The results of an amplitude analysis of the charmless three-body decay B+ -> pi(+)pi(+)pi(-) , in which CP-violation effects are taken into account, are reported. The analysis is based on a data sample corresponding to an integrated luminosity of 3 fb(-1) of pp collisions recorded with the LHCb detector. The most challenging aspect of the analysis is the description of the behavior of the pi(+)pi(-) S-wave contribution, which is achieved by using three complementary approaches based on the isobar model, the K-matrix formalism, and a quasi-model-independent procedure. Additional resonant contributions for all three methods are described using a common isobar model, and include the rho(770)(0), omega(782)(0) and rho(1450)(0) resonances in the pi(+)pi(-) P-wave, the f(2) (1270) resonance in the pi(+)pi(-) D-wave, and the rho(3) (1690)(0) resonance in the pi(+)pi(-) F-wave. Significant CP-violation effects are observed in both S- and D-waves, as well as in the interference between the S- and P-waves. The results from all three approaches agree and provide new insight into the dynamics and the origin of CP-violation effects in B+ -> pi(+)pi(+)pi(-) decays.