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Abstract
Byzantine reliable broadcast is a powerful primitive that allows a set of processes to agree on a message
from a designated sender, even if some processes (including the sender) are Byzantine. Existing
broadcast protocols for this setting scale poorly, as they typically build on quorum systems with
strong intersection guarantees, which results in linear per-process communication and computation
complexity.

We generalize the Byzantine reliable broadcast abstraction to the probabilistic setting, allowing
each of its properties to be violated with a fixed, arbitrarily small probability. We leverage these
relaxed guarantees in a protocol where we replace quorums with stochastic samples. Compared to
quorums, samples are significantly smaller in size, leading to a more scalable design. We obtain
the first Byzantine reliable broadcast protocol with logarithmic per-process communication and
computation complexity.

We conduct a complete and thorough analysis of our protocol, deriving bounds on the probability
of each of its properties being compromised. During our analysis, we introduce a novel general
technique that we call adversary decorators. Adversary decorators allow us to make claims about
the optimal strategy of the Byzantine adversary without imposing any additional assumptions.
We also introduce Threshold Contagion, a model of message propagation through a system with
Byzantine processes. To the best of our knowledge, this is the first formal analysis of a probabilistic
broadcast protocol in the Byzantine fault model. We show numerically that practically negligible
failure probabilities can be achieved with realistic security parameters.
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1 Introduction

Broadcast is a popular abstraction in the distributed systems toolbox, allowing a process to
transmit messages to a set of processes. The literature defines many flavors of broadcast,
with different safety and liveness guarantees [14, 25, 35, 42, 48]. In this paper we focus on
Byzantine reliable broadcast, as defined by Bracha [12]. This abstraction is a central building
block in practical Byzantine fault-tolerant (BFT) systems [15, 19, 33]. We tackle the problem
of its scalability, namely reducing the complexity of Byzantine reliable broadcast, and seeking
good performance despite a large number of participating processes.

In Byzantine reliable broadcast, a designated sender broadcasts a single message. In-
tuitively, the broadcast abstraction ensures that no two correct processes deliver different
messages (consistency), either all correct processes deliver a message or none does (totality),
and that, if the sender is correct, all correct processes eventually deliver the broadcast message
(validity). This must hold despite a certain fraction of Byzantine processes, potentially includ-
ing the sender. We denote by N the number of processes in the system, and f the fraction
of processes that are Byzantine. Existing algorithms for Byzantine reliable broadcast scale
poorly as they typically have O(N) per-process communication complexity [13, 42, 45, 53].
The root cause for poor scalability of these algorithms is their use of quorums [43, 56], i.e.,
sets of processes that are large enough to always intersect in at least one correct process.
The size of a quorum grows linearly with the size of the system [14].

To overcome the scalability limitation of quorum-based broadcast, Malkhi et al. [46]
generalize quorums to the probabilistic setting. In this setting, two random quorums
intersect with a fixed, arbitrarily high probability, allowing the size of each quorum to
be reduced to O(

√
N). We are not aware of any Byzantine reliable broadcast algorithm

building on probabilistic quorums; nevertheless, such an algorithm could have a per-process
communication complexity reduced from O(N) to O(

√
N). The activet protocol [42] uses

a form of samples for an optimistic path, but relies on synchrony and has a linear worst-
case complexity (that is arguably very likely to occur with merely a moderate number of
faulty processes).

1.1 Samples
In this paper, we present a probabilistic gossip-based Byzantine reliable broadcast algorithm
having O(logN) per-process communication and computation complexity, at the expense of
O(logN/ log logN) latency. Essentially, we propose samples as a replacement for quorums.
Like a probabilistic quorum, a sample is a randomly selected set of processes. Unlike quorums,
samples do not need to intersect. Samples can be significantly smaller than quorums, as each
sample must be large enough only to be representative of the system with high probability.

A process can use its sample to gather information about the global state of the system. An
old Italian saying provides an intuitive understanding of this shift of paradigm: “To know if
the sea is salty, one needs not drink all of it!” Intuitively, we leverage the law of large numbers,
trading performance for a fixed, arbitrarily small probability of non-representativeness. 1

Throughout this paper, we extensively use samples to estimate the number of processes
satisfying a set of yes-or-no predicates, e.g., the number of processes that are ready to deliver
a message m. Consider the case where a correct process π queries K randomly selected

1 To get an intuition of the difference between quorums and samples, consider the emulation of a shared
memory in message passing [3]. One writes in a quorum and reads from a quorum to fetch the last
value written. Our algorithms are rather in the vein of “write all, read any.” Here we would “write”
using a gossip primitive and “sample” the system to seek the last written value.



R. Guerraoui, P. Kuznetsov, M. Monti, M. Pavlovic, and D.-A. Seredinschi 22:3

processes (a sample) for a predicate P . Assume that a fraction p of correct processes from
the whole system satisfies predicate P . Let x be the fraction of positive responses (out of
K) that π collects. By the Chernoff bound, the probability of |x− p| ≥ f + ε is smaller or
equal to exp(−λ(ε)K), where λ quickly increases with ε. For sufficient K, the probability of
x differing from p by more than f + ε can be made exponentially small.

Our algorithms use a sampling oracle that returns the identity of a process from the
system picked with uniform probability. In a permissioned system (i.e., one where the set of
participating processes is known) sampling reduces to picking with uniform probability an
element from the set of processes. In a permissionless system subject to Byzantine failures
and slow churn, a (nearly) uniform sampling mechanism is achievable using gossip [10].

1.2 Scalable Byzantine Reliable Broadcast

Our probabilistic algorithm, Contagion, allows each property of Byzantine reliable broadcast
to be violated with an arbitrarily small probability ε. We show that ε scales sub-quadratically
with N , and decays exponentially in the size of the samples. As a result, for a fixed value
of ε, the per-node communication complexity of Contagion is logarithmic.

We build Contagion incrementally, relying on two sub-protocols, as we describe next.

First, Murmur is a probabilistic broadcast algorithm that uses simple message dissem-
ination to establish validity and totality. In this algorithm, each correct process relays the
sender’s message to a randomly picked gossip sample of other processes. For the sample
size Ω(logN), the resulting gossip network is a connected graph with O(logN/ log logN)
diameter, with high probability [21, 17]. In case of a Byzantine sender, however, Murmur
does not guarantee consistency.

Second, Sieve is a probabilistic consistent broadcast algorithm (built upon Murmur) that
guarantees consistency, i.e., no two correct processes deliver different messages. To do so,
each correct process uses a randomly selected echo sample. Intuitively, if enough processes
from any echo sample confirm a message m, then with high probability no correct processes
in the system delivers a different message m′. Sieve, however, does not ensure totality. If a
Byzantine sender broadcasts multiple conflicting messages, a correct process might be unable
to gather sufficient confirmations for either of them from its echo sample, and consequently
would not deliver any message, even if some correct process delivers a message.

Finally, Contagion is a probabilistic Byzantine reliable broadcast algorithm that guar-
antees validity, consistency, and totality. The sender uses Sieve to disseminate a consistent
message to a subset of the correct processes. In order to achieve totality, Contagion mimics
the spreading of a contagious disease in a population. A process samples the system and
if it observes enough other “infected” processes in its sample, it becomes infected itself. If
a critical fraction of processes is initially infected by having received a message from the
underlying Sieve layer, the message spreads to all correct processes with high probability. If
a process observes enough other infected processes, it delivers. As in the original determin-
istic implementation by Bracha [12], the crucial point here is that “enough” for becoming
infected is less than “enough” for delivering. This way, with high probability, either all
correct processes deliver a message or none does – Contagion satisfies totality. The other two
important properties (validity and consistency) are inherited from the underlying (Contagion
and Sieve) layers.

DISC 2019



22:4 Scalable Byzantine Reliable Broadcast

1.3 Probability Analysis and Applications
A major technical contribution of this work is a complete, formal analysis of the properties
of our three algorithms. To the best of our knowledge, this is the first such analysis applied
to a probabilistic broadcast algorithm in the Byzantine fault model, and this turned out to
be challenging. Intuitively, providing a bound on the probability of a property being violated
reduces to studying a joint distribution between the inherent randomness of the system and
the behavior of the Byzantine adversary. Since the behavior of the adversary is arbitrary,
the marginal distribution of the Byzantine’s behavior is unknown.

We develop two novel strategies to bound the probability of a property being violated,
which we use in the analysis of Sieve and Contagion respectively.
(1) When evaluating the consistency of Sieve, we show that a bound holds for every possibly

optimal adversarial strategy. Essentially, we identify a subset of adversarial strategies
that we prove to include the optimal one, i.e., the one that has the highest probability
of compromising the consistency of Sieve. We then prove that every possibly optimal
adversarial strategy has a probability of compromising the consistency of Sieve smaller
than some ε.

(2) When evaluating the totality of Contagion, we show that the adversarial strategy does
not affect the outcome of the execution. Here, we show that any adversarial strategy
reduces to a well-defined sequence of choices. We then prove that, due to the limited
knowledge of the Byzantine adversary, every choice is equivalent to a random one.

Our analysis shows that, for a practical choice of parameters, the probability of violating
the properties of our algorithm can be brought down to 10−16 for systems with thousands
of processes.

In the rest of this paper, we state our system model and assumptions (Section 2), and
then present our Murmur, Sieve, and Contagion algorithms (Sections 3 to 5). Our algorithm
descriptions are high-level, but throughout this paper we will often refer the interested reader
to the corresponding appendices containing all details (including pseudocode and formal
proofs); to respect conference proceedings space limits, we place these appendices in the
extended version of this article [34]. We discuss the security and complexity of our algorithms
in Section 6, and cover related work in Section 7.

2 Model and Assumptions

We assume an asynchronous message-passing system where the set Π of N = |Π| processes
partaking in an algorithm is fixed. Any two processes can communicate via a reliable
authenticated point-to-point link.

We assume that each correct process has access to a local, unbiased, independent source
of randomness. We assume that every correct process has direct access to an oracle Ω
that, provided with an integer n ≤ N , yields the identities of n distinct processes, chosen
uniformly at random from Π. Implementing Ω is beyond the scope of this paper, but it is
straightforward in practice. In a system where the set of participating processes is known,
sampling reduces to picking with uniform probability an element from the set of processes.
In a system without a global membership view that may even be subject to slow churn, a
(nearly) uniform sampling mechanism is available in literature due to Bortnikov et al. [10].

At most a fraction f of the processes are Byzantine, i.e., subject to arbitrary failures [40].
Byzantine processes may collude and coordinate their actions. Unless stated otherwise, we
denote by ΠC ⊆ Π the set of correct processes and by C = |ΠC | = (1− f)N the number of
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correct processes. We assume a static Byzantine adversary controlling the faulty processes,
i.e., the set of processes controlled by the adversary is fixed at the beginning and does not
change throughout the execution of the protocols.

We make standard cryptographic assumptions regarding the power of the adversary,
namely that it cannot subvert cryptographic primitives, e.g., forge a signature. We also
assume that Byzantine processes are not aware of (1) the output of the local source of
randomness of any correct process; and (2) which correct processes are communicating with
each other. The latter assumption is important to prevent the adversary from poisoning the
view of the system of a targeted correct process without having to bias the local randomness
source of any correct process. Even against ISP-grade adversaries, we can implement this
assumption in practice by means such as onion routing [18] or private messaging [54].

3 Probabilistic Broadcast with Murmur

In this section, we introduce the probabilistic broadcast abstraction and its implementation,
Murmur. Briefly, probabilistic broadcast ensures validity and totality. We use this abstraction
in Sieve (Section 4) to initially distribute the message from a sender to all correct processes.

The probabilistic broadcast interface assumes a specific sender process σ. An instance
pb of probabilistic broadcast exports two events. First, process σ can request through
〈pb.Broadcast | m〉 to broadcast a message m. Second, the indication event 〈pb.Deliver | m〉
is an upcall for delivering message m broadcast by σ. For any ε ∈ [0, 1], we say that
probabilistic broadcast is ε-secure if:
1. No duplication: No correct process delivers more than one message.
2. Integrity: If a correct process delivers a message m, and σ is correct, then m was

previously broadcast by σ.
3. ε-Validity: If σ is correct, and σ broadcasts a message m, then σ eventually delivers m

with probability at least (1− ε).
4. ε-Totality: If a correct process delivers a message, then every correct process eventually

delivers a message with probability at least (1− ε).

3.1 Gossip-based Algorithm
Murmur (presented in detail in [34, Appendix A, Algorithm 1]) distributes a single message
across the system by means of gossip: upon reception, a correct process relays the message
to a set of randomly selected neighbors. The algorithm depends on one parameter: expected
gossip sample size G.

Upon initialization, every correct process uses the sampling oracle Ω to select (on average)
G other processes to gossip with. Gossip links are reciprocated, making the gossip graph
undirected.

To broadcast a message m, the designated sender σ signs m and sends it to all its
neighbors. Upon receiving a correctly signed message m from σ for the first time, each
correct process delivers m and forwards m to every process in its neighborhood.

3.2 Analysis Using Erdös-Rényi Graphs
The detailed analysis, provided in [34, Appendix A, Sections A.3 and A.4], formally proves
the correctness of Murmur by deriving a bound on ε as a function of the algorithm and system
parameters. Here we give a very high-level sketch of our probabilistic analysis of Murmur.

DISC 2019
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3.2.1 No duplication, integrity and ε-validity

Here is the intuition behind the properties satisfied by Murmur [34, Appendix A.3]:
1. No duplication: A correct process maintains a delivered variable that it checks and

updates when delivering a message, preventing it from delivering more than one message.
2. Integrity: Before broadcasting a message, the sender signs that message with its private

key. Before delivering a message m, a correct process verifies m’s signature. This
prevents any correct process from delivering a message that was not previously broadcast
by the sender.

3. ε-Validity: Upon broadcasting a message, the sender also immediately delivers it. Since
this happens deterministically, Murmur satisfies 0-validity, independently from the para-
meter G.

3.2.2 ε-Totality

Murmur satisfies ε-totality with ε upper-bounded by a function that decays exponentially
with G, and increases polynomially with f [34, Appendix A.4]. We prove that the network of
connections established among the correct processes is an undirected Erdős–Rényi graph [21].
Totality is satisfied if such graph is connected.

Erdős–Rényi graphs are well known in literature [1] to display a connectivity phase
transition: when the expected number of connections each node has exceeds the logarithm of
the number of nodes, the probability of the graph being connected steeply increases from 0
to 1 (in the limit of infinitely large systems, this increase becomes a step function). We use
this result to compute the probability of the sub-graph of correct processes being connected
and, consequently, of Murmur satisfying totality ([34, Theorem 4]).

4 Probabilistic Consistent Broadcast with Sieve

In this section, we first introduce the probabilistic consistent broadcast abstraction, which
allows (a subset of) the correct processes to agree on a single message from a (potentially
Byzantine) designated sender. We then discuss Sieve, an implementation of this abstraction.
We use probabilistic consistent broadcast in the implementation of Contagion (see Section 5)
as a way to consistently disseminate messages. Sieve itself builds on top of probabilistic
broadcast (see Section 3).

Probabilistic consistent broadcast does not guarantee totality, but it does guarantee
consistency: despite a Byzantine sender, no two correct processes deliver different messages.
If the sender is Byzantine, however, it may happen with a non-negligible probability that
only a proper subset of the correct processes deliver the message.

For any ε ∈ [0, 1], we say that probabilistic consistent broadcast is ε-secure if it satisfies
the properties of No duplication and Integrity as defined above, and:

ε-Total validity: If σ is correct, and σ broadcasts a message m, every correct process
eventually delivers m with probability at least (1− ε).
ε-Consistency: With probability at least (1 − ε), no two correct processes deliver
different messages.
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4.1 Sample-Based Algorithm
Sieve (presented in detail in [34, Appendix B, Algorithm 3]) uses Echo messages to consistently
distribute a single message to (a subset of) the correct processes: before delivering a message,
a correct process samples the system to estimate how many other processes received the
same message. The algorithm depends on two parameters: the echo sample size E and the
delivery threshold Ê.

Upon initialization, every correct process uses the sampling oracle Ω to select an echo
sample E of size E, and sends an EchoSubscribe message to every process in E . Upon
broadcasting, the sender uses the underlying probabilistic broadcast (e.g., Murmur) to initially
distribute a message to every correct process. This step does not ensure consistency, so
processes may see conflicting messages if the sender σ is Byzantine. Upon receiving a message
m from probabilistic broadcast, a correct process π sends an (Echo,m) message to every
process that sent an EchoSubscribe message to π. (Note that, due to the no duplication
property of probabilistic broadcast, this can happen only once per process.) Upon collecting
Ê (Echo,m) messages from its echo sample E , π delivers m. Notably, if π delivers m, then
with high probability every other correct process either also delivers m, or does not deliver
anything at all, but never delivers m′ 6= m.

4.2 Analysis Using Adversary Decorators
Here we present a high-level outline of the analysis of Sieve; for a complete formal treatment,
see [34, Appendix B], where we prove the correctness of Sieve by deriving a bound on ε.

4.2.1 No duplication and integrity
Sieve deterministically satisfies these properties the same way as Murmur does [34, Ap-
pendix B.3].

4.2.2 ε-Total Validity
Since we assume a correct sender σ (by the premise of total validity), a bound on the
probability ε of violating total validity can easily be derived from the probability of the
underlying probabilistic broadcast failing and from the probability of some process’ random
echo sample having more than E − Ê Byzantine processes [34, Appendix B.4].

4.2.3 ε-Consistency
While the intuition why Sieve satisfies consistency is rather simple, proving it formally is
the most technically involved part of this paper. We now provide the intuition and present
the techniques we use to prove it, while deferring the full body of the formal proof to [34,
Appendices B.5-B.10].

In order for Sieve to violate consistency, two correct processes must deliver two different
messages (which can only happen if the sender σ is malicious). This, in turn, means that
two correct processes π and π′ must observe two different messages m and m′ sufficiently
represented in their respective echo samples. I.e., π receives (Echo,m) at least Ê times and
π′ receives (Echo,m′) at least Ê times.

Note that a correct process only sends (Echo,m) for a single message m received from
the underlying probabilistic broadcast layer. The intuition of Sieve is the same as in quorum-
based algorithms. With quorums, if enough correct processes issue (Echo,m) to make at
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least one correct process deliver m, the remaining processes (regardless of the behavior of
the Byzantine ones) are not sufficient to make any other correct process deliver m′. For
Sieve, this holds with high probability as long as Ê is sufficiently high and the fraction f of
Byzantine processes is limited.

To prove these intuitions, we first describe Simplified Sieve [34, Appendix B.6], a strawman
variant of Sieve that is easier to analyze. We prove that Simplified Sieve guarantees consistency
with strictly lower probability than Sieve does [34, Appendix B.8, Lemma 12]. Thus, an
upper bound on the probability of Simplified Sieve failing is also an upper bound on the
probability of Sieve failing.

Next, we analyze Simplified Sieve using a novel technique that involves modeling the
adversary as an algorithm that interacts with the system through a well-defined interface [34,
Appendix B.7]. We start from the set of all possible adversarial algorithms and gradually
reduce this set, while proving that the reduced set still includes an optimal adversary [34,
Appendix B.9]. (An adversary is optimal if it maximizes the probability ε of violating
consistency.) Intuitively, we prove that certain actions of the adversary always lead to strictly
lowering ε, and thus need not be considered. For example, an adversary can only decrease
its chance of compromising consistency when omitting Echo messages.

To this end, we introduce the concept of decorators. A decorator is an algorithm that lies
between an adversary and a system. It emulates a system and exposes the corresponding
interface to the decorated adversary. At the same time, the decorator also exposes the
interface of an adversary to interact with a system. The purpose of a decorator is to alter the
interaction between the adversary and the system. For any decorated adversary, we prove
that the decorator does not decrease the probability ε of the adversary compromising the
system. Thus, a decorator effectively transforms an adversary into a stronger one. Each
decorator maps a set of adversaries into one of its proper subsets that is easier to analyze
[34, Appendix D].

Through a series of decorators, we obtain a tractable set of adversaries that provably
contains an optimal one. Then we derive the bound on ε under these adversaries [34,
Theorem 9].

5 Probabilistic Byzantine Reliable Broadcast with Contagion

Our main algorithm, Contagion, implements the probabilistic Byzantine reliable broadcast
abstraction. This abstraction is strictly stronger than probabilistic consistent broadcast, as
it additionally guarantees ε-totality. Despite a Byzantine sender, either none or every correct
process delivers the broadcast message.

For any ε ∈ [0, 1], we say that probabilistic Byzantine reliable broadcast is ε-secure if
it satisfies the properties of No duplication, Integrity, ε-Validity, ε-Consistency and
ε-Totality, as already defined in previous sections.

5.1 Feedback-Based Algorithm
Our algorithm implementing probabilistic Byzantine reliable broadcast is called Contagion
and we present it in detail in [34, Appendix C, Algorithm 7]. It uses a feedback mechanism
to securely distribute a single message to every correct process. The main challenge of
Contagion is to ensure totality; we prove that the other properties are easily inherited from
the underlying layer with high probability.

The basic idea of Contagion roughly corresponds to the last stage of Bracha’s broadcast
algorithm [12]. During the execution of Contagion for message m, processes first become
ready for m. A correct process π can become ready for m in two ways:
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1. π receives m from the underlying consistent broadcast layer.
2. π observes a certain fraction of other processes being ready for m.
A correct process delivers m only after it observes enough other processes being ready for m.

Unlike Bracha, we use samples (as opposed to quorums) to assess whether enough
nodes are ready for m (and consequently our results are all probabilistic in nature). Upon
initialization, every correct process selects a ready sample R of size R and a delivery sample
D of size D. Our algorithm depends on four parameters: the ready and delivery sample sizes
R and D, and the ready and delivery thresholds R̂ and D̂.

The delivery sample D is the sample used to assess whether m can be delivered. A
correct process π delivers m if at least D̂ out of the D processes in π’s delivery sample are
ready for m.

The purpose of the ready sample R is to create a feedback loop, a crucial part of the
Contagion algorithm. When a correct process π observes at least R̂ out of the R other
processes in π’s ready sample to be ready for m, π itself becomes ready for m. A direct
consequence of such a feedback loop is the existence of a critical fraction of processes
that, when ready for m, cause all the other correct processes become ready for m with
high probability.

We require that R̂/R < D̂/D, i.e., the fraction of ready processes π needs to observe in
order to become ready itself is smaller than the fraction of ready processed required for π to
deliver m. Totality is then implied by the following intuitive argument. If a correct process
π delivers m, it must have observed a fraction of at least D̂/D other processes being ready
for m. As this fraction is higher than the critical fraction required for all correct processes to
become ready for m, all correct processes will eventually become ready for m. Consequently,
all correct processes will eventually deliver m. On the other hand, if too few processes are
initially ready for m, such that the critical fraction is not reached, with high probability no
correct process will observe the (even higher) fraction D̂/D of ready processes in its sample.
Consequently, no correct process delivers m.

To broadcast a message m, the sender σ initially uses probabilistic consistent broadcast
(Section 4) to disseminate m consistently to (a subset of) the correct processes. All correct
processes that receive m through probabilistic consistent broadcast become ready for m. If
their number is sufficiently high, according to the mechanism described above, all correct
processes deliver m with high probability. If only a few correct processes deliver receive m
from probabilistic consistent broadcast, with high probability no correct process delivers m.

5.2 Threshold Contagion Game
Before presenting the analysis of Contagion, we overview the Threshold Contagion game,
an important tool in our analysis. In this game, we simulate the spreading of a contagious
disease (without a cure) among members of a population, the same way the “readiness” for a
message spreads among correct processes that execute our Contagion algorithm.

Threshold Contagion is played on the nodes of a directed multigraph, where each node
represents a member of a population (whose state is either infected or healthy), and each
edge represents a can-infect relation. An edge (a, b) means that a can infect b. We also
call a the predecessor of b. In our Contagion algorithm, this corresponds to a being in the
ready sample of b. Analogously to Contagion, a node becomes infected when enough of its
predecessors are infected.

Threshold Contagion is played by one player in one or more rounds. At the beginning
of each round, the player infects a subset of the healthy nodes. In the rest of the round,
the infection (analogous to the readiness for a message) propagates as follows. A healthy
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node that reaches a certain threshold (R̂) of infected predecessors becomes infected as well
(potentially contributing to the infection of more nodes). The round finishes when no healthy
node has R̂ or more infected predecessors, or when all nodes are infected.

In the analogy with our Contagion algorithm, infection by a player at the start of
each round corresponds to a process receiving a message from the underlying probabilistic
consistent broadcast layer. Infection through other nodes is analogous to observing R̂ ready
processes in the ready sample.

We analyze the Threshold Contagion game, and compute the probability distribution
underlying the number of nodes that are infected at the end of a each round, depending on
the number of healthy nodes infected by the player. Applying this analysis to the Contagion
algorithm (the adversary being the player), we obtain the probability distribution of the
number of processes ready for a message, which, in turn, allows us to compute a bound
on the probability of violating the properties of Contagion. We provide all details on the
Threshold Contagion game itself in [34, Appendix E].

5.3 Analysis Using Threshold Contagion
Here we present an outline of the analysis of Contagion; for a full formal treatment, see [34,
Appendix C].

5.3.1 No duplication and integrity
Contagion deterministically satisfies these properties the same way as our previous algorithms
do [34, Appendix C.3].

5.3.2 ε-Validity
Assuming a correct sender σ (by the premise of validity), we derive a bound on the probability
ε of violating validity from the probability of the underlying probabilistic consistent broadcast
failing and from the probability of σ’s random delivery sample containig more than D − D̂
Byzantine processes [34, Appendix C.4].

5.3.3 ε-Consistency
When computing the upper bound on the probability ε of compromising consistency [34,
Appendix C.9], we assume that if the consistency of the underlying probabilistic consistent
broadcast is compromised, then the consistency of probabilistic Byzantine reliable broadcast
is compromised as well. The rest of the analysis assumes that probabilistic Byzantine reliable
broadcast is consistent.

In such case, every correct process receives at most one message m∗ from the underlying
probabilistic consistent broadcast. Simply by acting correctly, Byzantine processes can cause
any correct process to eventually deliver m∗. Consistency is compromised if the adversary
can also cause at least one correct process to deliver a message m 6= m∗, given that no correct
process becomes ready for m by receiving it through the underlying probabilistic consistent
broadcast.

We start by noting that, since a correct process π can be ready for an arbitrary number
of messages, the set of processes that are eventually ready for m is not affected by which
processes are eventually ready for a message m∗. If enough processes in π’s delivery sample
are eventually ready both for m and m∗, then π can deliver either m or m∗. In this
case, the adversary (who controls the network scheduling, see Section 2) decides which
message π delivers.
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The probability of m being delivered by any correct process is maximized when every
Byzantine process behaves as if it was ready for m [34, Appendix C.9, Lemma 28]. Note that
a Byzantine process being ready for m behaves identically to a correct process that receives
m through probabilistic consistent broadcast. We model the adversarial system using a
single-round game of Threshold Contagion where both correct and Byzantine processes are
represented as nodes in the multigraph and all nodes representing Byzantine processes are
initially infected [34, Appendix C.7, Lemma 26].

Given the distribution of the number of correct processes that are ready for m at the
end Threshold Contagion, we compute the probability that at least one correct process
will deliver m 6= m∗. This probability, combined with the probability that the consistency
of probabilistic consistent broadcast is violated, yields the probability ε of violating the
consistency of Contagion.

5.3.4 ε-Totality

Again, to compute an upper bound on the probability of our algorithm compromising
totality, we assume that compromising the consistency of probabilistic consistent broadcast
also compromises the totality of probabilistic Byzantine reliable broadcast. Assuming that
probabilistic consistent broadcast satisfies consistency, at most one message m∗ is received
by any correct process through the underlying probabilistic consistent broadcast. We loosen
the bound on the probability of compromising totality (and simplify analysis) by considering
totality to be compromised if any message m 6= m∗ is delivered by any correct process.
This allows us to focus on message m∗. We further loosen the bound by assuming that
the Byzantine adversary can arbitrarily cause any correct process to become ready for m∗.
Whenever this happens, zero or more additional correct processes will also become ready
for m∗ as a result of the feedback loop described in Section 5.1. To compromise totality,
there must exists at least one correct process that delivers m∗ and at least one correct
process does not.

We prove [34, Appendix C.10.3, Lemma 31] that the optimal adversarial strategy to
compromise totality is to repeat the following. (1) Make a correct node ready for m∗. (2)
Wait until the “readiness” propagates to zero or more correct nodes. (3) Have specific
Byzantine processes behave as correct processes ready for m∗, if this leads to some (but not
all) correct processes delivering m∗. Totality is satisfied if, after every step of the adversary,
either the feedback loop makes all correct processes deliver m∗ (relying only on correct
processes’ ready samples), or no correct process delivers m∗ (even with the “support” of
Byzantine processes) [34, Theorem 14]. Otherwise, totality is violated.

We study this behavior with a multi-round game of Threshold Contagion, where only
correct processes are represented as nodes in the multigraph and, at the beginning of each
round, the player (i.e., the adversary) infects one uninfected node. From the probability
distribution of the number of infected nodes after each round, we derive the probability of
compromising totality by message m∗. This probability equals to the probability that there
is at least one round after which the number of infected nodes allows some but not all the
processes to deliver m∗.

6 Security and Complexity Evaluation

In Sections 3 to 5, we introduced three algorithms, Murmur, Sieve and Contagion, and outlined
their analysis (deferring the formal details to the appendices).

DISC 2019
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Figure 1 Left – ε-security of Contagion, as a function of the average sample size S = 〈G,E,R,D〉.
We use a system size of 1024 processes and fractions of tolerated Byzantine processes f = 0.1 and
f = 0.15. Right – Square root of the normalized ε-security of Contagion, as a function of the system
size N , for various fractions of Byzantine processes (f) and average sample sizes (S). We normalize
the values in each series by the first element of that series. All lines appearing to grow sub-linearly
with a square-rooted y-axis demonstrates that the normalized ε security grows sub-quadratically.

The modular design of our algorithm allows us to study its components independently. We
employ numerical techniques to maximize the ε-security of Contagion, under the constraint
that the sum of all the sample sizes of a process is constant (G+E +R+D = const). Since
a process communicates with all the processes in its samples, this corresponds to a fixed
communication complexity.

For a given system size N and fraction of Byzantine processes f , we relate this per-process
communication complexity to the ε-security of Contagion. As Figure 1 (left) shows, the
probability ε of compromising the security of Contagion decays exponentially in the average
sample size S.

We also study how the ε-security of Contagion changes as a function of the system size
N , for a fixed set of parameters (G,E,R,D). Figure 1 (right) shows that the ε-security is
bounded by a quadratic function in N . Thus, for a fixed security ε, the average sample size
(and consequently, the communication complexity of our algorithm) grows logarithmically
with the system size N .

Given that a process π only exchanges a constant number of messages with each member
of π’s samples, and the sample size is logarithmic in system size, each node needs to exchange
O(logN) messages. Thus, for N nodes in the system, the overall message complexity is
O(N logN). The latency in terms of message delays between broadcasting and delivery of a
message is O(logN/ log logN). Specifically, the latency converges to O(logN/ log logN) mes-
sage delays for gossip-based dissemination with Murmur (we prove this in [34, Appendix A.4,
Theorem 5]), and 2 message delays in total for Echo (Sieve) and Ready (Contagion) messages.

7 Related Work

At its base, our broadcast algorithm relies on gossip. There is a great body of literature
studying various aspects of gossip, proposing flavors of gossip protocols for different environ-
ments and analyzing their complexities [2, 6, 8, 7, 4, 20, 23, 30, 52, 28, 26, 27, 55, 57, 29, 36].
However, to the best of our knowledge, we propose the first highly scalable gossip-based
reliable broadcast protocol resilient to Byzantine faults with a thorough probabilistic analysis.



R. Guerraoui, P. Kuznetsov, M. Monti, M. Pavlovic, and D.-A. Seredinschi 22:13

The communication pattern in the implementation of both our Sieve and Contagion
algorithms can be traced back to the Asynchronous Byzantine Agreement (ABA) primitive
of Bracha and Toueg [13] and the subsequent line of work [12, 15, 42, 50]. Indeed, our
echo-based mechanism in Sieve resembles algorithms from classic quorum-based systems for
Byzantine consistent broadcast [53, 49]. The ready-based mechanism in Contagion is inspired
by a two-phase protocol appearing in several practical (quorum-based) systems [15, 19, 44].
Compared to classic work on this topic, the key feature of Contagion and Sieve is that they
replace the building block of quorum systems with stochastic samples, thus enabling better
scalability for the price of abandoning deterministic guarantees.

There is significant prior work on using epidemic algorithms to implement scalable reliable
broadcast [9, 22, 37, 41]. Under benign failures or constant churn, these algorithms ensure,
with high probability, that every broadcast message reaches all or none, and that all messages
from correct senders are delivered. Our goal is to additionally provide consistency for
broadcast messages, and tolerate Byzantine environments [13, 45, 53]. To the best of our
knowledge, we are the first to apply the epidemic sample-based methodology in this context.
Our main algorithm Contagion scales well to dynamic systems of thousands of nodes, some
of which may be Byzantine. This makes it a suitable choice for permissionless settings that
are gaining popularity with the advent of blockchains [47].

Distributed clustering techniques seek to group the processes of a system into clusters,
sometimes called shards or quorums, of size O(logN) [5, 31, 32, 38, 39, 51]. This line of work
has various goals (e.g., leader election, “almost everywhere” agreement, building an overlay
network) and they also aim for scalable solutions. The overarching principle in clustering
techniques is similar to our use of samples: build each cluster in a provably random manner
so that the adversary cannot dominate any single cluster. Samples in our solution are private
and individual on a per-process basis, in contrast to clusters which are typically public and
global for the whole system.

The idea of communication locality appears in the context of secure multi-party compu-
tation (MPC) protocols [11, 16, 24]. This property captures the intuition that, in order to
obtain scalable distributed protocols and permit a large number of participants, it is desirable
to limit the number of participants each process must communicate with. All of our three
algorithms have this communication locality property, since each process coordinates only
with logarithmically-sized samples. In contrast to secure MPC protocols, our algorithms
have different goals, system model, or assumptions (e.g., we do not assume a client-server
model [24], nor do we seek to address privacy issues). Our algorithms can be used as building
blocks towards helping tackle scalability in MPC protocols, and we consider this an interesting
avenue for future work.
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