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Abstract

In the current work we present two generalizations of the Parallel Tem-
pering algorithm, inspired by the so-called continuous-time Infinite Swap-
ping algorithm, which found its origins in the molecular dynamics com-
munity, and can be understood as the limit of a continuous-time Parallel
Tempering algorithm with state-dependent swapping rates. In the current
work, we extend this idea to the context of time-discrete Markov chains
and present two Markov chain Monte Carlo algorithms that follow the
same paradigm as the continuous-time infinite swapping procedure. We
analyze the reversibility and ergodicity properties of our generalized PT
algorithms. Numerical results on sampling from different target distribu-
tions originating from Bayesian inverse problems, show that the proposed
methods significantly improve sampling efficiency over more traditional
sampling algorithms such as Random Walk Metropolis and (standard)
Parallel Tempering.
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1 Introduction
Modern computational facilities and recent advances in computational tech-
niques have made the use of Markov Chain Monte Carlo (MCMC) methods
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feasible for some large-scale Bayesian inverse problems (BIP), where the goal
is to characterize the posterior distribution of a set of parameters θ of a com-
putational model which describes some physical phenomena, conditioned on
some (usually indirectly) measured data y. However, some computational dif-
ficulties are prone to arise when dealing with difficult to explore posteriors,
i.e., posterior distributions that are multi-modal, or that concentrate around a
non-linear, lower-dimensional manifold, since some of the more commonly-used
Markov transition kernels in MCMC algorithms, such as random walk Metropo-
lis (RWM) or preconditioned Crank-Nicholson (pCN), are not well-suited in such
situations. This in turn can make the computational time needed to properly ex-
plore these complicated target distributions arbitrarily long. Some recent works
address these issues by employing Markov transitions kernels that use geometric
information [7]; however, this requires efficient computation of the gradient of
the posterior density, which might not always be feasible, particularly when the
underlying computational model is a so-called “black-box”.

In recent years, there has been an active development of computational
techniques and algorithms to overcome these issues using a tempering strat-
egy [13, 17, 26, 33, 40]. Of particular importance for the work presented here
is the Parallel Tempering (PT) algorithm [17, 24, 33] (also known as replica
exchange), which finds its origins in the physics and molecular dynamics com-
munity. The general idea behind such methods is to simultaneously run K
independent MCMC chains, where each chain is invariant with respect to a flat-
tened (referred to as tempered) version of the posterior of interest µ, while, at
the same time, proposing to swap states between any two chains every so often.
Such a swap is then accepted using the standard Metropolis-Hastings (MH)
acceptance-rejection rule. Intuitively, chains with a larger smoothing parameter
(referred to as temperature) will be able to better explore the parameter space.
Thus, by proposing to exchange states between chains that target posteriors at
different temperatures, it is possible for the chain of interest (i.e., the one tar-
geting µ) to mix faster, and to avoid the undesirable behavior of some MCMC
samplers, to get “stuck” in a mode. Moreover, the fact that such an exchange of
states is accepted with the typical MH acceptance-rejection rule, will guarantee
that the chain targeting µ remains invariant with respect to such probability
measure [17].

Tempering ideas have been successfully used to sample from posterior dis-
tributions arising in different fields of science, ranging from astrophysics to ma-
chine learning [12, 17, 33, 39]. [29, 41] have studied the convergence of the PT
algorithm from a theoretical perspective and provided minimal conditions for
its rapid mixing. Moreover, the idea of tempered distributions has not only
been applied in combination with parallel chains. For example, the simulated
tempering method [30] uses a single chain and varies the temperature within
this chain. In addition, tempering forms the basis of efficient particle filtering
methods for stationary model parameters in Sequential Monte Carlo settings
[5, 6, 22, 23, 26] and Ensemble Kalman Inversion [9].

A generalization over the PT approach, originating from the molecular dy-
namics community, is the so-called Infinite Swapping (IS) algorithm [16, 35].
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As opposed to PT, this IS paradigm is a continuous-time Markov process and
considers the limit where states between chains are swapped infinitely often. It
is shown in [16] that such an approach can in turn be understood as a swap of
dynamics, i.e., kernel and temperature (as opposed to states) between chains.
We remark that once such a change in dynamics is considered, it is not pos-
sible to distinguish particles belonging to different chains. However, since the
stationary distribution of each chain is known, importance sampling can be em-
ployed to compute posterior expectations with respect to the target measure of
interest. Infinite Swapping has been successfully applied in the context of com-
putational molecular dynamics and rare event simulation [15, 28, 35]; however,
to the best of our knowledge, such methods have not been implemented in the
context of Bayesian inverse problems. In light of this, the current work aims at
importing such ideas to the BIP setting, by presenting them in a discrete-time
Metropolis-Hastings Markov chain Monte Carlo context. We will refer to these
algorithms as Generalized Parallel Tempering (GPT). We emphasize, however,
that these methods are not a time discretization of the continuous-time Infinite
Swapping presented in [16], but, in fact, a discrete-time Markov process inspired
by the ideas presented therein with suitably defined state-dependent probabili-
ties of swapping states or dynamics. We now summarize the main contributions
of this work.

We propose and implement two discrete-time MCMC generalized PT algo-
rithms in the setting of Bayesian inverse problems. Furthermore, we prove that
our GPT methods have the right invariant measure, by showing reversibility
of the generated Markov chains, and prove their ergodicity. Finally, we imple-
ment the proposed GPT algorithms for an array of Bayesian inverse problems,
comparing their efficiency to that of Random walk Metropolis (RWM) and stan-
dard PT. Experimental results show improvements in terms of computational
efficiency of GPT over RWM and PT, thus making the proposed methods at-
tractive from a computational perspective. We notice that a PT algorithm with
state-dependent swapping probabilities has been proposed in [24], however, such
a work only consider pairwise swapping of chains and a different construction of
the swapping probabilities, resulting in a less-efficient sampler, at least for the
BIPs addressed in this work. Our ergodicity result relies on an L2 spectral gap
analysis. It is known [38] that when a Markov chain is both reversible and has a
positive L2-spectral gap, one can in turn provide non-asymptotic error bounds
on the mean square error of an ergodic estimator of the chain. Our bounds on
the L2-spectral gap, however, are far from being sharp and could possibly be
improved using e.g., domain decomposition ideas as in [41]. Such analysis is left
for a future work.

The rest of this paper is organized as follows. Section 2 is devoted to the in-
troduction of the notation, Bayesian inverse problems, and Markov chain Monte
Carlo methods. In Section 3, we provide a brief review of (standard) PT (Sec-
tion 3.2), and introduce the two versions of the GPT algorithm in Sections 3.3
and 3.4, respectively. In fact, we present a general fraamework that accommo-
dates both the standard PT algorithms and our generalized versions. In Section
4, we recall some of the standard theory of Markov chains in Section 4.1 and
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state the main theoretical results of the current work (Theorems 4.5 and 4.7)
in Section 4.2. The proof of these Theorems is given by a series of Propositions
in Section 4.2. We present some numerical experiments in Section 5, and draw
some conclusions in Section 6.

2 Problem setting

2.1 Notation
Let (W, ‖·‖) be a separable Banach space with associated Borel σ-algebra B(W ),
and let νW be a σ-finite “reference” measure on W . For any measure µ on
(W,B(W )) that is absolutely continuous with respect to νW (in short µ� νW ),
we define the Radon-Nikodym derivative πµ := dµ

dνW
. We denote byM(W ) the

set of real-valued signed measures on (W,B(W )), and byM(W ) ⊂ M(W ) the
set of probability measures on (W,B(W )).

Let Q : W → R be an integrable function with respect to a measure µ� νW ,
which we call quantity of interest. We define the expected value ofQ with respect
to µ by

µ(Q) := Eµ[Q] :=

∫
W

Qdµ =

∫
W

QπµdνW .

Let now W1,W2 be two Banach spaces with reference measures νW1
, νW2

,
and let µ1 � νW1 , µ2 � νW2 be two probability measures, with corresponding
densities given by πµ1 , πµ2 . The product of these two measures is defined by

µ(A) = (µ1 × µ2) (A) =

∫∫
A

πµ1
(θ1)πµ2

(θ2)νW1
(dθ1)νW2

(dθ2), ∀A ∈ B(W1 ×W2).

Joint measures on W1 ×W2,B(W1,×W2) will always be written in boldface.
A Markov kernel on a Banach space W is a function p : W ×B(W )→ [0, 1]

such that

1. For each A in B(W ), the mapping W 3 θ 7→ p(θ,A), is a B(W )-
measurable real-valued function.

2. For each θ in W , the mapping B(W ) 3 A 7→ p(θ,A), is a probability
measure on (W,B(W )).

We denote by P the Markov transition operator associated to p, which acts
to the left on measures, ν 7→ νP ∈ M(W ), and to the right on functions,
f 7→ Pf, measurable on (W,B(W )), such that

(νP )(A) =

∫
W

p(θ,A)ν(dθ), ∀A ∈ B(W ),

(Pf)(θ) =

∫
W

f(z)p(θ,dz), ∀θ ∈W.
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Let W1,W2 be two separable Banach spaces and Pk, k = 1, 2, be Markov
transition operators associated to kernels pk : Wk × B(Wk) 7→ [0, 1]. We define
the tensor product Markov operator P := P1 ⊗ P2 as the Markov operator
associated with the product measure p(θ, ·) = p1(θ1, ·)×p2(θ2, ·), θ = (θ1, θ2) ∈
W1 ×W2. In particular, νP is the measure on (W1 ×W2,B(W1 ×W2)) that
satisfies

(νP)(A1 ×A2) =

∫∫
W1×W2

p1(θ1, A1)p2(θ2, A2)ν(dθ1,dθ2),

for all A1 ∈ B(W1) and A2 ∈ B(W2). Moreover, (Pf) : W1 ×W2 → R is the
function given by

(Pf)(θ) =

∫∫
W1×W2

f(z1, z2)p1(θ1,dz1)p2(θ2,dz2),

for an appropriate f : W1 ×W2 → R.
We say that a Markov operator P (resp. P) is invariant with respect to a

measure ν (resp. ν) if νP = ν (resp. νP = ν ). A related concept to invariance
is that of reversibility; a Markov kernel p : W × B(W ) 7→ [0, 1] is said to be
reversible (or ν-reversible) with respect to a measure ν ∈M(W ) if∫

B

p(θ,A)ν(dθ) =

∫
A

p(θ,B)ν(dθ), ∀A,B ∈ B(W ). (1)

Clearly, if a Markov kernel is reversible with respect to a measure ν, then the
associated Markov operator P has ν as an invariant measure. The reverse is
not true, in general. For two given ν-invariant Markov operators P1, P2, we
say that P1P2 is a composition of Markov operators, not to be confused with
P1 ⊗ P2. Furthermore, given a composition of K ν-invariant Markov operators
Pc := P1P2 . . . PK , we say that Pc is palindromic if P1 = PK , P2 = PK−1,
. . . , Pk = PK−k+1, k = 1, 2 . . . ,K. It is known (see, e.g., [8, Section 1.12.17])
that a palindromic, ν-invariant Markov operator Pc has an associated Markov
transition kernel pc which is ν-reversible.

2.2 Bayesian inverse problems
Let (Θ, ‖·‖Θ) and (Y, ‖·‖Y ) be separable Banach spaces with associated Borel
σ-algebras B(Θ), B(Y ). In Bayesian Inverse Problems we aim at characterizing
the probability distribution of a set of parameters θ ∈ Θ conditioned on some
measured data y ∈ Y , where the relation between θ and y is given by:

y = F(θ) + η, η ∼ µnoise. (2)

Here η is some random noise with known distribution µnoise (assumed to have a
density πnoise with respect to some reference measure νY on Y ) and F : Θ 7→ Y
is the so-called forward mapping operator. Such an operator can model, e.g., the
numerical solution of a possibly non-linear Partial Differential Equation (PDE)
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which takes θ as a set of parameters. Assume that θ ∼ µpr and define the
potential function Φ(θ; y) : Θ× Y 7→ [0,∞) as

Φ(θ; y) = − log
[
πnoise(y −F(θ))

]
, (3)

where the function Φ(θ; y) is a measure of the misfit between the recorded
data y and the predicted value F(θ), and often depends only on

∥∥y −F(θ)
∥∥
Y
.

Furthermore, assuming that the prior measure µpr has a density πpr with respect
to some σ-finite measure νΘ, we have that the solution to the Bayesian inverse
problem is given by (see, for example, [25, Theorem 2.5])

πy(θ) := π(θ|y) =
1

Z
e−Φ(θ;y)πpr(θ), (4)

where µy (with corresponding νΘ-density πy) is referred to as the posterior
measure and Z :=

∫
Θ

exp(−Φ(θ; y))µpr(dθ). The Bayesian approach to the
inverse problem consists of updating our knowledge concerning the parameter
θ, i.e., the prior, given the information that we observed in Equation (2). One
way of doing so is to generate samples from the posterior measure µy. A common
method for performing such a task is to use Markov chain Monte Carlo (MCMC)
algorithms, as detailed in the next section. Once samples {θ(n)}Nn=0 have been
obtained by some MCMC algorithm, the posterior expectation Eµy [Q] of some
µy-integrable quantity of interest Q : Θ 7→ R can be approximated by the
following ergodic estimator

Eµy [Q] ≈ Q̂ :=
1

N − b

N∑
n=b

Q(θ(n)),

where b < N is the so-called burn-in period, used to reduce the bias typically
associated to MCMC algorithms.

2.3 Markov Chain Monte Carlo and tempering
The main idea behind using Markov chain Monte Carlo methods to sample a
measure of interest µ on (Θ,B(Θ)), is to create a Markov chain whose initial
state θ0 has some distribution ν ∈ M(Θ) and whose Markov operator P is
invariant with respect to µ, i.e., µP = µ. The Markov chain {θn}Nn=0 is then
generated by sampling θ(n) ∼ p(θn−1, ·),∀n ∈ N. One of the most common
approaches for performing such a task is the Metropolis-Hastings algorithm
[21, 31]. Let qprop : Θ × B(Θ) 7→ [0, 1] be an auxiliary kernel. The Metropolis-
Hastings algorithm works as follows. For n = 1, 2, . . . , a candidate state θ∗ is
sampled from qprop(θn, ·), and proposed as the new state of the chain at step
n+ 1. Such a state is then accepted (i.e., we set θn+1 = θ∗), with probability
αMH,

αMH(θn, θ∗) = min

{
1,
πµ(θ∗)qprop(θ∗, θn)

πµ(θn)qprop(θn, θ∗)

}
,
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otherwise the current state is retained, i.e., θn+1 = θn. Notice that, with a
slight abuse of notation, we are denoting kernel and density by the same symbol
qprop. The Metropolis-Hastings algorithm induces the Markov transition kernel
p : Θ× B(Θ) 7→ [0, 1]

p(θ,A) =

∫
A

αMH(θ, θ∗)qprop(θ,dθ∗) + δθ(A)

∫
Θ

(1− αMH(θ, θ∗))qprop(θ,dθ∗),

for every θ ∈ Θ and A ∈ B(Θ). In most practical algorithms, the proposal
state θ∗ is sampled from a state-dependent auxiliary kernel qprop(θn, ·). Such is
the case for random walk Metropolis or preconditioned Crank Nicolson, where
qprop(θn, ·) = N (θn,Σ) or qprop(θn, ·) = N (

√
1− ρ2θn, ρΣ), 0 < ρ < 1, respec-

tively. However, these types of localized proposals tend to present some unde-
sirable behaviors when sampling from certain difficult measures, which are, for
example, concentrated over a manifold or are multi-modal [17]. In the first case,
in order to avoid a large rejection rate, the “step-size”

∥∥∥Σ1/2
∥∥∥ of the proposal

kernel must be quite small, which will in turn produce highly-correlated sam-
ples. In the second case, chains generated by these localized kernels tend to get
stuck in one of the modes. In either of these cases, very long chains are required
to properly explore the parameter space.

One way of overcoming such difficulties is to introduce tempering. Let µk, µpr
be probability measures on (Θ,B(Θ)), k = 1, . . . ,K, such that all µk are abso-
lutely continuous with respect to µpr, and let {Tk}Kk=1 be a set ofK temperatures
such that 1 = T1 < T2 < · · · < TK ≤ ∞. In a Bayesian setting, µpr corresponds
to the prior measure and µk, k = 1, . . . ,K correspond to posterior measures
associated to different temperatures. Denoting by πk the µpr-density of µk, we
set

πk(θ) :=
e−Φ(θ;y)/Tk

Zk
, θ ∈ Θ, (5)

where Zk :=
∫

Θ
e−Φ(θ;y)/Tkµpr(dθ), and with Φ(θ; y) as the potential function

defined in (3). In the case where TK = ∞, we set µK = µpr. Notice that µ1

corresponds to the target posterior measure.
We say that for k = 2, . . . ,K, each measure µk is a tempered version of µ1.

In general, the 1/Tk term in (5) serves as a “smoothing”1 factor, which in turn
makes µk easier to explore as Tk → ∞. In PT MCMC algorithms, we sample
from all posterior measures µk simultaneously. Here, we first use a µk-reversible
Markov transition kernel pk on each chain, and then, we propose to exchange
states between chains at two consecutive temperatures, i.e., chains targeting
µk, µk+1, k ∈ {1, . . . ,K−1}. Such a proposed swap is then accepted or rejected
with a standard Metropolis-Hastings acceptance-rejection step. This procedure
is presented in Algorithm 1. We remark that such an algorithm can be modified
to, for example, propose to swap states every Ns steps of the chain, or to swaps
states between two chains µi, µj , with i, j chosen randomly and uniformly from

1Here, smoothing is to be understood in the sense that it flattens the density.
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the index set {1, 2, . . . ,K}. In the next section we present the generalized PT
algorithms which swap states according to a random permutation of the indices
drawn from a state dependent probability.

Algorithm 1 Standard PT.
function Standard PT(N, {pk}Nk=1, {πk}Nk=1, µpr)

Sample θ(1)
k ∼ µpr, k = 1, . . . ,K

for n = 1, 2, . . . , N − 1 do . Do one step of MH on each chain
for k = 1, . . . ,K do

Sample θ(n+1)
k ∼ pk(θ

(n)
k , ·)

end for . Swap states
for k = 1, 2, . . . ,K − 1 do

Swap states θ
(n+1)
k and θ

(n+1)
k+1 with probability αswap =

min

{
1,

πk(θ
(n+1)
k+1 )πk+1(θ

(n+1)
k )

πk(θ
(n+1)
k )πk+1(θ

(n+1)
k+1 )

}
end for

end for
Output {θ(n)

1 }Nn=1

end function

3 Generalizing Parallel Tempering
Infinite Swapping was initially developed in the context of continuous-time
MCMC algorithms, which were used for molecular dynamics simulations. In
continuous-time PT, the swapping of the states is controlled by a Poisson pro-
cess on the set {1, . . . ,K}. Infinite Swapping is the limiting algorithm obtained
by letting the waiting times of this Poisson process go to zero. Hence, we swap
the states of the chain infinitely often over a finite time interval. We refer to
[16] for a thorough introduction and review of Infinite Swapping in continuous-
time. In Section 5 of the same article, the idea to use Infinite Swapping in
time-discrete Markov chains was briefly discussed. Inspired by this discussion,
we present two Generalizations of the (discrete-time) Parallel Tempering strate-
gies. To that end, we propose to either (i) swap states in the chains at every
iteration of the algorithm in such a way that the swap is accepted with probabil-
ity one, which we will refer to as the Unweighted Generalized Parallel Tempering
(UGPT), or (ii), swap dynamics (i.e., swap kernels and temperatures between
chains) at every step of the algorithm. In this case, importance sampling must
also be used when computing posterior expectations since this in turn provides
a Markov chain whose invariant measure is not the desired one. We refer to this
approach as Weighted Generalized Parallel Tempering (WGPT). We begin by
introducing a common framework to both PT and the two versions of GPT.

Let (Θ, ‖·‖Θ) be a separable Banach space with associated Borel σ-algebra
B(Θ). Let us define the K-fold product space ΘK :=×K

k=1
Θ,with associ-
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ated product σ-algebra BK :=
⊗K

k=1 B(Θ), as well as the product measures on
(ΘK ,BK)

µ :=
K×
k=1

µk, (6)

where µk k = 1, . . . ,K are the tempered measures with temperatures 1 ≤ T1 <
T2 < T3 < · · · < TK ≤ ∞ introduced in the previous section. Similarly, we
define the product prior measure µprior :=×K

k=1
µprior. Notice that µ has a

density π(θ) with respect to µprior given by

π(θ) =

K∏
k=1

πk(θk), θ := (θ1, . . . , θK) ∈ ΘK ,

with πi(θ) added subscript given as in (5). The idea behind the tempering meth-
ods presented herein is to sample from µ (as opposed to solely sampling from
µ1) by creating a Markov chain obtained from the successive application of two
µ-invariant Markov kernels p and q, to some initial distribution ν, usually cho-
sen to be the prior µprior. Each kernel acts as follows. Given the current state
θn = (θn1 , . . . , θ

n
K), the kernel p, which we will call the standard MCMC kernel,

proposes a new, intermediate state θ̃n+1 = (θ̃n+1
1 , . . . , θ̃n+1

K ), possibly following
the Metropolis-Hastings algorithm (or any other algorithm that generates a µ-
invariant Markov operator). The Markov kernel p is a product kernel, meaning
that each component θ̃nk , k = 1 . . . ,K, is generated independently of the others.
Then, the swapping kernel q proposes a new state θn+1 = (θn+1

1 , . . . , θn+1
K ) by

introducing an “interaction” between the components of θ̃(n+1). This interac-
tion step can be achieved, e.g., in the case of PT, by proposing to swap two
components at two consecutive temperatures, i.e., components k and k+ 1, and
accepting this swap with a certain probability given by the usual Metropolis-
Hastings acceptance-rejection rule. In general, the swapping kernel is applied
every Ns steps of the chain, for some Ns ≥ 1. We will devote the following
subsection to the construction of the swapping kernel q.

3.1 The swapping kernel q
Define SK as the collection of all the bijective maps from {1, 2, . . . ,K} to itself,
i.e., the set of all K! possible permutations of id := {1, . . . ,K}. Let σ ∈ SK

be a permutation, and define the swapped state θσ := (θσ(1), . . . , θσ(K)), and
the inverse permutation σ−1 ∈ SK such that σ ◦ σ−1 = σ−1 ◦ σ = id. In
addition, let SK ⊆ SK be any subset of SK closed with respect to inversion,
i.e., σ ∈ SK =⇒ σ−1 ∈ SK . We denote the cardinality of SK by |SK |. To
define the swapping kernel q, we first need to define the swapping ratio and
swapping acceptance probability.

Definition 3.1 (Swapping ratio). We say that a function r : ΘK × SK 7→ [0, 1]
is a swapping ratio if it satisfies the following two conditions:
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1. ∀θ ∈ ΘK , r(θ, ·) is a probability mass function on SK .

2. ∀σ ∈ SK , r(·, σ) is measurable on (ΘK ,BK).

Definition 3.2 (Swapping acceptance probability). Let θ ∈ ΘK and σ, σ−1 ∈
SK . We call swapping acceptance probability the function αswap : ΘK × SK 7→
[0, 1] defined as

αswap(θ, σ) =

min
{

1, π(θσ)r(θσ,σ
−1)

π(θ)r(θ,σ)

}
, if r(θ, σ) > 0,

0 if r(θ, σ) = 0.

We can now define the swapping kernel q.

Definition 3.3 (Swapping kernel). Given a swapping ratio r : ΘK × SK 7→ [0, 1]
and its associated swapping acceptance probability αswap : ΘK × SK 7→ [0, 1],
we define the swapping Markov kernel q : ΘK × BK 7→ [0, 1] as

q(θ, B) =
∑
σ∈SK

r(θ, σ)
[
(1− αswap(θ, σ))δθ(B) + αswap(θ, σ)δθσ (B)

]
, θ ∈ ΘK , B ∈ BK ,

(7)
where δθ(B) denotes the Dirac measure in θ, i.e., δθ(B) = 1 if θ ∈ B and 0
otherwise.

The swapping mechanism should be understood in the following way: given
a current state of the chain θ ∈ ΘK , the swapping kernel samples a permutation
σ from SK with probability r(θ, σ) and generates θσ. This permuted state is
then accepted as the new state of the chain with probability αswap(θ, σ). No-
tice that the swapping kernel follows a Metropolis-Hastings-like procedure with
“proposal” distribution r(θ, σ) and acceptance probability αswap(θ, σ). More-
over, as detailed in the next proposition, such a kernel is reversible with respect
to µ, since it is a Metropolis-Hastings type kernel.

Proposition 3.4. The Markov kernel q defined in (7) is reversible with respect
to the product measure µ defined in (6).

Proof. Let A,B ∈ BK . We want to show that∫
A

q(θ, B)dµ(dθ) =

∫
B

q(θ, A)µ(dθ).

Thus,∫
A

q(θ, B)µ(dθ) =
∑
σ∈SK

∫
A

r(θ, σ)αswap(θ, σ)δθσ (B)π(θ)µprior(dθ)︸ ︷︷ ︸
I

+
∑
σ∈SK

∫
A

r(θ, σ)
(
1− αswap(θ, σ)

)
δθ(B)π(θ)µprior(dθ)︸ ︷︷ ︸

II

.
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Let Aσ := {z ∈ ΘK : zσ−1 ∈ A}. From I, and noticing that µprior is permuta-
tion invariant, we get

I =
∑
σ∈SK

∫
A

min

{
1,
π(θσ)r(θσ, σ

−1)

π(θ)r(θ, σ)

}
r(θ, σ)π(θ)δθσ (B)µprior(dθ)

=
∑
σ∈SK

∫
A

min

{
1,

π(θ)r(θ, σ)

π(θσ)r(θσ, σ−1)

}
r(θσ, σ

−1)π(θσ)δθσ (B)µprior(dθ)

=
∑
σ∈SK

∫
Aσ

min

{
1,
π(θσ−1)r(θσ−1 , σ)

π(θ)r(θ, σ−1)

}
r(θ, σ−1)π(θ)δθ(B)µprior(dθ)

=
∑
σ∈SK

∫
Aσ∩B

min

{
1,
π(θσ−1)r(θσ−1 , σ)

π(θ)r(θ, σ−1)

}
r(θ, σ−1)π(θ)δθ(B)µprior(dθ)

=
∑
σ∈SK

∫
B

min

{
1,
π(θσ−1)r(θσ−1 , σ)

π(θ)r(θ, σ−1)

}
r(θ, σ−1)π(θ)δθ(Aσ)µprior(dθ)

=
∑
σ∈SK

∫
B

min

{
1,
π(θσ−1)r(θσ−1 , σ)

π(θ)r(θ, σ−1)

}
r(θ, σ−1)π(θ)δθσ−1 (A)µprior(dθ)

=
∑
σ∈SK

∫
B

r(θ, σ−1)π(θ)αswap(θ, σ−1)δθσ−1 (A)µprior(dθ)

=
∑
σ∈SK

∫
B

r(θ, σ)π(θ)αswap(θ, σ)δθσ (A)µprior(dθ).

For the second term II we simply have

II =
∑
σ∈SK

∫
A

r(θ, σ)(1− αswap(θ, σ))δθ(B)π(θ)µprior(dθ)

=
∑
σ∈SK

∫
A∩B

r(θ, σ)(1− αswap(θ, σ))δθ(B)π(θ)µprior(dθ)

=
∑
σ∈SK

∫
B

r(θ, σ)(1− αswap(θ, σ))δθ(A)π(θ)µprior(dθ).

This generic form of the swapping kernel provides the foundation for both
PT and GPT. We describe these algorithms in the following subsections.

3.2 The Parallel Tempering case
We first show how a PT algorithm that only swaps states between the ith and jth

components of the chain can be cast in the general framework presented above.
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To that end, let σi,j be the permutation of (1, 2, . . . ,K), which only permutes
the ith and jth components, while leaving the other components invariant (i.e.,
such that σ(i) = j, σ(j) = i, and σ(k) = k, k 6= i, k 6= j). We can take Sk =
{σi,j , i, j = 1, . . . ,K} and define the PT swapping ratio between components i
and j by r(PT)

i,j : ΘK × SK 7→ [0, 1] as

r
(PT)
i,j (θ, σ) :=

{
1 if σ = σi,j ,

0 otherwise.

Notice that this implies that r(PT)
i,j (θσ, σ

−1) = r
(PT)
i,j (θ, σ) since σ−1

i,j = σi,j and
r

(PT)
i,j does not depend on θ, which in turn leads to the swapping acceptance
probability α(PT)

swap : ΘK × SK 7→ [0, 1] defined as:

α(PT)
swap(θ, σi,j) := min

{
1,
π(θσi,j )

π(θ)

}
, α(PT)

swap(θ, σ) = 0, σ 6= σi,j .

Thus, we can define the swapping kernel for the Parallel Tempering algorithm
that swaps components i and j as follows:
Definition 3.5 (Pairwise Parallel Tempering swapping kernel). Let θ ∈ ΘK ,
σi,j ∈ SK . We define the Parallel Tempering swapping kernel, which proposes
to swap states between the ith and jth chains as q(PT)

i,j : ΘK ×BK 7→ [0, 1] given
by

q
(PT)
i,j (θ, B) =

∑
σ∈SK

r
(PT)
i,j (θ, σ)

(
(1− α(PT)

swap(θ, σ))δθ(B) + α(PT)
swap(θ, σ)δθσ (B)

)

=

1−min

{
1,
π(θσi,j )

π(θ)

}
δθ(B)

+ min

{
1,
π(θσi,j )

π(θ)

}
δθσi,j (B), ∀B ∈ BK .

In practice, however, the PT algorithm considers various sequential swaps
between chains, which can be understood by applying the composition of kernels
q

(PT)
i,j q

(PT)
k,` . . . at every swapping step. In its most common form [8, 17, 33], the

PT algorithm, hereafter referred to as standard PT (which on a slight abuse
of notation we will denote by PT), proposes to swap states between chains at
two consecutive temperatures. Its swapping kernel q(PT) : ΘK × BK 7→ [0, 1] is
given by

q(PT) := q
(PT)
1,2 q

(PT)
2,3 ...q

(PT)
K−1,K .

Moreover, the algorithm described in [17], proposes to swap states every Ns ≥ 1
steps of MCMC. The complete kernel for the PT kernel is then given by [8, 17, 33]

p(PT) := q
(PT)
1,2 q

(PT)
2,3 ...q

(PT)
K−1,KpNs , (8)

where p is a standard reversible Markov transition kernel used to evolve the
individual chains independently. Although the kernel p as well as each of the

12



qi,i+1 are µ-reversible, notice that (8) does not have a palindromic structure,
and as such it is not necessarily µ-reversible. One way of making the PT
algorithm reversible with respect to µ (although not very common in practice,
to the best of the authors’ knowledge) is to consider the palindromic form

p(RPT) :=
(
q

(PT)
1,2 q

(PT)
2,3 ...q

(PT)
K−1,K

)
pNs

(
q

(PT)
K,K−1...q

(PT)
3,2 q

(PT)
2,1

)
.

3.3 Unweighted Generalized Parallel Tempering
The idea behind the Unweighted Generalized Parallel Tempering algorithm is
to generalize PT so that (i) Ns = 1 provides a proper mixing of the chains,
(ii) the algorithm is reversible with respect to µ, and (iii) the algorithm con-
siders arbitrary sets SK of swaps (always closed w.r.t inversion), instead of
only pairwise swaps. We begin by constructing a kernel of the form (7). Let
r(UW) : ΘK × SK 7→ [0, 1] be a function defined as

r(UW)(θ, σ) :=
π(θσ)∑

σ′∈SK π(θσ′)
, θ ∈ ΘK , σ ∈ SK . (9)

Clearly, (9) is a swapping ratio according to Definition 3.1. As such, given some
state θ ∈ ΘK , r(UW)(θ, σ) assigns a state-dependent probability to each of the
|SK | possible permutations in SK . A permutation σ ∈ SK is then accepted with
probability α(UW)

swap (θ, σ), given by

α(UW)
swap (θ, σ) := min

{
1,
π(θσ)r(UW)(θσ, σ

−1)

π(θ)r(UW)(θ, σ)

}
. (10)

Thus, we can define the swapping kernel for the UGPT algorithm, which
takes the form of (7), with the particular choice of r(θ, σ) = r(UW)(θ, σ) and
αswap(θ, σ) = α

(UW)
swap (θ, σ). Notice that α(UW)

swap (θ, σ) = 1,∀σ ∈ SK . Indeed, if
we further examine Equation (10), we see that

π(θσ)r(UW)(θσ, σ
−1)

π(θ)r(UW)(θ, σ)
=
π(θσ)

π(θ)
· π(θ)

π(θσ)
·
∑
σ′ π(θσ′)∑
σ̂ π(θσ̂)

=
π(θσ)

π(θ)
· π(θ)

π(θσ)
= 1.

In practice, this means that the proposed permuted state is always accepted with
probability 1. The expression of the UGPT kernel then simplifies as follows.
Definition 3.6 (unweighted swapping kernel). The unweighted swapping kernel
q(UW) : ΘK × BK 7→ [0, 1] is defined as

q(UW)(θ, B) =
∑
σ∈SK

r(UW)(θ, σ)δθσ (B), ∀θ ∈ ΘK , B ∈ BK .

Applying this swapping kernel successively with the kernel p = p1 × p2 ×
. . . pK in the order q(UW)pq(UW) =: p(UW) gives what we call Unweighted Gen-
eralized Parallel Tempering kernel p(UW). Lastly, we write the UGPT in oper-
ator form as

P(UW) := Q(UW)PQ(UW),

13



where P and Q(UW) are the Markov operators corresponding to the kernels
p and q(UW), respectively. We now investigate the reversibility of the UGPT
kernel. We start with a rather straightforward result.

Proposition 3.7. Suppose that, for any k = 1, 2, . . . ,K, pk is µk-reversible. Then,
p = p1 × · · · × pK is reversible with respect to µ.

Proof. We prove reversibility by confirming that equation (1) holds true. To
that end, let θ ∈ ΘK , A,B ∈ BK , where A and B tensorize, i.e., A :=

∏K
k=1Ak

and B :=
∏K
k=1Bk, with A1, . . . , AK , B1, . . . , BK ∈ B(Θ). Then,

∫
A

π(θ)p(θ, B)dθ =

K∏
k=1

∫
Ak

π(θk)p(θk, Bk)dθk

=

K∏
k=1

∫
Bk

π(θk)p(θk, Ak)dθk =

∫
B

π(θ)p(θ, A)dθ.

Showing that the previous equality holds for sets A,B that tensorize is indeed
sufficient to show that the claim holds for any A,B ∈ BK . This follows from
Carathéodory’s Extension Theorem applied as in the proof of uniqueness of
product measures; see [2, §1.3.10, 2.6.3], for details.

We can now prove the reversibility of the chain generated by p(UW).

Proposition 3.8 (Reversibility of the UGPT chain). Suppose that, for any k =
1, 2, . . . ,K, pk is µk-reversible. Then, the Markov chain generated by p(UW) is
µ-reversible.

Proof. It follows from proposition 3.4 and 3.7 that the kernels q(UW) and p are
µ-reversible. Furthermore, since p(UW) is a palindromic composition of kernels,
each of which is reversible with respect to µ, then, p(UW) is reversible with
respect to µ [8].

The UGPT algorithm proceeds by iteratively applying the kernel p(UW) to
a predefined initial state. In particular, states are updated using the procedure
outlined in Algorithm 2.

Remark 3.9. In practice, one does not need to perform |SK | posterior evaluations
when computing r(UW)(θn, ·), rather “just” K of them. Indeed, since πj(θnk ) ∝
π(θk)Tj , k, j = 1, 2, . . . ,K, we just need to store the values of π(θnk ), k =
1, 2, . . . ,K, for a fixed n, and then permute over the temperature indices.

Let now Q : Θ 7→ R be a quantity of interest. The posterior mean of Q ,
µ(Q) := µ1(Q) is approximated using N ∈ N samples by the following ergodic
estimator Q̂(UW):

µ(Q) ≈ Q̂(UW) =
1

N − b

N∑
n=b

Q(θ
(n)
1 ).
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Algorithm 2 Unweighted Generalized Parallel Tempering.
function Generalized Parallel Tempering(p, N,ν)

Sample θ(1) ∼ ν
for n = 1, 2, . . . , N − 1 do

Sample θ(n)
σ ∼ q(UW)(θ(n), ·) . first swapping kernel

Sample z(n+1) ∼ p(θ
(n)
σ , ·) . Markov transition kernel p kernel

Sample θ(n+1) ∼ q(UW)(z(n+1), ·) . second swapping kernel
end for
Output {θ(n)

1 }Nn=1

end function

3.3.1 A comment on the pairwise state-dependent PT method of
[24]

The work [24] presents a similar state-dependent swapping. We will refer to
the method presented therein as Pairwise State Dependent Parallel Tempering
(PSDPT). Such a method, however, differs from UGPT from the fact that (i)
only pairwise swaps are considered and (ii) it is not rejection free. We sum-
marize such a method for the sake of completeness. Let SK,pairwise denote the
group of pairwise permutations of (1, 2, . . . ,K). Given a current state θ ∈ ΘK ,
the PSDPT algorithm samples a pairwise permutation θσi,j ∈ SK,pairwise with
probability r(PSDPT)

i,j (θ, σi,j) given by

r
(PSDPT)
i,j (θ, σi,j) :=

exp(−|Φ(θi, y)− Φ(θj ; y)|)∑
k,l exp(−|Φ(θk, y)− Φ(θl; y)|)

,

and then accepts this swap with probability

α(PSDPT)
swap (θ, σi,j) := min

1,

(
π1(θi)

π1(θj)

) 1
Tj
− 1
Ti

 .

This method is attractive from an implementation point of view in the sense
that it promotes pairwise swaps that have a similar energy, and as such, are
likely (yet not guaranteed) to get accepted. In contrast, UGPT always accepts
the new proposed state, which in turn leads to a larger amount of global moves,
thus providing a more efficient algorithm. This is verified on the numerical
experiments.

3.4 Weighted Generalized Parallel Tempering
Following the intuition of the continuous-time Infinite Swapping approach of
[16, 35], we propose a second discrete-time algorithm, which we will refer to
as Weighted Generalized Parallel Tempering (WGPT). The idea behind this
method is to swap the dynamics of the process, that is, the Markov kernels
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and temperatures, instead of swapping the states such that any given swap is
accepted with probability 1. We will see that the Markov kernel obtained when
swapping the dynamics is not invariant with respect to the product measure of
interest µ; therefore, an importance sampling step is needed when computing
posterior expectations.

For a given permutation σ ∈ SK , we define the swapped Markov kernel
pσ : ΘK × BK 7→ [0, 1] and the swapped product posterior measure µσ (on the
measurable space (ΘK ,BK)) as:

pσ(θ, ·) = pσ(1)(θ1, ·)× · · · × pσ(K)(θK , ·),
µσ := µσ(1) × · · · × µσ(K),

where the swapped posterior measure has a density with respect to µprior given
by

πσ(θ) := πσ(1)(θ1)× · · · × πσ(K)(θK), θ ∈ ΘK , σ ∈ SK (11)

Moreover, we define the swapping weights

wσ(θ) :=
πσ(θ)∑

σ′∈SK πσ′(θ)
, θ ∈ ΘK , σ ∈ SK . (12)

Note that, in general, πσ(θ) 6= π(θσ), and as such, wσ(θ) 6= r(UW)(θ, σ), with
wσ defined as in (12).
Definition 3.10. We define the Weighted Generalized Parallel Tempering kernel
p(W) : ΘK ×BK 7→ [0, 1] as the following state-dependent, convex combination
of kernels:

p(W)(θ, ·) :=
∑
σ∈SK

wσ(θ)pσ(θ, ·), θ ∈ ΘK , σ ∈ SK .

Thus, the WGPT chain is obtained by iteratively applying p(W). We show
in Proposition 3.11 that the resulting Markov chain has invariant measure

µW =
1

|SK |
∑
σ∈SK

µσ = µ̃× · · · × µ̃,

with µ̃ = 1
|SK |

∑
σ µσ, i.e., the average with tensorization. Furthermore, µW

has a density (w.r.t the prior µ0) given by

πW(θ) =
1

|SK |
∑
σ∈SK

πσ(θ), θ ∈ ΘK ,

and a similar average and then tensorization representation applies to πW. We
now proceed to show that p(W)(θ, ·) is µW-reversible (hence µW-invariant).
Proposition 3.11 (Reversibility of the WGPT chain). Suppose that, for any
k = 1, 2, . . . ,K pk is µk-reversible. Then, the Markov chain generated by p(W)

is µW-reversible.
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Proof. We show reversibility by showing that (1) holds true. Thus, for θ ∈
ΘK , A,B ∈ BK , with A := A1 × · · · ×AK , Ak ∈ B(Θ), and with Bk defined in
a similar way, we have that:

∫
A

p(W)(θ, B)πW(θ)dθ =

∫
A

 ∑
σ∈SK

wσ(θ)pσ(θ, B)

 ∑ρ∈SK πρ(θ)

|SK |
µprior(dθ)

=

∫
A

 ∑
σ∈SK

πσ(θ)∑
σ′∈SK πσ′(θ)

pσ(θ, B)

 ∑ρ∈SK πρ(θ)

|SK |
µprior(dθ)

=
1

|SK |
∑
σ∈SK

∫
A

πσ(θ)pσ(θ, B)µprior(dθ)

=
1

|SK |
∑
σ∈SK

∫
B

πσ(θ)pσ(θ, A)µprior(dθ) (by Proposition 3.7)

=
1

|SK |
∑
σ∈SK

∫
B

πσ(θ)∑
σ′∈SK πσ′(θ)

pσ(θ, A)
∑
ρ∈SK

πρ(θ)µprior(dθ)

=
∑
σ∈SK

∫
B

wσ(θ)pσ(θ, A)πW(θ)µprior(dθ)

=

∫
B

p(W)(θ, A)πW(θ)µprior(dθ).

where once again, in light of Carathéodory’s Extension Theorem, it is sufficient
to show that reversibility holds for sets that tensorize.

We remark that the measure µW is not of interest per se. However, we can
use importance sampling to compute posterior expectations. Let Q(θ) := Q(θ1)
be a µ-integrable quantity of interest. We can write

Eµ1
[Q] = Eµ[Q(θ1)] = EµW

[
Q(θ1)

π(θ)

πW(θ)

]
=

1

|SK |
∑
σ∈SK

EµW

[
Q(θσ(1))

π(θσ)

πW(θσ)

]
.

The last equality can be justified since µW is invariant by permutation of
coordinates. Thus, we can define the following (weighted) ergodic estimator
Q̂(W) of the posterior mean of a quantity of interest Q by

µ(Q) ≈ Q̂(W) =
1

|SK |
1

N

∑
σ∈SK

N∑
n=1

π(θ
(n)
σ )

πW(θ
(n)
σ )
Q(θ

(n)
σ(1))

=
1

|SK |
1

N

∑
σ∈SK

N∑
n=1

ŵ(θ(n), σ)Q(θ
(n)
σ(1)), (13)

where we have denoted the importance sampling weights by ŵ(θ, σ) := π(θσ)
πW(θσ)

and where N is the number of samples in the chain. Notice that w(θ, σ) =
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ŵ(θ, σ−1). As a result, the WGPT algorithm produces an estimator based on
NK weighted samples, rather than “just” N , at the same computational cost of
UGPT. Thus, the previous estimator evaluates the quantity of interest Q not
only in the points Q(θ

(n)
1 ), but also in all states of the parallel chains, Q(θ

(n)
σ(1))

for all σ ∈ SK , namely Q(θ
(n)
k ), k = 1, 2, . . . ,K. The Weighted Generalized

Parallel Tempering procedure is shown in Algorithm 3. To reiterate, we remark
that sampling from pσ(θ(n), ·) involves a swap of dynamics, i.e., kernels and
temperatures.

Algorithm 3 Weighted Generalized Parallel Tempering.
function Weighted Generalized Parallel Tempering( p, N,ν)

Sample θ(1) ∼ ν
for n = 1, 2, . . . , N − 1 do

Sample σ ∼ {wσ′(θn)}σ′∈SK . sample the permutation σ with
probability wσ(θn)

Sample θ(n+1) ∼ pσ(θ(n), ·) . Sample state with the swapped Markov
kernel

end for
Output {θ(n)}Nn=1, {{wσ′(θn)}σ′∈SK}Nn=1.

end function

Just as in Remark 3.9, one only needs to evaluate the posterior K times
(instead of |SK |) to compute w(·)(θ

n).

4 Ergodicity of Generalized Parallel Tempering

4.1 Preliminaries
We assume that the chains generated by the MCMC kernels pk, for k = 1, . . . ,K,
are aperiodic, µk-irreducible [3], and have invariant measure µk on the measur-
able space (Θ,B(Θ)). Let r ∈ [1,∞) and µ ∈M(Θ) be a “reference” probability
measure. On a BIP setting, this reference measure is considered to be the
posterior. We define the following spaces

Lr = Lr(Θ, µ) =

{
f : Θ 7→ R, µ-measurable, s.t ‖f‖rr :=

∫
|f(θ)|rµ(dθ) <∞

}
,

L0
r = Lr(Θ, µ) =

{
f ∈ Lr(Θ, µ), s.t µ(f) :=

∫
Θ

f(θ)µ(dθ) = 0

}
.

Moreover, when r =∞, we define

L∞(Θ, µ) :=

f : Θ 7→ R, s.t inf
µ(B)=0
B∈B(Θ)

sup
y∈Θ\B

∣∣f(y)
∣∣ <∞

 .
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Notice that, clearly, L0
r(Θ, µ) ⊂ Lr(Θ, µ). In addition we define the spaces of

measures

Mr(Θ, µ) := {ν ∈M(Θ) s.t. ν � µ, ‖ν‖Lr(Θ,µ) <∞},

where ‖ν‖Lr(Θ,µ) :=

∥∥∥∥dν

dµ

∥∥∥∥
Lr(Θ,µ)

.

Notice that the definition of Lr-norm depends on the reference measure µ, and
on Θ.

A Markov operator P : Lr(Θ, µ) 7→ Lr(Θ, µ) with invariant measure µ is a
bounded linear operator whose norm is given by

‖P‖Lr(Θ,µ)7→Lr(Θ,µ) := sup
‖f‖Lr(Θ,µ)=1

‖Pf‖Lr(Θ,µ) , f ∈ Lr(Θ, µ).

It is well-known (see, e.g., [38]) that any Markov operator P on Lr(Θ, µ)
with invariant measure µ can be understood as a weak contraction in Lr(Θ, µ),
i.e., ‖P‖Lr(Θ,µ) 7→Lr(Θ,µ) ≤ 1. To quantify the convergence of a Markov chains
generated by a Markov operator P , we define the concept of geometric ergodicity.
Let r ∈ [1,∞]. A Markov operator P with invariant measure µ ∈M(Θ) is said
to be Lr(Θ, µ)-geometrically ergodic if for all probability measures ν ∈Mr(Θ, µ)
there exists an α ∈ (0, 1) and Cν <∞ such that

‖νPn − µ‖Lr(Θ,µ) ≤ Cναn, n ∈ N. (14)

A related concept to L2-geometric ergodicity is that of L2-spectral gap. A
Markov operator P : L2(Θ, µ) 7→ L2(Θ, µ) with invariant measure µ ∈ M(Θ)
has an L2(Θ, µ)-spectral gap 1− β > 0, with β < 1, if the following holds

‖P‖L0
2(Θ,µ)7→L0

2(Θ,µ) ≤ β. (15)

The next Proposition, whose proof can be found e.g., in [38], relates the
existence of an L2-spectral gap to the geometric ergodicity of the chain (with
β ≤ α, in general).

Proposition 4.1. Let P : L2(Θ, µ) 7→ L2(Θ, µ) be a µ-reversible Markov tran-
sition operator. The existence of an L2(Θ, µ)-spectral gap implies Lr(Θ, µ)-
geometric ergodicity for any r ∈ [1,∞].

Proof. The previous claim is shown in [38, Proposition 3.17 and Appendix A.4].
It is also shown in [38] that, in general, β ≤ α, with α, β given as in Equations
(14) and (15).

Our path to prove ergodicity of the GPT algorithms will be to show the
existence of an L2-spectral gap.
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4.2 Geometric ergodicity and L2-spectral gap for GPT
The main results of this section are presented in Theorem 4.5 and Theorem 4.7,
which show the existence of an L2-spectral gap for both the UGPT and WGPT
algorithms, respectively.

We begin with the definition of overlap between two probability measures.
Such a concept will later be used to bound the spectral gap of the GPT algo-
rithms.

Definition 4.2 (Density overlap). Let µk, µj be two probability measures on the
measurable space (Θ,B(Θ)), each having respective densities πk(θ), πj(θ), θ ∈
Θ, with respect to some common reference measure νΘ also on (Θ,B(Θ)). We
define the overlap between πk(θ) and πj(θ) as

ηνΘ(πk, πj) :=

∫
Θ

min{πk(θ), πj(θ)}νΘ(dθ) = 1− 1

2

∥∥µk − µj∥∥L1(Θ,νΘ)
.

An analogous definition holds for πσ,πρ, with ρ, σ ∈ SK .

Assumption 4.3. For k = 1, . . . ,K, let µk ∈ M1(Θ, µprior) be given as in (5),
pk : Θ × B(Θ) 7→ [0, 1] be the Markov kernel associated to the kth dynamics
and let Pk : Lr(Θ, µk) 7→ Lr(Θ, µk) be its corresponding µk-invariant Markov
operator. In addition, for σ, ρ ∈ SK , define the measures µσ,µρ ∈ M(ΘK) as
in Equation (6). Throughout this work it is assumed that:

C1. The Markov kernel pk is µk-reversible.

C2. The Markov operator Pk has an L2(Θ, µk)-spectral gap.

C3. For any σ, ρ ∈ SK , Λσ,ρ := ηµprior
(πσ,πρ) > 0, with πσ,πρ defined as

in (11).

These assumptions are relatively mild. In particular, C1 and C2 are known
to hold for many commonly-used Markov transition kernels, such as RWM,
Metropolis-adjusted Langevin Algorithm, Hamiltonian Monte Carlo, (general-
ized) preconditioned Crank-Nicolson, among others, under mild regularity con-
ditions on π [3, 20]. Assumption C3 holds true given the construction of the
product measures in Section 3.

We now present an auxiliary result that we will use to bound the spectral
gap of both the Weighted and Unweighted GPT algorithms.

Proposition 4.4. Suppose that Assumption 4.3 holds and let P :=
⊗K

k=1 Pk :
L2(ΘK ,µ) 7→ L2(ΘK ,µ), with invariant measure µ = µ1 × · · · × µK . Then,
P has an L2(ΘK ,µ)-spectral gap, i.e., ‖P‖L0

2(ΘK ,µ)7→L0
2(ΘK ,µ) < 1. Moreover,

the Markov chain obtained from P is Lr(ΘK ,µ)-geometrically ergodic, for any
r ∈ [1,∞].

Proof. We limit ourselves to the case K = 2, since the case for K > 2 follows by
induction. Denote by I : L2(Θ, µk) 7→ L2(Θ, µk), k = 1, 2 the identity Markov
transition operator, and let f ∈ L2(Θ2,µ). Notice that f admits a spectral
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representation in L2(Θ2,µ) given by f(θ) =
∑
k,j φk(θ1)ψj(θ2)ck,j , with ck,j ∈

R, and where {φk}i∈N is a complete orthonormal basis (CONB) of L2(Θ, µ1)
and {ψj}j∈N is a CONB of L2(Θ, µ2), so that {φk ⊗ ψj}k,j∈N is a CONB of
L2(Θ2,µ). Moreover, we assume that φ0 = ψ0 = 1, and write, for notational
simplicity ‖P1‖ = ‖P1‖L2(Θ,µ1)7→L2(Θ,µ1), and ‖P2‖ = ‖P2‖L2(Θ,µ2)7→L2(Θ,µ2).
Lastly, denote f0 = f − c0,0, so that f0 ∈ L0

2(Θ2,µ). Notice that

∥∥(P1 ⊗ I)f0

∥∥2

L2(Θ2,µ)
=

∥∥∥∥∥∥
∑

(k,j) 6=(0,0)

(P1φk)ψjck,j

∥∥∥∥∥∥
2

L2(Θ2,µ)

=

∥∥∥∥∥∥
∞∑
j=0

 ∞∑
k=1

P1φkck,j

ψj +

∞∑
j=1

c0,jP1φ0ψj

∥∥∥∥∥∥
2

L2(Θ2,µ)

=

∞∑
j=1

∥∥∥∥∥∥
∞∑
k=1

P1φkck,j + c0,jP1φ0

∥∥∥∥∥∥
2

L2(Θ,µ1)

+

∥∥∥∥∥∥
∞∑
k=1

P1φkck,0

∥∥∥∥∥∥
2

L2(Θ,µ1)

=

∞∑
j=1

∥∥∥∥∥∥P1

 ∞∑
k=1

φkck,j

∥∥∥∥∥∥
2

L2(Θ,µ1)

+

∞∑
j=1

∥∥c0,jφ0

∥∥2

L2(Θ,µ1)
+

∥∥∥∥∥∥P1

 ∞∑
k=1

φkck,0

∥∥∥∥∥∥
2

L2(Θ,µ1)

≤
∞∑
j=1

‖P1‖2
∞∑
k=1

c2k,j + c20,j

+ ‖P1‖2
∞∑
k=1

c2k,0

= ‖P1‖2 ‖f0‖2L2(Θ2,µ) + (1− ‖P1‖2)

∞∑
j=1

(c0,j)
2.

Proceeding similarly, we can obtain an equivalent bound for
∥∥(I ⊗ P2)f0

∥∥2

L2(Θ2,µ)
.

We are now ready to bound ‖P‖2L2(Θ2,µ)7→L2(Θ2,µ):

‖Pf0‖2L2(Θ2,µ) =
∥∥(P1 ⊗ P2)f0

∥∥2

L2(Θ2,µ)
=
∥∥(P1 ⊗ I)(I ⊗ P2)f0

∥∥2

L2(Θ2,µ)

≤ ‖P1‖2
∥∥(I ⊗ P2)f0

∥∥2

L2(Θ2,µ)
+ (1− ‖P1‖2)

 ∞∑
j=1

(I ⊗ P2)
∑

(`,k)6=(0,0)

c`,kφ`ψk, φ0ψj

2
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= ‖P1‖2
∥∥(I ⊗ P2)f0

∥∥2

L2(Θ2,µ)
+ (1− ‖P1‖2)

 ∞∑
j=1

 ∞∑
k=1

c0,k(P2ψk), ψj

2


≤ ‖P1‖2
∥∥(I ⊗ P2)f0

∥∥2

L2(Θ2,µ)
+ (1− ‖P1‖2)

∥∥∥∥∥∥P2

 ∞∑
k=1

c0,kψk

∥∥∥∥∥∥
2

L2(Θ,µ2)

≤ ‖P1‖2 ‖P2‖2 ‖f0‖2L2(Θ2,µ) + ‖P1‖2 (1− ‖P2‖2)

 ∞∑
j=1

c2j,0

+ (1− ‖P1‖2) ‖P2‖2
 ∞∑
k=1

c20,k


Assuming without loss of generality that ‖P1‖ ≥ ‖P2‖, we can use the inequality
above to bound

‖Pf0‖2L2(Θ2,µ) ≤ ‖P1‖2 ‖P2‖2 ‖f0‖2L2(Θ2,µ) + ‖P1‖2 (1− ‖P2‖2)

 ∞∑
j=1

c2j,0 +

∞∑
k=1

c20,k


︸ ︷︷ ︸

≤ ‖f0‖2L2(Θ2,µ)

≤ ‖P1‖2 ‖f0‖2L2(Θ2,µ) .

Thus, we have that ‖P ‖L0
2(Θ2,µ)7→L0

2(Θ2,µ) ≤ maxk=1,2{‖Pk‖L0
2(Θ,µk)7→L0

2(Θ,µk)} <
1. The previous result can easily be extended to K > 2. Lastly, Lr(ΘK ,µ)-
geometric ergodicity ∀r ∈ [1,∞] follows from proposition 4.1.

We can use the previous result to prove the geometric ergodicity of the
UGPT algorithm:

Theorem 4.5 (Ergodicity of UGPT ). Suppose Assumption 4.3 holds and de-
note by µ the invariant measure of the UGPT Markov operator P(UW). Then,
P(UW) has an L2(ΘK ,µ)-spectral gap. Moreover, the chain generated by P(UW)

is Lr(ΘK ,µ)-geometrically ergodic for any r ∈ [1,∞].

Proof. Recall that P(UW) := Q(UW)PQ(UW). From the definition of operator
norm, we have that∥∥∥P(UW)

∥∥∥
L0

2(ΘK ,µ)7→L0
2(ΘK ,µ)

≤
∥∥∥Q(UW)

∥∥∥2

L0
2(ΘK ,µ) 7→L0

2(ΘK ,µ)
‖P‖L0

2(ΘK ,µ) 7→L0
2(ΘK ,µ)

≤ ‖P‖L0
2(ΘK ,µ) 7→L0

2(ΘK ,µ) < 1,

where the previous line follows from Proposition 4.4 and the fact thatQ(UW) is a
weak contraction in L2(ΘK ,µ) (see, e.g., [4, Proposition 1]). Lastly, Lr(ΘK ,µ)-
geometric ergodicity ∀r ∈ [1,∞] follows from proposition 4.1 and the fact that
P(UW) is µ-reversible by Proposition 3.8.

We now turn to proving geometric ergodicity for the WGPT algorithm. We
begin with an auxiliary result, lower-bounding the variance of a µW-integrable
functional f ∈ L2(ΘK ,µW).
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Proposition 4.6. Let f ∈ L0
2(ΘK ,µW) be a µW-integrable function such that

‖f‖L2(ΘK ,µW) = 1, and denote by VµW
[f ], Vµσ [f ] the variance of f with respect

to µW,µσ, respectively with σ ∈ SK . In addition, suppose Assumption 4.3
holds. Then, it can be shown that

0 <
Λm

2− Λm
≤ 1

|SK |
∑
σ∈SK

Vµσ [f ] ≤ VµW
[f ] = 1,

with Λm = min
σ,ρ∈SK

{Λσ,ρ} and Λσ,ρ as in Assumption C3.

Proof. The proof is technical and tedious and is proposed in the Appendix
.1.

We are finally able to prove the ergodicity of the WGPT algorithm.

Theorem 4.7 (Ergodicity of WGPT). Suppose Assumption 4.3 holds for some
r ∈ [1,∞] and denote by µW the invariant measure of the WGPT Markov
operator P(W). Then, P(W) has an L2(ΘK ,µW)-spectral gap. Moreover, the
chain generated by P(W) is Lr(ΘK ,µW)-geometrically ergodic for any r ∈ [1,∞].

Proof. Let L := {f ∈ L0
2(ΘK ,µW) : ‖f‖L0

2(ΘK ,µW) = 1}. Then, from the
definition of operator norm,∥∥∥P(w)

∥∥∥2

L0
2(ΘK ,µW) 7→L0

2(ΘK ,µW)
= supf∈L

∥∥∥P(w)f
∥∥∥2

L2(ΘK ,µW)

= supf∈L

∫
ΘK

∣∣∣∣∣∣
∑
σ∈SK

wσ(θ)

∫
ΘK

f(y)pσ(θ,dy)

∣∣∣∣∣∣
2

µW(dθ)

≤ supf∈L

∫
ΘK

∑
σ∈SK

wσ(θ)

∣∣∣∣∫
ΘK

f(y)pσ(θ,dy)

∣∣∣∣2 µW(dθ) (from convexity of (·)2)

= supf∈L
1

|SK |
∑
σ∈SK

∫
ΘK

∣∣∣∣∫
ΘK

f(y)pσ(θ,dy)

∣∣∣∣2 µσ(dθ) (from the definition of wσ and µW).

(16)
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Now, let f̄σ := µσ(f). Notice that we have∫
ΘK

∣∣∣∣∫
ΘK

f(y)pσ(θ,dy)

∣∣∣∣2 µσ(dθ)

=

∫
ΘK

∣∣∣∣∫
ΘK

(f(y)− f̄σ + f̄σ)pσ(θ,dy)

∣∣∣∣2 µσ(dθ)

=

∫
ΘK

(∣∣∣∣∫
ΘK

(f(y)− f̄σ)pσ(θ,dy)

∣∣∣∣2 +

∣∣∣∣∫
ΘK

f̄σpσ(θ,dy)

∣∣∣∣2 + 2f̄σ

∫
ΘK

(f(y)− f̄σ)pσ(θ,dy)

)
µσ(dθ)

=

∫
ΘK

(∫
ΘK

(f(y)− f̄σ)pσ(θ,dy)

)2

µσ(dθ) + (f̄σ)2 + 2f̄σ

∫
ΘK

∫
ΘK

(f(y)− f̄σ)pσ(θ,dy)µσ(dθ)︸ ︷︷ ︸
= 0 by stationarity

=


∫

ΘK

(∫
ΘK

(f(y)− f̄σ)pσ(θ,dy)
)2

µσ(dθ)∫
ΘK

(
f(θ)− f̄σ

)2
µσ(dθ)

(∫
ΘK

(
f(θ)− f̄σ

)2
µσ(dθ)

)
+ (f̄σ)2

≤‖Pσ‖2L0
2(ΘK ,µσ)7→L0

2(ΘK ,µσ)

(∫
ΘK

(
f(θ)− f̄σ

)2
µσ(dθ)

)
+ (f̄σ)2

= ‖Pσ‖2L0
2(ΘK ,µσ)7→L0

2(ΘK ,µσ)

(∫
ΘK

f(θ)2µσ(dθ)

)
+
(

1− ‖Pσ‖2L0
2(ΘK ,µσ) 7→L0

2(ΘK ,µσ)

)
(f̄σ)2

=

(∫
ΘK

f(θ)2µσ(dθ)

)
−
(

1− ‖Pσ‖2L0
2(ΘK ,µσ)7→L0

2(ΘK ,µσ)

)
︸ ︷︷ ︸

:= γ, with γ ∈ (0, 1)

(∫
ΘK

(
f(θ)− f̄σ

)2
µσ(dθ)

)
.

(17)

Replacing Equation (17) into Equation (16), we get∥∥∥P(W)
∥∥∥2

L0
2(ΘK ,µW)7→L0

2(ΘK ,µW)
≤ sup
f∈L

(∫
ΘK

f(θ)2µW(dθ)

)
− γ

|SK |
∑
σ∈SK

Vµσ [f ]

≤ 1− γ
(

Λm
2− Λm

)
< 1 (by Proposition 4.6).

Thus, P(w) has an L2(ΘK ,µW) spectral gap. Once again, Lr(ΘK ,µW)-
geometric ergodicity (with r ∈ [1,∞]) follows from Proposition 4.1 and the fact
that P(W) is µW-reversible by Proposition 3.11.

4.2.1 Discussion and comparison to similar theoretical result

Theorems 4.5 and 4.7 state the existence of an L2-spectral gap, hence Lr-
geometric ergodicity for both the UGPT and the WGPT algorithm. Their
proof provides also a quantification of the L2-spectral gap in terms of the L2-
spectral gap of each individual Markov operator Pk. Such a bound is, however,
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not satisfactory as it does not use any information on the temperature and it
just states that the L2-spectral gap of the UWPT and WGPT chain is not worse
that the smallest L2-spectral gap among the individual chains (without swap-
ping). This result is not sharp, as it can be evidenced in the numerical section,
where a substantial improvement in convergence is achieved by our methods.

Convergence results for the standard parallel tempering algorithm have been
obtained in the works [33] and [41]. In particular, the work [33] has proved
geometric ergodicity for the pairwise parallel tempering algorithm using the
standard drift condition construction of [32]. It is unclear from that work which
convergence rate is obtained for the whole algorithm. In comparison, our results
are given in terms of spectral gaps. On the other hand, the work [41] presents
conditions for rapid mixing of a particular type of parallel tempering algorithm,
where the transition kernel is to be understood as a convex combination of such
kernels, as opposed to our case, where it is to be understood as a tensorization.
Their obtained results provide, for their setting, a better convergence rate that
the one we obtained for the UGPT. We believe that their result can be extended
to the UGPT algorithm, and this will be the focus of future work. On the
other hand, the use of the ideas in [41] for the WGPT algorithm seems more
problematic.

5 Numerical experiments
We now present four toy examples to illustrate the efficiency of both GPT
algorithms discussed herein and compare them to the more traditional random
walk Metropolis and standard PT algorithms. Notice that we compare the
examples with respect to the “simplest” version of these methods, since more
efficient variations, such as Adaptive Metropolis [19, 18], for example, can also
be extended into the GPT framework. Experiments 5.1, 5.2 and 5.3 were run in
a Dell (R) Precision (TM) T3620 workstation with Intel(R) Core(TM) i7-7700
CPU with 32 GB of RAM. Numerical simulations in Section 5.1 and 5.3 were
run on a single thread, while the numerical simulations in Section 5.2 were run
on an embarrassingly parallel fashion over 8 threads using the Message Passing
Interface (MPI) and the Python package MPI4py [11]. Lastly, experiment 5.4
was run on the Fidis cluster of the EPFL. The scripts used to generate the
results presented in this section were written in Python 3.6, and can be found
in DOI: 10.5281/zenodo.3700048

Remark 5.1. In most Bayesian inverse problems, particularly those dealing with
large-scale computational models, the computational cost is dominated by the
evaluation of the forward operator, which can be, for example, the numerical
approximation of a possibly non-linear partial differential equation. In the case
where all possible permutations are considered (i.e., SK = SK), there are K!
possible permutations of the states, the computation of the swapping ratio in
the GPT algorithms can become prohibitively expensive if one is to evaluate
K! forward models, even for moderate values of K. This problem can be cir-
cumvented by storing the values π(θ

(n)
k ), k = 1, . . . ,K, n = 1, . . . N , since the
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swapping ratio for GPT consists of permutations of these values, divided by the
temperature parameters. Thus, “only” K forward model evaluations need to be
computed at each step and the swapping ratio can be computed at negligible
cost for moderate values of K. For higher values of K, it is advisable to only
consider the union of properly chosen semi-groups A,B of SK , with A∩B 6= ∅,
such that A,B generates SK (i.e., if the smallest semi-groups that contains A
and B is SK itself), and |A ∪ B| < |SK | = K!, which is referred to as partial
Infinite Swapping in the continuous case [16]. One particular way of choosing
A and B is to consider, for example, A to be the set of permutations that only
permute the indices associated with relatively low temperatures while leaving
the other indices unchanged, and B as the set of permutations for the indices
of relatively high temperatures, while leaving the other indices unchanged. In-
tuitively, swaps between temperatures that are, in a sense, “close” to each other
tend to be chosen with a higher probability. We refer the reader to [16, Section
6.2] for a further discussion on this approach in the continuous-time setting. One
additional idea would be to consider swapping schemes that, for example, only
permute states between µi and µi+1, µi+2, . . . , µi+` for some user-defined ` ≥ 1
and any given i = 1, 2, . . . ,K − 1. The intuition behind this choice also being
that swaps between posteriors that are at close temperatures are more likely to
occur than swaps between posteriors with a high temperature difference. We
intend to explore this further in depth in future work.

5.1 Density concentrated over a quarter circle-shaped man-
ifold

Let µ be a probability measure that has density π with respect to the uniform
Lebesgue measure on the unit square µprior = U([0, 1]2) given by

π(θ) =
1

Z
exp

(
−10000(θ2

1 + θ2
2 − 0.82)2

)
1[0,1]2 , θ = (θ1, θ2),

where Z is the normalization constant and 1[0,1]2 is the indicator function over
the unit square. We remark that this example is not of particular interest per
se; however, it can be used to illustrate some of the advantages of the algorithms
discussed herein. The difficulty of sampling from such a distribution comes from
the fact that its density is concentrated over a quarter circle-shaped manifold,
as can be seen on the left-most plot in Figure 1. This in turn will imply that a
single level RWM chain would need to take very small steps in order to properly
explore such density.

We aim at estimatingQk = Eµ[θk] ≈ θ̂k, for k = 1, 2. To do so, we implement
five MCMC algorithms to sample from µ, namely Random Walk Metropolis
(RWM), the standard PT (PT) with Ns = 1, as described in Section 3.2, the
PSDPT algorithm of [24] and both versions of the GPT algorithm. We compare
the quality of our algorithms by examining the variance of the estimators θ̂k,
k = 1, 2 computed over 100 independent MCMC runs of each algorithm, which
we describe as follows. For the tempered algorithms (PT, PSDPT, UGPT, and
WGPT), we consider K = 4 temperatures. A rule of thumb [17] for the choice
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Figure 1: Tempered densities (with T1 = 1, T2 = 17.1, T3 = 292.4, T4 = 5000)
for the density concentrated around a quarter circle-shaped manifold example.
As we can see, the density becomes less concentrated as the temperature in-
creases, which allows us to use RWM proposals with larger step sizes.

of temperatures is to set Ti = ai−1, k = 1, . . . ,K, for some positive constant
a > 1. In particular, we choose T4 = 5000, so that the tempered density
π4 becomes sufficiently simple to explore the target distribution. This gives
T1 = 1, T2 = 17.1, T3 = 292.4, T4 = 5000. Moreover, for both GPT algorithms,
we set SK = SK , i.e., we consider all possible K! permutations of {1, 2, . . . ,K}.
Notice that since this is a relatively small value of K, the computational time
is dominated by the transition operator P, rather than by the computation
of the swapping ratio. In the current setting, the computational cost of PT
and PSDPT is comparable to that of both GPT algorithms discussed herein.
Each estimator is obtained by running the inversion experiment for N = 25, 000
samples, discarding the first 20% of the samples (5000) as a burn-in. Notice
that the tempering algorithms (i.e., PT, PSDPT, UGPT and WGPT) have a
K-times larger computational cost than RWM, since such algorithms need to
run a total of K chains. To account for this computational cost, we run the
single-chain random walk Metropolis algorithm for NRWM = KN = 100, 000
iterations, and discard the first 20% of the samples obtained with the RWM
algorithm (20,000) as a burn-in.

The RWM algorithm uses Gaussian proposals with covariance matrix ΣRWM =
(0.025)2I2×2, where I2×2 is the identity matrix in R2×2. For the tempered al-
gorithms (i.e., PT, PSDPT, and both versions of GPT), we use K = 4 RWM
kernels pk, k = 1, 2, 3, 4, with proposal density qprop,i(θ

(n)
k , ·) = N (θ

(n)
k , σ2

kI2×2),
where σk is shown in Table 2. This choice of σk gives an acceptance rate for
each chain of around 0.23. Notice that σ1 corresponds to the “step-size” of the
single-temperature RWM algorithm.

k = 1 k = 2 k = 3 k = 4
σk 0.022 0.090 0.310 0.650

Table 1: Step size of the RWM proposal distribution for the manifold exper-
iment. This choice of step size provides an average acceptance rate for each
chain, at each temperature, of around 0.23 for all the algorithms tested. Such
values are relatively close to the “optimal” value of 0.234 in [37].
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Experimental results for the ergodic run are shown in Table 5.1. We can
see how both GPT algorithms provide a gain over both RWM, PT and PSDPT
algorithms, with the WGPT algorithm providing the largest gain. Scatter plots
of the samples obtained with each method are presented in Figure 2. Here,
the subplot titled “WGPT” (second from right to left) corresponds to weighted
samples from µW, with weight ŵ as in (13), while the one titled “WGPT (inv)”
(rightmost) corresponds to samples from µW without any post-processing. No-
tice how the samples from the latter concentrates over a wider manifold, which
in turn makes the target density easier to explore when using state-dependent
Markov transition kernels.

Mean MSE MSERWM/MSE
θ1 θ2 θ1 θ2 θ1 θ2

RWM 0.50996 0.50657 0.00253 0.00261 1.00 1.00
PT 0.50978 0.51241 0.00024 0.00021 10.7 11.0
PSDPT 0.50900 0.50956 0.00027 0.00026 9.53 10.2
UGPT 0.50986 0.50987 0.00016 0.00016 16.1 16.4
WGPT 0.51062 0.50838 0.00015 0.00014 16.9 18.4

Table 2: Results for the density concentrated around a circle-shaped manifold
experiment. As we can see, both GPT algorithms provide an improvement
over PT, PSDPT and RWM. The computational cost is comparable across all
algorithms.

Figure 2: Scatter-plots of the samples from µ obtained with each algorithm on
a single run. Top, from left to right: random walk Metropolis, PT and PSDPT.
Bottom, from left to right: UGPT, WGPT (after re-weighting the samples),
and WGPT, before re-weighting the samples.
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5.2 Multiple source elliptic BIP
We now consider a slightly more challenging problem, for which we try to re-
cover the probability distribution of the location of a source term in a Poisson
equation (Eq. (18)), based on some noisy measured data. Let (Θ,B(Θ), µprior)
be the measure space, set Θ = D̄ := [0, 1]2, with Lebesgue (uniform) measure
µprior, and consider the following Poisson’s equation with homogeneous bound-
ary conditions: {

∆u(x, θ) = f(x, θ), x ∈ D, θ ∈ Θ,

u(x, θ) = 0, x ∈ ∂D.
(18)

Such equation can model, for example, the electrostatic potential u := u(x, θ)
generated by a charge density f(x, θ) depending on an uncertain location pa-
rameter θ ∈ Θ. Data y is recorded on an array of 64× 64 equally-spaced points
in D by solving (18) with a forcing term given by

f(x) =

4∑
i=1

e−1000[(x1−s(i)1 )2+(x2−s(i)2 )2], (19)

where the true source locations s(i), i = 1, 2, 3, 4, are given by s(1) = (0.2, 0.2), s(2) =
(0.2, 0.8), s(3) = (0.8, 0.2), and s(4) = (0.8, 0.8). Such data is assumed to
be polluted by an additive Gaussian noise η ∼ N (0, σ2I64×64), with σ =
3.2 × 10−6, (which corresponds to a 1% noise) and where I64×64 is the 64-
dimensional identity matrix. Thus, we set (Y, ‖·‖Y ) = (R64×64, ‖·‖Σ), with
‖A‖Σ = (64σ)−2

∥∥ATA∥∥
F
, for some arbitrary matrix A ∈ R64×64, where ‖·‖F

is the Frobenius norm. We assume a misspecified model where we only con-
sider a single source in Eq. (19). That, is, we construct our forward operator
F : Θ 7→ Y by solving (18) with a source term given by

f(x, θ) = e−1000[(x1−θ1)2+(x2−θ2)2]. (20)

In this particular setting, this leads to a posterior distribution with four modes
since the prior density is uniform in the domain and the likelihood has a local
maximum whenever (θ1, θ2) = (s

(i)
1 , s

(i)
2 ), i = 1, 2, 3, 4. The Bayesian inverse

problem at hand can be understood as sampling from the posterior measure µ,
which has a density with respect to the prior µprior = U(D̄) given by

π(θ) =
1

Z
exp

(
−1

2

∥∥y −F(θ)
∥∥2

Σ

)
,

for some (intractable) normalization constant Z as in (4). We remark that the
solution to (18) with a forcing term of the form of (20) is approximated using
a second-order accurate finite difference approximation with grid-size h = 1/64
on each spatial component.

The difficulty in sampling from the current BIP arises from the fact that
the resulting posterior µ is multi-modal and the number of modes is not known
apriori (see Figure 3).
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Figure 3: True tempered densities for the elliptic BIP example. Notice that the
density is not symmetric, due to the additional random noise.

We follow a similar experimental setup as in the previous example, by im-
plementing RWM, PT (with Ns = 1), the pairwise state dependent parallel
tempering algorithm PSDPT of [24], and both versions of the GPT algorithms.
For the PT, PSDPT and GPT algorithms, four different temperatures are used,
with T1 = 1, T2 = 7.36, T3 = 54.28, and T4 = 400. Once again, we set
SK = SK for both GPT algorithms (i.e., we consider all possible permuta-
tions). Given that 4! is a moderately small number, the computational cost
of evaluating the forward model is much higher than the cost associated with
computing the swapping ratio.

Since we have K = 4 temperatures, we run the RWM algorithm for K-times
longer, so that the computational cost of all algorithms tested is comparable.
For each run, we obtain N = 25, 000 samples with the PT, PSDPT, and both
GPT algorithms, and N = 100, 000 samples with RWM, discarding the first 20%
of the samples in both cases (5000, 20000, respectively) as a burn-in. On each
of the tempered chains, we use RWM proposals, with step-sizes shown in table
3. This choice of step size provides an acceptance rate of about 0.24 across all
tempered chains and all tempered algorithms. For the single-temperature RWM
run, we choose a larger step size (σRWM = 0.16) so that the RWM algorithm
is able to explore the whole distribution. Such a choice, however, provides a
smaller acceptance rate of about 0.01 for the single-chain RWM.

Experimental results are shown in Table 4. Once again, we can see how both
GPT algorithms provide a gain over both RWM and both variations of the PT
algorithm, with the WGPT algorithm providing a larger gain. Scatter-plots of
the obtained samples are shown in Figure 3.

k = 1 k = 2 k = 3 k = 4
σi,PT,PSDPT,GPT 0.030 0.100 0.400 0.600
σi,RWM 0.160 - - -

Table 3: Step size of the RWM proposal distribution for the elliptic BIP exper-
iment. This choice of step size provides an acceptance rate of about 0.24 for all
the tempered algorithms tested. The step size for the the single-temperature
RWM is chosen to be 0.16, so that the sampler can explore the whole distribu-
tion. This in turn results in an acceptance rate of about 0.01.
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Figure 4: Scatterplots of the samples from µ obtained with different algorithms
on a single run. Top, from left to right: random walk Metropolis, PT and
PSDPT. Bottom, from left to right: UGPT, WGPT (after re-weighting the
samples), and WGPT, before re-weighting the samples. As we can see, WGPT
(before re-weighting) is able to "connect" the parameter space.

Mean MSE MSERWM/MSE
θ1 θ2 θ1 θ2 θ1 θ2

RWM 0.48509 0.51867 0.00986 0.01270 1.00 1.00
PT 0.48731 0.50758 0.00042 0.00036 23.0 29.2
PSDPT 0.48401 0.50542 0.00079 0.00099 12.4 10.7
UGPT 0.48624 0.50620 0.00038 0.00027 25.9 38.2
WGPT 0.48617 0.50554 0.00025 0.00023 38.6 44.9

Table 4: Results for the elliptic BIP problem. Once again, we can see that
both GPT algorithms provide an improvement over RWM, PT and PSDPT.
The computational cost is comparable across all algorithms, given that the cost
of each iteration is dominated by the cost of solving the underlying PDE.

5.3 1D wave source inversion
We consider a small variation of example 5.1 in [34]. Let (Θ,B(Θ), µprior) be
a measure space, with Θ = [−5, 5] and uniform (Lebesgue) measure µprior.
Consider the following Cauchy problem for the 1D wave equation:{

utt(x, t, θ)− uxx(x, t, θ) = 0, t ∈ (0, T ], x ∈ R, θ ∈ Θ,

u(x, 0, θ) = h(x, θ), ut(x, 0, θ) = 0, x ∈ R, θ ∈ Θ.
. (21)
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Here, h(x, θ) acts as a source term generating a initial wave pulse. Notice that
Equation (21) can be easily solved using d’Alembert’s formula, namely

u(x, t, θ) =
1

2

(
h(x− t, θ) + h(x+ t, θ)

)
.

Synthetic data y is generated by solving Equation (21) with initial data

h(x, θ1, θ2) =
1

2

(
e−100(x−θ1−0.5)2

+ e−100(x−θ1)2

+ e−100(x−θ1+0.5)2

+e−100(x−θ2−0.5)2

+ e−100(x−θ2)2

+ e−100(x−θ2+0.5)2
)
,

with θ1 = −3, θ2 = 3 and observed at NR = 11 equally-spaced receiver loca-
tions between R1 = −5 and R2 = 5 on NT = 1000 time instances between t = 0
and T = 5. The signal recorded by each receiver is assumed to be polluted
by additive Gaussian noise η ∼ N (0, σ2I1000×1000), with σ = 0.01, which cor-
responds to roughly 1% noise. Thus, we set (Y, ‖·‖Y ) = (R11×1000, ‖·‖Σ), with
‖A‖Σ = (

√
NRσ)−2

∑NR
i=1

∑NT
j=1A

2
i,j , A ∈ R11×1000. Once again, we assume a

misspecified model where we construct our forward operator F : Θ 7→ Y by
solving (21) with a source term given by

h(x, θ) =
(
e−100(x−θ−0.5)2

+ e−100(x−θ)2

+ e−100(x−θ+0.5)2
)
,

this is done to further increase the multi-modality of the resulting posterior.
The Bayesian inverse problem at hand can be understood as sampling from the
posterior measure µ, which has a density with respect to the prior µprior =
U([−5, 5]) given by

π(θ) =
1

Z
exp

(
−1

2

∥∥y −F(θ)
∥∥2

Σ

)
=

1

Z
exp

(
−Φ(θ; y)

)
,

for some (intractable) normalization constant Z as in (4). The difficulty in
solving this BIP comes from the high multi-modality of the potential Φ(θ; y), as
it can be seen in Figure 5. This, shape of Φ(θ; y) makes the posterior difficult
to explore using local proposals.

We follow a similar experimental setup as in the previous example, by im-
plementing RWM, PT (with Ns = 1), PSDPT and both versions of the GPT
algorithms. For the PT, PSDPT and GPT algorithms, five different temper-
atures are used, with T1 = 1, T2 = 5, T3 = 25, T4 = 125 and T5 = 625.
Once again, we set SK = SK for both GPT algorithms (i.e., we consider all
possible permutations). Given that 5! is still a moderately small number, the
computational cost across all algorithms is comparable. Similarly as before, we
run the RWM algorithm K-times longer. For each run, we obtain N = 25, 000
samples with the PT, PSDPT, and both GPT algorithms, and N = 125, 000
samples with RWM, discarding the first 20% of the samples in both cases (5000,
25000, respectively) as a burn-in. On each of the tempered chains, we use RWM
proposals, with step-sizes shown in table 5. This choice of step size provides
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Figure 5: Multi-modal potential for the Cauchy problem. Notice the minima
around θ = −3 and θ = 3.

an acceptance rate of about 0.4 across all tempered chains and all tempered
algorithms.

Experimental results are shown in Table 6. Once again, we can see how
both GPT algorithms provide a gain over both RWM and both variations of the
PT algorithm, with the WGPT algorithm providing the largest gain. Notice
that, given the high muti-modality of the posterior at hand, the simple RWM
algorithm is not well-suited for this type of distribution, as it can be seen from
its large variance; this suggests that the RWM usually gets "stuck" at one mode
of the posterior. Notice that, intuitively, due to the symmetric nature of the
potential, one would expect the true mean of θ to be close to 0. This value was
computed by means of numerical integration and is given by Eµ[θ] = 0.08211.

k = 1 k = 2 k = 3 k = 4 k = 5
σi,PT,PSDPT,GPT 0.02 0.05 0.10 0.50 2.0
σi,RWM 0.5 - - - -

Table 5: Step size of the RWM proposal distribution for the Cauchy BIP exper-
iment. This choice of step size provides an acceptance rate of about 0.4 for all
the tempered algorithms tested. The choice of step-size for the RWM algorithm
is done in such a way that it can "jump" modes, which are at distance of roughly
1/2.

Mean MSE MSERWM/MSE
RWM -0.10120 9.36709 1.000
PT 0.05118 0.03681 254.5
PSDPT 0.15840 0.21701 43.20
UGPT 0.08976 0.03032 308.9
WGPT 0.06149 0.02518 372.0

Table 6: Results for the 1D Cauchy BIP problem. Once again, we can see that
both GPT algorithms provide an improvement over RWM, PT and PSDPT.
The computational cost is comparable across all algorithms.
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5.4 Acoustic wave inversion
Lastly, we consider a more challenging problem, for which we try to recover
the probability distribution of the spatial location of a (point-like) source term,
together with the material properties of the medium, on an acoustic wave equa-
tion (Eq. (22)), based on some noisy measured data. We begin by describing
the mathematical model of such wave phenomena. Let (Θ,B(Θ), µprior) be the
measure space , with Lebesgue (uniform) measure µprior, set D̄ := [0, 3]× [0, 2],

∂D = Γ̄N ∪ Γ̄Abs, Γ̊N∩ Γ̊Abs = 0, |ΓN|, |ΓAbs| > 0, and define Θ = D×Θα×Θβ ,
where Θα = [6, 14], Θβ = [4500, 5500]. Here, we are considering a rectangular
spatial domain D, with the top boundary denoted by ΓN and the side and bot-
tom boundaries denoted by ΓAbs. Lastly, let θ := (θ1, θ2, α, β) ∈ Θ. Consider
the following acoustic wave equation with absorbing boundary conditions:

α2utt(x, t, θ)− β2∆u(x, t, θ) = f(x, t, θ), (x, t, θ) ∈ D × (0, T )×Θ,

u(x, 0, θ) = ut(x, 0, θ) = 0, (x, t, θ) ∈ D × {0} ×Θ,

β2∇u(x, t, θ) · n̂ = 0, (x, t, θ) ∈ ΓN × (0, T )×Θ,

β2∇u(x, t, θ) · n̂ = −αβut(x, t, θ), (x, t, θ) ∈ ΓAbs × (0, T )×Θ.

(22)

Here the boundary condition on the top boundary ΓN corresponds to a Neumann
boundary condition, while the boundary condition on ΓAbs corresponds to the
so-called absorbing boundary condition, a type of artificial boundary condition
used to minimize reflection of wave hitting the boundary. Data y ∈ Y is obtained
by solving Equation (22) with a force term given by

f(x, t, θ) = 1011e−
1

2·0.12 [(x1−θ1)2+(x2−θ2)2](1− 2 · 1000π2t2)e−2·10002π2t2 , (23)

with a true set of parameters Θ 3 θ∗ := (θ1, θ2, α, β) given by θ1 = 1.5, θ2 =
1.0, α = 10, β = 5000, and observed on NR = 3 different receiver locations
R1 = (1.0, 2.0), R2 = (1.5, 2.0), R3 = (2.0, 2.0) at NT = 117 equally-spaced
time instants between t = 0 and t = 0.004. In physical terms, the parameters
θ1, θ2 represent the source location, while the parameters α, β are related to the
material properties of the medium. Notice that, on a slight abuse of notation,
we have used the symbol π to represent the number 3.14159 . . . in Equation (23)
and it should not be confused with the symbol for density. The data measured
by each receiver is polluted by an additive Gaussian noise η ∼ N (0, σ2I117×117),
with σ = 0.013, which corresponds to roughly a 2% noise. Thus, we have that
(Y, ‖·‖Y ) = (R3×117, ‖·‖Σ), where ‖A‖2Σ := (

√
NRσ)−2

∑NR
i=1

∑NT
j=0A

2
i,j . Thus,

the forward mapping operator F : Θ 7→ Y can be understood as the numerical
solution of Equation (22) evaluated at 117 discrete time instants at each of
the 3 receiver locations. Such a numerical approximation is obtained by the
finite element method using piece-wise linear elements and the time stepping is
done using a Forward Euler scheme with sufficiently small time-steps to respect
the so-called Courant-Fredrichs-Lewy condition [36]. This numerical solution
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Figure 6: Plot of the log-likelihood for different values of θ1, θ2 and fixed values
of α = 10 and β = 5000. The magenta points represent the reciever locations
R1, R2, R3. The black point represents the true location of the source (θ1, θ2) =
(1.5, 1.0).

is implemented using the Python library FEniCS [27], using 40×40 triangular
elements. The Bayesian inverse problem at hand can thus be understood as
sampling from the posterior measure µ, which has a density with respect to the
prior µprior = U(Θ) given by

π(θ) =
1

Z
exp

(
−1

2

∥∥y −F(θ)
∥∥2

Σ

)
.

The previous BIP presents two difficulties; on the one hand, Equation (22) is,
typically, expensive to solve, which in turn translates into expensive evaluations
of the posterior density. On the other, the log-likelihood has an extremely
complicated structure, which in turn makes its exploration difficult. This can be
seen in Figure 6, where we plot of the log-likelihood for different source locations
(θ1, θ2) and for fixed values of the material properties α = 10, β = 5000. More
precisely, we plot Φ̃((θ1, θ2); y) := − 1

2

∥∥y −F(θ1, θ2, 10, 5000)
∥∥2

Σ
on a grid of

100× 100 equally spaced points (θ1, θ2) in D. It can be seen that, even though
the log-likelihood has a clear peak around the true value of (θ1, θ2), there are also
regions of relatively high concentration of log-probability, surrounded by regions
with a significantly smaller log-probability, making it a suitable problem for our
setting.

Following the same set-up of previous experiments, we aim at estimating
Qk = Eµ[θk] ≈ θ̂k, for k = 1, 2. To do so, we implement five MCMC algorithms
to sample from µ, namely Random Walk Metropolis (RWM), the standard PT
(with Ns = 1) as described in Section 3.2, the PSDPT algorithm of [24] and
both versions of the GPT algorithm. We compare the quality of our algorithms
by examining the variance of the estimators θ̂k, k = 1, 2, 3, 4 computed over
50 independent MCMC runs of each algorithm, which we describe as follows.
Once again, we consider K = 4 temperatures for the tempered algorithms (PT,
PSDPT, UGPT, and WGPT), setting temperatures to Ti = ai−1, k = 1, . . . ,K,
for some positive constant a > 1. In particular, we choose T4 = 400, which gives
T1 = 1, T2 = 7.36, T3 = 54.28, T4 = 400. We follow a similar experimental setup
as in the previous three experiments and consider SK = SK . For the tempered
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algorithms, each estimator is obtained by running the inversion experiment for
N = 7, 000 samples, discarding the first 20% of the samples (1400) as a burn-in.
For the RWM algorithm, we run the inversion experiment for NRWM = KN =
28, 000 iterations, and discard the first 20% of the samples obtained (5600) as
a burn-in.

Each individual chain is constructed using Gaussian RWM proposals qprop,k(θnk , ·) =
N (θnk , Ck), k = 1, 2, 3, 4, with covariance Ck described in Table 7. The covariance
is tuned in such a way that the acceptance rate of each chain is around 0.23.
The variance of the estimators obtained with each method is presented in Table
8. Once again, our GPT algorithms outperform all other tested methods for
this particular setting. In particular, our methods provide huge computational
gains when compared to RWM and the PSDPT algorithm of [24], as well as
some moderate computational gains when compared to the standard PT.

k = 1 k = 2 k = 3 k = 4

C1/2i,PT,PSDPT,GPT Diag(0.01, 0.01, 0.2, 5) Diag(0.06, 0.06, 0.4, 14) Diag(0.3, 0.3, 0.6, 20) Diag(1, 1, 1, 50)

C1/2i,RWM Diag(0.02, 0.02, 0.2, 5) - - -

Table 7: Step size of the RWM proposal distribution for the acoustic BIP ex-
periment. Here Diag(d1, d2, . . . , dN ) is to be understood as the N ×N diagonal
matrix with entries d1, d2, . . . , dN . This choice of covariance provides an accep-
tance rate of about 0.25 across all algorithms.

Mean Var VarRWM/Var
θ1 θ2 θ1 θ2 θ1 θ2

RWM 1.33801 1.54293 9.86× 10−1 8.21×10−2 1.000000 1.000
PT 1.50121 1.00829 6.61× 10−6 2.77× 10−4 149136.1 296.2
PSDPT 1.39775 1.23119 2.48× 10−1 6.54× 10−2 3.900000 1.200
UGPT 1.50177 1.00711 2.72× 10−6 2.38× 10−4 361744.5 345.0
WGPT 1.50174 1.00601 2.08× 10−6 1.46× 10−4 472133.2 558.6

Table 8: Results for the acoustic BIP problem. Once again, we can see that
both GPT algorithm provide an improvement over RWM, PT and PSDPT. The
computational cost is comparable across all algorithms, given that the cost of
each iteration is dominated by the cost of solving the underlying PDE.

6 Conclusions and future work
In the current work, we have proposed, implemented, and analyzed two versions
of the GPT, and applied these methods to a BIP context. We demonstrate that
such algorithms produce reversible and geometrically-ergodic chains under rela-
tively mild conditions. As shown in Section 5, such sampling algorithms provide
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an attractive alternative to the more standard Parallel Tempering when sam-
pling from difficult (i.e., multi-modal or concentrated around a manifold) poste-
riors. We remark that the framework considered here-in can be combined with
other, more advanced MCMC algorithms, such as, e.g., the Metropolis-adjusted
Langevin algorithm (MALA), or the Delayed Rejection Adaptive Metropolis
(DRAM), for example [18].

We intend to carry out a number of future extensions of the work presented
herein. One of our short-term goals is to extend the methodology developed
in the current work to a Multi-level Markov Chain Monte Carlo context, as in
[14]. In addition, from a theoretical point of view, we would like to investigate
the role that the number of chains and the choice of temperatures play on the
convergence of the GPT algorithm, as it has been done previously for Parallel
Tempering in [41]. Improving on the estimates presented here would likely be the
focus of future work. We also believe that by excluding the identity permutation
(i.e., id /∈ SK) on the UGPT, one could obtain a swapping kernel which is better
in the so-called Peskun sense, see [1] for more details. We intend to carry further
numerical experiments to better understand and compare swapping strategies.
Furthermore, from a computational perspective, given that the framework pre-
sented in this work is, in principle, dimension independent, the methods explored
in this work can also be combined with dimension-independent samplers such
as the ones presented in [7, 10], thus providing a sampling algorithm robust to
both multi-modality and large dimensionality of the parameter space. Given the
additional computational cost of these methods, a non-trivial coupling of GPT
and these methods needs to be devised. Lastly, we aim at applying the meth-
ods developed in the current work to more computationally challenging BIP, in
particular those arising in seismology and seismic source inversion, where it is
not uncommon to find multi-modal posterior distributions when inverting for a
point source.

Auxiliary results

.1 Proof of Proposition 4.6
Proof. This proof is partially based on the proof of Theorem 1.2 in [29]. Let
θ,y ∈ ΘK and define f̄σ := µσ(f). The right-most inequality follows from the
fact that

1 = VµW
[f ] =

∫
ΘK

f(θ)2µW(dθ) =
1

|SK |
∑
σ∈SK

∫
ΘK

f2(θ)µσ(dθ) =
1

|SK |
∑
σ∈SK

(
Vµσ [f ] + f̄2

σ

)
≥ 1

|SK |
∑
σ∈SK

Vµσ [f ]

We follow a procedure similar to the proof of [29, Theorem 1.2] for the lower
bound on the variance. We introduce an ordering on SK = σ1, σ2, . . . , σ|SK |,
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define the matrix C ∈ R|SK |×|SK | as the matrix with entries

Cij =

∫
ΘK

∫
ΘK

(f(θ)− f(y))2µσi(dθ)µσj (dy),

where Cjj = 2Vµσj [f ] and

2 = 2VµW
[f ] =

∫
ΘK

∫
ΘK

(f(θ)− f(y))2

 1

|SK |

|SK |∑
i=1

µσi(dθ)

 1

|SK |

|SK |∑
j=1

µσj (dy)


=
∑
i,j

1

|SK |2
Cij . (24)

We thus aim at finding an upper bound of Equation (24) in terms of (|SK |)−1
∑
σ∈SK Vσ[f ].

By assumption C3, for any σi, σj ∈ SK the densities πσi ,πσj of µσi ,µσj
(with respect to µprior) have an overlap Λσi,σj > 0. For brevity, in the following
we use the shorthand notation Λi,j for Λσi,σj . Thus, we can find densities
ηij := Λ−1

ij min
θ∈ΘK

{πσi(θ),πσj (θ)},ϕi,ψj such that πσi = Λijηij + (1 − Λij)ϕi,

and πσj = Λijηij + (1− Λij)ψj . Thus, we get for the diagonal entries of the C
matrix:

Cii = 2Vµσi [f ]

=

∫
ΘK

∫
ΘK

(f(θ)− f(y))2
(
Λijηij(θ) + (1− Λij)ϕi(θ)

) (
Λijηij(y) + (1− Λij)ϕi(y)

)
µprior(dθ)µprior(dy)

=

∫
ΘK

∫
ΘK

(f(θ)− f(y))2Λ2
ijηij(θ)ηij(y)µprior(dθ)µprior(dy)

+

∫
ΘK

∫
ΘK

(f(θ)− f(y))2Λij(1− Λij)ϕi(y)ηij(θ)µprior(dθ)µprior(dy)

+

∫
ΘK

∫
ΘK

(f(θ)− f(y))2Λij(1− Λij)ϕi(θ)ηij(y)µprior(dθ)µprior(dy)

+

∫
ΘK

∫
ΘK

(f(θ)− f(y))2(1− Λij)
2ϕi(y)ϕi(θ)µprior(dθ)µprior(dy)

= 2Λ2
ijVηij [f ] + 2(1− Λij)

2Vϕi [f ] + 2Λij(1− Λij)

∫
ΘK

∫
ΘK

(f(θ)− f(y))2ηij(θ)ϕi(θ)µprior(dθ)µprior(dy).

(25)

Notice that equation (25) implies that∫
ΘK

∫
ΘK

(f(θ)− f(y))2ηij(θ)ϕi(θ)µprior(dθ)µprior(dy) ≤
Vµσi [f ]− Λ2

ijVηij [f ]

Λij(1− Λij)
.

(26)
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As for the non-diagonal entries of C, we have

Cij =

∫
ΘK

∫
ΘK

(f(θ)− f(y))2
[
Λijηij(θ) (27)

+ (1− Λij)ϕi(θ)
] (

Λijηij(y) + (1− Λij)ψj(y)
)
µprior(dθ)µprior(dy)

= 2Λ2
ijVηij [f ] + (1− Λij)

2

∫
ΘK

∫
ΘK

(f(θ)− f(y))2ϕi(θ)ψj(y)µprior(dθ)µprior(dy)

+ Λij(1− Λij)

∫
ΘK

∫
ΘK

(f(θ)− f(y))2
(
ηij(θ)ψj(y) + ηij(y)ϕi(θ)

)
µprior(dθ)µprior(dy).

We can bound the second term in the previous expression using Cauchy-Schwarz.
Let z ∈ ΘK . Then,∫

ΘK

∫
ΘK

(f(θ)− f(y))2ϕi(θ)ψj(y)µprior(dθ)µprior(dy)

=

∫
ΘK

∫
ΘK

∫
ΘK

(f(θ)− f(z) + f(z)− f(y))2ϕi(θ)ψj(y)ηij(z)µprior(dθ)µprior(dy)µprior(dz)

≤ 2

∫
ΘK

∫
ΘK

∫
ΘK

((
f(θ)− f(z)

)2
+ (f(z)− f(y))2

)
ϕi(θ)ψj(y)ηij(z)µprior(dθ)µprior(dy)µprior(dz)

= 2

∫
ΘK

∫
ΘK

(f(θ)− f(z))2ϕi(θ)ηij(z)µprior(dθ)µprior(dz)

+ 2

∫
ΘK

∫
ΘK

(f(y)− f(z))2ψj(y)ηij(z)µprior(dy)µprior(dz). (28)

Thus, from equations (26), (27), and (28) we get

Cij ≤ 2Λ2
ijVηij [f ] + (2(1− Λij)

2 + Λij(1− Λij))

(∫
ΘK

∫
ΘK

(f(θ)− f(y))2
(
ηij(θ)ψj(y)

+ηij(y)ψi(θ)
)
µprior(dθ)µprior(dy)

)
= 2Λ2

ijVηij [f ] + (2− Λij)(1− Λij)
(
Vµσi [f ]− Λ2

ijVηij [f ] + Vµσj [f ]− Λ2
ijVηij [f ]

)
/Λij(1− Λij)

=
2− Λij

Λij

(
Vµσi [f ] + Vµσj [f ]

)
− 4Λij(1− Λij)Vηij [f ]

≤ 2− Λij
Λij

(
Vµσi [f ] + Vµσj [f ]

)
, (29)

since Λij ∈ (0, 1) ∀i, j. Finally, from equations (24) and (29) we get that

1 = VµW
[f ] =

1

2

∑
i,j

1

|SK |2
Cij ≤

1

2

1

|SK |2

|SK |∑
i,j=1

2− Λij
Λij

(
Vµσj [f ] + Vµσj [f ]

)
≤ 2− Λm

Λm

 1

|SK |

|SK |∑
i=1

Vµσi [f ]

 ,

with Λm := min{Λij}
i,j=1,2,...,|SK |

> 0, and Λi,j as in Assumption C3. Notice that we

have used (29) for the first inequality, including the case i = j, in the previous
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equation. This in turn yields the lower bound

0 <
Λm

2− Λm
≤

 1

|SK |
∑
i∈SK

Vµ
i
[f ]

 .
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