D:A:D score and for 
potentially nephrotoxic ART. To our knowledge, this is the first application of a genome-wide polygenic risk 
score and its integration with clinical risk factors and ART exposure to better explain individual CKD risk in 
HIV-positive persons.  
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Our results further suggest that the individual CKD risk captured in the D:A:D score can additionally be 
stratified by knowledge of genetic background, based on our identification of a clinically relevant interac-
tion between genetic score and D:A:D score. Most importantly, even individuals in the highest clinical risk 
category (4th D:A:D score quartile) were protected against CKD if they had the most favorable genetic back-
ground (1st genetic score quartile). Therefore, a favorable genetic background might explain why certain 
HIV-positive persons with high clinical CKD risk may not develop CKD, even in the presence of multiple clini-
cal risk factors. Conversely, the most unfavorable genetic background was associated with CKD even with a 
relatively low D:A:D score (2nd quartile), but was not associated with CKD with the lowest risk D:A:D quar-
tile, highlighting the interaction of genetic and clinical CKD risk factors. 

The polygenic risk score may predict more severe CKD better than milder degrees of CKD. The effect size of 
unfavorable genetic background increased from an approximately 2-fold to an almost 3-fold increased CKD 
odds ratio, when restricting the analyses to those with eGFR drop to <60 mL/min/1.73m2. In these partici-
pants, D:A:D score was the strongest predictor of CKD, with the effect size increasing from approx. 2-fold 
increased CKD odds ratio, as in the entire case population, to an approx. 12-fold increase. This was not un-
expected, because the variable with by far the largest effect size in the D:A:D score is age, [5] and those 
with eGFR drop to <60 mL/min/1.73m2 were older (median age 45 vs. 41 years in the entire case popula-
tion). In addition, the D:A:D score was developed in a population with eGFR drop to <60 mL/min/1.73m2), 
[5] and not in the much larger segment of individuals with eGFR 60-89 mL/min/1.73m2.  

We exploited clinical, laboratory, and HIV-related data from >1000 HIV-positive participants prospectively 
followed at regular intervals in the well-established Swiss HIV Cohort Study. This allowed the consideration 
of all relevant CKD-related risk factors and co-morbidities,[5] and of  potentially nephrotoxic ART.[6] The 
polygenic CKD risk score we used summarizes the genome-wide risk captured by >86’000 SNPs.[7-9] We 
applied rigorous quality control of the genotyping data, excluded population outliers and corrected for re-
sidual population stratification. As in our previous genetic studies of dyslipidemia,[23] diabetes melli-
tus,[24] coronary artery disease events,[25] and osteoporotic fractures,[26] we based SNP selection on 
large previous GWAS meta-analyses in the general population.[7-9] As expected, we were unable to con-
firm most previous candidate-gene kidney association studies in HIV.[12,13]  

CKD definitions rely on ultimately arbitrary degrees of eGFR drop, therefore we used a CKD case definition 
(normal baseline eGFR with subsequent drop to <60 mL/min/1.73 m2) extensively validated in the D:A:D 
study[6] and in the renal substudy of the START trial.[27] Because this degree of CKD is uncommon (1% of 
D:A:D participants [6]), we also included participants who developed less severely decreased kidney func-
tion. The polygenic risk score was robust, i.e. it predicted CKD independent of the definition used. As ex-
pected, applying a rigorous control definition (longitudinal eGFR drop of <15%) limited the number of con-
trols available, but this allowed us to achieve clear phenotypic separation of cases and controls and to 
thereby better capture the genetic effects. The issue of fewer controls than cases was successfully ad-
dressed by applying a well validated procedure, bootstrap resampling from cases and controls,[16] which 
yielded effect estimates for D:A:D score and genetic score with appropriately narrow confidence intervals. 

Our results apply to individuals of European descent. Because of the relatively small number of women and 
persons >65 years of age included in our study, the results should be cautiously extrapolated to these popu-
lations. Additional studies are needed to confirm preliminary findings from trans-ethnic GWAS meta-
analyses which suggest that genetic results may potentially be generalized from persons of European de-
scent to persons of African descent.[8]  
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In conclusion, genetic background may provide CKD risk information complementary to that afforded by 
traditional CKD risk factors and antiretroviral regimen. Knowledge of an adverse genetic CKD predisposition 
might further emphasize the rationale to avoid potentially nephrotoxic antiretroviral and other drugs, and 
to optimize management of other factors contributing to CKD risk, including hypertension and diabetes. 
The clinical value of genetic testing will rely on demonstration of improved CKD risk stratification in pro-
spective studies. This was beyond the scope of our study. Finally, CKD odds ratios of the genetic score were 
attenuated when patients treated with integrase inhibitors were excluded, highlighting the interest in fu-
ture studies that quantitate the genetic effect in patients using different modern ART combinations.  
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4.7 Supplementary	tables	and	figures	
 

Supplementary Table 4.1. Candidate SNPs associated with CKD in the general population that we analysed 

SNP CHR BP Allele1 Allele2 MAF1 BETA 
P-
value 

PUBMED 
ID FIRST AUTHOR 

rs2467853 15 45698793 G T 0.389 -0.11 0.144 19430482 Kottgen A 

rs12917707 16 20367690 T G 0.176 
-
0.111 0.831 19430482 Kottgen A 

rs17319721 4 77368847 A G 0.417 
-
0.020 0.961 19430482 Kottgen A 

rs10518733 15 53940307 C A 0.181 
-
0.028 0.958 20139978 Kamatani Y 

rs4821469 22 36616445 C T 0.099 1.336 0.066 20532800 Bostrom MA 

rs9310709 3 23093574 C T 0.485 0.135 0.740 20686651 
Gudbjartsson 
DF 

rs13070584 3 99266337 T C 0.043 0.273 0.781 20686651 
Gudbjartsson 
DF 

rs10941694 5 45197779 A G 0.170 
-
0.012 0.983 20686651 

Gudbjartsson 
DF 

rs4293393 16 20364588 G A 0.183 0.006 0.990 20686651 
Gudbjartsson 
DF 

rs6569474 6 127493611 A T 0.480 0.818 0.045 21909109 Kim YJ 

rs6499166 16 68326917 G A 0.294 0.358 0.429 22962313 Chasman DI 

rs1153831 15 45772448 A G 0.135 0.957 0.107 23254893 Park H 

rs10032549 4 77398015 A G 0.480 0.216 0.593 23535967 Tin A 

rs4859682 4 77410318 A C 0.434 
-
0.193 0.641 23535967 Tin A 

rs17126268 1 102726399 C T 0.075 1.450 0.054 24351856 Nanayakkara S 

rs10099338 8 9257739 G A 0.107 
-
0.288 0.653 24351856 Nanayakkara S 

rs2980098 4 4252956 G A 0.335 0.009 0.982 24351856 Nanayakkara S 

rs1965907 4 88438176 C T 0.447 
-
0.871 0.027 24358131 Thameem F 

rs878953 5 163926492 A G 0.433 
-

0.206 24358131 Thameem F 



 

100 

0.500 

rs1686430 2 10947801 A G 0.432 
-
0.512 0.206 24358131 Thameem F 

rs1734449 2 10950284 G C 0.432 
-
0.512 0.206 24358131 Thameem F 

rs762063 14 53098902 G A 0.469 
-
0.483 0.217 24358131 Thameem F 

rs6879805 5 173541828 C T 0.376 0.496 0.228 24358131 Thameem F 

rs1019603 8 113747816 T C 0.245 
-
0.513 0.265 24358131 Thameem F 

rs925470 4 26015986 T A 0.467 0.430 0.272 24358131 Thameem F 

rs2180419 6 21728317 A G 0.359 
-
0.445 0.288 24358131 Thameem F 

rs1420725 12 2751583 G C 0.302 
-
0.419 0.334 24358131 Thameem F 

rs856830 6 68283357 T A 0.402 0.282 0.483 24358131 Thameem F 

rs1516822 4 153330301 C T 0.278 0.307 0.514 24358131 Thameem F 

rs1703711 10 132641714 G T 0.438 
-
0.241 0.542 24358131 Thameem F 

rs7037744 9 92903715 T C 0.428 0.207 0.607 24358131 Thameem F 

rs11457 15 63886379 G C 0.437 0.209 0.617 24358131 Thameem F 

rs6901750 6 17019426 G T 0.447 0.197 0.630 24358131 Thameem F 

rs767707 1 167560542 G A 0.491 
-
0.169 0.675 24358131 Thameem F 

rs2928927 18 49423185 C T 0.361 
-
0.160 0.691 24358131 Thameem F 

rs1904899 8 21456116 G A 0.453 0.121 0.768 24358131 Thameem F 

rs580839 15 34998829 A G 0.437 0.117 0.768 24358131 Thameem F 

rs74111 6 15786602 G T 0.464 
-
0.035 0.933 24358131 Thameem F 

rs9481410 6 97677118 G A 0.222 0.424 0.391 24385048 
Cooke Bailey 
JN 

rs3775067 4 2888622 A G 0.400 
-
0.426 0.302 24658007 Montasser ME 
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rs2488815 4 2988636 T C 0.422 0.159 0.692 24658007 Montasser ME 

rs4353 17 61570422 G A 0.455 
-
0.093 0.820 24658007 Montasser ME 

rs4316 17 61562309 T C 0.449 
-
0.080 0.844 24658007 Montasser ME 

rs4343 17 61566031 A G 0.458 
-
0.054 0.893 24658007 Montasser ME 

rs4331 17 61564052 G A 0.449 
-
0.051 0.901 24658007 Montasser ME 

rs4762 1 230845977 A G 0.119 
-
0.069 0.912 24658007 Montasser ME 

rs4580098 15 45596909 A T 0.223 
-
0.637 0.198 25082825 

Sveinbjornsson 
G 

rs77924615 16 20392332 A G 0.205 
-
0.318 0.519 25082825 

Sveinbjornsson 
G 

rs1044261 10 1065710 T C 0.084 0.157 0.832 25082825 
Sveinbjornsson 
G 

rs10794720 10 1156165 T C 0.083 0.069 0.925 25082825 
Sveinbjornsson 
G 

rs60136849 16 20353815 C T 0.180 0.023 0.965 25082825 
Sveinbjornsson 
G 

rs35772020 10 863482 A G 0.073 
-
0.018 0.981 25082825 

Sveinbjornsson 
G 

rs17069906 18 60048394 G A 0.025 2.253 0.072 25478860 Leiherer A 

rs4845625 1 154422067 T C 0.413 
-
0.097 0.811 25524550 Horibe H 

rs699 1 230845794 G A 0.428 0.350 0.388 25660845 Sarkar S 

rs2074379 4 113352899 G A 0.379 0.816 0.052 25813695 Yamada Y 

rs2074388 4 113352397 G A 0.379 0.816 0.052 25813695 Yamada Y 

rs6929846 6 26458265 T C 0.201 -0.16 0.403 25813695 Yamada Y 

Notes. 1MAF: Minor allelic frequency. Candidate SNPs were excluded if; (i) the study was restricted to a specific condi-
tion (e.g. end-stage renal disease in type 1 diabetics); and/or (ii) the study design exclusively focused on linkage analy-
sis, copy number variation, large deletions, burden of rare variants, gene–environment interaction and epistasis. 
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Supplementary Table 4.2. Interaction of D:A:D score with Genetic score adjusted for ART, multivariable analysis 

Variable, Stratum 

Entire case population (n=743) 

NB: The results shown in this 
column are the same adjusted 
odds ratios and 95% confidence 
intervals that are illustrated in 
Figure 2. 

D:A:D 1st quartile and Genetic score 1st quartile 1.00 (Reference) 

D:A:D 1st quartile and Genetic score 2nd quartile 0.78 (0.36-1.63) 

D:A:D 1st quartile and Genetic score 3rd quartile 0.91 (0.44-1.79) 

D:A:D 1st quartile and Genetic score 4th quartile 1.55 (0.79-3.04) 

D:A:D 2nd quartile and Genetic score 1st quartile 0.73 (0.33-1.50) 

D:A:D 2nd quartile and Genetic score 2nd quartile 0.88 (0.37-1.99) 

D:A:D 2nd quartile and Genetic score 3rd quartile 1.74 (0.86-3.45) 

D:A:D 2nd quartile and Genetic score 4th quartile 4.71 (2.21-10.00) 

D:A:D 3rd quartile and Genetic score 1st quartile 1.17 (0.63-2.25) 

D:A:D 3rd quartile and Genetic score 2nd quartile 1.36 (0.70-2.66) 

D:A:D 3rd quartile and Genetic score 3rd quartile 2.20 (1.15-4.44) 

D:A:D 3rd quartile and Genetic score 4th quartile 1.84 (1.00-3.56) 

D:A:D 4th quartile and Genetic score 1st quartile 1.17 (0.65-2.23) 

D:A:D 4th quartile and Genetic score 2nd quartile 2.42 (1.16-5.25) 

D:A:D 4th quartile and Genetic score 3rd quartile 2.44 (1.38-4.57) 

D:A:D 4th quartile and Genetic score 4th quartile 2.58 (1.30-5.24) 
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Supplementary Table 4.3. Main results tabulated for the 4 different CKD case definitions: CKD odds ratio (95% confi-
dence interval) according to D:A:D score, genetic score, and ART 

 

 

Entire Population of CKD 
Cases (n=743) 

(NB: these are the num-
bers corresponding to 
results illustrated in Fig. 
4.1A)  

Cases with eGFR drop to 
<60 mL/min/1.73 m2  

(n=144) 

(NB: these are the num-
bers corresponding to 
results illustrated in Fig. 
4.1B) 

Cases with eGFR drop 
>40% OR to <60 
mL/min/1.73 m2  (n=204) 

Cases with eGFR drop 
>25% AND to <70 
mL/min/1.73 m2  (n=449) 

Variable 

Univariable 
analysis 

 

Multivariable 
analysis  

 

Univariable 
analysis 

 

Multivariable 
analysis  

 

Univariable 
analysis 

 

Multivariable 
analysis  

 

Univariable 
analysis 

 

Multivariable 
analysis  

 

D:A:D  

2nd quartile 
vs. 1st 
quartile  

1.51  

(1.11-2.03) 

1.42  

(1.00-2.00) 

1.43  

(1.11-1.92) 

1.22  

(0.78-1.97) 

1.34  

(1.06-1.75) 

1.06  

(0.71-1.56) 

2.59  

(1.87-3.72) 

2.46  

(1.67-3.82) 

D:A:D  

3rd quartile 
vs. 1st 
quartile 

1.77  

(1.36-2.45) 

1.53  

(1.11-2.10) 

2.88  

(2.28-3.77)) 

2.71  

(1.93-3.94) 

2.49  

(2.01-3.23) 

2.20  

(1.64-3.08) 

2.99  

(2.21-4.25) 

2.62  

(1.82-4.06) 

D:A:D  

4th quartile 
vs. 1st 
quartile 

2.32  

(1.70-3.06) 

1.94  

(1.37-2.65) 

11.59  

(8.06-
18.22) 

11.97  

(7.61-22.17) 

5.87  

(4.58-8.10) 

5.22  

(3.73-7.72) 

5.58  

(4.13-8.03) 

5.05  

(3.48-7.80) 

Genetic 
score 2nd 
quartile vs. 
1st quartile 

1.12  

(0.86-1.46) 

1.24  

(0.89-1.77) 

2.31  

(1.98-2.77)) 

2.74  

(1.90-4.18) 

1.63  

(1.37-1.98) 

1.66  

(1.19-2.35) 

1.73  

(1.35-2.28) 

2.38  

(1.62-3.49) 

Genetic 
score 3rd 
quartile vs. 
1st quartile 

1.46  

(1.16-1.84) 

1.70  

(1.26-2.27) 

1.87  

(1.61-2.20) 

2.33  

(1.67-3.46) 

1.42  

(1.21-1.67) 

1.62  

(1.20-2.25) 

1.74  

(1.42-2.13) 

2.19  

(1.61-3.05) 

Genetic 
score 4th 
quartile vs. 
1st quartile 

1.88  

(1.47-2.45) 

2.13  

(1.55-2.97) 

2.38  

(1.99-2.85) 

2.79  

(1.81-4.43) 

1.76  

(1.52-2.08) 

1.66  

(1.19-2.35) 

2.31  

(1.83-3.00) 

3.01  

(2.05-4.56) 

Cumulative 
ATV/r 
exposure, 
per 5 years 

2.93  

(2.05-4.45) 

2.98 

(2.02-4.66) 

2.68  

(2.19-3.49) 

3.38  

(2.45-4.99) 

3.21  

(2.56-4.26) 

3.60  

(2.62-5.32) 

2.83  

(2.13-3.96) 

3.14  

(2.14-4.86) 
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Cumulative 
LPV/r, per 
5 years 

1.64  

(1.32-2.06) 

1.70 

(1.29-2.29) 

1.29  

(1.18-1.46) 

1.13  

(0.81-1.61) 

1.42  

(1.25-1.64) 

1.43  

(1.07-1.97) 

1.59  

(1.31-1.96) 

1.63  

(1.21-2.25) 

Cumulative 
TDF expo-
sure, per 5 
years 

1.96  

(1.59-2.52) 

1.83  

(1.45-2.40) 

1.86  

(1.68-2.10) 

2.04  

(1.66-2.65) 

2.21  

(1.93-2.63) 

2.32  

(1.87-2.95) 

1.99  

(1.64-2.47) 

1.94  

(1.51-2.54) 

 

 

 

 

 

 

 

 

 

Supplementary Table 4.4. Sensitivity Analysis (entire case population) after exclusion of participants treated with do-
lutegravir (n=147): CKD odds ratio (95% confidence interval) according to D:A:D Score, genetic score, and ART 

Variable 
Univariable analysis 

 

Multivariable 
analysis  

 

D:A:D 2nd quartile vs. 1st quartile  1.43 (1.00-2.03) 1.29 (0.83-1.96) 

D:A:D 3rd quartile vs. 1st quartile 1.83 (1.34-2.54) 1.48 (1.01-2.19) 

D:A:D 4th quartile vs. 1st quartile 2.50 (1.77-3.37) 1.93 (1.30-2.80) 

Genetic score 2nd quartile vs. 1st quartile 1.03 (0.75-1.42) 1.09 (0.71-1.63) 

Genetic score 3rd quartile vs. 1st quartile 1.36 (1.03-1.83) 1.49 (1.03-2.14) 

Genetic score 4th quartile vs. 1st quartile 1.80 (1.34-2.47) 1.96 (1.33-2.95) 

Cumulative ATV/r exposure, per 5 years 3.62 (2.17-7.16) 3.68 (2.07-7.65) 

Cumulative LPV/r, per 5 years 2.11 (1.49-3.18) 2.20 (1.45-3.60) 

Cumulative TDF exposure, per 5 years 2.92 (2.14-4.23) 2.62 (1.86-3.91) 

Note: This sensitivity analysis is based on 597 CKD cases and 321 controls without any dolutegravir exposure 
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Supplementary Table 4.5. Sensitivity Analysis (entire case population) after exclusion of participants treated 
with any integrase inhibitor (n=244): CKD odds ratio (95% confidence interval) according to D:A:D Score, 
genetic score, and ART 

Variable 
Univariable analysis 

 

Multivariable 
analysis  

 

D:A:D 2nd quartile vs. 1st quartile  1.54 (1.05-2.27) 1.36 (0.82-2.19) 

D:A:D 3rd quartile vs. 1st quartile 1.84 (1.32-2.64) 1.41 (0.92-2.18) 

D:A:D 4nd quartile vs. 1st quartile 2.52 (1.81-3.55) 1.89 (1.24-2.85) 

Genetic score 2nd quartile vs. 1st quartile 0.87 (0.61-1.23) 0.91 (0.57-1.44) 

Genetic score 3rd quartile vs. 1st quartile 1.31 (0.95-1.84) 1.38 (0.93-2.10) 

Genetic score 4th quartile vs. 1st quartile 1.58 (1.15-2.20) 1.68 (1.10-2.61) 

Cumulative ATV/r exposure, per 5 years 4.80 (2.46-13.08) 4.94 (2.38-14.21) 

Cumulative LPV/r exposure, per 5 years 2.41 (1.59-3.98) 2.51 (1.46-4.61) 

Cumulative TDF exposure, per 5 years 3.15 (2.17-4.99) 2.71 (1.77-4.47) 

Note: This sensitivity analysis is based on 499 CKD cases and 318 controls without any integrase inhibitor exposure 
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Supplementary Table 4.6. Sensitivity Analysis (entire case population) after exclusion of participants treated with 
Rilpivirine (n=61): CKD odds ratio (95% confidence interval) according to D:A:D Score, genetic score, and ART 

Variable 
Univariable analysis 

 

Multivariable 
analysis  

 

D:A:D 2nd quartile vs. 1st quartile  1.49 (1.06-2.05) 1.41 (0.95-2.06) 

D:A:D 3rd quartile vs. 1st quartile 1.75 (1.31-2.39) 1.50 (1.06-2.12) 

D:A:D 4nd quartile vs. 1st quartile 2.30 (1.67-3.07) 1.89 (1.33-2.62) 

Genetic score 2nd quartile vs. 1st quartile 1.08 (0.80-1.48) 1.22 (0.84-1.83) 

Genetic score 3rd quartile vs. 1st quartile 1.47 (1.13-1.94) 1.73 (1.26-2.39) 

Genetic score 4th quartile vs. 1st quartile 1.85 (1.40-2.54) 2.16 (1.52-3.16) 

Cumulative ATV/r exposure, per 5 years 3.05 (2.02-4.94) 3.18 (2.00-5.54) 

Cumulative LPV/r exposure, per 5 years 1.87 (1.43-2.55) 1.97 (1.43-2.92) 

Cumulative TDF exposure, per 5 years 2.18 (1.70-2.95) 1.94 (1.45-2.68) 

Note: This sensitivity analysis is based on 682 CKD cases and 320 controls without any rilpivirine exposure 
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Supplementary Table 4.7. Sensitivity Analysis (entire case population) after exclusion of participants treated with Co-
bicistat (n=37): CKD odds ratio (95% confidence interval) according to D:A:D Score, genetic score, and ART 

Variable 
Univariable analysis 

 

Multivariable 
analysis  

 

D:A:D 2nd quartile vs. 1st quartile  1.52 (1.11-2.05) 1.43 (0.98-2.04) 

D:A:D 3rd quartile vs. 1st quartile 1.89 (1.43-2.57) 1.63 (1.16-2.28) 

D:A:D 4nd quartile vs. 1st quartile 2.43 (1.80-3.27) 2.02 (1.42-2.78) 

Genetic score 2nd quartile vs. 1st quartile 1.11 (0.84-1.47) 1.24 (0.87-1.78) 

Genetic score 3rd quartile vs. 1st quartile 1.41 (1.11-1.81) 1.64 (1.20-2.23) 

Genetic score 4th quartile vs. 1st quartile 1.85 (1.43-2.46) 2.10 (1.48-2.98) 

Cumulative ATV/r exposure, per 5 years 3.13 (2.11-5.11) 3.25 (2.10-5.40) 

Cumulative LPV/r exposure, per 5 years 1.74 (1.37-2.30) 1.83 (1.34-2.58) 

Cumulative TDF exposure, per 5 years 1.97 (1.58-2.58) 1.79 (1.40-2.40) 

Note: This sensitivity analysis is based on 706 CKD cases and 322 controls without any cobicistat exposure 
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Supplementary Table 4.8. Sensitivity Analysis (entire case population) after Inverse Probability of Sampling Weighting: 
CKD odds ratio (95% con-fidence interval) according to D:A:D Score, genetic score, and ART 

Variable 
Univariable analysis 

 

Multivariable 
analysis  

 

D:A:D 2nd quartile vs. 1st quartile  1.48 (1.01-2.15) 1.33 (0.92-1.88) 

D:A:D 3rd quartile vs. 1st quartile 1.66 (1.21-2.36) 1.41 (1.04-1.94) 

D:A:D 4nd quartile vs. 1st quartile 1.68 (1.19-2.39) 1.68 (1.19-2.33) 

Genetic score 2nd quartile vs. 1st quartile 1.27 (0.91-1.82) 1.34 (0.95-1.90) 

Genetic score 3rd quartile vs. 1st quartile 1.63 (1.21-2.25) 1.87 (1.37-2.56) 

Genetic score 4th quartile vs. 1st quartile 1.98 (1.46-2.81) 2.15 (1.55-2.99) 

Cumulative ATV/r exposure, per 5 years 3.35 (2.41-4.70) 2.92 (2.02-4.15) 

Cumulative LPV/r exposure, per 5 years 1.72 (1.37-2.18) 1.60 (1.22-2.03) 

Cumulative TDF exposure, per 5 years 2.28 (1.95-2.75) 2.09 (1.77-2.51) 

Note: This sensitivity analysis is based on 743 CKD cases and 322 controls  
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Entire case population (n=743 cases) and 322 controls: 

 

Cases with eGFR drop to <60 mL/min/1.73 m2  (n=144) and 180 controls 

 

Cases with eGFR drop >40% OR to <60 mL/min/1.73 m2  (n=204) and 230 controls 

 

Cases with eGFR drop >25% AND to <70 mL/min/1.73 m2  (n=449) ad 302 controls 

 

Supplementary Figure 4.1. Limited variability of 2000 univariable estimates of  CKD odds ratio in participants with 
unfavorable D:A:D scores and unfavorable genetic scores, after repeating the matching process 2000 times, with ran-
dom re-sampling from cases and controls [16] 
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Supplementary Figure 4.2. Manhattan plot from exploratory GWAS 
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Supplementary Figure 4.3. CKD odds ratio according to quartiles of genetic score, quartiles of D:A:D score, and per 5-
year antiretroviral expo-sures, entire case population (n=743) with inverse probability of sampling weighting. Uni- and 
multivariable conditional logistic regression of associations with CKD. Results are pooled estimates from 2000 re-
sampled 1:1 case-control pairs involving 743 cases and 322 controls. Multivariable models are adjusted for all varia-
bles displayed, i.e. for genetic score, D:A:D score, and drug exposures, respectively.  
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Supplementary Figure 4.4. Interaction of D:A:D with Genetic score adjusted for ART, multivariable analysis with in-
verse probability of sampling weighting. Results from two conditional logistic regression analyses of associations with 
CKD. Results are pooled estimates from 2000 re-sampled 1:1 case-control pairs involving 743 cases and 322 controls. 
The leftmost four bars show estimates for quartiles of the D:A:D risk score adjusted for drug exposure to ATV/r, LPV/r, 
and TDF, without consideration of genetic score. Participants are then stratified into 16 groups by genetic score quar-
tile (quartile 1, 2, 3, and 4) and by D:A:D score quartile (quartile 1, 2, 3, and 4), and these odds ratios are also adjusted 
for ATV/r, LPV/r, and TDF exposure. The first of these 16 groups, i.e., participants who are in D:A:D score quartile 1 
and in genetic score quartile 1, is the reference (odds ratio = 1, without confidence interval).  
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 Discussion	&	perspectives	
The results described in the previous chapters highlight some of the most recent advances in host 

genetic research for HIV infected individuals in the era of suppressive ART. The direct consequences of the 
findings are discussed in their respective chapters, whereas more general issues and opportunities for the 
HIV research community are discussed here. 

 

5.1 Consequences	of	the	HIV	reservoir	size	and	decay	rate	
The size and long-term dynamics of the HIV reservoir in successfully treated patients represent an essential 
aspect of HIV pathogenesis after therapy initiation, given that the persistence of the latent reservoir is the 
main barrier preventing a functional cure. Future treatment or cure strategies may thus benefit from the 
knowledge of biological genes or pathways influencing the reservoir size as well as its decay rate, which 
could be uncovered through genetic analyses. While in itself, the lowering of the viral reservoir will likely 
not represent a cure, unless it successfully purges the complete reservoir, it should at least lower the barri-
er for obtaining a functional cure. Many approaches have been proposed and tested in order to purge the 
viral reservoir - most famously, the “shock and kill” theory involving the reactivation of the latent reservoir 
through cytokine or histone deacetylase inhibitors (1) - but none have yet been successful. 

The crucial importance of discovering a cure should not be dismissed, even if people living with HIV gener-
ally are in decent health due to the current treatment regiments. The removal of the burden of stigmatiza-
tion, daily medications, and worries about infecting others would, in addition to the physical benefits, sub-
stantially improve their quality of life (2). Just how important it is for individuals infected with HIV to find a 
cure is underscored by the fact that half of the people infected with HIV are willing to take serious and po-
tentially lethal risks for obtaining a cure (3). This also underscores the importance of proper ethical over-
sight for experimental HIV cure research.     

While we did not discover any genetic association with the HIV reservoir size ~1.5 years after ART initiation 
nor with the decay rate in chapter 2, it is unlikely that no genetic factors influence these traits. The lack of 
an observed association is possibly due to the limited sensitivity and specificity of the measurements of the 
latent HIV reservoir size in our study. Due to the very small amount of integrated HIV DNA, minor fluctua-
tions in reported values will add noise to the phenotype, requiring a larger sample size to observe true as-
sociations. Furthermore, the numerous occurrences of viral blips have the potential to mask any genetic 
effect on the decay rate as they keep reseeding the reservoir at every instance. Thus, the continuous de-
velopment of improved assays for quantifying the reservoir size along with ever-larger cohorts will be re-
quired in order to discover genetic variants affecting the HIV reservoir size and decay rate on treatment. 
Nevertheless, our study adds important information for the field and will also serve to hopefully prevent 
future low-powered genetic studies on the HIV reservoir size and dynamics.     
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An important point for the study described in chapter 2 is that the viral RNA pre-ART variable used as co-
variate in regression analyses does not accurately reflect the spVL values used in previous genetic analyses. 
The pre-ART measurement represents the last viral RNA measurement prior to treatment initiation, a time-
point in which CD4+ T cell levels have already decreased significantly (at least in historical samples collected 
in the early decades of the pandemic). Thus, while the HLA-B*57:01 haplotype has been repeteadly shown 
to be significantly associated with lower spVL, this effect was no longer seen at the time of reservoir meas-
urement.  

The major non-genetic factors influencing the size of the viral reservoir has been well described by now (4). 
However, an open question remains as to the potential consequences of the size of the viral reservoir on 
the development of future comorbidities. With the potential of defective provirus to cause inflammation 
(5), a larger viral reservoir could in theory contribute to increased inflammation levels. Of note, this was not 
observed by Rajesh et al. (6). It is, however, important to note that several different assays for measuring 
the size of the viral reservoir exists, with relatively poor correlation between them (7, 8). Thus, in order for 
both experimental studies or clinical trials on the viral reservoir size to be comparable, a gold-standard 
assay has to be agreed upon first.   

 

5.2 Risk	factors	of	HIV-related	comorbidities	
The contribution of genetic variation to various common diseases, like CVD, CKD, and multiple types of 
cancers, have been well studied in the general population, with evidence of a significant genetic contribu-
tion to disease risk (9–12). However, to which degree these genetic risk factors contribute to the develop-
ment of HIV-related comorbidities remains mostly untested. In chapter 3, we sought to answer this ques-
tion for HIV-related NHL. While we discovered a novel associated locus near the chemokine CXCL12, we 
also did not find any evidence of association with previously discovered genetic variants associated with 
NHL in the general population. Thus, in the case of HIV-related NHL, and potentially other comorbidities, 
distinct genes and pathways influencing the risk of developing these comorbidities might exist. Two reasons 
could explain this distinct risk. 1) In the case of NHLs, this malignancy may constitute a unique subtype in 
HIV-infected individuals due to specific pathogenic mechanisms involving cytokine deregulation, impaired 
immune response, chronic antigen stimulation, and reactivation of EBV and HHV-8 (13). 2) HIV infection 
causes widespread transcriptional changes within the cell (14), which may be further affected by induced 
eQTLs (e.g., eQTLs that only appear upon stimulation), as seen for both viral- and bacterial infections as 
well as cellular differentiation stages (15, 16). As of this date, no analysis of HIV infection-induced eQTLs 
exists, but lessons from studies with other pathogens point to the enrichment of pathogen-induced eQTLs 
within disease-associated variants (16). Thus, instead of relying on eQTL information from normal cells, the 
mapping of potential HIV induced eQTLs would be beneficial to HIV genetic studies to better understand 
the underlying biological mechanisms behind observed disease-associated variants. 

Somatic variants constitute an often-overlooked entity in non-cancer genetic studies, thus their impact on 
health and disease is relatively unknown. While genotyping arrays do not capture somatic variants, both 
exome sequencing and WGS are able to capture these down to relatively low frequencies (depending on 
the sequencing depth). Multiple sequencing studies have recently demonstrated that the occurrence and 
frequency of somatic variants in hematopoietic stem cell populations are increasing with age (17) and are 
furthermore associated with hematological cancers (18) and CVD (19) in the general population. This phe-
nomenon is known as clonal hematopoiesis of indeterminate potential (CHIP), due to the location of the 
somatic variants within cancer-associated genes without causing full-blown cancer in most carriers. Inter-
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estingly, our preliminary data from exome sequencing of HIV positive individuals in the SHCS indicates that 
these HIV patients accumulate CHIP at a higher rate than HIV negative individuals, corresponding to ap-
proximately ten years in advance (unpublished). In line with this, HIV patients are generally considered to 
suffer from premature ageing, estimated to an additional 10-15 years compared to HIV negative individuals 
(20). Chronic low-grade inflammation, toxic drugs, prevalent smoking are all considered risk factors con-
tributing to this observation. However, a more direct biological explanation remains to be found. Thus, the 
accumulation of CHIP constitutes an area warranting further research, as the premature presence of CHIP 
may contribute to the increased rate of CVD seen in the HIV population and could point to an increased 
mutational burden within hematopoietic cells.    

In general, many risk factors have been associated with the development of common diseases in the HIV 
population, and many of these factors are also associated with each other, making it challenging to deter-
mine the main causal factors. Thus, determining these causal risk factors, whether genetic or not, will be of 
enormous value in order to guide treatment and prevention strategies. So far, comprehensive studies 
measuring the contribution of risk factors to inflammation and the development of comorbidities have 
focused solely on single or small subset of risk factors at a time (e.g., smoking or microbial translocation). 
However, few have measured all the main risk factors simultaneously in the same cohort to detangle the 
contribution of each factor. This was, to some extent, performed for CKD with the D:A:D studies 
(21)(chapter 4). However, even this study did not include markers of residual HIV production, levels of Treg 
and T17 cells, microbial translocations, or markers of inflammation. Furthermore, the inclusion of novel bi-
omarkers capable of measuring chronic inflammation instead of classical markers of acute inflammation 
(e.g., CRP) in clinical risk scores might also further enhance their predictive performance (22–24).      

 

5.3 Adaptation	and	potential	use	of	genetic	risk	scores	
Human genetic discoveries have had a limited impact so far in the clinical care of HIV patients, with only the 
presence of the HLA-B*57:01 allele routinely checked due to its importance in predicting abacavir hyper-
sensitivity. However, the recent developments in methodology and GWAS cohort sizes have greatly facili-
tated the path towards clinical translation of GRS. This progress has, in particular, been spearheaded by 
research into CAD in the general population. The main finding has been that an unfavorable GRS carries the 
same risk for CAD as monogenic risk variants (25). Recent work further established that polygenic risk cap-
tured by GRS is able to modulate the risk conferred by monogenic variants for CAD, breast cancer, and col-
orectal cancer (26). Thus, accounting for both polygenic- and monogenic risk might improve the overall risk 
prediction. The clinical relevance of GRSs was further underlined by the finding that adding a GRS for CAD 
to current clinical risk scores independently improved the predictive accuracy (27), while individuals with 
the most unfavorable GRS also benefited the most from statin treatment in terms of relative and absolute 
LDL-cholesterol reduction (28, 29).  

In chapter 5, we described the first genome-wide GRS in the HIV population with CKD, demonstrating how 
adding a GRS to the current clinical risk algorithm improved not only the risk prediction, but also identified 
a subset of patients at high risk of developing CKD despite having a low clinical risk score. Furthermore, a 
beneficial GRS was strongly protective against CKD despite the presence of clinical risk factors. Thus, the 
GRS for CKD in the HIV population represents a risk marker that is independent of other currently used 
predictors, in line with the previous findings for CAD in the general population.   
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The independent nature of the risk captured by GRS, as demonstrated for CAD in the general population 
and here for CKD in the HIV population, suggests that the inclusion of a GRS together with established clini-
cal risk scores can enhance the possibilities of detecting individuals with a high risk of developing certain 
comorbidities at an early stage. The early identification of high-risk individuals allows for preventive inter-
ventions, thus reducing the occurrence and hospital burden of overt clinical diseases.  

The implementation of GRS in clinical routine will require a substantial change in the way healthcare is gen-
erally performed by moving towards a more preventive approach rather than the current one of dealing 
with already manifested diseases. Furthermore, as many preventive interventions constitute not only ther-
apeutics but also behavioral changes in lifestyle or drug compliance, innovative support frameworks will 
also be needed. The practical implementation of GRS faces other challenges: currently, the use of different 
calculation methods, as well as a lack of best practices to standardize the calculation and validation of GRS, 
have resulted in the generation of widely variable GRSs for the same disease. The possibility of modifying 
many parameters and lack of consistency for the GRS calculation and validation also makes it challenging to 
compare the accuracy of different GRS. Thus, method standardization of GRS calculations and their valida-
tion across cohorts and hospitals will be essential for their implementation into clinical use, both in the 
general- and HIV population.  

Importantly, the accuracy of GRS will keep improving as the size of GWAS continues to increase, and the 
estimated effect sizes thus become more precise. Furthermore, the shift from genotyping arrays to WGS as 
the primary technique should further improve the information included and, thus, the accuracy of GRS. The 
use of WGS would also allow for the simultaneous identification of monogenic variants contributing to dis-
ease risk. However, currently, only a few studies have been performed using GRS from WGS data due to 
their limited availability (30). The recently announced initiative in the UK Biobank for performing WGS on 
0.5 million individuals will constitute an important opportunity to benchmark GRS based on genotyping 
arrays versus WGS in large population cohorts, the outcome of which will likely shape the future direction 
of GRS research and implementation initiatives.    

5.3.1 The	need	for	increasing	diversity	of	research	participants	

Human genome diversity is strongly shaped by demographic history, with the migration out of Africa some 
60,000 years ago constituting a major bottleneck event, resulting in the genomes of non-Africans becoming 
more homogenous than the more diverse and sub-structured African genomes (31, 32). As a result, Africans 
exhibit in general more genetic diversity compared to non-Africans, which have more extended regions of 
LD (33). These diverging patterns of LD across population groups represent both challenges and opportuni-
ties, as they affect how well genotyping chips capture causal variants. Thus, variants in LD with a causal 
variant in Europeans might not be in LD with the same variant in Africans, which will affect the ability to 
replicate GWAS associations. However, differences in LD patterns may also make transethnic fine mapping 
especially powerful to discover the true causal variants. Genetic drift or local adaptation may also affect 
allele frequencies and thus the ability to replicate GWAS in other populations. That genetic drift and local 
adaption can influence the occurrence of variants affecting HIV traits is exemplified by the CCR5∆32 dele-
tion conferring resistance against HIV infection. The CCR5∆32 deletion is only found at high frequencies in 
the European population but exhibits a north to south cline in allele frequency (34).  

It is well documented that differences in immune responses exist between African and European individu-
als. Individuals of African descent display stronger inflammatory responses (35) and several non-genetic 
studies on HIV-related traits having found significant differences between African and European individuals; 
African individuals are more prone to develop broadly neutralizing antibodies (bNAbs) than European indi-
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viduals (36) and tend to have smaller HIV reservoirs (37). The benefit of including more diverse populations 
into genetic studies is best exemplified by the case of LDL-cholesterol lowering loss-of-function variants 
found in PCSK9 in Africans only (38), which has subsequently been developed into a drug benefiting all 
populations worldwide (39). Thus, focusing on African individuals in future studies may yield new insight 
into the pathogenesis of HIV and potential new drug targets.  

The majority of GWAS performed worldwide so far have primarily focused on European (52%) or Asian 
(21%) populations (40). This trend is also seen in the field of HIV genetics, as also exemplified in this thesis, 
with few small GWAS including individuals of African descent (41, 42), despite HIV being much more preva-
lent on the African continent (43). There is no reason to believe that the burden of comorbidities will be 
lower in non-European countries with lower incomes. Rather, the lack of primary preventions and proper 
healthcare systems constitute a substantial emerging problem as the HIV population ages in these coun-
tries as well (44). The vast disparity between the number of sequenced or genotyped populations, disease 
prevalence, and genetic architecture may impede our understanding of these traits and the implementa-
tion of GRS for individuals of non-European ancestry.  

Like the majority of GWAS, GRS have primarily been developed using genetic information from European 
populations. As a consequence, GRS have already been shown to perform worse in other population groups 
(45, 46), severely limiting their applicability in these groups. As the differences in LD cannot currently be 
solved computationally, the ideal solution would be to establish large GWAS projects in non-European 
populations, which would serve as a reference for population-specific GRS. Another approach would be to 
recalibrate either the scores or variant weights according to the population group (47). While the latter 
approach is still to be validated and requires some population-specific genetic information, it may, in theo-
ry, constitute the most practical path forward to obtain the desired accuracy and inclusion for all popula-
tion groups. Another important and often overlooked issue regarding population groups is the presence of 
many admixed individuals. In our increasingly connected world, more and more people will be born from 
parents originating from different population groups. Without the use of recalibrated GRS, how would a 
clinician or researcher know which GRS is best suited to the child of these parents? As the median of the 
GRS has been shown to differ significantly between populations (46), the use of either may alter the per-
ceived genetic risk for an admixed individual tremendously.      

Finally, despite the obvious benefit to everyone for including more diverse populations in genetic studies, 
several challenges remain. Recruitment of participants might be difficult in some regions, notably due to 
lack of finances, infrastructure, and trained personnel. In particular, proper infrastructure and training of 
personnel is needed to obtain reliable phenotype information, crucial for genetic studies. Without such 
investments, our understanding of the genetic architecture affecting HIV pathogenesis and the develop-
ment of comorbidities will never be complete.    

 

5.4 Future	opportunities	for	the	HIV	genetic	research	community	
Current insight from HIV research on the natural history of HIV infection has primarily been enabled by the 
availability of large historical cohorts with samples collected before the initiation of ART. However, since 
treatment guidelines have moved towards immediate treatment initiation upon diagnosis, these samples 
are becoming rarer, and future research relying on samples from ART naïve patients will become ever more 
difficult. However, the unique setup of several HIV cohorts, with close monitoring and regular follow-up of 
patients, means that they also constitute a unique resource for performing longitudinal studies of the de-
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velopment of comorbidities, expansion of somatic variants and response to interventions, above and be-
yond what is usually possible in most population cohorts. Furthermore, it could be possible to evaluate 
methods that better capture environmental differences such as transcriptome, proteome, metabolome, or 
microbiome analyses to decipher the genetic and environmental risk factors during HIV infection better 
together with GRS due to the ample availability of patient plasma and cell samples. However, the many 
types of comorbidities and their potential relation to prescribed drugs, means that collecting sufficient 
numbers of patients for GWAS to discover novel HIV-specific associations for comorbidities will be challeng-
ing and will require international collaborations across HIV cohorts. This requires the standardization of 
patient data collection, but also offers the great opportunity to increase the diversity of study participants.   
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 Conclusions	
Human genetic variation is well known to influence our susceptibility to infections as well as the 

pathogenesis of HIV during natural infection. The studies presented in this thesis represent some of the 
first genome-wide studies examining the genetic effects influencing HIV positive individuals in the era of 
widely adopted ART and provides direct evidence for the influence of genetic variation on the risk of devel-
oping HIV-related comorbidities.  

In chapter 2, we examined the contribution of host genetic variations to the size of the HIV reservoir and its 
long-term dynamics during ART, since the establishment and slow decay rate of the HIV reservoir is the 
main barrier for obtaining a functional cure for HIV. Using both genotyping arrays and exome sequencing, 
we performed a comprehensive examination of the association of both common- and rare variants as well 
as CNVs with the size of the HIV reservoir and its decay rate. However, we did not find any genome-wide 
significant associations, indicating that human genetic variation has a limited influence on the size of the 
HIV reservoir and its decay rate during therapy.    

In chapter 3, we conducted the first genome-wide association study of HIV-related NHL using data from 
three major HIV cohorts in France, Switzerland, and the USA. We identified significantly associated genetic 
variants linked to the chemokine CXCL12. Furthermore, our data indicate that the genetic risk of HIV-
related NHL is distinct from that of the general population. These findings suggest a unique role of CXCL12 
in the development of HIV-related NHL. 

In chapter 4, we developed a GRS for HIV-related CKD and evaluated its potential as a marker of disease 
occurrence.  We found that the GRS was capable of independently predicting CKD in HIV patients, with the 
effect size of an unfavorable GRS found to be similar to that of an unfavorable clinical D:A:D score or use of 
certain potentially nephrotoxic antiretroviral compounds. Furthermore, the results indicate that individuals 
with the most favorable GRS are protected against CKD, irrespective of the presence of other clinical risk 
factors as measured by the D:A:D score.  

Altogether, the knowledge obtained here on the role of genetic variation and its influence on HIV positive 
patients during ART has the potential to improve patient care by identifying patients with an increased risk 
of developing specific comorbidities early, thus providing the possibility for early treatment interventions to 
further improve the longevity and quality of life of HIV infected individuals.    
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