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In the current work we present two generalizations of the Parallel Tem-
pering algorithm, inspired by the so-called continuous-time Infinite Swap-
ping algorithm. Such a method, found its origins in the molecular dynamics
community, and can be understood as the limit case of the continuous-time
Parallel Tempering algorithm, where the (random) time between swaps of
states between two parallel chains goes to zero. Thus, swapping states be-
tween chains occurs continuously. In the current work, we extend this idea
to the context of time-discrete Markov chains and present two Markov chain
Monte Carlo algorithms that follow the same paradigm as the continuous-
time infinite swapping procedure. We analyze the convergence properties of
such discrete-time algorithms in terms of their spectral gap, and implement
them to sample from different target distributions. Numerical results show
that the proposed methods significantly improve sampling efficiency over
more traditional sampling algorithms such as Random Walk Metropolis and
(traditional) Parallel Tempering.

1. Introduction. Modern computational facilities and recent advances in computational
techniques have made the use of Markov Chain Monte Carlo (MCMC) methods feasible
for some large-scale Bayesian inverse problems (BIP), where the goal is to characterize the
posterior distribution of a set of parameters θ which models some physical phenomena con-
ditioned on some (usually indirectly) measured data y. However, some computational diffi-
culties are prone to arise when dealing with difficult to explore posteriors, i.e., posterior dis-
tributions that are multi-modal, or that concentrate around a non-linear, lower-dimensional
manifold, since some of the more commonly-used Markov transition kernels in MCMC algo-
rithms, such as random walk Metropolis (RWM) or preconditioned Crank-Nicholson (pCN),
tend to encounter difficulties on the geometry of the posterior distribution. This in turn can
make the computational time needed to properly explore these complicated target distribu-
tions arbitrarily long. Some recent works address these issues by employing Markov transi-
tions kernels that use geometric information [4]; however, this requires efficient computation
of the gradient of the posterior density, which might not always be feasible, particularly when
the underlying computational model is a so-called “black-box”.

In recent years, there has been an active development of computational techniques and
algorithms to overcome these issues using a tempering strategy [15, 23, 28, 35]. Of particular
importance for the work presented here is the Parallel Tempering (PT) algorithm [15, 28]
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(also known as replica exchange), which finds its origins in the physics and molecular dy-
namics community. The general idea behind such methods is to simultaneously run K inde-
pendent MCMC chains, where each chain is invariant with respect to a smoothed (referred to
as tempered) version of the posterior of interest µ, while, at the same time, proposing to swap
states between any two chains every so often. Such a swap is then accepted using the stan-
dard Metropolis-Hastings (MH) acceptance-rejection rule. Intuitively, chains with a larger
smoothing parameter (referred to as temperature) will typically be able to better explore the
parameter space. Thus, by proposing to exchange states between chains that target posteriors
at different temperatures, it is possible for the chain of interest (i.e., the one targeting µ) to
mix faster, and to avoid the undesirable behavior of some MCMC samplers, to get “stuck” in
a mode. Moreover, the fact that such an exchange of states is accepted with the typical MH
acceptance-rejection rule, will guarantee that the chain targeting µ remains invariant with
respect to such probability measure [15].

Tempering ideas have been successfully used to sample from posterior distributions arising
in different fields of science, ranging from astrophysics to machine learning [11, 15, 28, 34].
[25, 36] have studied the convergence of the PT algorithm from a theoretical perspective
and provided minimal conditions for its rapid mixing. Moreover, the idea of tempered dis-
tributions has not only been applied in combination with parallel chains. For example, the
simulated tempering method [26] uses a single chain and varies the temperature within this
chain. In addition, tempering forms the basis of efficient particle filtering methods for sta-
tionary model parameters in Sequential Monte Carlo settings [5, 6, 20, 21, 23] and Ensemble
Kalman Inversion [8]. A generalization over the PT approach, originating from the molecular
dynamics community, is the so-called Infinite Swapping (IS) algorithm [14, 29]. As opposed
to PT, this IS paradigm is a continuous-time Markov process and considers the limit where
states between chains are swapped infinitely often. It is shown in [14] that such an approach
can in turn be understood as a swap of dynamics, i.e., kernel and temperature (as opposed
to states) between chains. We remark that once such a change in dynamics is considered,
it is not possible to distinguish particles belonging to different chains. However, since the
stationary distribution of each chain is known, importance sampling can be employed to
compute posterior estimators with respect to the target measure of interest. Infinite Swap-
ping has been successfully applied in the context of computational molecular dynamics and
rare event simulation [13, 24, 29]; however, to the best of our knowledge, such methods
have not been implemented in the context of Bayesian inverse problems. In light of this,
the current work aims at importing such ideas to the BIP setting, by presenting them in a
discrete-time Markov chain Monte Carlo context, and analyzing the theoretical properties of
such samplers. We will refer to these algorithms as Generalized Parallel Tempering (GPT).
We remark, however, that these methods are not a time discretization of the continuous-time
Infinite Swapping presented in [14], but, in fact, a discrete-time Markov process inspired by
the ideas presented therein. We now summarize the main contributions of this work.

First, inspired by the work in [13], we propose two discrete-time MCMC generalizations
of the PT algorithm in the Bayesian inverse problem setting. Indeed, we introduce a common
MCMC framework for both PT the proposed methods.

Then, we analyze the convergence of both proposed algorithms and prove some of their
theoretical properties, such as reversibility, existence of a positive L2-spectral gap, and ge-
ometric ergodicity. While the reversibility guarantees that the chain is targeting the desired
invariant probability measure, the existence of an L2-spectral gap and geometric ergodicity
quantify the speed of convergence of an MCMC chain to its invariant measure, and pro-
vide non-asymptotic error bounds for an ergodic estimator based on the samples from such a
chain. We note that our estimates for convergence for the GPT algorithms presented herein
are not based on temperature analysis or domain decomposition, as done for PT in [36], for
instance. Improving on such analysis will be the subject of a future work.
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Finally, we implement the proposed GPT algorithms for simple Bayesian inverse prob-
lems and compare their efficiency to that of Random walk Metropolis (RWM) and PT. Even
for these simple experiments, we have achieved improvements in terms of computational
efficiency of GPT over RWM and PT, thus making the proposed methods attractive from
both a theoretical and computational perspective. The rest of this paper is organized as fol-
lows. Section 2 is devoted to the introduction of the notation, Bayesian inverse problems, and
Markov chain Monte Carlo methods. In Section 3, we provide a brief review of (traditional)
PT (Section 3.2), and introduce two versions of the GPT algorithm in Sections 3.3 and 3.4).
In Section 4, we recall some of the standard theory of Markov chains in Section 4.1 and state
the main theoretical result of the current work (Theorem 4.6) in Section 4.2. The proof of
such a theorem is given by a series of Propositions and Lemmata in Section 4.2. We present
some numerical experiments in Section 5, and draw some conclusions in Section 6.

2. Problem setting.

2.1. Notation. Let (W,‖·‖) be a separable Banach space with associated Borel σ-algebra
B(W ), and let νW be a σ-finite “reference” measure onW . For any measure µ on (W,B(W ))
that is absolutely continuous with respect to νW (in short µ� νW ), we define the Radon-
Nikodym derivative πµ := dµ

dνW
.

Let Q : W → R be an integrable function with respect to a measure µ� νW , which we
call quantity of interest. We define the expected value of Q with respect to µ by

µ(Q) := Eµ[Q] :=

∫
W
Qdµ=

∫
W
QπµdνW .

Let now W1,W2 be two Banach spaces with reference measures νW1
, νW2

, and let µ1�
νW1

, µ2� νW2
be two probability measures, with corresponding densities (with respect to

νWk
, for k = 1,2) given by π1, π2. The product of these two measures is defined by

µ(A) = (µ1 × µ2) (A) =

∫∫
A
π1(θ1)π2(θ2)νW1

(dθ1)νW2
(dθ2), ∀A ∈ B(W1 ×W2).

In general, we will write product measures (and their respective product densities) with a bold
symbol. Central to the work presented here is the concept of the Markov transition kernel,
defined as follows:

DEFINITION 2.1 (Markov transition kernel, [32]). A Markov kernel on a Banach space
W is a function p :W ×B(W )→ [0,1] such that

1. For each A in B(W ), the mapping W 3 θ 7→ p(θ,A), is a B(W )-measurable real-valued
function.

2. For each θ in W , the mapping B(W ) 3 A 7→ p(θ,A), is a probability measure on
(W,B(W )).

Loosely speaking, p(θ,A) can be interpreted as the (conditional) probability of moving to
a set A ∈ B(W ) given that the chain is in a current state θ ∈W .

We denote by M(W ) the set of real-valued signed measures on (W,B(W )), and by
M(W )⊂M(W ) the set of probability measures on (W,B(W )). Throughout this work, we
will make the distinction between Markov kernel, denoted by lower case p or q, and Markov
operator, written with an upper case P or Q. The Markov operator associated to a Markov
kernel is defined as follows:
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DEFINITION 2.2 (Markov operator, [30]). Let p :W ×B(W ) 7→ [0,1] be a Markov ker-
nel on a Banach space W , let f : W 7→ R be a measurable function on (W,B(W )), and let
ν ∈M(W ). We denote by P the Markov transition operator, which acts to the left on mea-
sures, ν 7→ νP ∈M(W ), and to the right on functions, f 7→ Pf, measurable on (W,B(W )),
such that

(νP )(A) =

∫
W
p(θ,A)ν(dθ), ∀A ∈ B(W ),

(Pf)(θ) =

∫
W
f(z)p(θ,dz), ∀θ ∈W.

Additionally, throughout the work presented herein, we will consider the tensor product
between Markov operators, defined as follows:

DEFINITION 2.3 (Tensor product Markov operator). Let W1,W2 be two separable Ba-
nach spaces and Pk, k = 1,2, be Markov transition operators associated to kernels pk :
Wk × B(Wk) 7→ [0,1]. We define the tensor product Markov operator P := P1 ⊗ P2 as the
Markov operator associated with the product measure p(θ, ·) = p1(θ1, ·) × p2(θ2, ·), θ =
(θ1, θ2) ∈W1 ×W2. In particular, νP is the measure on (W1 ×W2,B(W1 ×W2)) that sat-
isfies

(νP)(A1 ×A2) =

∫∫
W1×W2

p1(θ1,A1)p2(θ2,A2)ν(dθ1,dθ2),

for all A1 ∈ B(W1) and A2 ∈ B(W2). Moreover, (Pf) :W1×W2→R is the function given
by

(Pf)(θ) =

∫∫
W1×W2

f(z1, z2)p1(θ1,dz1)p2(θ2,dz2),

for an appropriate f :W1 ×W2→R.

In practice, P can be understood by independently applying two Markov kernels p1, p2 to
the components represented by some measure ν .

We say that a Markov operator P (resp. P) is invariant with respect to a measure ν (resp.
ν) if νP = ν (resp. νP = ν ). A related concept to invariance is that of reversibility:

DEFINITION 2.4 (Reversibility). A Markov kernel p :W ×B(W ) 7→ [0,1] is said to be
reversible (or ν-reversible) with respect to a measure ν ∈M(W ) if∫

B
p(θ,A)ν(dθ) =

∫
A
p(θ,B)ν(dθ), ∀A,B ∈ B(W ).(1)

Clearly, if a Markov kernel is reversible with respect to a measure ν, then the associated
Markov operator P has ν as an invariant measure. The reverse is not true, in general. For two
given ν-invariant Markov operators P1, P2, we say that P1P2 is a composition of Markov op-
erators. We remark that, in general, P1P2 6= P1⊗P2. Furthermore, given a composition of K
ν-invariant Markov operators Pc := P1P2 . . . PK , we say that Pc is palindromic if P1 = PK ,
P2 = PK−1, . . . , Pk = PK−k+1, k = 1,2 . . . ,K . It is known (see, e.g., [7, Section 1.12.17])
that a palindromic, ν-invariant Markov operator Pc has an associated Markov transition ker-
nel pc which is ν-reversible.
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2.2. Bayesian inverse problems. Let (Θ,‖·‖Θ) and (Y,‖·‖Y ) be separable Banach
spaces with associated σ-algebras B(Θ), B(Y ), and let us define the forward operator
F : Θ→ Y . In inverse problems, we use some data y ∈ Y , usually polluted by some ran-
dom noise η ∼ µnoise, η ∈ Y , to determine a possible state θ ∈Θ that may have generated the
data. Assuming an additive noise model, the relationship between θ and y is given by:

y =F(θ) + η, η ∼ µnoise,(2)

for some measure µnoise assumed to have a density πnoise with respect to some reference mea-
sure νY on Y . Here, θ can be a set of parameters of a possibly non-linear Partial Differential
Equation (PDE) modeled by F , for example. On a Bayesian setting, we consider the param-
eter θ to be uncertain and model it as a random variable with a given prior measure µprior
on (Θ,B(Θ)). Such a prior measure models the knowledge we have on the uncertainty in
θ, before observing the data y. If we further assume that the noise η and θ are statistically
independent (when seen as random variables on their respective spaces), then, we have that
P(y − F(θ) ∈ ·|θ) = P(η ∈ ·), i.e., y − F(θ) conditioned on θ has the same distribution as
η). Thus, we define the likelihood function

π(y|θ) := πnoise(y−F(θ)).

Throughout this work, we assume that the likelihood is strictly positive µprior-a.s. and often
write its density in terms of a non-negative potential function Φ(θ;y) : Θ× Y 7→ [0,∞):

Φ(θ;y) =− log
[
πnoise(y−F(θ))

]
.(3)

The function Φ(θ;y) is a measure of the misfit between the recorded data y and the pre-
dicted value F(θ), and often depends only on

∥∥y−F(θ)
∥∥
Y

. Assuming that the prior mea-
sure µprior has a density πprior with respect to some σ-finite measure νΘ, we have from Bayes’
Theorem (see, for example, [22, Theorem 2.5]) that

π(θ) := π(θ|y) =
1

Z
πnoise(y−F(θ))πprior(θ), with Z :=

∫
Θ

exp(−Φ(θ;y))µprior(dθ).

(4)

where µ (with corresponding νΘ-density π) is referred to as the posterior measure. The
Bayesian approach to the inverse problem consists of updating our knowledge concerning
the parameter θ, i.e., the prior, given the information that we observed in Equation (2). One
way of doing so is to generate samples from the posterior measure µ. However, it is generally
not possible to directly sample from µ given that the normalization constant Z is usually
not known and intractable to compute. A common method for performing such a task is
to use Markov chains Monte Carlo (MCMC) algorithms, as detailed in the next section.
Once samples {θn}Nn=1 drawn approximately from µ have been obtained by some MCMC
algorithm, the posterior expectation Eµ[Q] of some µ-integrable quantity of interestQ : Θ 7→
R can be approximated by the following ergodic estimator

Eµ[Q]≈ Q̂ :=
1

N

N∑
n=1

Q(θ(n)), θ(n) ∼ µ.

2.3. Markov Chain Monte Carlo and tempering. The main idea behind using Markov
chain Monte Carlo methods to sample a measure of interest µ on (Θ,B(Θ)), is to create a
Markov chain whose initial state θ0 has some distribution ν ∈M(Θ) and whose Markov
operator P is invariant with respect to µ, i.e., µP = µ. The Markov chain {θn}Nn=0 is then
generated by sampling θn ∼ p(θn−1, ·),∀n ∈ N. One of the most common approaches for
performing such a task is the Metropolis-Hastings algorithm [19, 27]. Let qprop : Θ×B(Θ) 7→
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[0,1] be an auxiliary kernel. The Metropolis-Hastings algorithm works as follows. For n =
1,2, . . . , a candidate state θ∗ is sampled from qprop(θn, ·), and proposed as the new state of
the chain at step n+ 1. Such a state is then accepted (i.e., we set θn+1 = θ∗), with probability
αMH,

αMH(θn, θ∗) = min

{
1,
π(θ∗)qprop(θ∗, θn)

π(θ)qprop(θn, θ∗)

}
,

otherwise the current state is retained, i.e., θn+1 = θn. The Metropolis-Hastings algorithm
induces the Markov transition kernel p : Θ×B(Θ) 7→ [0,1]

p(θ,A) =

∫
A
αMH(θ, θ∗)qprop(θ,dθ∗) + δθ(A)

∫
Θ

(1− αMH(θ, θ∗))qprop(θ,dθ∗),

for every θ ∈ Θ and A ∈ B(Θ). In most practical algorithms, the proposal state θ∗ is
sampled from a state-dependent auxiliary kernel qprop(θn, ·). Such is the case for ran-
dom walk Metropolis or preconditioned Crank Nicolson, where qprop(θn, ·) = N (θn,Σ) or
qprop(θn, ·) =N (

√
1− ρ2θn, ρΣ), 0< ρ< 1, respectively. However, these types of localized

proposals tend to present some undesirable behaviors when sampling from certain difficult
measures, which are, for example, concentrated over a manifold or are multi-modal [15]. In
the first case, in order to avoid a large rejection rate, the “step-size”

∥∥∥Σ1/2
∥∥∥ of the proposal

kernel must be quite small, which will in turn produce highly-correlated samples. In the sec-
ond case, chains generated by these localized kernels tend to get stuck in one of the modes. In
either of these cases, very long chains are required to properly explore the parameter space.

One way of overcoming such difficulties is to introduce tempering. Let µk, µprior be prob-
ability measures on (Θ,B(Θ)), k = 1, . . . ,K, such that all µk are absolutely continuous with
respect to µprior, and let {Tk}Kk=1 be a set of K temperatures such that 1 = T1 < T2 < · · ·<
TK ≤∞. In a Bayesian setting, µprior corresponds to the prior measure and µk, k = 1, . . . ,K
correspond to posterior measures associated to different temperatures. Denoting by πk the
µprior-density of µk, we set

πk(θ) :=
e−Φ(θ;y)/Tk

Zk
, θ ∈Θ,(5)

where Zk :=
∫

Θ e
−Φ(θ;y)/Tkµprior(dθ), and with Φ(θ;y) as the potential function defined in

(3). In the case where TK =∞, we set µK = µprior. Notice that µ1 corresponds to the target
posterior measure.

We say that for k = 2, . . . ,K, each measure µk is a tempered version of µ1. In general, the
1/Tk term in (5) serves as a “smoothing” factor, which in turn makes µk easier to explore
as Tk→∞. In PT MCMC algorithms, we sample from all posterior measures µk simultane-
ously. Here, we first use a µk-reversible Markov transition kernel pk on each chain, and then,
we propose to exchange states between chains at two consecutive temperatures, i.e., chains
targeting µk, µk+1, k ∈ {1, . . . ,K − 1}. Such a proposed swap is then accepted or rejected
with a standard Metropolis-Hastings acceptance-rejection step. This procedure is presented
in Algorithm 1. We remark that such an algorithm can be modified to, for example, propose
to swap states every Ns steps of the chain, or to swaps states between two chains µi, µj , with
i, j chosen randomly and uniformly from the index set {1,2, . . . ,K}. Notice that Algorithm
1 only considers pairwise swaps. In the GPT framework we effectively consider all K! pos-
sible swaps, and accept the proposed swap with probability 1. The construction of the GPT
framework will be discussed in the next section.
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Algorithm 1 Simple PT.
function SIMPLE PT(N,{pk}Nk=1, {πk}Nk=1, µprior)

Sample θ(1)
k ∼ µprior, k = 1, . . . ,K

for n= 1,2, . . . ,N − 1 do . Do one step of MH on each chain
for k = 1, . . . ,K do

Sample θ(n+1)
k ∼ pk(θ(n)

k , ·)
end for . Swap states
for k = 1,2, . . . ,K − 1 do

Swap states θ(n+1)
k and θ(n+1)

k+1 with probability αswap =min

{
1,
πk(θ

(n+1)
k+1

)πk+1(θ
(n+1)
k

)

πk(θ
(n+1)
k

)πk+1(θ
(n+1)
k+1

)

}
end for

end for
Output {θ(n)

1 }Nn=1

end function

3. Generalizing Parallel Tempering. Infinite Swapping was initially developed in the
context of continuous-time MCMC algorithms, which were used for molecular dynamics
simulations. Here, we use PT to, for instance, simulate a system’s energy at different tem-
peratures and to prevent a critical slow down if the temperature is small. In continuous-time
PT, the swapping of the states is controlled by a Poisson process on the set {1, . . . ,K}. Infi-
nite Swapping is the limiting algorithm obtained by letting the waiting times of this Poisson
process go to zero. Hence, we swap the states of the chain infinitely often over a finite time
interval. We refer to [14] for a thorough introduction and review of Infinite Swapping in
continuous-time. In Section 5 of the same article, the idea to use Infinite Swapping in time-
discrete Markov chains was briefly discussed. Inspired by this discussion, we present two
Generalizations of the (discrete-time) Parallel Tempering strategies. To that end, we propose
to either (i) swap states in the chains at every iteration of the algorithm in such a way that the
swap is accepted with probability one, which we will refer to as the Unweighted General-
ized Parallel Tempering (UGPT), or (ii), swap dynamics (i.e., swap kernels and temperatures
between chains) at every step of the algorithm. In this case, importance sampling must also
be used when computing posterior expectations since this in turn provides a Markov chain
whose invariant measure is not µ. We refer to this approach as Weighted Generalized Paral-
lel Tempering (WGPT). We begin by introducing a common framework to both PT and both
versions of GPT.

Let (Θ,‖·‖Θ) be a separable Banach space with associated Borel σ-algebra B(Θ). Let us
define the K-fold product space ΘK :=×K

k=1 Θ,with associated product σ-algebra BK :=⊗K
k=1B(Θ), as well as the product measures on (ΘK ,BK)

µ :=
K

×
k=1

µk,(6)

where µk k = 1, . . . ,K are the tempered measures with temperatures 1 ≤ T1 < T2 < T3 <
· · · < TK ≤ ∞ introduced in the previous section. Similarly, we define the product prior
measure µprior :=×K

k=1 µprior. Notice that µ has a density π(θ) with respect to µprior given
by

π(θ) =

K∏
k=1

πk(θk), θ := (θ1, . . . , θK) ∈ΘK ,

with πi(θ) added subscript given as in (5). The idea behind the tempering methods presented
herein is to sample from µ (as opposed to solely sampling from µ1) by creating a Markov
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chain obtained from the successive application of two µ-invariant Markov kernels p and q,
to some initial distribution ν , usually chosen to be the prior µ0. Each kernel acts as follows.
Given the current state added subscript θn = (θn1 , . . . , θ

n
K), the kernel p, which we will call

the standard MCMC kernel, proposes a new, intermediate state θ̃n+1 = (θ̃n+1
1 , . . . , θ̃n+1

K ),
possibly following the Metropolis-Hastings algorithm (or any other algorithm that generates
a µ-invariant Markov operator). Typically, p is a product kernel, meaning that each compo-
nent θ̃nk , k = 1 . . . ,K, is generated independently of the others. Then, the swapping kernel
q proposes a new state θn+1 = (θn+1

1 , . . . , θn+1
K ) by introducing an “interaction” between

the components of θ̃(n+1). This interaction step can be achieved, e.g., in the case of PT,
by proposing to swap two components at two consecutive temperatures, i.e., components k
and k+ 1, and accepting this swap with a certain probability given by the usual Metropolis-
Hastings acceptance-rejection rule. In general, the swapping kernel is usually applied every
Ns steps of the chain. We will devote the following subsection to the construction of the
swapping kernel q.

3.1. The swapping kernel q. Define SK as the collection of all the bijective maps from
{1,2, . . . ,K} to itself, i.e., the set of all K! possible permutations of id := {1, . . . ,K}. In
addition, let SK ⊆ SK be any subset of SK closed with respect to inversion. We denote
the cardinality of SK by |SK | ≤K!. Let σ ∈ SK be a permutation, and define the swapped
state θσ := (θσ(1), . . . , θσ(K)), and the inverse permutation σ−1 ∈ SK such that σ ◦ σ−1 =

σ−1 ◦ σ = id. To define the swapping kernel q, we first need to define swapping ratio and
swapping acceptance probability.

DEFINITION 3.1 (Swapping ratio). We say that a function r : ΘK × SK 7→ [0,1] is a
swapping ratio if it satisfies the following two conditions:

1. ∀θ ∈ΘK , r(θ, ·) is a probability mass function on SK .
2. ∀σ ∈ SK , r(·, σ) is measurable on (ΘK ,BK).

DEFINITION 3.2 (Swapping acceptance probability). Let θ ∈ΘK and σ, σ−1 ∈ SK . We
call swapping acceptance probability the function αswap : ΘK × SK 7→ [0,1] defined as

αswap(θ, σ) = min

{
1,
π(θσ)r(θσ, σ

−1)

π(θ)r(θ, σ)

}
.

We can now define the swapping kernel q.

DEFINITION 3.3 (Swapping kernel). Given a swapping ratio r : ΘK×SK 7→ [0,1] and its
associated swapping acceptance probability αswap : ΘK × SK 7→ [0,1], we define the swap-
ping Markov kernel q : ΘK ×BK 7→ [0,1] as
(7)
q(θ,B) =

∑
σ∈SK

r(θ, σ)
[
(1− αswap(θ, σ))δθ(B) + αswap(θ, σ)δθσ(B)

]
, θ ∈ΘK , B ∈ BK ,

where δθ(B) denotes the Dirac measure in θ, i.e., δθ(B) = 1 if θ ∈B and 0 otherwise.

The swapping mechanism should be understood in the following way: given a current state
of the chain θ ∈ΘK , the swapping kernel samples a permutation σ from SK with probability
r(θ, σ) and generates θσ. This permuted state is then accepted as the new state of the chain
with probability αswap(θ, σ). Notice that the swapping kernel follows a Metropolis-Hastings-
like procedure with “proposal” distribution r(θ, σ) and acceptance probability αswap(θ, σ).
Moreover, such a kernel is reversible with respect to µ, since it is a Metropolis-Hastings type
kernel.
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PROPOSITION 3.4. The Markov kernel q defined in (7) is reversible with respect to the
product measure µ defined in (6).

PROOF. See Appendix A.1.

This generic form of the swapping kernel provides the foundation for both PT and GPT.
We describe these algorithms in the following subsections.

3.2. The Parallel Tempering case. We first show how a PT algorithm that only swaps
states between the ith and jth components of the chain can be cast in the general framework
presented above. To that end, let σi,j ∈ SK be the permutation of (1,2, . . . ,K), which only
permutes the ith and jth components, while leaving the other components invariant (i.e., such
that σ(i) = j, σ(j) = i, and σ(k) = k, k 6= i, k 6= j). Define the PT swapping ratio between
components i and j by r(PT)

i,j : ΘK × SK 7→ [0,1] as

r
(PT)
i,j (θ, σ) :=

{
1 if σ = σi,j ,

0 otherwise.

Notice that this implies that r(PT)
i,j (θσ, σ

−1) = r
(PT)
i,j (θ, σ) since σ−1

i,j = σi,j and r(PT)
i,j does

not depend on θ, which in turn leads to the swapping acceptance probability α(PT)
swap : ΘK ×

SK 7→ [0,1] defined as:

α(PT)
swap(θ, σi,j) := min

{
1,
π(θσi,j )

π(θ)

}
, α(PT)

swap(θ, σ) = 0, σ 6= σi,j .

Thus, we can define the swapping kernel for the Parallel Tempering algorithm that swaps
components i and j as follows:

DEFINITION 3.5 (Pairwise Parallel Tempering swapping kernel). Let θ ∈ ΘK , σi,j ∈
SK . We define the Parallel Tempering swapping kernel, which proposes to swap states be-
tween the ith and jth chains as q(PT)

i,j : ΘK ×BK 7→ [0,1] given by

q
(PT)
i,j (θ,B) =

∑
σ∈SK

r
(PT)
i,j (θ, σ)

(
(1− α(PT)

swap(θ, σ))δθ(B) + α(PT)
swap(θ, σ)δθσ(B)

)

=

1−min

{
1,
π(θσi,j )

π(θ)

}
δθ(B)

+ min

{
1,
π(θσi,j )

π(θ)

}
δθσi,j (B), ∀B ∈ BK .

In practice, however, the PT algorithm considers various sequential swaps between chains,
which can be understood by applying the composition of kernels q

(PT)
i,j q

(PT)
k,` . . . at every

swapping step. In its most common form [7, 15, 28], the PT algorithm, hereafter referred
to as canonical PT (which on a slight abuse of notation we will denote by PT), proposes
to swap states between chains at two consecutive temperatures. Its swapping kernel q(PT) :
ΘK ×BK 7→ [0,1] is given by

q(PT) := q
(PT)
1,2 q

(PT)
2,3 ...q

(PT)
K−1,K .

Moreover, the algorithm described in [15], proposes to swap states every Ns ≥ 1 steps of
MCMC. The complete kernel for the PT kernel is then given by [7, 15, 28]

p(PT) := q
(PT)
1,2 q

(PT)
2,3 ...q

(PT)
K−1,KpNs ,(8)
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where p is a standard reversible Markov transition kernel used to evolve the individual chains
independently. Although the kernel p as well as each of the qi,i+1 are µ-reversible, notice
that (8) does not have a palindromic structure, and as such it is not necessarily µ-reversible.
One way of making the PT algorithm reversible with respect to µ (although not very common
in practice, to the best of the authors’ knowledge) is to consider the palindromic form

p(RPT) :=
(
q

(PT)
1,2 q

(PT)
2,3 ...q

(PT)
K−1,K

)
pNs

(
q

(PT)
K,K−1...q

(PT)
3,2 q

(PT)
2,1

)
.

3.3. Unweighted Generalized Parallel Tempering. The idea behind the Unweighted
Generalized Parallel Tempering algorithm is to generalize PT so that (i) Ns = 1 provides
a proper mixing of the chains, (ii) the algorithm is reversible with respect to µ, and (iii) the
algorithm considers all possible swaps, instead of only pairwise swaps. We begin by con-
structing a kernel of the form (7). Let r(UW) : ΘK × SK 7→ [0,1] be a function defined as

r(UW)(θ, σ) :=
π(θσ)∑

σ′∈SK π(θσ′)
, θ ∈ΘK , σ ∈ SK .(9)

Clearly, (9) is a swapping ratio according to Definition 3.1. As such, given some state
θ ∈ΘK , r(UW)(θ, σ) assigns a state-dependent probability to each of the |SK | possible per-
mutations σ in SK . This permutation σ is then accepted with probability α(UW)

swap , given by

(10) α(UW)
swap (θ, σ) := min

{
1,
π(θσ)r(UW)(θσ, σ

−1)

π(θ)r(UW)(θ, σ)

}
.

Thus, we can define the swapping kernel for the UGPT algorithm, which takes the form of
(7), with the particular choice of r(θ, σ) = r(UW)(θ, σ) and αswap(θ, σ) = α

(UW)
swap (θ, σ) so

that α(UW)
swap (θ, σ) = 1. Indeed, if we further examine Equation (10), we can see that

π(θσ)r(UW)(θσ, σ
−1)

π(θ)r(UW)(θ, σ)
=
π(θσ)

π(θ)
· π(θ)

π(θσ)
·
∑

σ′ π(θσ′)∑
σ̂ π(θσ̂)

=
π(θσ)

π(θ)
· π(θ)

π(θσ)
= 1.

In practice, this means that the proposed permuted state is accepted with probability 1. We
define the swapping kernel for this process.

DEFINITION 3.6 (unweighted swapping kernel). The unweighted swapping kernel
q(UW) : ΘK ×BK 7→ [0,1] is defined as

q(UW)(θ,B) =
∑
σ∈SK

r(UW)(θ, σ)δθσ(B), ∀θ ∈ΘK , B ∈ BK .

Applying this swapping kernel successively with the kernel p in the order q(UW)pq(UW) =:
p(UW) gives what we call Unweighted Generalized Parallel Tempering kernel p(UW). Notice
that p(UW) is a palindromic composition of kernels, which is reversible with respect to µ,
and as such, p(UW) will also be reversible with respect to µ [7]. Lastly, we write the UGPT
in operator form as

P(UW) := Q(UW)PQ(UW),

where P and Q(UW) are the Markov operators corresponding to the kernels p and q(UW),
respectively.

The UGPT algorithm proceeds by iteratively applying the kernel p(UW) to a predefined
initial state. In particular, states are updated using the procedure outlined in Algorithm 2.
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Algorithm 2 Unweighted Generalized Parallel Tempering.
function GENERALIZED PARALLEL TEMPERING(p,N,ν)

Sample θ(1) ∼ ν
for n= 1,2, . . . ,N − 1 do

Sample θ(n)
σ ∼ q(UW)(θ(n), ·) . first swapping kernel

Sample z(n+1) ∼ p(θ
(n)
σ , ·) . Markov transition kernel p kernel

Sample θ(n+1) ∼ q(UW)(z(n+1), ·) . second swapping kernel
end for
Output {θ(n)

1 }Nn=1

end function

REMARK 3.7. In practice, one does not need to perform |SK | posterior evaluations when
computing r(UW)(θn, ·), rather “just” K of them. Indeed, since πj(θnk ) ∝ π(θk)

Tj , k, j =
1,2, . . . ,K , we just need to store the values of π(θnk ), k = 1,2, . . . ,K , for a fixed n, and then
permute over the temperature indices.

Let nowQ : Θ 7→R be a quantity of interest. The posterior mean ofQ , µ(Q) := µ1(Q) is
approximated using N ∈N samples by the following sample mean estimator Q̂(UW):

µ(Q)≈ Q̂(UW) =
1

N

N∑
n=1

Q(θ
(n)
1 ).

3.4. Weighted Generalized Parallel Tempering. Following the intuition of the continuous-
time Infinite Swapping approach of [14, 29],we propose a second discrete-time algorithm,
which we will refer to as Weighted Generalized Parallel Tempering (WGPT). The idea behind
this method is to swap the dynamics of the process, that is, the Markov kernels and tempera-
tures, instead of swapping the states such that any given swap is accepted with probability 1.
We will see that the Markov kernel obtained when swapping the dynamics is not stationary
with respect to the product measure of interest µ; therefore, an importance sampling step is
needed when computing posterior expectations.

For a given permutation σ ∈ SK , we define the swapped Markov kernel pσ : ΘK ×BK 7→
[0,1] and the swapped product posterior measure µσ (on the measurable space (ΘK ,BK))
as:

pσ(θ, ·) = pσ(1)(θ1, ·)× · · · × pσ(K)(θK , ·),

µσ := µσ(1) × · · · × µσ(K),

where the swapped posterior measure has a density with respect to µprior given by

πσ(θ) := πσ(1)(θ1)× · · · × πσ(K)(θK), θ ∈ΘK , σ ∈ SK(11)

Moreover, we define the swapping weights

wσ(θ) :=
πσ(θ)∑

σ′∈SK πσ′(θ)
, θ ∈ΘK , σ ∈ SK .(12)

Note that, in general, πσ(θ) 6= π(θσ), and as such, wσ(θ) 6= r(UW)(θ, σ), with wσ defined
as in (12).

DEFINITION 3.8. We define the Weighted Generalized Parallel Tempering kernel p(W) :
ΘK ×BK 7→ [0,1] as the following state-dependent, convex combination of kernels:

p(W)(θ, ·) :=
∑
σ∈SK

wσ(θ)pσ(θ, ·), θ ∈ΘK , σ ∈ SK .



12

Thus, the WGPT chain is obtained by iteratively applying p(W). We show in Lemma 4.9
that the resulting Markov chain has invariant measure

µW =
1

|SK |
∑
σ∈SK

µσ = µ̃× · · · × µ̃,(13)

with µ̃ = 1
|SK |

∑
σ µσ, i.e., the average with tensorization. Furthermore, µW has a density

(w.r.t the prior µ0) given by

πW(θ) =
1

|SK |
∑
σ∈SK

πσ(θ), θ ∈ΘK ,

and a similar average and then tensorization representation applies to πW. We remark that
this measure is not of interest per se. However, we can use importance sampling to compute
posterior expectations. Let Q(θ) := Q(θ1) be a µ-integrable quantity of interest. We can
write

Eµ1
[Q] = Eµ[Q(θ1)] = EµW

[
Q(θ1)

π(θ)

πW(θ)

]
=

1

|SK |
∑
σ∈SK

EµW

[
Q(θσ(1))

π(θσ)

πW(θσ)

]
.

The last equality can be justified since µW is invariant by permutation of coordinates.
Thus, we can define the following (weighted) estimator of the posterior mean Q̂(W) of a
quantity of interest Q by

µ(Q)≈ Q̂(W) =
1

|SK |
1

N

∑
σ∈SK

N∑
n=1

π(θ
(n)
σ )

πW(θ
(n)
σ )
Q(θ

(n)
σ(1))

=
1

|SK |
1

N

∑
σ∈SK

N∑
n=1

ŵ(θ(n), σ)Q(θ
(n)
σ(1)),(14)

where we have denoted the importance sampling weights by ŵ(θ, σ) := π(θσ)
πW(θσ) and where

N is the number of samples in the chain. Notice that w(θ, σ) = ŵ(θ, σ−1). As a result, the
WGPT algorithm produces an estimator based on NK weighted samples, rather than “just”
N , at the same computational cost of UGPT. Thus, the previous estimator evaluates the quan-
tity of interest Q not only in the points Q(θ

(n)
1 ), but also in all states of the parallel chains,

Q(θ
(n)
σ(1)) for all σ ∈ SK , namely Q(θ

(n)
k ), k = 1,2, . . . ,K . The Weighted Generalized Par-

allel Tempering procedure is shown in Algorithm 3. To reiterate, we remark that sampling
from pσ(θ(n), ·) involves a swap of dynamics, i.e., kernels and temperatures.

Algorithm 3 Weighted Generalized Parallel Tempering.
function WEIGHTED GENERALIZED PARALLEL TEMPERING({pσ}σ∈SK ,N,ν)

Sample θ(1) ∼ ν
for n= 1,2, . . . ,N − 1 do

Sample σ ∼ {wσ′(θn)}σ′∈SK . sample the permutation σ with probability wσ(θn)
Sample θ(n+1) ∼ pσ(θ

(n), ·) . Sample state with the swapped Markov kernel
end for
Output {θ(n)}Nn=1,{{wσ′(θn)}σ′∈SK}

N
n=1.

end function

Just as in Remark 3.7, one only needs to evaluate the posterior K times (instead of |SK |)
to compute w(·)(θ

n).
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4. Convergence theory of Generalized Parallel Tempering.

4.1. Preliminaries. In this section, we briefly review some of the concepts related to the
convergence of MCMC chains, which in turn will be used to prove some of the desirable
theoretical properties of both Weighted and Unweighted GPT algorithms. We rely heavily
on the theory developed in [18, 30, 32]. We assume that the chains generated by the MCMC
kernels pk, for k = 1, . . . ,K , are aperiodic, µk-irreducible [2], and have invariant measure
µk on the measurable space (Θ,B(Θ)).

Let r ∈ [1,∞) and µ ∈M(Θ) be a “reference” probability measure. On a BIP setting, this
reference measure is considered to be the posterior. We define the following spaces

Lr = Lr(Θ, µ) =

{
f : Θ 7→R, µ-measurable, s.t ‖f‖rr :=

∫
|f(θ)|rµ(dθ)<∞

}
,

L0
r = Lr(Θ, µ) =

{
f ∈ Lr(Θ, µ), s.t µ(f) :=

∫
Θ
f(θ)µ(dθ) = 0

}
.

Moreover, when r =∞, we define

L∞(Θ, µ) :=

f : Θ 7→R, s.t inf
µ(B)=0
B∈B(Θ)

sup
y∈Θ\B

∣∣f(y)
∣∣<∞

 .

Notice that, clearly, L0
r(Θ, µ)⊂ Lr(Θ, µ). In addition we define the spaces of measures

Mr(Θ, µ) := {ν ∈M(Θ) s.t. ν� µ, ‖ν‖Lr(Θ,µ) <∞},

where ‖ν‖Lr(Θ,µ) :=

∥∥∥∥dν

dµ

∥∥∥∥
Lr(Θ,µ)

.

Notice that the definition of Lr-norm depends on the reference measure µ, and on Θ.
We remark that the functional space Lr(Θ, µ) is isometrically isomorphic to the space of
measuresMr(Θ, µ) [32].

A Markov operator P : Lr(Θ, µ) 7→ Lr(Θ, µ) with invariant measure µ is a bounded linear
operator. Let f ∈ Lr(Θ, µ). The operator norm of P is given by

‖P‖Lr(Θ,µ)7→Lr(Θ,µ) := sup
‖f‖

Lr(Θ,µ)
=1
‖Pf‖Lr(Θ,µ) .

Let r, s ∈ [1,∞], such that r−1 +s−1 = 1. If P ∗ : Ls(Θ, µ) 7→ Ls(Θ, µ) denotes the adjoint
operator of P acting on Lr(Θ, µ), it can be shown (see, e.g., [32]) that

‖P‖Lr(Θ,µ)7→Lr(Θ,µ) =
∥∥P ∗∥∥

Ls(Θ,µ)7→Ls(Θ,µ)
.

It is also shown in [32] that if P : L2(Θ, µ) 7→ L2(Θ, µ) is µ-reversible, then, P is a µ-
self-adjoint operator, i.e., P ∗ = P . It is well-known (see, e.g., [32]) that any Markov oper-
ator P with invariant measure µ can be understood as a weak contraction in Lr(Θ, µ), i.e.,
‖P‖Lr(Θ,µ)7→Lr(Θ,µ) ≤ 1. To quantify the convergence of a Markov chains generated by a
Markov operator P , we define the concept of geometric ergodicity.

DEFINITION 4.1 (Lr-geometric ergodicity [30]). Let r ∈ [1,∞). A Markov operator P
with invariant measure µ ∈M(Θ) is said to be Lr(Θ, µ)-geometrically ergodic if for all
probability measures ν ∈Mr(Θ, µ) there exists an α ∈ (0,1) and Cν <∞ such that

‖νPn − µ‖Lr(Θ,µ) ≤Cναn, n ∈ N.
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A related concept to Lr-geometric ergodicity is that of L2-spectral gap.

DEFINITION 4.2 (L2-spectral gap [30]). A Markov operator P : L2(Θ, µ) 7→ L2(Θ, µ)
with invariant measure µ ∈M(Θ) has an L2(Θ, µ)-spectral gap 1− β > 0, with β < 1, if
for any signed measure ν ∈M2(Θ, µ) with ν(Θ) = 0, the following holds

‖νP‖L2(Θ,µ) ≤ β ‖ν‖L2(Θ,µ) .

Note that this is equivalent to having ‖P‖L0
2(Θ,µ) 7→L0

2(Θ,µ) ≤ β.

The following result follows from [32], and relates the concepts of Lr(Θ, µ)-geometric
ergodicity and L2(Θ, µ)-spectral gap.

LEMMA 4.3. Let P : L2(Θ, µ) 7→ L2(Θ, µ) be a µ-reversible Markov transition opera-
tor. The existence of an L2(Θ, µ)-spectral gap implies Lr(Θ, µ)-geometric ergodicity for any
r ∈ [1,∞].

PROOF. The previous claim is shown in [32, Proposition 3.17 and Appendix A.4]. It is
also shown in [32] that, in general, β ≤ α, with α given as in Definition 4.1.

We remark that some of the most widely used Metropolis-Hastings type algorithms, such
as independent Metropolis, random Walk Metropolis and preconditioned Crank-Nicolson,
among others, are known to be both reversible and to have an L2-spectral gap under very
mild conditions [18]. We will make use of these concepts when discussing the theoreti-
cal properties of the GPT procedures in the following subsection. In particular, we will
show that under some mild assumptions on each of the K Markov transition kernels pk,
k = 1, . . .K , the chains generated by both the Weighted and Unweighted GPT algorithms are
(i) reversible with respect to either µ (for Unweighted GPT ) or µW (for Weighted GPT ),
(ii) their corresponding Markov operators have an L2-spectral gap, and as such (iii) they are
Lr-geometrically ergodic for r ∈ [1,∞].

4.2. Main theoretical results. We begin with the definition of overlap between two prob-
ability measures. Such a concept will later be used to bound the spectral gap of the GPT
algorithms.

DEFINITION 4.4 (Density overlap). Let µk, µj be two probability measures on the mea-
surable space (Θ,B(Θ)), each having respective densities πk(θ), πj(θ), θ ∈Θ, with respect
to some common reference measure νΘ also on (Θ,B(Θ)). We define the overlap between
πk(θ) and πj(θ) as

ηνΘ
(πk, πj) =

∫
Θ

min{πk(θ), πj(θ)}νΘ(dθ).

An analogous definition holds for πσ,πρ, with ρ,σ ∈ SK .

ASSUMPTION 4.5. For k = 1, . . . ,K , let µk ∈M1(Θ, µprior) be given as in (5), pk : Θ×
B(Θ) 7→ [0,1] be the Markov kernel associated to the ith dynamics and let Pk : Lr(Θ, µk) 7→
Lr(Θ, µk) be its corresponding µk-invariant Markov operator. In addition, for σ,ρ ∈ SK ,
define the measures µσ,µρ ∈M(ΘK) as in Equation (6). Throughout this work it is assumed
that:

C1. The Markov kernel pk is µk-reversible.
C2. The Markov operator Pk has an L2(Θ, µk)-spectral gap.
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C3. For any σ,ρ ∈ SK , Λσ,ρ := ηµprior
(πσ,πρ)> 0, with πσ,πρ defined as in (11).

We now proceed to state the main result of this section. Assumption C3 holds true given
the construction of the product measures in Section 3.

THEOREM 4.6 (Main theoretical result). Suppose that Assumption 4.5 holds, let µ,µW ∈
M(ΘK) be the measures defined in (6) and (13), and denote by P(UW) : L2(ΘK ,µ) 7→
L2(ΘK ,µ) and P(W) : L2(ΘK ,µW) 7→ L2(ΘK ,µW) the Markov operators associated to
the Unweighted and Weighted GPT algorithms, respectively. Then:

(i) P(UW) is µ-reversible and has an L2(ΘK ,µ)-spectral gap.
(ii) P(W) is µW-reversible and has an L2(ΘK ,µW)-spectral gap.

The following corollary is a direct consequence of Theorem 4.6 and Proposition 4.3.

COROLLARY 4.7. Under the same assumptions as in Theorem 4.6, the Markov kernels
p(UW) : ΘK × BK 7→ [0,1], and p(W) : ΘK × BK 7→ [0,1], associated with the Unweighted
and Weighted GPT algorithms, are Lr(Θ

K ,µ)-geometrically ergodic and Lr(Θ
K ,µW)-

geometrically ergodic for any r ∈ [1,∞].

The proof of Theorem 4.6 is decomposed in several propositions and lemmata. We begin
by studying reversibility.

PROPOSITION 4.8. Suppose Assumption C1 holds. Then, p = p1×· · ·×pK (resp. pσ =
pσ(1) · · · × pσ(k)) is reversible with respect to µ (resp. µσ).

PROOF. We prove reversibility by confirming that equation (1) holds true. To that end,
let θ ∈ΘK , A,B ∈ BK , where A and B tensorize, i.e., A :=

∏K
k=1Ak and B :=

∏K
k=1Bk,

with A1, . . . ,AK ,B1, . . . ,BK ∈ B(Θ). Then,∫
A
π(θ)p(θ,B)dθ =

K∏
k=1

∫
Ak

π(θk)p(θk,Bk)dθk

=

K∏
k=1

∫
Bk

π(θk)p(θk,Ak)dθk =

∫
B
π(θ)p(θ,A)dθ.

Showing that the previous equality holds for sets A,B that tensorize is indeed sufficient to
show that the claim holds for any A,B ∈ BK . This follows from Carathéodory’s Extension
Theorem applied as in the proof of uniqueness of product measures; see [1, §1.3.10, 2.6.3],
for details.

LEMMA 4.9 (Reversibility of the Generalized Parallel Tempering chain). Under Assump-
tion C1, the Markov chains generated by p(UW) and p(W) are reversible with respect to µ and
µW, respectively.

PROOF. We begin with the Unweighted GPT algorithm. Since p(UW) is a palindromic
composition of reversible kernels (with respect to the same measure µ), i.e., p(UW) =
q(UW)pq(UW), reversibility follows from [7, chapter 1.12.7 ]. For the Weighted case, we
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show reversibility by showing that (1) holds true. Thus, for θ ∈ ΘK , A,B ∈ BK , with
A :=A1 × · · · ×AK , Ak ∈ B(Θ), and with Bk defined in a similar way, we have that:∫

A
p(W)(θ,B)πW(θ)dθ =

∫
A

∑
σ∈SK

wσ(θ)pσ(θ,B)

∑ρ∈SK πρ(θ)

|SK |
µprior(dθ)

=

∫
A

∑
σ∈SK

πσ(θ)∑
σ′∈SK πσ′(θ)

pσ(θ,B)

∑ρ∈SK πρ(θ)

|SK |
µprior(dθ)

=
1

|SK |
∑
σ∈SK

∫
A
πσ(θ)pσ(θ,B)µprior(dθ)

=
1

|SK |
∑
σ∈SK

∫
B
πσ(θ)pσ(θ,A)µprior(dθ) (by Proposition 4.8)

=
1

|SK |
∑
σ∈SK

∫
B

πσ(θ)∑
σ′∈SK πσ′(θ)

pσ(θ,A)
∑
ρ∈SK

πρ(θ)µprior(dθ)

=
∑
σ∈SK

∫
B
wσ(θ)pσ(θ,A)πW(θ)µprior(dθ)

=

∫
B
p(W)(θ,A)πW(θ)µprior(dθ).

where once again, in light of Carathéodory’s Extension Theorem, it is sufficient to show that
reversibility holds for sets that tensorize.

Since reversibility with respect to a measure implies that the Markov kernel is invariant
with respect to such measure, the previous result shows that both GPT algorithms considered
herein sample from the desired measures, µ and µW, for the Unweighted and the Weighted
GPT, respectively.

Next, we focus on studying the ergodicity of the samplers. We begin with an auxiliary
result that we will use to bound the convergence of both the Weighted and Unweighted GPT
algorithms.

LEMMA 4.10. Suppose that Assumption 4.5 holds and let P :=
⊗K

k=1Pk : L2(ΘK ,µ) 7→
L2(ΘK ,µ), with invariant measure µ= µ1×· · ·×µK . Then, P has an L2(ΘK ,µ)-spectral
gap, i.e., ‖P‖L0

2(ΘK ,µ)7→L0
2(ΘK ,µ) < 1. Moreover, the Markov chain obtained from P is

Lr(Θ
K ,µ)-geometrically ergodic, for any r ∈ [1,∞].

PROOF. We limit ourselves to the case K = 2, since the case for K > 2 follows by induc-
tion. Denote by I : L2(Θ, µk) 7→ L2(Θ, µk), k = 1,2 the identity Markov transition operator,
and let f ∈ L2(Θ2,µ). Notice that f admits a spectral representation in L2(Θ2,µ) given by
f(θ) =

∑
k,j φk(θ1)ψj(θ2)ck,j , with ck,j ∈R, and where, {φk}i∈N is a complete orthonormal

basis (CONB) of L2(Θ, µ1) and {ψj}j∈N is a CONB of L2(Θ, µ2), so that {φk ⊗ ψj}k,j∈N
is a CONB of L2(Θ2,µ). Moreover, we assume that φ0 = ψ0 = 1, and write, for notational
simplicity ‖P1‖ = ‖P1‖L2(Θ,µ1)7→L2(Θ,µ1), and ‖P2‖ = ‖P2‖L2(Θ,µ2)7→L2(Θ,µ2). Lastly, de-
note f0 = f − c0,0, so that f0 ∈ L0

2(Θ2,µ). Notice that

∥∥(P1 ⊗ I)f0

∥∥2

L2(Θ2,µ)
=

∥∥∥∥∥∥
∞∑

(k,j)6=(0,0)

(P1φk)ψjck,j

∥∥∥∥∥∥
2

L2(Θ2,µ)
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=

∥∥∥∥∥∥
∞∑
j=0

 ∞∑
k=1

P1φkck,j

ψj +

∞∑
j=1

c0,jP1φ0ψj

∥∥∥∥∥∥
2

L2(Θ2,µ)

=

∞∑
j=1

∥∥∥∥∥∥
∞∑
k=1

P1φkck,j + c0,jP1φ0

∥∥∥∥∥∥
2

L2(Θ,µ1)

+

∥∥∥∥∥∥
∞∑
k=1

P1φkci,0

∥∥∥∥∥∥
2

L2(Θ,µ1)

=

∞∑
j=1

∥∥∥∥∥∥P1

 ∞∑
k=1

φkck,j

∥∥∥∥∥∥
2

L2(Θ,µ1)

+

∞∑
j=1

∥∥c0,jφ0

∥∥2

L2(Θ,µ1)
+

∥∥∥∥∥∥P1

 ∞∑
k=1

φkci,0

∥∥∥∥∥∥
2

L2(Θ,µ1)

≤
∞∑
j=1

‖P1‖2
∞∑
k=1

c2
k,j + c2

0,j

+ ‖P1‖2
∞∑
k=1

c2
i,0

= ‖P1‖2 ‖f0‖2L2(Θ2,µ) + (1− ‖P1‖2)

∞∑
j=1

(c0,j)
2.

Proceeding similarly, we can obtain an equivalent bound for
∥∥(I ⊗ P2)f0

∥∥2

L2(Θ2,µ)
. We are

now ready to bound ‖P‖2L2(Θ2,µ)7→L2(Θ2,µ) as

‖P‖2L2(Θ2,µ)7→L2(Θ2,µ) ≤
∥∥(P1 ⊗ P2)f0

∥∥2

L2(Θ2,µ)
=
∥∥(P1 ⊗ I)(I ⊗ P2)f0

∥∥2

L2(Θ2,µ)

≤ ‖P1‖2
∥∥(I ⊗ P2)f0

∥∥2

L2(Θ2,µ)
+ (1− ‖P1‖2)

 ∞∑
j=1

(I ⊗ P2)

∞∑
`,k

c`,kφ`ψk, φ0ψj

2


= ‖P1‖2
∥∥(I ⊗ P2)f0

∥∥2

L2(Θ2,µ)
+ (1− ‖P1‖2)

 ∞∑
j=1

 ∞∑
k=1

c0,k(P2ψk),ψj

2


≤ ‖P1‖2
∥∥(I ⊗ P2)f0

∥∥2

L2(Θ2,µ)
+ (1− ‖P1‖2)

∥∥∥∥∥∥P2

 ∞∑
k=1

c0,kψk

∥∥∥∥∥∥
2

L2(Θ,µ2)

≤ ‖P1‖2 ‖P2‖2 ‖f0‖2L2(Θ2,µ) + ‖P1‖2 (1− ‖P2‖2)

 ∞∑
j=1

c2
j,0

+ (1− ‖P1‖2)‖P2‖2
 ∞∑
k=1

c2
0,k


Assuming without loss of generality that ‖P1‖ ≥ ‖P2‖, we can use the inequality above to
bound

‖P‖2L2(Θ2,µ)7→L2(Θ2,µ) ≤ ‖P1‖2 ‖P2‖2 ‖f0‖2L2(Θ2,µ) + ‖P1‖2 (1− ‖P2‖2)

 ∞∑
j=1

c2
j,0 +

∞∑
k=1

c2
0,k


︸ ︷︷ ︸

≤ ‖f0‖2L2(Θ2,µ)

≤ ‖P1‖2 ‖f0‖2L2(Θ2,µ) .
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Thus, we have that ‖P ‖L0
2(Θ2,µ)7→L0

2(Θ2,µ) ≤ maxk=1,2{‖Pk‖L0
2(Θ,µk)7→L0

2(Θ,µk)} < 1. The
previous result can easily be extended to K > 2. Lastly, Lr(ΘK ,µ)-geometric ergodicity
∀r ∈ [1,∞] follows from Lemma 4.3.

We can use the previous result to prove the geometric ergodicity of the algorithm:

LEMMA 4.11 (Convergence of UGPT ). Suppose Assumption 4.5 holds and denote by µ
the invariant measure of the UGPT Markov operator P(UW). Then, P(UW) has an L2(ΘK ,µ)-
spectral gap. Moreover, the chain generated by P(UW) is Lr(ΘK ,µ)-geometrically ergodic
for any r ∈ [1,∞].

PROOF. Recall that P(UW) := Q(UW)PQ(UW). From the definition of operator norm, we
have that∥∥∥P(UW)

∥∥∥
L0

2(ΘK ,µ)7→L0
2(ΘK ,µ)

≤
∥∥∥Q(UW)

∥∥∥2

L0
2(ΘK ,µ)7→L0

2(ΘK ,µ)
‖P‖L0

2(ΘK ,µ)7→L0
2(ΘK ,µ)

≤ ‖P‖L0
2(ΘK ,µ)7→L0

2(ΘK ,µ) < 1,

where the previous line follows from Proposition 4.10 and the fact that Q(UW) is a weak
contraction in L2(ΘK ,µ) (see, e.g., [3, Lemma 1]). Lastly, Lr(ΘK ,µ)-geometric ergodicity
∀r ∈ [1,∞] follows from Lemma 4.3.

We now turn to proving geometric ergodicity for the WGPT algorithm. We begin
with an auxiliary result, lower-bounding the variance of a µW-integrable functional f ∈
L2(ΘK ,µW).

LEMMA 4.12. Let f ∈ L0
2(ΘK ,µW) be aµW-integrable function such that ‖f‖L0

2(ΘK ,µW) =

1, and denote by VµW
[f ], Vµσ [f ] the variance of f with respect to µW,µσ , respectively with

σ ∈ SK . In addition, suppose Assumption 4.5 holds. Then, it can be shown that

0<
Λm

2−Λm
≤ 1

|SK |
∑
σ∈SK

Vµσ [f ]≤VµW
[f ] = 1,

with Λm = min
σ,ρ∈SK

{Λσ,ρ} and Λσ,ρ as in Assumption C3.

PROOF. See Appendix A.2.

We are finally able to prove the convergence of the WGPT algorithm.

LEMMA 4.13 (Convergence of WGPT). Suppose Assumption 4.5 holds for some r ∈
[1,∞] and denote by µW the invariant measure of the WGPT Markov operator P(W).
Then, P(W) has an L2(ΘK ,µW)-spectral gap. Moreover, the chain generated by P(W) is
Lr(Θ

K ,µW)-geometrically ergodic for any r ∈ [1,∞].

PROOF. Let f : ΘK 7→R be an L2(ΘK ,µW)-integrable function with µW(f) = 0. More-
over, let L := {f ∈ L0

2(ΘK ,µW) : ‖f‖L0
2(ΘK ,µW) = 1}. Then, from the definition of operator

norm,∥∥∥P(w)
∥∥∥2

L0
2(ΘK ,µW)7→L0

2(ΘK ,µW)
= supf∈L

∥∥∥P(w)f
∥∥∥2

L2(ΘK ,µW)
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= supf∈L

∫
ΘK

∣∣∣∣∣∣
∑
σ∈SK

wσ(θ)

∫
ΘK

f(y)pσ(θ,dy)

∣∣∣∣∣∣
2

µW(dθ)

≤ supf∈L

∫
ΘK

∑
σ∈SK

wσ(θ)

∣∣∣∣∫
ΘK

f(y)pσ(θ,dy)

∣∣∣∣2µW(dθ) (from convexity of (·)2)

= supf∈L
1

|SK |
∑
σ∈SK

∫
ΘK

∣∣∣∣∫
ΘK

f(y)pσ(θ,dy)

∣∣∣∣2µσ(dθ) (from the definition of wσ and µW).

(15)

Now, let f̄σ :=µσ(f). Notice that we have∫
ΘK

∣∣∣∣∫
ΘK

f(y)pσ(θ,dy)

∣∣∣∣2µσ(dθ)

=

∫
ΘK

∣∣∣∣∫
ΘK

(f(y)− f̄σ + f̄σ)pσ(θ,dy)

∣∣∣∣2µσ(dθ)

=

∫
ΘK

(∣∣∣∣∫
ΘK

(f(y)− f̄σ)pσ(θ,dy)

∣∣∣∣2 +

∣∣∣∣∫
ΘK

f̄σpσ(θ,dy)

∣∣∣∣2 + 2f̄σ

∫
ΘK

(f(y)− f̄σ)pσ(θ,dy)

)
µσ(dθ)

=

∫
ΘK

(∫
ΘK

(f(y)− f̄σ)pσ(θ,dy)

)2

µσ(dθ) + (f̄σ)2 + 2f̄σ

∫
Θ

∫
Θ

(f(y)− f̄σ)pσ(θ,dy)µσ(dθ)︸ ︷︷ ︸
= 0 by stationarity

=

∫
ΘK

(∫
ΘK

(f(y)− f̄σ)pσ(θ,dy)

)2

µσ(dθ) + (f̄σ)2

=


∫

ΘK

(∫
ΘK (f(y)− f̄σ)pσ(θ,dy)

)2
µσ(dθ)∫

ΘK

(
f(θ)− f̄σ

)2
µσ(dθ)

(∫
ΘK

(
f(θ)− f̄σ

)2
µσ(dθ)

)
+ (f̄σ)2

≤‖Pσ‖2L0
2(ΘK ,µσ) 7→L0

2(ΘK ,µσ)

(∫
ΘK

(
f(θ)− f̄σ

)2
µσ(dθ)

)
+ (f̄σ)2

=‖Pσ‖2L0
2(ΘK ,µσ)7→L0

2(ΘK ,µσ)

(∫
ΘK

f(θ)2µσ(dθ)

)
+
(

1− ‖Pσ‖2L0
2(ΘK ,µσ)7→L0

2(ΘK ,µσ

)
(f̄σ)2

=

(∫
ΘK

f(θ)2µσ(dθ)

)
−
(

1− ‖Pσ‖2L0
2(ΘK ,µσ)7→L0

2(ΘK ,µσ)

)
︸ ︷︷ ︸

:= γ, with γ ∈ (0,1)

(∫
ΘK

(
f(θ)− f̄σ

)2
µσ(dθ)

)
.

(16)

Replacing Equation (16) into Equation (15), we get∥∥∥P(W)
∥∥∥2

L0
2(ΘK ,µW)7→L0

2(ΘK ,µW)
≤ sup
f ∈ L0

2(ΘK ,µW)

‖f‖L0
2(ΘK ,µW)=1

(∫
ΘK

f(θ)2µW(dθ)

)
− γVµσ [f ]

≤ 1− γ
(

Λm
2−Λm

)
< 1 (by Lemma 4.12).
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Thus, P(w) has an L2(ΘK ,µW) spectral gap. Once again, Lr(ΘK ,µW)-geometric ergod-
icity (with r ∈ [1,∞]) follows from Lemma 4.3.

The proof of Theorem 4.6 then follows immediately from Lemmata 4.9, 4.11, 4.13. We
remark that, we have not used temperature information in our estimates, and as such, we
believe that our estimates can thus be improved. These potential improvements will be the
focus of a future work. Furthermore, we remark that the framework presented herein is, in
principle, dimension independent, and as such, can be applied to infinite-dimensional BIP
[33], provided proper Markov kernels are used on each chain (as for instance, those discussed
on [18]). Extending the results of the current work to infinite dimensional BIP will also be
the subject of a future work.

5. Numerical experiments. We now present two academic examples to illustrate the
efficiency of both GPT algorithms discussed herein and compare them to the more tradi-
tional random walk Metropolis and PT algorithms. Notice that we compare the examples
with respect to the “simplest” version of these methods, since more efficient variations, such
as Adaptive Metropolis [17, 16], for example, can also be extended into the GPT frame-
work. The following experiments were run in a Dell (R) Precision (TM) T3620 worksta-
tion with Intel(R) Core(TM) i7-7700 CPU with 32 GB of RAM. Numerical simulations
in Section 5.1 were run on a single thread, while the numerical simulations in Section 5.2
were run on an embarrassingly parallel fashion over 8 threads using the Message Pass-
ing Interface (MPI) and the Python package MPI4py [10]. The scripts used to generate
the results presented in this section were written in Python 3.6, and can be found in DOI:
10.5281/zenodo.3700049.

REMARK 5.1. In most Bayesian inverse problems, particularly those dealing with large-
scale computational models, the computational cost is dominated by the evaluation of the
forward operator, which can be, for example, the numerical approximation of a possibly non-
linear partial differential equation. In the case where all possible permutations are considered
(i.e., SK = SK ), there are K! possible permutations of the states, the computation of the
swapping ratio in the GPT algorithms can become prohibitively expensive if one is to evalu-
ate K! forward models, even for moderate values of K . This problem can be circumvented
by storing the values π(θ

(n)
k ), k = 1, . . . ,K n = 1, . . .N , since the swapping ratio for GPT

consists of permutations of these values, divided by the temperature parameters. Thus, “only”
K forward model evaluations need to be computed at each step and the swapping ratio can be
computed at negligible cost for moderate values of K . For higher values of K , it is advisable
to only consider the union of properly chosen semi-groupsA,B of SK , withA∩B 6= ∅, such
that A,B generates SK (i.e., if the smallest semi-groups that contains A and B is SK itself),
and |A∪B|< |SK |=K!, which is referred to as partial Infinite Swapping in the continuous
case [14]. One particular way of choosing A and B is to consider, for example, A to be the
set of permutations that only permute the indices associated with relatively low temperatures
while leaving the other indices unchanged, and B as the set of permutations for the indices
of relatively high temperatures, while leaving the other indices unchanged. Intuitively, swaps
between temperatures that are, in a sense, “close” to each other tend to be chosen with a
higher probability. We refer the reader to [14, Section 6.2] for a further discussion on this
approach in the continuous-time setting. One additional idea would be to consider swapping
schemes that, for example, only permute states between µi and µi+1, µi+2, . . . , µi+` for some
user-defined ` ≥ 1 and any given i = 1,2, . . . ,K − 1. The intuition behind this choice also
being that swaps between posteriors that are at close temperatures are more likely to occur
than swaps between posteriors with a high temperature difference.
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5.1. Density concentrated over a quarter circle-shaped manifold. Let µ be a probability
measure that has density π with respect to the uniform Lebesgue measure on the unit square
µprior = U([0,1]2) given by

π(θ) =
1

Z
exp

(
−10000(θ2

1 + θ2
2 − 0.82)2

)
1[0,1]2 , θ = (θ1, θ2),

whereZ is the normalization constant and 1[0,1]2 is the indicator function over the unit square.
We remark that this example is not of particular interest per se; however, it can be used
to illustrate some of the advantages of the algorithms discussed herein. The difficulty of
sampling from such a distribution comes from the fact that its density is concentrated over a
quarter circle-shaped manifold, as can be seen on the left-most plot in Figure 1. This in turn
will imply that a single level RWM chain would need to take very small steps in order to
properly explore such density.

FIG 1. Tempered densities (with T1 = 1, T2 = 17.1, T3 = 292.4, T4 = 5000) for the density concentrated
around a quarter circle-shaped manifold example. As we can see, the density becomes less concentrated as the
temperature increases, which allows us to use RWM proposals with larger step sizes.

We aim at estimating Qk = Eµ1
[θk] ≈ θ̂k, for k = 1,2. To do so, we implement four

MCMC algorithms to sample from µ1, namely Random Walk Metropolis (RWM), the canon-
ical PT (PT) with Ns = 1, as described in Section 3.2, and both versions of the GPT algo-
rithm. We compare the quality of our algorithms by examining the variance of the estima-
tors θ̂k, k = 1,2 computed over 100 independent MCMC runs of each algorithm, which
we describe as follows. For the tempered algorithms (PT, UGPT, and WGPT), we consider
K = 4 temperatures. A rule of thumb [15] for the choice of temperatures is to set Ti = ai−1,
k = 1, . . . ,K , for some positive constant a > 1. In particular, we choose T4 = 5000, so that
the tempered density π4 becomes a sufficiently simple to explore target distribution. This
gives T1 = 1, T2 = 17.1, T3 = 292.4, T4 = 5000. Moreover, for both GPT algorithms, we set
SK = S̄K , i.e., we consider all possible K! permutations of {1,2, . . . ,K}. Notice that since
this is a relatively small value of K , the computational time is dominated by the transition
operator P, rather than by the computation of the swapping ratio. In the current setting, the
computational cost of PT is comparable to that of both GPT algorithms discussed herein.
Each estimator is obtained by running the inversion experiment for N = 25,000 samples,
discarding the first 20% of the samples (5000) as a burn-in. Notice that the tempering algo-
rithms (i.e., PT, UGPT and WGPT) have a K-times larger computational cost than RWM,
since such algorithms need to run a total of K chains. To account for this computational cost,
we run the single-chain random walk Metropolis algorithm for NRWM =KN = 100,000 it-
erations, and discard the first 20% of the samples obtained with the RWM algorithm (20,000)
as a burn-in.
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The RWM algorithm uses proposals with covariance matrix ΣRWM = (0.025)2I2×2,
where I2×2 is the identity matrix in R2×2. For the tempered algorithms (i.e., PT and both
versions of GPT), we use K = 4 RWM kernels pk, k = 1,2,3,4, with proposal density
qprop,i(θ

(n)
k , ·) = N (θ

(n)
k , σ2

kI2×2), where σk is shown in Table 1. This choice of σk gives
an acceptance rate for each chain of around 0.23. Notice that σ1 corresponds to the “step-
size” of the single-temperature RWM algorithm.

k = 1 k = 2 k = 3 k = 4

σk 0.022 0.090 0.310 0.650
TABLE 1

Step size of the RWM proposal distribution for the manifold experiment. This choice of step size provides an
average acceptance rate for each chain, at each temperature, of around 0.23 for all the algorithms tested. Such

values are relatively close to the “optimal” value of 0.234 in [31].

Experimental results for the ergodic run are shown in Table 5.1. We can see how both
GPT algorithms provide a gain over both RWM and the (standard) PT algorithms, with the
WGPT algorithm providing a larger gain. Scatter plots of the samples obtained with each
method are presented in Figure 2. Here, the subplot titled “WGPT” (second from right to left)
corresponds to weighted samples from µW, with weight ŵ as in (14), while the one titled
“WGPT (inv)” (rightmost) corresponds to samples from µW without any post-processing.
Notice how the samples from the latter concentrates over a wider manifold, which in turn
makes the target density easier to explore when using state-dependent Markov transition
kernels.

Mean MSE MSERWM/MSE
θ1 θ2 θ1 θ2 θ1 θ2

RWM 0.50996 0.50657 0.002521 0.00236 1.00 1.00
PT 0.50978 0.51241 0.000460 0.00051 5.50 4.70
UGPT 0.50986 0.50987 0.000370 0.00035 6.80 6.70
WGPT 0.51062 0.50838 0.000220 0.00023 11.5 10.2

TABLE 2
Results for the density concentrated around a circle-shaped manifold experiment. As we can see, both GPT
algorithms provide an improvement over PT and RWM. The computational cost is comparable across all

algorithms.

5.2. Multiple source elliptic BIP. We now consider a slightly more challenging problem,
for which we try to recover the probability distribution of the location of a source term in a
Poisson equation (Eq. (17)), based on some noisy measured data. Let (Θ,B(Θ), µprior) be the
measure space, set Θ = D̄ := [0,1]2, with Lebesgue (uniform) measure µprior, and consider
the following Poisson’s equation with homogeneous boundary conditions:{

∆u(x, θ) = f(x, θ), x ∈D, θ ∈Θ,

u(x, θ) = 0, x ∈ ∂D.
(17)

Such equation can model, for example, the electrostatic potential u := u(x, θ) generated by
a charge density f(x, θ) depending on an uncertain location parameter θ ∈ Θ. Data y is
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FIG 2. Scatter-plots of the samples from µ1 obtained with each algorithm. From left to right: random walk
Metropolis, PT, UGPT, WGPT (after re-weighting the samples), and WGPT, before re-weighting the samples.

recorded on an array of 64× 64 equally-spaced points in D by solving (17) with a forcing
term given by

f(x) =

4∑
i=1

e−1000[(x1−s(i)
1 )2+(x2−s(i)

2 )2],(18)

where the true source locations s(i), i = 1,2,3,4, are given by s(1) = (0.2,0.2), s(2) =
(0.2,0.8), s(3) = (0.8,0.2), and s(4) = (0.8,0.8). Such data is assumed to be polluted
by an additive Gaussian noise η ∼ N (0, σ2I64×64), with σ = 3.2 × 10−6, (which corre-
sponds to a 1% noise) and where I64×64 is the 64-dimensional identity matrix. Thus, we
set (Y,‖·‖Y ) = (R64×64,‖·‖Σ), with ‖A‖Σ = (64σ)−2

∥∥∥ATA∥∥∥
F

, for some arbitrary matrix

A ∈ R64×64, where ‖·‖F is the Frobenius norm. We assume a misspecified model where
we only consider a single source in Eq. (18). That, is, we construct our forward operator
F : Θ 7→ Y by solving (17) with a source term given by

f(x, θ) = e−1000[(x1−θ1)2+(x2−θ2)2].(19)

In this particular setting, this leads to a posterior distribution with four modes since the
prior density is uniform in the domain and the likelihood has a local maximum whenever
(θ1, θ2) = (s

(i)
1 , s

(i)
2 ), i= 1,2,3,4. The Bayesian inverse problem at hand can be understood

by sampling from the posterior measure µ, which has a density with respect to the prior
µprior = U(D̄) given by

π(θ) =
1

Z
exp

(
−1

2

∥∥y−F(θ)
∥∥2

Σ

)
,

for some (intractable) normalization constant Z as in (4). We remark that the solution to (17)
with a forcing term of the form of (19) is approximated using a second-order accurate finite
difference approximation with grid-size h= 1/64 on each spatial component.

The difficulty in sampling from the current BIP arises from the fact that the resulting
posterior µ is multi-modal and the number of modes is not known apriori (see Figure 3).

We follow a similar experimental setup as in the previous example, by implementing
RWM, PT (with Ns = 1), and both versions of the GPT algorithms. For the PT and GPT
algorithms, four different temperatures are used, with T1 = 1, T2 = 7.36, T3 = 54.28, and
T4 = 400. Once again, we set SK = S̄K = 4! for both GPT algorithms. Given that 41 is a
moderately small number, the computational cost of evaluating the forward model is much
higher than the cost associated with computing the swapping ratio.
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FIG 3. True tempered densities for the elliptic BIP example. Notice that the density is not symmetric, due to the
additional random noise.

Since we have K = 4 temperatures, we run the RWM algorithm for K-times longer, so
that the computational cost of all algorithms tested is comparable. For each run, we obtain
N = 25,000 samples with the PT and GPT algorithms, and N = 100,000 samples with
RWM, discarding the first 20% of the samples in both cases (5000, 20000, respectively) as a
burn-in.

For the tempered algorithms, we run each simulation for a total of N = 25,000 samples,
and a total of 100,000 samples with RWM. We discard the first 5,000 the samples for the
PT and GPT algorithms and the first 20,000 for the RWM algorithm as a burn-in. On each of
the tempered chains, we use RWM proposals, with step-sizes shown in table 3. This choice
of step size provides an acceptance rate of about 0.24 across all tempered chains and all
tempered algorithms. For the single-temperature RWM run, we choose a larger step size
(σRWM = 0.16) so that the RWM algorithm is able to explore the whole distribution. Such a
choice, however, provides a smaller acceptance rate of about 0.01 for the single-chain RWM.

Experimental results are shown in Table 5.1. Once again, we can see how both GPT al-
gorithms provide a gain over both RWM and the PT algorithms, with the WGPT algorithm
providing a larger gain. Scatter-plots of the obtained samples are shown in Figure 3.

k = 1 k = 2 k = 3 k = 4

σi,PT,GPT 0.030 0.100 0.400 0.600
σi,RWM 0.160 - - -

TABLE 3
Step size of the RWM proposal distribution for the elliptic BIP experiment. This choice of step size provides an

acceptance rate of about 0.24 for all the tempered algorithms tested. The choice of step size for the the
single-temperature RWM is chosen to be 0.16, so that the sampler can explore the whole distribution. This in

turn results in an acceptance rate of about 0.01.

6. Conclusions and future work. In the current work, we have proposed, implemented,
and analyzed two versions of the GPT, and applied these methods to a BIP context. We
demonstrate that such algorithms produce reversible and geometrically-ergodic chains un-
der relatively mild conditions. As shown in Section 5, such sampling algorithms provide an
attractive alternative to the more standard Parallel Tempering when sampling from difficult
(i.e., multi-modal or concentrated around a manifold) posteriors. We remark that the frame-
work considered here-in can be combined with other, more advanced MCMC algorithms,
such as, e.g., the Metropolis-adjusted Langevin algorithm (MALA), or the Delayed Rejec-
tion Adaptive Metropolis (DRAM), for example [16].
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Mean MSE MSERWM/MSE
θ1 θ2 θ1 θ2 θ1 θ2

RWM 0.41143 0.52954 0.01099 0.01270 1.00 1.00
PT 0.39262 0.53690 0.00062 0.00089 17.7 14.2
UGPT 0.39169 0.53338 0.00050 0.00079 21.9 12.8
WGPT 0.39345 0.53074 0.00048 0.00077 22.9 16.5

TABLE 4
Results for the elliptic BIP problem. Once again, we can see that both GPT provide an improvement over RWM

and PT. The computational cost GPT comparable across all algorithms.

FIG 4. Scatterplots of the samples from µ1 obtained with different algorithms on a single run. From left to right:
random walk Metropolis, PT, UGPT, WGPT (after re-weighting the samples), and WGPT, before re-weighting the
samples. As we can see, WGPT is able to "connect" the parameter space.

We intend to carry out a number of future extensions of the work presented herein. One of
our short-term goals is to extend the methodology developed in the current work to a Multi-
level Markov Chain Monte Carlo context, as in [12]. In addition, from a theoretical point
of view, we would like to investigate the role that the number of chains and the choice of
temperatures play on the convergence of the GPT algorithm, as it has been done previously
for Parallel Tempering in [36]. Improving on the estimates presented here would likely be the
focus of future work. Furthermore, from a computational perspective, given that the frame-
work presented in this work is, in principle, dimension independent, the methods explored
in this work can also be combined with dimension-independent samplers such as the ones
presented in [4, 9], thus providing a sampling algorithm robust to both multi-modality and
large dimensionality of the parameter space. Given the additional computational cost of these
methods, a non-trivial coupling of GPT and these methods needs to be devised. Lastly, we
aim at applying the methods developed in the current work to more computationally chal-
lenging BIP, in particular those arising in seismology and seismic source inversion, where
it is not uncommon to find multi-modal posterior distributions when inverting for a point
source.

APPENDIX: AUXILIARY RESULTS

A.1. Proof Proposition 3.4.

PROOF. Let A,B ∈ BK . We want to show that∫
A
q(θ,B)dµ(dθ) =

∫
B
q(θ,A)µ(dθ).



26

Thus, ∫
A
q(θ,B)µ(dθ) =

∑
σ∈SK

∫
A
r(θ, σ)αswap(θ, σ)δθσ(B)π(θ)µprior(dθ)︸ ︷︷ ︸

I

+
∑
σ∈SK

∫
A
r(θ, σ)

(
1− αswap(θ, σ)

)
δθ(B)π(θ)µprior(dθ)︸ ︷︷ ︸

II

.

Let Aσ := {z ∈XK : zσ−1 ∈A}. From I , we get

I =
∑
σ∈SK

∫
A

min

{
1,
π(θσ)r(θσ, σ

−1)

π(θ)r(θ, σ)

}
r(θ, σ)π(θ)δθσ(B)µprior(dθ)

=
∑
σ∈SK

∫
A

min

{
1,

π(θ)r(θ, σ)

π(θσ)r(θσ, σ−1)

}
r(θσ, σ

−1)π(θσ)δθσ(B)µprior(dθ)

=
∑
σ∈SK

∫
Aσ

min

{
1,
π(θσ−1)r(θσ−1 , σ)

π(θ)r(θ, σ−1)

}
r(θ, σ−1)π(θ)δθ(B)µprior(dθ)

=
∑
σ∈SK

∫
Aσ∩B

min

{
1,
π(θσ−1)r(θσ−1 , σ)

π(θ)r(θ, σ−1)

}
r(θ, σ−1)π(θ)δθ(B)µprior(dθ)

=
∑
σ∈SK

∫
B

min

{
1,
π(θσ−1)r(θσ−1 , σ)

π(θ)r(θ, σ−1)

}
r(θ, σ−1)π(θ)δθ(Aσ)µprior(dθ)

=
∑
σ∈SK

∫
B

min

{
1,
π(θσ−1)r(θσ−1 , σ)

π(θ)r(θ, σ−1)

}
r(θ, σ−1)π(θ)δθσ−1 (A)µprior(dθ)

=
∑
σ∈SK

∫
B
r(θ, σ−1)π(θ)αswap(θ, σ−1)δθσ−1 (A)µprior(dθ) =

∑
σ∈SK

r(θ, σ)π(θ)αswap(θ, σ)δθσ(A)µprior(dθ).

For the second term II we simply have

II =
∑
σ∈SK

∫
A
r(θ, σ)(1− αswap(θ, σ))δθ(B)π(θ)µprior(dθ)

=
∑
σ∈SK

∫
A∩B

r(θ, σ)(1− αswap(θ, σ))δθ(B)π(θ)µprior(dθ)

=
∑
σ∈SK

∫
B
r(θ, σ)(1− αswap(θ, σ))δθ(A)π(θ)µprior(dθ).

A.2. Proof of Lemma 4.12.

PROOF. This proof is partially based on the proof of Theorem 1.2 in [25]. Let θ,y ∈ΘK

and define f̄σ :=µσ(f). The right-most inequality follows from the fact that

1 = VµW
[f ] =

∫
ΘK

f(θ)2µW(dθ) =
1

|SK |
∑
σ∈SK

∫
ΘK

f2(θ)µσ(dθ) =
1

|SK |
∑
σ∈SK

(
Vµσ [f ] + f̄2

σ

)
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≥ 1

|SK |
∑
σ∈SK

Vµσ [f ]

We follow a procedure similar to the proof of [25, Theorem 1.2] for the lower bound on
the variance. We introduce an ordering on SK = σ1, σ2, . . . , σ|SK |, define the matrix C ∈
R|SK |×|SK | as the matrix with entries

Cij =

∫
ΘK

∫
ΘK

(f(θ)− f(y))2µσi(dθ)µσj (dy),

where Cjj = 2Vµσj [f ] and

2 = 2VµW
[f ] =

∫
ΘK

∫
ΘK

(f(θ)− f(y))2

 1

|SK |

|SK |∑
i=1

µσi(dθ)

 1

|SK |

|SK |∑
j=1

µσj (dy)


=
∑
i,j

1

|SK |2
Cij .(20)

We thus aim at finding an upper bound of Equation (20) in terms of (|SK |)−1
∑

σ∈SK Vσ[f ].
By assumption C3, for any σi, σj ∈ SK the densities πσi ,πσj of µσi ,µσj (with respect to

µ0) have an overlap Λij > 0. Thus, we can find densities ηij := Λ−1
ij min
θ∈ΘK

{πσi(θ),πσj (θ)},ϕi,ψj
such that πσi = Λijηij + (1−Λij)ϕi, and πσj = Λijηij + (1−Λij)ψj . Thus, we get for the
diagonal entries of the C matrix:

Cii = 2Vµσi [f ]

=

∫
ΘK

∫
ΘK

(f(θ)− f(y))2
(
Λijηij(θ) + (1−Λij)ϕi(θ)

) (
Λijηij(y) + (1−Λij)ϕi(y)

)
µ0(dθ)µ0(dy)

=

∫
ΘK

∫
ΘK

(f(θ)− f(y))2Λ2
ijηij(θ)ηij(y)µ0(dθ)µ0(dy)

+

∫
ΘK

∫
ΘK

(f(θ)− f(y))2Λij(1−Λij)ϕi(y)ηij(θ)µ0(dθ)µ0(dy)

+

∫
ΘK

∫
ΘK

(f(θ)− f(y))2Λij(1−Λij)ϕi(θ)ηij(y)µ0(dθ)µ0(dy)

+

∫
ΘK

∫
ΘK

(f(θ)− f(y))2(1−Λij)
2ϕi(y)ϕi(θ)µ0(dθ)µ0(dy)

= 2Λ2
ijVηij [f ] + 2(1−Λij)

2Vϕi [f ] + 2Λij(1−Λij)

∫
ΘK

∫
ΘK

(f(θ)− f(y))2ηij(θ)ϕi(θ)µ0(dθ)µ0(dy).

(21)

Notice that equation (21) implies that∫
ΘK

∫
ΘK

(f(θ)− f(y))2ηij(θ)ϕi(θ)µ0(dθ)µ0(dy)≤
Vµσi [f ]−Λ2

ijVηij [f ]

Λij(1−Λij)
.(22)

As for the non-diagonal entries of C , we have

Cij =

∫
ΘK

∫
ΘK

(f(θ)− f(y))2
[
Λijηij(θ)(23)

+ (1−Λij)ϕi(θ)
] (

Λijηij(y) + (1−Λij)ψj(y)
)
µ0(dθ)µ0(dy)
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= 2Λ2
ijVηij [f ] + (1−Λij)

2

∫
ΘK

∫
ΘK

(f(θ)− f(y))2ϕi(θ)ψj(y)µ0(dθ)µ0(dy)

+ Λij(1−Λij)

∫
ΘK

∫
ΘK

(f(θ)− f(y))2
(
ηij(θ)ψj(y) + ηij(y)ϕi(θ)

)
µ0(dθ)µ0(dy).

We can bound the second term in the previous expression using Cauchy-Schwarz. Let z ∈
ΘK . Then,∫

ΘK

∫
ΘK

(f(θ)− f(y))2ϕi(θ)ψj(y)µ0(dθ)µ0(dy)

=

∫
ΘK

∫
ΘK

∫
ΘK

(f(θ)− f(z) + f(z)− f(y))2ϕi(θ)ψj(y)ηij(z)µ0(dθ)µ0(dy)µ0(dz)

≤ 2

∫
ΘK

∫
ΘK

∫
ΘK

((
f(θ)− f(z)

)2
+ (f(z)− f(y))2

)
ϕi(θ)ψj(y)ηij(z)µ0(dθ)µ0(dy)µ0(dz)

= 2

∫
ΘK

∫
ΘK

(f(θ)− f(z))2ϕi(θ)ηij(z)µ0(dθ)µ0(dz)

+ 2

∫
ΘK

∫
ΘK

(f(y)− f(z))2ψj(y)ηij(z)µ0(dy)µ0(dz).

(24)

Thus, from equations (22), (23), and (24) we get

Cij ≤ 2Λ2
ijVηij [f ] + (2(1−Λij)

2 + Λij(1−Λij))

(∫
ΘK

∫
ΘK

(f(θ)− f(z))2
(
ηij(θ)ψj(y)

+ηij(y)ψi(θ)
)
µ0(dθ)µ0(dy)

)
= 2Λ2

ijVηij [f ] + (2−Λij)(1−Λij)
(
Vµσi [f ]−Λ2

ijVηij [f ] +Vµσj [f ]−Λ2
ijVηij [f ]

)
/Λij(1−Λij)

=
2−Λij

Λij

(
Vµσi [f ] + Vµσj [f ]

)
− 4Λij(1−Λij)Vηij [f ]

≤ 2−Λij
Λij

(
Vµσi [f ] + Vµσj [f ]

)
,

(25)

since Λij ∈ (0,1) ∀i, j. Finally, from equations (20) and (25) we get that

1 = VµW
[f ] =

1

2

∑
ij

1

|SK |2
Cij ≤

1

2

1

|SK |2

|SK |∑
i,j=1

2−Λij
Λij

(
Vµσj [f ] + Vµσj [f ]

)
≤ 2

2−Λm

 1

|SK |

|SK |∑
i=1

Vµσi [f ]

 ,

with Λm := min{Λij}
i,j=1,2,...,|SK |

> 0, and Λi,j as in Assumption C3. This in turn yields the lower

bound

0<
Λm

2−Λm
≤

 1

|SK |
∑
i∈SK

Vµ
i
[f ]

 .
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