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ABSTRACT
Distributed transactions on modern RDMA clusters promise

high throughput and low latency for scale-out workloads.

As such, they can be particularly beneficial to large OLTP

workloads, which require both. However, achieving good

performance requires tuning the physical layout of the data

store to the application and the characteristics of the un-

derlying hardware. Manually tuning the physical design is

error-prone, as well as time-consuming, and it needs to be

repeated when the workload or the hardware change.

In this paper we present SPADE, a physical design tuner

for OLTP workloads in FaRM, a main memory distributed

computing platform that leverages modern networks with

RDMA capabilities. SPADE automatically decides on the par-

titioning of data, tunes the index and storage parameters,

and selects the right mix of direct remote data accesses and

function shipping to maximize performance. To achieve this,

SPADE combines information derived from the workload

and the schema with low-level hardware and network perfor-

mance characteristics gathered through micro-benchmarks.

Using SPADE, the tuned physical design achieves signifi-

cant throughput and latency improvements over a manual

design for two widely used OLTP benchmarks, TATP and

TPC-C, sometimes using counter-intuitive tuning decisions.

CCS CONCEPTS
• Information systems → Relational parallel and dis-
tributed DBMSs; Distributed storage; Record and block lay-

out; • Networks→ Network performance modeling;
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Figure 1: Effect of physical design tuning on TATP.
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1 INTRODUCTION
Modern hardware, with large amounts of main memory and

high-speed networks with Remote Direct Memory Access

(RDMA) capabilities, has already made its way into datacen-

ters, enabling a new generation of distributed algorithms and

systems. Several transactional systems have been devised to

take advantage of this modern hardware [4, 8, 13, 14, 19, 26,

54]. These systems achieve high throughput, low latency and

good scalability in On-Line Transaction Processing (OLTP)

workloads. They can commit tens of millions of transactions

per second, with latencies in the micro-second range.

However, achieving such performance is not straightfor-

ward. Implementing even a single SELECT statement of an

OLTP workload involves physical design decisions that arise

from the use of RDMA networks: (1) tuning the data indexes

and storage, and (2) data partitioning and remote data access

optimization. Previous work required manual tuning of such

parameters to achieve performance. However, this process is

both cumbersome and error-prone when performed for ev-

ery parameter of a system. Additionally, even small changes

in the workload, or the underlying hardware, require fully

repeating the process. The impact of tuning can be signifi-

cant. Figure 1 depicts 2.2x difference in performance between

finely tuned and default physical designs of TATP [30].

https://doi.org/10.1145/3274808.3274815
https://doi.org/10.1145/3274808.3274815
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In this paper, we present SPADE (Scale-out PhysicAl De-

sign tunEr), a tuner for OLTP workloads in FaRM [13, 14],

which automates these physical design configuration choices.

First, SPADE tunes the index and storage parameters of a

workload (1). Maximizing index performance on modern

RDMA clusters requires configuration based on the size of

rows and the operation mix. For example, inlining data in

the primary index is beneficial for small row lookups, as

it reduces the number of remote accesses. In contrast, for

large rows, it is better to store the data outside of the index,

as this reduces the amount of data transferred [13]. The ex-

act threshold depends on the workload and the underlying

hardware. Additional operations on tables (e.g., insertions

or updates) and indexes (e.g. secondary) further complicate

these decisions. The impact of an incorrect configuration on

performance is significant: we noticed up to 15% impact on

throughput and 22% on latency, when configuring indexes.

Additionally, SPADE optimizes partitioning and remote

data accesses (2). While traditional systems rely heavily on

partitioning, modern distributed transactional systems can

take advantage of one-sided RDMA reads to avoid expensive

network packet processing, improving throughput and low-

ering latency. Using RDMA reads is beneficial for a range

of operations. However, message-passing (or Remote Pro-

cedure Calls – RPCs) can outperform direct accesses when

data is collocated on the same machine, as well as for large

write-intensive operations. SPADE identifies whether to use

RDMA or message-passing based on the schema and work-

load characteristics. Correctly optimizing remote accesses

not only improves the throughput, but also the median and

tail latency of a workload. In our experiments, tail latency is

reduced by up to 80% when correctly tuning remote accesses.

SPADE tunes OLTP workloads offline. Initially, SPADE

takes query plans of the stored procedures of an OLTP work-

load as input. It examines these plans and combines them

with information on the schema and workload character-

istics. It identifies partitioning opportunities and creates a

model for each procedure of the workload, consisting of low-

level operations, targeting the FaRM API. Feeding these mod-

els with the performance characteristics of the cluster, gath-

ered through microbenchmarks, enables SPADE to decide on

a configuration for each table (i.e., data and index design), as

well as for each stored procedure (i.e., using message-passing

or one-sided remote memory accesses).

SPADE is designed and implemented as an additional level

of tuning on top of FaRM [13, 14]. FaRM is a main memory

distributed computing platform that uses one-sided RDMA

memory accesses, battery-backed main memory and trans-

action, replication, and recovery protocols to achieve high

availability, scalability and performance on modern datacen-

ter hardware. We evaluate the performance of OLTP work-

loads tuned with SPADE on top of FaRM using two popular

OLTP benchmarks: TATP and TPC-C. We study the extent to

which tuning decisions affect performance, showing that in-

dex and storage tuning can improve throughput by up to 15%,

partitioning by up to 50% and remote access tuning by up

to 31%. Similarly, they reduce median latency by up to 22%,

25% and 23% respectively. Combined, these tuning decisions

improve throughput by as much as 117%, while lowering

latency by up to 75% compared to a workload with basic

tuning. We highlight some counter-intuitive choices that

SPADE makes, which would be difficult for a developer or

administrator to identify. These choices improve throughput

and reduce both median and 99
th
percentile latency.

In summary, the contributions of this paper are as follows:

• We identify RDMA-specific tuning opportunities that

are crucial to the performance of OLTP workloads on

modern RDMA clusters.

• We describe SPADE, a physical design tuner for OLTP

workloads in FaRM. SPADE automates index tuning,

data partitioning, and remote data access tuning, based

on schema, workload and hardware characteristics.

• We evaluate the effect of physical design tuning on

the throughput and latency of OLTP workloads.

It is important to note that SPADE is not meant to re-

place existing query optimizers. In this paper we identify

and quantify the effect of RDMA-specific choices on the per-

formance of OLTP workloads in FaRM, as an additional level

of necessary optimizations. Similarly, SPADE might not be

applicable to all distributed transaction systems, since not

all of them offer the possible choices in SPADE. However, as

such systems become popular, there are lessons to be learned

for related future efforts.

The rest of the paper is organized as follows. In Section 2

we recall some background and motivate tuning on modern

RDMA clusters. In Section 3 we present the architecture of

SPADE and in Section 4 we describe how tuning is performed.

We evaluate workloads tuned with SPADE in Section 5. We

discuss related work in Section 6 and present some conclud-

ing remarks in Section 7.

2 BACKGROUND AND MOTIVATION
2.1 Modern hardware trends
Modern hardware clusters follow two main trends: large

main memories and fast network interconnects. Indeed, com-

modity machines nowadays typically contain a few hundreds

of gigabytes of main memory at very low prices. This en-

ables handling tens of terabytes of data with only a small

cluster of machines, benefiting from the low latency and

high throughput of main memory and avoiding complex

buffering mechanisms [41]. Ensuring data durability in main

memory systems requires persistent logging. In order to

avoid the overheads of logging to disks or SSDs, machines
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of a cluster can be equipped with a "distributed uninter-

ruptible power supply" (distributed UPS) [14, 28] that writes

the contents of the memory to an SSD when a power fail-

ure occurs, effectively making all DRAM non-volatile. New

Non-Volatile RAM (NVRAM) technologies that have been

proposed [24, 27, 38, 42] provide an alternative.

Datacenter networking has also evolved. Commodity Net-

work Interface Controllers (NICs) nowadays support RDMA.

Current implementations include InfiniBand, RoCE (RDMA

over Converged Ethernet) and iWARP (internet Wide Area

RDMA Protocol). Connection-based implementations sup-

port one-sided RDMA requests. Applications register mem-

ory regions with the NIC, which can then serve one-sided

RDMA requests (e.g., remote read or write requests) with-

out involving the remote CPU. Remote reads and writes are

currently only supported in reliable connection-based imple-

mentations. RDMA has been used in a number of different

systems and scenarios [6, 17, 18, 25, 29, 40, 43, 49].

2.2 Distributed transactions
Distributed database transactions are an active area of re-

search [20, 45, 52]. Recently, various systems have utilized

fast networks and modern hardware to achieve millions of

OLTP transactions at sub-millisecond latencies [4, 8, 13, 19,

26, 54]. Most of these systems use (or rely on) message-

passing abstractions (typically Remote Procedure Calls –

RPCs), one-sided RDMA operation, or a combination of the

two (e.g., one-sided RDMA reads and writes with RPCs).

There are two main execution models in distributed trans-

action systems. In the first [8, 13, 19], (referred to as sym-
metric), all the machines store data and execute transactions.

Each server is responsible for storing parts of the data (and

possibly replicas of the data stored by other machines of

the cluster), as well as running distributed transactions. The

second model [26, 54] distinguishes between computation

and storage nodes. The former run transactions, utilizing

RDMA to access the data stored in the memory of the latter.

In this paper, we use FaRM[13, 14] as our target platform.

In FaRM, objects are stored in the memory of the cluster with

a global address. FaRM uses one-sided RDMA accesses for

lock-free reads, as well as message-passing for read-write

transactions. It offers an API that allows applications to cre-

ate and execute transactions. It also includes implementa-

tions of a distributed hashtable and a distributed B-Tree.

FaRM implements a symmetric execution model.

2.3 The cost of performance on modern
RDMA networks

Distributed transaction systems typically offer APIs for low-

level transactions. Some of them also include implementa-

tions of data structures that can be used for OLTP workloads.

More specifically, [4, 8, 13, 19, 26, 54] have a hashtable im-

plementation, while [8, 13, 26, 54] have a B-Tree [9] imple-

mentation. Even with the available APIs and data structures,

implementing OLTP workloads using such an API is not

straightforward. For example, given only two of the queries

of TATP benchmark [30], GET_SUBSCRIBER_DATA and UP-
DATE_LOCATION (shown in Listing 1 and Listing 2), there

are a few crucial choices to get performance out of the un-

derlying hardware. For the Subscriber table, these are:
(1) Table storage. This includes data partitioning and de-

ciding on how the data is stored, for example inlining

data in an index, or flat storage of data.

(2) Indexes. By examining the queries, in addition to a

primary hash index on s_id, a secondary hash index

on sub_nbr is necessary. Based on the previous step,

each index needs additional tuning to get the best per-

formance of the underlying network, based on charac-

teristics such as the record size, the operation mix and

the neighbourhood size of the hash index.

(3) Remote data access. Possible choices here are: a) di-

rectly accessing the data using RDMA, b) doing an RPC

to the server holding the data, or c) a combination of

the two. Choosing between directly accessing data and

sending a message can be tuned based on the length

of the operations and the size of transfers necessary.

SELECT s_id , sub_nbr ,

bit_1 , bit_2 , bit_3 , bit_4 , bit_5 ,

bit_6 , bit_7 , bit_8 , bit_9 , bit_10 ,

hex_1 , hex_2 , hex_3 , hex_4 , hex_5 ,

hex_6 , hex_7 , hex_8 , hex_9 , hex_10 ,

byte2_1 , byte2_2 , byte2_3 , byte2_4 ,

byte2_5 , byte2_6 , byte2_7 , byte2_8 ,

byte2_9 , byte2_10 ,

msc_location , vlr_location

FROM Subscriber

WHERE s_id = <rnd >;

Listing 1: TATP’s GET_SUBSCRIBER_DATA query.

UPDATE Subscriber

SET vlr_location = <rnd >

WHERE sub_nbr = <rnd >;

Listing 2: TATP’s UPDATE_LOCATION query.

Making the correct choices is not only cumbersome, but

also error-prone. Workloads typically contain multiple op-

erations, and queries touch data on multiple tables. Decid-

ing on a set of parameters for each table quickly becomes

overwhelming, and making the wrong choices can signifi-

cantly impact performance, as we show in Figure 1. Changing

the workload requires repeating the process, which is time-

consuming. Previous work has implemented and studied

the performance of OLTP transactions on modern RDMA

clusters, but has not looked at the trade-offs of tuning, or

quantified the effect that these choices have on the perfor-

mance of an OLTP workload on modern RDMA networks.
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Figure 2: The architecture of SPADE.

3 SPADE
In this section, we first describe SPADE’s architecture and

how it fits in the execution of an OLTP workload in FaRM.

We then present how we compile query plans into low-level

transactions, how SPADE tunes the physical design, as well

as the models it uses and how these are fed with data.

3.1 Architecture overview
Figure 2 presents SPADE’s architecture. An application con-

sists of application code and stored procedures. Stored pro-

cedures are written in a SQL dialect and compiled by a SQL

compiler offline. In our implementation, we used the Post-

greSQL compiler to produce physical execution plans of the

workloads (see Section 5.1). SPADE then analyzes the phys-

ical plans, tunes the indexes used based on the workload

queries, and makes per-procedure choices regarding remote

accesses. We leave support for online tuning as future work.

The stored procedures are then compiled into low-level code

that utilizes the distributed transactional platform’s API to

access data and indexes, similarly to the in-memory compo-

nent of SQL Server [11]. The stored procedures are uploaded

to an RDMA cluster together with the application. During

execution, the application uses the SPADE runtime API to

bind arguments and execute the stored procedures of the

workload, as well as to retrieve the results of the queries.

Queries are compiled in two steps. Physical query plans,

which describe the operators that need to be executed, the

type of joins to use, and similar, are produced first using a

SQL compiler. We use existing techniques for query compi-

lation and do not impose any specific requirements on the

physical plan. SPADE takes as input the query execution plan

produced by an optimizer. With these plans as input, SPADE

produces low-level code that implements the stored proce-

dures, tuning their physical design, using the API offered by

the distributed transactional platform.

void get_subscriber_data(int s_id) {

auto transaction_object =

new SQLTransaction("GET_SUBSCRIBER_DATA");

transaction_object ->AddArgument (0, s_id);

auto results = transaction_object ->Execute ();

if (results ->status == TxStatus :: Committed)

{

// Application code to use the results

}

}

Listing 3: TATP’sGET_SUBSCRIBER_DATA invoked in
an application.

To tune the physical design of queries, SPADE models

each operation (e.g., lookups, updates, etc.) as a set of low-

level distributed operations (e.g., remote reads and writes).

To quantify the performance of these operations, SPADE ex-

ecutes a set of microbenchmarks on the target cluster. These

include single operations (lookups, updates, insertions and

deletions) executed both through a primary and a secondary

index, for different cluster and row sizes. These microbench-

marks need to be run only once. SPADE executes three differ-

ent scenarios for each operation: a) the operation accessing

local data, b) the operation accessing remote data through

RDMA, and c) the operation executing locally at a remote

machine through an RPC. The results of these benchmarks

are used by SPADE.We detail how SPADE uses this metadata

for each tuning decision it automates in the following.

We present how the GET_SUBSCRIBER_DATA query (List-

ing 1) can be invoked in an application in Listing 3. The code

creates an object based on the name of the stored procedure
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(given by the developer) and invokes the Executemethod. The

application can check whether the transaction committed,

and use the results of the query (in this case the subscriber

data). If the SQL transaction has aborted, the application can

retry the same transaction, based on whether the abort was

due to contention or lack of data (not shown here).

4 TUNING
In this section, we discuss the tuning decisions we consider

in SPADE. For each one we first present the possible choices

and some intuition on how these affect performance. We

then show examples of how these different options impact

performance based on our microbenchmarks, and how we

use this information in SPADE to tune a workload. We dis-

tinguish two categories of design choices, which we describe

in the following subsections. We assume a row-store format,

which is the prevalent format for OLTP workloads.

4.1 Index tuning
Indexes are crucial to databases and can significantly speed

up data accesses. SPADE currently supports hash indexes

and B-Tree indexes. Modern distributed transaction systems

provide at least one of the two. Tuning these indexes can

optimize both the size and the number of network accesses.

Typically a trade-off exists–increasing the size of accesses

reduces their number, but also the request rate the hardware

can support. In SPADE we identified two opportunities for

tuning indexes. The first is choosing between storing records

inside the data structures (e.g., as the value of a hash index)

or storing only a pointer to the record in the index. We refer

to the first as inlined indexes and to the second as non-inlined
indexes. The second choice is on the neighbourhood sizes

for hash indexes and node sizes for B-Trees.

We use a hash index as an example of performance im-

pact, but similar observations hold for B-Trees. Hash in-

dexes in FaRM are implemented using chained associative
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Figure 4: Performance of inlined lookups.

hopscotch hashing [13]. Each bucket in the hashtable has

an overflow chain, which stores key-value pairs that do not

fit into the bucket. Lookups use one-sided RDMA reads to

access a bucket, as well as to fetch the overflow chain blocks.

A small bucket will typically lead to more RDMA accesses

for the overflow chain. In contrast, a large bucket will result

in fewer RDMA accesses, but its performance might suffer

because of the large RDMA transfers. In Figure 3 we present

the throughput of RDMA requests for different transfer sizes

on a cluster of 50 machines (our setup is described in Sec-

tion 5.2). For transfers of up to 256 bytes, the request rate

remains constant. However, for sizes above 512 bytes the

request rate degrades significantly. The specific numbers

change based on the network hardware available.

Storing the records in a hashtable (and similarly in a B-

Tree) raises the question of inlining. When the data is inlined,

lookups can be as fast as a single one-sided RDMA. A larger

neighbourhood size for an inlined table minimizes the num-

ber of RDMA transfers. At the same time, however, it results

in larger RDMA transfers, which as we showed can reduce

performance. There is a trade-off between keeping the neigh-

bourhood small and reading as many records per hash index
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Figure 5: Performance of 256-byte row lookup mix.

lookup as possible. Figure 4 presents the performance of pri-

mary index lookups using one-sided RDMA on two inlined

tables, with rows of 16 and 256 bytes. For the smaller row size,

a large neighbourhood of 8 rows per hash bucket achieves

the highest throughput, while for larger records the best

performance is achieved with a neighbourhood size of 2, and

the throughput gains over choosing a neighbourhood of size

8 is 70% on 50 machines. Inlining does not create multiple

copies of the data: if the data resides in the primary index, it

is stored only there, and any secondary index merely holds

the key of the data in primary one. This is possible in non-

traditional systems, such as the ones we study, where there

is no notion of "tables" and data can be stored anywhere.

Alternatively, the data could be stored outside of the in-

dex. Pointers to data are typically smaller than the rows

(e.g. they are 8 bytes in FaRM). Holding the data outside

the index incurs extra memory accesses. However, records

are not only accessed through a primary index (i.e. through

the primary key of a relational table), and operations are

not always read-only. For example, records can be accessed

through secondary indexes, with the results of a lookup cor-

responding to multiple rows. Retrieving these rows involves

either looking up the records in the primary index (if data is

inlined), or reading them directly from the memory (if data

is non-inlined), which is more efficient.

Figure 5 compares the performance of a read-only work-

load with two different transaction mixes: (1) 90% accesses

through the primary index and 10% through a secondary

one, and (2) 90% accesses through a secondary index and

10% through the primary. Rows are 256 bytes. The best con-

figuration for the first transaction mix is to inline data and

use a neighbourhood size of 2. Using the same configuration

parameters for the second transaction mix yields up to 12.4%

lower throughput than the optimal one, which is to not inline

the data and use a neighbourhood size of 16.

To choose a configuration for a given table and transaction

mix, SPADEworks as follows. After translating all the queries

of a workload into low-level distributed operations, SPADE

groups operations per relational table (based on theworkload

schema). For each table T , SPADE calculates the weighted

average of both throughput and latency:

Throuдhput(T ) =
∑
i

ri (T ) ∗Thri (T )

Latency(T ) =
∑
i

ri (T ) ∗ Lati (T )

Where ri (T ) is the ratio of the low-level operation i (e.g.,
lookup through a hash index, update through a secondary

index, etc.) across all the operations on table T :

ri (T ) =
Ni (T )∑
j Nj (T )

Ni (T ) is the number of occurrences of the operation i
on table T . If metadata about the query mix is available

(we use such metadata in our evaluation), Ni (T ) is adjusted
by the frequency of each query. SPADE iterates over the

parameter space, using the microbenchmark performance

numbers for each operation – Thri (T ) and Lati (T ). It then
tries to maximize Throuдhput(T ) or minimize Latency(T ).
We leave more elaborate heuristics in SPADE for future work.

4.2 Partitioning and remote access tuning
An important decision in scale-out systems is partitioning:

data should be sharded in such a way that all transactions

access local data. With modern datacenter networks, parti-

tioning is no longer the main performance factor but rather

an optimization: accessing remote memory is fast, but still an

order of magnitude slower than accessing local memory [54].
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There is a large body of work on data partitioning [2, 3,

31, 33, 36, 51]. SPADE is not meant to replace these systems.

However, as we use a shared-memory compiler, we imple-

ment a simple partitioning scheme in SPADE. Before the

tuning process, SPADE groups table accesses per transaction.

It then identifies inputs that are used to access more than

one tables, creating groups of tables accessed with the same

primary key, or common parts of their primary keys. SPADE

keeps these common keys that act as links in this grouping.

It then identifies intermediary outputs of a stored procedure

used to access tables (e.g., foreign keys) and further groups

tables. Finally, SPADE groups commonly accessed groups,

and uses the links identified as the partitioning key. In FaRM,

the distributed data structures used as indexes (the hashtable

and B-Tree) support partitioning keys, which allows SPADE

to collocate parts of tables that will be accessed together.

For example, in Listing 4, by examining the UP-
DATE_SUBSCRIBER_DATA transaction of TATP, SPADE can

identify that records of the Subscriber and Special_Facility
tables are accessed together based on the s_id. Thus, a group-
ing between the two is created, with s_id being the link. After
all the tables are processed, SPADE partitions the Subscriber
and Special_Facility tables with s_id as the partitioning key

of the hash indexes used for both tables. Thus, accesses local

to a specific subscriber, will always result in local accesses

to the special facilities that correspond to that subscriber.

We believe that more elaborate partitioning and collo-

cation heuristics can be included in the SQL compiler and

provide additional inputs to SPADE. We thus focus on tuning

remote accesses for transactions.

UPDATE Subscriber

SET bit_1 = <rnd >

WHERE s_id = <rnd subid >;

UPDATE Special_Facility

SET data_a = <rnd >

WHERE s_id = <s_id value subid >

AND sf_type = <rnd >;

Listing 4: TATP’s UPDATE_SUBSCRIBER_DATA

In the general case, it is unavoidable for some workloads

to access remote data. SPADE distinguishes two cases: a) a

transaction refers to remote data, which is all on the same

machine or b) a transaction refers to a combination of lo-

cal and remote data residing on multiple machines. SPADE

further optimizes for case (a). There are two possible ways

to execute a transaction that only accesses data on a single

remote machine. The first is to utilize RDMA to fetch the

necessary data, invoking the remote protocol at the end of

the transaction. The second approach is to do an RPC to the

remote machine, have the transaction executed on that ma-

chine, and any results shipped to the invoking machine. The

performance of even simple operations differs between these

two choices. Figure 6 shows the performance of a single-row
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(b) 256-byte rows.

Figure 6: Performance of RDMA and RPC for a single-
row update operation.

update for two different row sizes, 16 and 256 bytes. In these

measurements, we include the cost of replication (we use

a replication factor of 3, similarly to our evaluation setup).

Persistence is also included, since we assume main memory

that has power support, as described in 2.1 and implemented

in FaRM. This example assumes that we are not updating

the full row, but a single field in it, which is the case for

many workloads. While for small row-sizes accessing the

row through RDMA and invoking the distributed commit

protocol achieves higher throughput, for the 256-byte rows

sending an RPC and invoking the commit protocol at the

machine where the data resides is 16% faster. The difference

in performance only becomes bigger as the transactions to

be executed become longer and touch more data.

SPADE optimizes remote transaction execution using a

similar technique as before. Instead of grouping operations

per relational table, SPADE examines low-level operations

(including distributed data structure accesses) of a single

workload transaction, possibly consisting of multiple queries.

For each transaction Tx , it calculates the weighted average

of both throughput and latency:

Throuдhput(Tx) =
∑
i

ri ∗Thri (Tx)

Latency(Tx) =
∑
i

ri ∗ Lati (Tx)

Where rTi is the ratio of the low-level operation i (e.g.,
lookup through a hash index, update through a secondary

index, etc.) over all the operations in transaction Tx :

ri =
Ni (Tx)∑
j Nj (Tx)

Ni (Tx) is the number of occurrences of the operation i
in transaction Tx . SPADE iterates over the two available

choices (RDMA accesses or RPCs) and chooses the one that ei-

ther maximizes Throuдhput(Tx) or minimizes Latency(Tx).
If SPADE chooses an RPC call for a transaction, it generates

the code necessary for the RPC calls.
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Figure 7: Performance of all TATP versions.

5 EVALUATION
We used SPADE to implement two popular OLTP workloads:

TATP and TPC-C. We first discuss TATP, establishing a base-

line implementation and then showing how the different

tuning decisions included into SPADE affect performance,

what wrong choices would mean for both throughput and

latency. Then we connect these results to the observations of

Sections 4.1 and 4.2. We also present the final results for both

workloads in terms of throughput, median and 99
th
latency

when scaling out the workloads to a cluster of 50 machines.

We focus on the performance of TATP because of the differ-

ent types of queries it contains: TATP has both read-only and

read-write transactions, as well as transactions that touch

a varied amount of data. As such, a single configuration for

all tables and indexes will be far from optimal. We use such

examples throughout our evaluation.

5.1 Implementation
We implement SPADE as a standalone application written in

F#. Our microbenchmarks are written in C++ and executed

once for a FaRM cluster. We use PostgreSQL to generate

plans for our workloads in XML format, which are then used

as input to SPADE. SPADE produces executable code for the

queries of a workload, which is invoked by applications using

a C++ API we developed for SPADE. Both applications and

compiled transaction code are uploaded to a FaRM cluster

for execution. At runtime, the compiled code of a stored pro-

cedure invokes the FaRM API. Fault-tolerance and partition

guarantees are the same as described in [14]. Additionally,

due to the power-backed memory in a FaRM cluster, data is

durable at all times. As a result, our system and execution

model provides ACID transactions.

5.2 Experimental setup
We run our experiments on a cluster of 50 machines. Each

machine has 256 GB of DRAM and two Intel E5-2650 CPUs

(16 cores / 32 threads in total). Each machine has two Mel-

lanox ConnectX-3 56Gbps Infiniband NICs, one shared by

the threads of each socket. The machines are connected to a

single Mellanox SX6512 switch with full bisection bandwidth.

The cluster runs Windows Server 2016. FaRM is configured

with 3-way replication. All experiments are run for 60 sec-

onds (excluding warm-up) and 3 iterations. In the graphs

presented we report the average of the 3 iterations (we do

not notice significant deviations).

5.3 TATP
Overview. The Telecommunications Application Transac-

tion Processing (TATP) [30] benchmark simulates a typ-

ical Home Location Register (HLR) database in a mobile

phone network. The benchmark consists of a set of seven

pre-defined transactions that query, update and insert data

in 4 tables, following a fixed probability for each transac-

tion. TATP is read dominated, with 80% of read-only trans-

actions. It also involves small transactions, with the rows

read/written being between 8 and 72 bytes. Throughout our

experiments, we use 50 million subscribers per machine (250

million subscribers for a cluster of size 5 and 2.5 billion sub-

scribers for a cluster of size 50), for a total size of 1TB of data

on 50 machines.

In all our experiments, we scale TATP to 50 machines. To

showcase the effect of tuning decisions, we write a baseline

implementation of TATP and then use SPADE to tune the

different parts of the workload. We repeat the experiments

and report the difference in throughput and latency (median

and 99
th

percentile). Figure 7 shows the throughput and

latency results of our experiments.
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Baseline.We begin by implementing a first version of TATP,

using the transactions as described in the specification. Our

sample application invokes a random number generator, and

based on the workload mix described in the TATP specifica-

tion, executes the different transactions.

For this baseline, the data is not partitioned, with tables

distributed across the cluster in a round-robin fashion. Re-

mote accesses use one-sided RDMA reads and writes. All

indexes are configured with the same parameters, which fa-

vor small row sizes. We refer to this version as TATP Baseline.
TATP Baseline achieves a throughput of 39.9 million commit-

ted transactions per second on 50 machines, with a median

latency of 193 microseconds and a 99
th
percentile latency of

660 microseconds.

Index tuning. We use SPADE to tune the indexes in TATP,

as described in Section 4.1. We refer to this version as TATP
+IST (TATP with Index and Storage Tuning) in the remainder

of this section. SPADE uses hash indexes for the primary keys.

The 4 tables of TATP have different characteristics in terms

of row sizes and accesses. For example, the Access_Info table
has a row size of 10 bytes, and is only read by the queries.

In contrast, the Call_Forwarding rows are 20 bytes and the

rows are read, inserted, and deleted. Correctly configuring

each index improves throughput by 10%-15% and latency by

19%-22% across different cluster sizes – for a cluster size of

50, the difference in throughput is 14.7% (45.79 million tx/s

versus 39.91).

Partitioning. Next, we partition the TATP workload with

SPADE. Most accesses are done based on a specific subscriber

(the s_id of the subscriber table). Thus, SPADE partitions

the tables so that the rows of all the tables that refer to a

subscriber are stored on the same machine. Transactions ac-

cess local data when invoked on the machine that stores the

subscriber affected. We hardcode 10% of the transactions to

reference remote subscribers, ensuring that there are remote

accesses across the cluster. All remote accesses are executed

using RPCs: a machine first looks up the machine storing

the data, and then does an RPC to that machine to execute

the transaction and return the result. We refer to this imple-

mentation as TATP +IST +P (TATP +IST with Partitioning).

In Figure 7, we show the improvement over TATP +IST.
The results are intuitive: By avoiding remote accesses, the

majority of transactions is executed locally, avoiding com-

munication through RPCs. In our implementation, when a

transaction accesses remote data, the machine processing

the transaction does an RPC to the machine holding all the

data necessary to execute the transaction, so the accesses to

memory are local (except for the shipping of results). The

improvement in throughput is between 45% and 50%, while

latency is improved between 23% and 25% for the median

and between 22% and 28% for the 99
th
percentile latency –
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Figure 8: TATP’s GET_ACCESS_DATA transaction la-
tency after partitioning.

for a cluster size of 50, throughput increases by 20.58 million

tx/s and median and 99
th
latency are lower by 37 and 174 us

respectively. The improvement is significant. However, it is

comparable to that between TATP Baseline and TATP +IST. In
the past crossing partitions and accessing remote data used

to be prohitibitively expensive. As this experiment shows,

with modern network interconnects, the effect of remote

accesses becomes smaller, and partitioning can be viewed as

an optimization, rather than a requirement.

Transactions benefit from SPADE’s tuning to different ex-

tents. For instance, for the GET_ACCESS_DATA transaction

(shown in Listing 5) the median latency is 25% lower, but

the 99
th
percentile latency is increased by 40-53% (Figure 8).

This is because the query is read-only, and accesses a single

row of the table. Doing an RPC for remote data adds an extra

overhead to the transaction: the data is shipped to the call-

ing machine and by using an RPC we additionally involve

the remote CPU. However this is the case only because of

the size of the returned data (10 bytes) and the length of the
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Figure 9: TATP’s GET_ACCESS_DATA transaction la-
tency with tuned remote accesses.
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Figure 10: Overview of the impact of different physical design choices to TATP operation latency.

transaction itself (a single lookup). Because of the partitioned

workload, in TATP +IST +P version, 90% of the invocations of

this transaction will access local data, lowering the median

latency, while the 10% of the cases where remote accesses are

necessary will be slower than before (our TATP +IST version

uses one-sided RDMA operations for all remote accesses).

This transaction is a perfect example of a physical design

choice that is tied to the characteristics of the data and the

underlying hardware, but also one that would require exten-

sive experimentation to identify. A uniform configuration

for all the remote accesses clearly is not optimal for TATP.

SELECT data1 , data2 , data3 , data4

FROM Access_Info

WHERE s_id = <rnd > AND ai_type = <rnd >;

Listing 5: TATP’s “GET_ACCESS_DATA" in SQL

Remote access tuning. Finally, we enable the cost mod-

els of SPADE which decide on whether an RPC should be

preferred over RDMA accesses (we refer to this implemen-

tation as TATP +IST +P +RAT (TATP +IST +P with Remote

Access Tuning). Throughput is improved between 9% and

30% and latency between 5% and 22% – for a cluster of size 50,

throughput is improved by 30.7% (from 66.37 to 86.72 million

tx/s) and median and tail latency reduced by 26 and 135 us

respectively. This is a direct result of addressing the cases

such as GET_ACCESS_DATA, which benefit from directly

accessing remote data. Figure 9 shows the improvement for

this particular query (introduced before). Optimizing parts

of the workload to use RDMA improves median latency be-

tween 5% and 23% and tail latency by up to 45%. Doing so

manually is far from trivial. Using a cost model like the one

we use in SPADE is not only easier, but also more accurate,

since it can calculate the optimal setup for a set a stored

procedures and a specific transaction mix.

Effect on individual operations. Figure 10 presents the

median and 99
th
percentile latencies 50 machines on of all

7 procedures in TATP across the four versions. For 4 of

the 7 transactions, each set of tuning decisions improves

median latency, lowering it by as much as 70%. For both

UPDATE_SUBSCRIBER_DATA and UPDATE_LOCATION, the
differences when optimizing indexes (TATP +IST) are small:

for the Subscriber table, SPADE stores data outside of the

primary hash index. Thus, both the primary index and the

secondary index on sub_nbr store pointers to the objects. As
a result, lookups through the secondary index are signifi-

cantly faster, but updates become slower, since they require

more operations (as opposed to inlined data). However, the

total effect on the workload is positive. If the transaction mix

was different, SPADE might choose to inline the Subscriber
table, in order to achieve an overall better performance.

Similarly, each set of tuning decisions improves the 99
th

percentile latency of transactions, with two exceptions. For

GET_SUBSCRIBER_DATA and GET_ACCESS_DATA, using
only RPCs for transactions accessing remote data increases

99
th
percentile latency by 40.9% and 40.1% respectively. Both

transactions are read-only, touching small amounts of data.

Doing an RPC and receiving the results translates to higher

latency than directly reading the necessary data using one-

sided RDMA reads. The transfer latency for the data will

be the same, however, using message-passing will addi-

tionally involve the remote CPU, which will have to pro-

cess the request and send the response. For both trans-

actions, when switching to RDMA reads for remote ac-

cesses, median latency improves by 23% (from 116 to 89

us for GET_SUBSCRIBER_DATA and from 94 to 72 us for

GET_ACCESS_DATA), and at the same time tail latency is

lowered by 45% (from 410 to 224 us and from 384 to 208

respectively for the two queries).
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Figure 11: Performance of TPC-C and remote access tuning.

5.4 TPC-C
Overview. The Transaction Processing Performance Coun-

cil Benchmark C (TPC-C) [48] is a long-studied OLTP bench-

mark. TPC-C emulates the activity of a wholesale supplier,

with tables that contain data on stock, customers, new or-

ders, and more. The workload consists of five pre-defined

transactions of different types and complexity, which can

access up to hundreds of rows. In contrast to TATP, TPC-C

is write-intensive, with 35.8% of transactions modifying data.

Throughout our experiments, we use 120 warehouses per

machine, for a total of 6000 warehouses on 50 machines.

We scale TPC-C to 50 machines. Since TPC-C is parti-

tionable by design (the granularity of partitioning is a ware-

house), we do not use SPADE to partition the workload, and

focus on remote transaction processing, using either RPCs or

RDMA accesses. We collect statistics for all the transactions

of the workload and report throughput and latency for "new

order" transactions only.

Effect of remote accesses. Figure 11 depicts the effect of
optimizing remote accesses for TPC-C. In TPC-Cwarehouses

are the granularity of partitioning: 90% the queries reference

data that corresponds to a local warehouse, as such they

result in local data accesses. Thus, we begin our tuning pro-

cess from the TPC-C Baseline implementation, which uses

the same configuration for all indexes and RDMA accesses

for all remote data, and then invokes the distributed commit

protocol. Since we are using FaRM for our implementation,

during commit, read values are validated to have not changed,

and modified values are shipped to the machine storing the

data (and then replicated to backups). The second version,

named TPC-C +IST +RAT, is the result of using SPADE to

tune indexes and remote accesses. SPADE decides that RPCs

are better for all the transactions accessing remote data in

TPC-C. Using RDMA for transactions that reference remote

data yields throughput that is lower by up to 37.7% (1.03

versus 1.42 million tx/s on 50 machines), while median and

tail latency are up to 298% and 395% higher respectively

(1479 and 4457 us higher respectively on 50 machines). All

the queries executed in TPC-C involve numerous data ac-

cesses. Using RDMA decreases throughput and increases

latency. Additionally, due to longer transactions, throughput

is further lowered, due to the closed-loop architecture of

the TPC-C benchmark. Adding concurrent transactions im-

proves throughput slightly, but at the cost of higher latency.

6 RELATEDWORK
6.1 Distributed transactions and modern

hardware
Distributed transactions on traditional hardware and net-

works has a long history of research. However, in the past,

networks imposed a significant bottleneck that dominated

performance. Thus, a large body of research has focused on

partitioning schemes [10, 32, 34, 37, 39] to avoid crossing par-

titions, or relaxation of the consistency of transactions [22].

Recently, a number of research projects and commercial

systems have taken advantage of modern network charac-

teristics, such as high throughput and low latencies, as well

as RDMA capabilities, to implement fast distributed trans-

actions. FaRM [13, 14] uses one-sided RDMA verbs and op-

timistic concurrency control to implement serializable dis-

tributed transactions. FaRM uses primary-backup replication

to ensure fault-tolerance, a fast failure detection mechanism,

and a recovery protocol that ensures that transactions are not

blocked when failures occur. FaSST [19] implements serializ-

able distributed transactions on top of unreliable, unordered,

non-congestion-friendly RPC implementation. FaSST also

uses primary-backup replication and a similar optimistic

commit protocol. Tell [26] decouples processing nodes from
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storage nodes, using one-sided RDMA accesses to ship data

to processing nodes. Tell implements a distributed snapshot

isolation protocol that uses a centralized commit manager.

NAM-DB [54] also separates computation from storage, how-

ever it uses a distributed snapshot isolation algorithm that

relies on a scalable timestamp oracle. DrTM+R [8] provides

serializable transactions by using both RDMA accesses and

Hardware TransactionalMemory (HTM), relying on primary-

backup and an optimistic replication scheme.

All the above systems [8, 13, 14, 19, 26, 54] utilize modern

hardware to implement distributed transactions. Moreover,

they all include distributed index structures. SPADE opti-

mizes for the physical design of data, such as tuning indexes

and remote accesses, which is applicable to distributed sys-

tems that leverage modern RDMA networks in general.

6.2 Index tuning
Databases require a significant amount of tuning to achieve

performance. Research on automatically tuning indexes has

been meticulous [2, 16, 21, 35, 50]. Additionally, DBMS ven-

dors provide tools that aid administrators in tuning a data-

base. Microsoft’s SQL Server has the Database Tuning Ad-

visor [1], which can both tune existing indexes for perfor-

mance, as well as recommend new ones. Oracle Server has

both self-tuning [7, 12, 55] and performance analysis capabil-

ities [53]. DB2 has offered the Performance Wizard tool [23].

Recent research projects have also looked into machine learn-

ing [5], adaptive sampling [15] and regression models [46]

to choose the best parameters for DBMSs.

In SPADE we focus on a distributed setting. We argue that,

in addition to previous efforts, modern distributed transac-

tion systems require an additional level of tuning. SPADE

takes into account the network and hardware characteristics

to tune index parameters. This way, applications take full

advantage of the performance of modern networks, which,

as we show, can have a significant impact on performance.

6.3 Partitioning and remote accesses
Partitioning has played a role of paramount importance in

the past for distributed transactions. Schism [10] is an off-line

approach to data partitioning for distributed shared-nothing

databases, which minimizes the number of distributed trans-

actions. SWORD [37] employs an incremental data repar-

titioning technique for OLTP workloads in database-as-a-

service cloud settings. Pavlo et al. [34] automatically parti-

tion workloads using large neighborhood search and analyti-

cal models. Clay [39] is an on-line partitioning approach that

uses dynamic blocks to incrementally partition data minimiz-

ing the number of distributed transactions. JECB [47] uses

a divide-and-conquer strategy to partition workloads for

large clusters. Sun et al. [44] use a bottom-up approximate

approach to partition data.

With the advent of fast networks that support one-sided

remote memory operations, partitioning is no longer the

determining factor, but rather an optimization. With new

ways to access remote data, partitioning now imposes a new

problem, that of determining how to do so in a way that

takes full advantage of the network characteristics. As such,

SPADE’s optimization of remote accesses plays an important

role, as we show in our evaluation.

7 CONCLUSIONS
This paper introduces SPADE, a physical design tuner for

OLTP workloads in FaRM. SPADE automates choices re-

garding the tuning of indexes, the partitioning of data, and

remote accesses, shipping data, or the computation through

RPCs for different parts of the workload. SPADE achieves

this by analyzing the physical plan of a workload, and using

hardware and network performance characteristics gathered

through microbenchmarks.

Our evaluation of SPADE showed that these choices have

a significant impact on both throughput and latency. Index

and storage tuning can improve throughput by up to 15%,

partitioning by up to 50% and remote access tuning by up to

31%. Combined, these tuning decisions improve throughput

by as much as 117%, while lowering latency by up to 75%

compared to a workload with basic tuning.
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