Transient domains of ordered water induced by divalent ions lead to lipid membrane curvature fluctuations

Cations influence the electrostatic, chemical and mechanical properties of lipid bilayers. Here, label-free second harmonic microscopy shows that cation-induced transient ordering of water also plays a role in driving membrane curvature fluctuations, linking molecular hydration to macroscopic properties.
Cell membranes are composed of a hydrated lipid bilayer that is molecularly complex and diverse, and the link between molecular hydration structure and membrane macroscopic properties is not well understood, due to a lack of technology that can probe and relate molecular level hydration information to micro- and macroscopic properties. Here, we demonstrate a direct link between lipid hydration structure and macroscopic dynamic curvature fluctuations. Using high-throughput wide-field second harmonic (SH) microscopy, we observe the formation of transient domains of ordered water at the interface of freestanding lipid membranes. These domains are induced by the binding of divalent ions and their structure is ion specific. Using nonlinear optical theory, we convert the spatiotemporal SH intensity into maps of membrane potential, surface charge density, and binding free energy. Using an electromechanical theory of membrane bending, we show that transient electric field gradients across the membrane induce spatiotemporal membrane curvature fluctuations.


Publié dans:
Communications Chemistry, 3, 1, 17
Année
Feb 07 2020
Publisher:
London, NATURE PUBLISHING GROUP
ISSN:
2399-3669
Mots-clefs:
Laboratoires:


Note: Le statut de ce fichier est: Anyone


 Notice créée le 2020-03-03, modifiée le 2020-04-20

Final:
Télécharger le document
PDF

Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)