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a b s t r a c t 

With a computational model of energy metabolism in an astrocyte, we show how a system of enzymes in 

a cascade can act as a functional unit of interdependent reactions, rather than merely a series of indepen- 

dent reactions. These systems may exist in multiple states, depending on the level of stimulation, and the 

effects of substrates at any point will depend on those states. Response trajectories of metabolites down- 

stream from cAMP-stimulated glycogenolysis exhibit a host of non-linear dynamical response character- 

istics including hysteresis and response envelopes. Dose-dependent phase transitions predict a novel in- 

tracellular signalling mechanism and suggest a theoretical framework that could be relevant to single cell 

information processing, drug discovery or synthetic biology. Ligands may produce unique dose-response 

fingerprints depending on the state of the system, allowing selective output tuning. We conclude with 

the observation that state- and dose-dependent phase transitions, what we dub “ligand pulses” (LPs), 

may carry information and resemble action potentials (APs) generated from excitatory postsynaptic po- 

tentials. In our model, the relevant information from a cAMP-dependent glycolytic cascade in astrocytes 

could reflect the level of neuromodulatory input that signals an energy demand threshold. We propose 

that both APs and LPs represent specialized cases of molecular phase signalling with a common evolu- 

tionary root. 

© 2019 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY-NC-ND license. 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Introduction 

The long-standing inadequacy of our understanding of cells,

rom biochemistry to behaviour, from bacteria to neurons, has

exed the development of more effective treatments for many

edical disorders, most notably those that lead to neurodegener-

tion. Various levels of biological complexity are usually fingered

s the culprits, with expansive systems of interlocked biochem-

cal cascades and cellular networks at the root of their nature.

or example, ubiquitous intracellular signalling pathways in sin-

le cells work in parallel at multiple scales of space and time. The

hallenge of understanding phenomena such as aging in order to

elay or circumvent senescence or any number of neuropatholo-

ies will likely require a leap forward in systems biology concepts

 Kirkwood, 2011 , Kowald and Kirkwood, 1996 , Kriete et al., 2011 ,

c Auley et al., 2017 ). 
∗ Corresponding author. 
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Second-messenger signalling can involve any number of cas-

ading, enzyme-catalyzed steps whereby stimuli such as neuro-

odulators are transduced from one metabolite to another, each

n turn capable of feeding another cascade. Elusive disease cures

equire an understanding that currently eludes traditional experi-

ental designs and capabilities. Computational methods that com-

lement laboratory techniques may provide this understanding. 

Computational modelling of intracellular enzymatic cascades 

s a valuable tool for understanding single cell functions

 Schoeberl et al., 2002 ). As a case in point, here we describe

 novel analysis of a previously described model of energy

etabolism and neuromodulation in glia ( Coggan et al., 2018 ,

olivet et al., 2015 ). We show how this approach can reveal insights

ot only about this particular pathway, but also make predictions

bout the behavior and previously unsuspected roles of second-

essenger systems in general, since metabolic cascades are central

o almost all cellular functions and dysfunctions ( DeBerardinis and

hompson, 2012 ). 

With the simple concept of excitability states of an enzy-

atic cascade stimulated, for example, by a neuromodulator such

s norepinephrine, we are able to make predictions about their
nder the CC BY-NC-ND license. ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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Fig. 1. Model summary and response trajectories of selected metabolites in 5 excitation levels of a metabolic enzyme cascade stimulated by 5 doses of cAMP. A) The 

metabolic cascade system, from cAMP to the pyruvate (PYR) bifurcation to lactate and ATP, is stimulated to 5 excitability states by 5 concentrations of cAMP. Trajectories 

of primary metabolites of interest B) cAMP, C) pyruvate (PYR), D) lactate (LAC), E) ATP. The phase transitions occur in the concentration step between states 3 and 4. F, G) 

Derivative phase plots show phase transition between lower (cyan, blue) and higher (green, red, black) excitability states, corresponding to concentrations of cAMP. Examples 

made of LAC and ATP. 
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properties and behavior. We observed that, depending on the state

of metabolic excitation, each metabolite concentration may cycle

through a set of stereotyped responses to the rise and fall of cAMP

concentrations. These responses may include patterns of hysteresis,

response envelopes and phase transitions. 

Phase transitions (defined here as a thermodynamic shift in the

state or properties of a system of reactions) among intracellular

reactions play a role in normal and pathological cell physiology

( Nedelsky and Taylor, 2019 , Tsuruyama, 2014 ), including energy

production pathways such as glycolysis ( Mulukutla et al., 2015 ). We

find that excitation state-dependent, hysteretic, phase plots yield

rich information about the behavior of an enzymatic cascade. Fur-

thermore, we make the theoretical proposition that understanding

the effect of a drug on a biological system requires knowledge of

the state of the entire system. 

We further hypothesize that both ligand pulses (LPs) and ac-

tion potentials (APs) represent specialized cases of molecular phase

signalling (MPS), and suggest that APs might be late evolution-

ary adaptations of more ancient and established intracellular MPS

mechanisms for the purpose of long-range communication and in-

formation processing in nervous systems ( Boyer and Wisniewski-

Dyé, 2009 ). 

Our results exemplify how a large-scale biomolecular simula-

tion such as the one being built at the Blue Brain Project can be
mployed as a platform for theoretical advancements in under-

tanding complex molecular systems. Beyond understanding nor-

al physiology, simulation science will also play an increasingly

undamental role in the burgeoning discipline of synthetic biology,

 field that seeks to understand and manipulate catabolic and an-

bolic pathways that might improve the yield of useful metabolites

 Mulukutla et al., 2016 , Erb et al., 2017 ), or engineer de novo path-

ays for the production of high-value compounds ( Martin et al.,

009 ). 

. Methods 

The model used in this paper is based on that previously pub-

ished ( Coggan et al., 2018 , Jolivet et al., 2015 ). Here, we focus on

 segment of the deterministic cascade between cAMP production

as stimulated by 5 levels of noradrenergic activation of the β2-

drenergic receptor as in ( Coggan et al., 2018 )) with each colored

lot coming from an independent simulation with a different con-

entration of cAMP and outputs of the pyruvate (PYR) bifurcation,

actate (LAC) and ATP (cAMP → … PYR → LAC, ATP). The five rela-

ively equally spaced stimulation levels of cAMP were chosen as a

ose-response regimen with which to stimulate the enzyme sys-

em to a range of levels of excitation roughly corresponding to

he dose-response range for cAMP in this system. These levels are
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Table 1 

Governing equations 

Variable Value at rest Equation 

Intracellular sodium 8/15 mM 

d 
dt 

Na + x = J x 
leak , Na 

− 3 J x pump + J x 
stim 

(t) ∗(1) 

Neuronal glucose 1.2 mM 

d 
dt 

GL C n = J en 
GLC − J n HKPFK (2) 

Astrocytic glucose 1.19 mM 

d 
dt 

GL C g = J cg 
GLC 

+ J eg 
GLC 

− J g 
HKPFK 

(3) 

Glyceraldehyde-3-phosphate 0.0046 mM 

d 
dt 

GA P x = 2 J x HKPFK − J x PGK + vL 3 − v _ 3 (4) 

Phosphoenolpyruvate 0.015 mM 

d 
dt 

PE P x = J x PGK − J x PK (5) 

Pyruvate 0.17 mM 

d 
dt 

PY R x = J x PK − J x LDH − J x 
mito , in 

(6) 

Neuronal lactate 0.6 mM 

d 
dt 

LA C n = J n LDH − J ne 
LAC 

(7) 

Astrocytic lactate 0.6 mM 

d 
dt 

LA C g = J g 
LDH 

− J ge 
LAC 

− J gc 
LAC 

(8) 

Cytosolic NADH † 0.006/0.1 mM 

d 
dt 

NADH 

cyto 
x = ( 1 − ξ ) −1 ( J x PGK − J x LDH − J x 

shuttle 
) (9) 

Mitochondrial NADH † 0.12 mM 

d 
dt 

NADH 

mito 
x = ξ−1 ( 4 J x 

mito , in 
− J x 

mito , out 
+ J x 

shuttle 
) (10) 

Neuronal ATP ‡ 2.2 mM 

d 
dt 

ATP n = ( −2 J n HKPFK + J n PGK + J n PK − J n ATPases − J n pump + 3 . 6 J n 
mito , out 

+ J n CK ) ( 1 − d AM P n 
d AT P n 

) −1 (11) 

Astrocytic ATP ‡ 2.2 mM 

d 
dt 

ATP g = 

( −2 J g 
HKPFK 

+ J g 
PGK 

+ J g 
PK 

− J g 
ATPases 

− 7 
4 

J g pump + 

3 
4 

J g 
pump , 0 

+ 3 . 6 J g 
mito , out 

+ J g 
CK 

) ( 1 − d AM P g 
d AT P g 

) −1 

(12) 

Phosphocreatine 4.9 mM 

d 
dt 

PCr x = −J x CK (13) 

Neuronal oxygen 0.028 mM 

d 
dt 

O 2n = J cn 
O 2 m 

− 0 . 6 J n 
mito , out 

(14) 

Astrocytic oxygen 0.028 mM 

d 
dt 

O 2g = J cg 
O 2 m 

− 0 . 6 J g 
mito , out 

(15) 

Capillary oxygen 7 mM 

d 
dt 

O 2c = J c O 2 − 1 / r cn J cn 
O 2 m 

− 1 / r cg J cg 
O 2 m 

(16) 

Capillary glucose 4.5 mM 

d 
dt 

GL C c = J c GLC − 1 / r ce J ce 
GLC − 1 / r cg J cg 

GLC 
(17) 

Capillary lactate 0.55 mM 

d 
dt 

LA C c = J c 
LAC 

+ 1 / r ce J ec 
LAC 

+ 1 / r cg J gc 
LAC 

(18) 

Venous volume 0.02 d 
dt 

V v = F in (t) − F out 
∗(19) 

Deoxyhemoglobin 0.058 mM 

d 
dt 

dH b = F in (t) ( O 2 a − O 2 ̄c ) − F out 
dHb 
V v 

∗(20) 

Extracellular glucose 2.48 mM 

d 
dt 

GL C e = J ce 
GLC − 1 / r eg J eg 

GLC 
− 1 / r en J en 

GLC (21) 

Extracellular lactate 0.6 mM 

d 
dt 

LA C e = 1 / r en J ne 
LAC 

+ 1 / r eg J ge 
LAC 

− J ec 
LAC 

(22) 

Neuronal membrane voltage −73 mV d 
dt 

ψ n = C −1 
m ( −I L − I Na − I K − I Ca − I mAHP − I pump + I syn ( t) ) ∗(23) 

h gating variable 0.99 d 
dt 

h = 

φh 

τh 
( h ∞ − h ) (24) 

n gating variable 0.02 d 
dt 

n = 

φn 

τn 
( n ∞ − n ) (25) 

Neuronal calcium 5 10 −5 mM 

d 
dt 

C a 2+ = − S m V n 
F 

I Ca − 1 / τCa ( C a 
2+ − Ca 2+ 

0 ) (26) 

Glycogen Module 

Glycogen-G6P equilibria v L 1 = 

( k −L 1 )( gluc ) 
k m −L 1+ gluc 

(27) 

v −L 1 = 

( k −L 1 )( G 6 P ) 
k m −L 1+ G 6 P (28) 

v L 2 = 

( kL 2 )( GSa )( G 6 P ) 
kmL 2+ G 6 P (29) 

v −L 2 = 

( k −L 2 )( glyc ) 
k m −L 2+ glyc 

(30) 

Glycogenolytic glucose d 
dt 

gluc = v tL 1 − v L 1 + v −L 1 (31) 

Glycogen d 
dt 

glyc = v L 2 − v −L 2 (32) 

Glucose 6-phosphate d 
dt 

G 6 P = v L 1 − v _ L 1 − v L 2 + v −L 2 (33) 

Blood glucose influx rate v tL 1 = ktL 1( B gluc − gluc ) = 0 (34) 

Blood glucose derivative d 
dt 

B gluc = 0 (35) 

cAMP —— d 
dt 

cAMP = (x ( ne 
kDne + ne 

) + y ( ( 1 
τcAMP 

)( hb−ha 

1+ ( hc 
hk 

) 
hd ) + ( ha 

τcAMP 
) ) − 2 × kcg1 × R 2 C2 × ( cAMP ) 

2 + 

2 × k −cg1 × R 2 CcAMP × C − 2 × kgc2 × R 2 CcAM P2 × ( cAM P ) 
2 + 2 × k −cg2 ×

R 2 cAMP4 × C) − cAMP/ τcAMP { x = ≥ 0 ; y = ≥ 0 } 

(36) 

Glycogen Phosphorylase d 
dt 

GPa = 

( ( ( kg5 )( PKa )( pt−GPa ) ) 

kmg5( 1+ ( s 1 )( G 6 P ) 
kg2 

)+( pt−GPa ) 
) − ( ( ( kg6 )( P P 1+ P P 1 GPa )( GPa ) ) 

kmg6 

( 1+ ( s 2 )( gluc ) 
kgi 

) 
+( GPa ) 

) − ( k a )( P P 1 )( GPa ) + ( k −a )( P P 1 GPa ) 

(37) 

Glycogen Synthase d 
dt 

GSa = ( ( ( kg8 )( P P 1 )( st−GPa ) ) 
kmg8 

( 1+ ( s 1 )( G 6 P ) 
kg2 

) 
+ st−( GSa ) 

) − ( ( ( kg7 )( PKa + C )( GSa ) ) 

kmg7( 1+ ( s 1 )( G 6 P ) 
kg2 

)+( GSa ) 
) (38) 

Protein Phosphatase 1 d 
dt 

P P 1 = ( −k a )( P P 1 )( GPa ) + ( k −a )( P P 1 GPa ) (39) 

PP1-GPa d 
dt 

P P 1 GPa = ( k a )( P P 1 )( GPa ) + ( k −a )( P P 1 GPa ) (40) 

Protein Kinase A d 
dt 

PKa = ( ( kg3 )(C)( kt−PKa ) 
kmg3+ kt−PKa 

) − ( ( ( kg4 )( P P 1+ P P 1 GPa )( PKa ) ) 
kmg4+ PKa 

) (41) 

cAMP-dependent kinase 

cassette 

d 
dt 

R 2 C2 = ( −k gc1 )( R 2 C2 )( cAM P 2 ) + ( k −gc1 )( R 2 CcAMP2 )(C) (42) 

“” d 
dt 

C = ( k gc1 )( R 2 C2 )( cAM P 2 ) − ( k −gc1 )( R 2 CcAMP2 )(C) + ( k gc2 )( R 2 CcAMP2 )( cAM P 2 ) −
( k −gc2 )( R 2 CcAMP4 )(C) 

(43) 

“” d 
dt 

R 2 CcAMP2 = ( k gc1 )( R 2 C2 )( cAM P 2 ) − ( k −gc1 )( R 2 CcAMP2 )(C) −
( k gc2 )( R 2 CcAMP2 )( cAM P 2 ) + ( k −gc2 )( R 2 CcAMP4 )(C) 

(44) 

“” d 
dt 

R 2 CcAMP4 = ( k gc2 )( R 2 CcAMP2 )( cAM P 2 ) − ( k −gc2 )( R 2 CcAMP4 )(C) (45) 

Dynamic equilibrium constant 

for glycogen degradation 

kd = ( kma xd − kmind )( 1 

1+ glyc 
k d mg 

n ) + kmind (46) 

Forward reaction rate for 

glycogen degradation 

k a = 

k −a 

kd 
(47) 

Cell energy charge CE = 

( ATP+ ADP 
2 ) 

( ATP + ADP + AMP ) 
(48) 

Cell oxidative status CO = 

[ NA D + ] 
[ NADH ] 

(49) 

Neuromodulation Module 

Rise time constants for NE τne 1 = 10 ms (50) 

Decay time constant for NE τne 2 = 50 0 0 0 0 (51) 

Norepinephrine waveform NE = e −( t −t st im ) /τne 2 − e −( t −t st im ) /τne 1 (52) 

∗ When two values are indicated, the first one corresponds to the neuronal compartment and the second one to the astrocytic compartment. 
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Table 2 

Rates, transports and currents 

Reaction, transport or current Equation 

Sodium leak J x 
leak , Na 

= 

S m V x 
F 

g x Na [ 
RT 
F 

log ( Na + e / Na + x ) − ψ x ] (53) 

Na,K-ATPase J x pump = S m V x k x pump AT P x Na + x ( 1 + 

AT P x 
K m , pump 

) −1 (54) 

Glucose transport J xy 
GLC 

= T xy 
max , GLC 

( GL C x 
GL C x + K xy 

t , GLC 

− GL C y 
GL C y + K xy 

t , GLC 

) (55) 

Hexokinase-phosphofructokinase J x HKPFK = k x HKPFK AT P x 
GL C x 

GL C x + K g [ 1 + ( AT P x 
K I , ATP 

) 
nH 

] −1 , GLCx = GLCg + g6p (astrocyte) (56) 

Phosphoglycerate kinase J x PGK = k x PGK GA P x AD P x ( N − NADH 

cyto 
x ) / NADH 

cyto 
x (57) 

Pyruvate kinase J x PK = k x PK PE P x AD P x (58) 

Lactate dehydrogenase J x LDH = k x+ 
LDH 

PY R x NADH 

cyto 
x − k x −

LDH 
PY R x ( N − NADH 

cyto 
x ) (59) 

Lactate transport J xy 
LAC 

= T xy 
max , LAC 

( LA C x 
LA C x + K xy 

t , LAC 

− LA C y 
LA C y + K xy 

t , LAC 

) (60) 

TCA cycle J x 
mito , in 

= V x 
max , in 

PY R x 
PY R x + K mito 

m 

N−NADH mito 
x 

N−NADH mito 
x + K x 

m , NAD 

(61) 

Electron transport chain J x 
mito , out 

= V x max , out 
O 2x 

O 2x + K mito 
O 2 

AD P x 
AD P x + K x m , ADP 

NADH mito 
x 

NADH mito 
x + K x 

m , NADH 

(62) 

NADH shuttles J x 
shuttle 

= T x NADH 
R −x 

R −x + M cyto 
x 

R + x 

R + x + M mito 
x 

(63) † 

Creatine kinase J x CK = k x+ 
CK 

ADP x PC r x − k x −
CK 

AT P x ( C − PCr x ) (64) 

Oxygen exchange J cx 
O 2 m 

= 

P S cap 

V x 
( K O 2 ( 

Hb.OP 
O 2 c 

− 1 ) 
−1 /nh − O 2 n ) (65) 

Capillary oxygen flow J c O 2 = 

2 F in (t) 
V cap 

( O 2a − O 2c ) (66) 

Capillary glucose flow J c GLC = 

2 F in (t) 
V cap 

( GL C a − GL C c ) (67) 

Capillary lactate flow J c 
LAC 

= 

2 F in (t) 
V cap 

( LA C a − LA C c ) (68) 

Oxygen concentration at the end of the capillary O 2 ̄c = 2 O 2c − O 2a (69) 

Leak current I L = g L ( ψ n − E L ) (70) 

Sodium current I Na = g Na m 

3 
∞ h ( ψ n − RT 

F 
log ( Na + e / Na + n ) ) (71) ‡ 

Potassium current I K = g K n 
4 ( ψ n − E K ) (72) ‡ 

Calcium current I Ca = g Ca m 

2 
Ca ( ψ n − E Ca ) (73) ‡ 

Calcium-dependent potassium current I mAHP = g mAHP 
C a 2+ 

C a 2+ + K D ( ψ n − E K ) (74) 

Na,K-ATPase current I pump = F k n pump AT P n ( Na + n − Na + 0 ) ( 1 + 

AT P x 
K m , pump 

) −1 (75) 

Flow out of the venous balloon F out = F 0 [ ( 
V v 
V v0 

) 
1 / αv + 

τV 

V v0 
( V v 

V v0 
) 
−1 / 2 d V v 

dt 
] , F 0 = 0 (76) 

† With R −x = NADH 

cyto 
x / ( N − NADH 

cyto 
x ) and R + x = ( N − NADH 

mito 
x ) / NADH 

mito 
x . 

‡ Further equations in the Hodgkin-Huxley model are: αm = −0 . 1 ( ψ n + 33 ) / ( exp [ −0 . 1 { ψ n + 33 } ] − 1 ) , βm = 4 exp [ −{ ψ n + 58 } / 12 ] , 

αh = 0 . 07 exp [ −{ ψ n + 50 } / 10 ] , βh = 1 / ( exp [ −0 . 1 { ψ n + 20 } ] + 1 ) , αn = −0 . 01 ( ψ n + 34 ) / ( exp [ −0 . 1 { ψ n + 34 } ] − 1 ) , βn = 

0 . 125 exp [ −{ ψ n + 44 } / 25 ] , m ∞ = αm ( αm + βm ) −1 , n ∞ = αn ( αn + βn ) −1 , h ∞ = αh ( αh + βh ) 
−1 , τn = 10 −3 ( αn + βn ) −1 , τh = 10 −3 ( αh + βh ) 

−1 , 

m Ca = 1 / ( 1 + exp [ −{ ψ n + 20 } / 9 ] ) and E L = ( g pas 
K 

+ g n Na ) 
−1 [ g pas 

K 
E K + g n Na 

RT 
F 

log ( Na + e / Na + n ) ] . 
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termed “states” and range from 1-5 in descending amplitude (with

1 being the highest and 5 the lowest, Fig 1 A). 

All enzyme cascade simulations were carried-out in NEURON,

using a fixed time step of 3 μs with Euler integration, and was

run either on an Ubuntu 14.04 LTS workstation with a 3.6 GHz In-

tel Core i7-4790 CPU and 15.6 GB RAM, or on the Blue Gene/Q

in Lugano, Switzerland. Matlab was used for data analysis. AP

and EPSP simulations were performed on the EPFL Blue Brain IV

BlueGene/Q hosted at the Swiss National Supercomputing Cen-

ter (CSCS) in Lugano. Parameters and equations for the NEURON

simulation environment model are listed in Tables 1 (Governing

equations), 2 (Rates, transports and currents), and 3 (parameters).

The 5 concentrations of cAMP corresponding to cascade stimula-

tion states 1–5 were obtained by setting x = 0.0 0 0 0 09, 0.0 0 0 02,

0.0 0 0 05, 0.0 0 0 08, or 0.0 0 011 in Eq. (36) in Table 1. 

3. Results 

In this study, we made use of glycogenolysis and the subse-

quent glycolytic cascade from a previously published model of en-

ergy metabolism in glia ( Coggan et al., 2018 ) to demonstrate the

usefulness of a novel theoretical analysis of the characteristics and

behavioral properties of a set of enzymatic reactions. 

This segment of the metabolic energy cascade in our astro-

cyte model was stimulated into five excitability states by simu-

lating the production of 5 concentrations of the second messen-

ger cAMP (representing 5 levels of noradrenergic activation of the

β2-adrenergic receptor as in ( Coggan et al., 2018 )). Diagramat-

ically ( Fig. 1 A1), the arrows between cAMP and PYR represent

the enzyme sequence protein kinase A (PKa), protein phosphatase

1 (PP1), glycogen phosphorylase (GPa), glycogen synthase (GSa),

phosphoglucokinase (PGK), pyruvate kinase (PK), and lactate dehy-
rogenase (LDH); as well as the intermediate metabolites glucose-

-phosphate (G6P), glyceraldehyde phosphate (GAP), and phospho-

nolpyruvate (PEP). The trajectories of selected metabolites cAMP,

YR, LAC and ATP are shown in Fig. 1 , B–E, respectively. Derivative

hase plots are another way to demonstrate the phase transition

etween lower (cyan, blue) and higher (green, red, black) excitabil-

ty states, corresponding to concentrations of cAMP and examples

ade of LAC ( Fig. 1 F) and ATP ( Fig. 1 G). 

.1. Excitation-state phase plots 

We examined the relationship between cAMP (the upstream

rigger for the enzyme cascade we are analyzing) and a sample

f several downstream intermediate metabolites (the “X” in the

anel title). Plotting the relationship between cAMP and selected

ownstream metabolites (cAMP → X) yields a type of phase plot

 Fig. 2 A). Each colored plot is generated from an independent sim-

lation with a different concentration of cAMP. These plots show

ifferent kinds of relationships varying from essentially no hystere-

is (for cAMP vs. G6P, meaning [G6P] closely follows [cAMP]) and a

ariety of different hysteresis shapes for other metabolites. Charac-

eristics of these plots include the close following by the concen-

ration of a downstream metabolite to the concentration excursion

f cAMP, as in the case of [cAMP] vs. [G6P] (the G6P concentration

irrors the cAMP concentration without significant deviation), or

 variety of hysteresis types (all other responses in Fig. 2 A) with

pparent response envelopes of various shapes into which the re-

ponses “grow” and are contained with higher excitation states.

hese response envelopes thereby allow prediction of future states.

It is observed that the shapes of the curves qualitatively change

etween the two lowest states (cyan and blue) and the higher

tates (green, red and black), just as the transition between states
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Table 3 

Parameters. 

Fixed parameters 

Volume fractions V e = 0.2, V cap = 0.0055, V g = 0.25, V n = 0.45, ξ = 0 . 07 , r en = V e /V n , r eg = V e /V g , 

r ce = V cap /V e , r cg = V cap /V g , r cn = V cap /V n 
Surface-to-volume ratios S m V n = 2.5 10 4 , S m V g = 2.5 10 4 cm 

−1 

Physical constants R = 8.31451 J mol −1 K −1 , F = 9.64853 10 4 C mol −1 , RT / F = 26.73 mV, 

ψ g = −70 mV, Na + e = 150 mM 

Glucose exchange affinities K en 
t , GLC = 8 , K eg 

t , GLC 
= 8 , K cg 

t , GLC 
= 8 , K ce 

t , GLC = 8 mM 

Lactate exchange affinities K en 
t , LAC 

= 0 . 74 , K ge 
t , LAC 

= 3 . 5 , K gc 
t , LAC 

= 1 , K ec 
t , LAC 

= 1 mM 

Hexokinase-phosphofructokinase system K I,ATP = 1 mM, nH = 4, K g = 0.05 mM 

Oxygen exchange constants K O 2 = 0 . 0361 mM, Hb.OP = 8.6 mM, nh = 2.73 

Electron transport chain K mito 
O 2 

= 0 . 001 mM 

Hodgkin-Huxley parameters C m = 10 −3 mF cm 

−2 , g L = 0.02, g Na = 40, g K = 18, g Ca = 0.02, 

g mAHP = 6.5 mS cm 

−2 , K D = 30 10 −3 mM, τCa = 150 10 −3 s, Ca 2+ 
0 = 0 . 5 10 −4 mM, 

E K = -80, E Ca = 120 mV, φn = φh = 4 

Venous balloon τv = 35 s, αv = 0 . 5 

Blood flow contribution to capillary glucose and oxygen O 2a = 8.35, GLC a = 4.75 mM 

Na,K-ATPase and sodium leak g n Na = 0 . 0136 , g g 
Na 

= 0 . 0061 , g pas 
K 

= 0 . 2035 mS cm 

−2 , k n pump = 2 . 2 10 −6 , 

k g pump = 4 . 5 10 −7 cm mM 

−1 s −1 , J g 
pump , 0 

= 0.0687 mM s −1 , K m,pump = 0.5 mM 

Total creatine plus phosphocreatine concentration C = 10 mM 

Total nicotinamide adenine dinucleotide concentration N = 0.212 mM 

TCA cycle K mito 
m = 0 . 04 mM 

Optimized parameters 

Lactate dehydrogenase k n+ 
LDH 

= 72 . 3 , k g+ 
LDH 

= 1 . 59 mM 

−1 s −1 

NADH shuttles M 

cyto 
n = 4 . 9 10 −8 , M 

cyto 
g = 2 . 5 10 −4 , M 

mito 
n = 3 . 93 10 5 , M 

mito 
g = 1 . 06 10 4 

Electron transport chain K n 
m , ADP 

= 3 . 41 10 −3 , K g 
m , ADP 

= 0 . 483 10 −3 , K n 
m , NADH 

= 4 . 44 10 −2 , K g 
m , NADH 

= 2 . 69 10 −2 

mM 

Creatine kinase k n+ 
CK 

= 0 . 0433 , k g+ 
CK 

= 0 . 00135 mM 

−1 s −1 

TCA cycle K n 
m , NAD 

= 0 . 409 , K g 
m , NAD 

= 40 . 3 mM 

Constrained parameters 

Glucose exchange constants T en 
max , GLC = 0 . 041 , T ce 

max , GLC = 0 . 239 , T eg 
max , GLC 

= 0 . 147 , T cg 
max , GLC 

= 0 . 0016 mM s −1 

Lactate exchange constants T gc 
max , LAC 

= 0 . 00243 , T ne 
max , LAC 

= 24 . 3 , T ge 
max , LAC 

= 106 . 1 , T ec 
max , LAC 

= 0 . 25 mM s −1 

Hexokinase-phosphofructokinase system k n HKPFK = 0 . 0504 , k g 
HKPFK 

= 0 . 185 s −1 

Lactate dehydrogenase k n −
LDH 

= 0 . 72 , k g −
LDH 

= 0 . 071 mM 

−1 s −1 

Oxygen exchange constants 
P S cap 

V n 
= 1 . 66 ,

P S cap 

V g 
= 0 . 87 s −1 

Electron transport chain V n max , out = 0 . 164 , V g max , out = 0 . 064 mM s −1 

TCA cycle V n 
max , in 

= 0 . 1303 , V g 
max , in 

= 5 . 7 mM s −1 

Phosphoglycerate kinase k n PGK = 3 . 97 , k g 
PGK 

= 135 . 2 mM 

−1 s −1 

Pyruvate kinase k n PK = 36 . 7 , k g 
PK 

= 401 . 7 mM 

−1 s −1 

ATPases J n ATPases = 0 . 1695 , J g 
ATPases 

= 0 . 1404 mM s −1 

Creatine kinase k n −
CK 

= 0 . 0 0 028 , k g −
CK 

= 10 −5 mM 

−1 s −1 

NADH shuttles T n NADH = 10330 , T g 
NADH 

= 150 mM s −1 

Blood flow contribution to capillary lactate LAC a = 0.506 mM 

Glycogen and NE related parameters 

k L1 0.05 mM/s 

k L2 0.1 s −1 

k L3 0.002 mM/s 

k_ L1 0.07 mM/s 

k_ L2 0.1 s −1 

k_ L3 0.002 mM/s 

kmL1 7.7 mM 

kmL2 0.57 mM 

kmL3 0.01 mM 

km_L1 1.3 mM 

km_L2 1.4 mM 

km_L3 0.0034 mM 

ktL1 0.16 s −1 

kDne 3.0 × 10 −4 mM 

kgc1 1 × 10 −6 s −1 

kgc2 1 × 10 −6 s −1 

K_gc1 1 × 10 −2 s −1 

K_gc2 1 × 10 −2 s −1 

τ cAMP 2.5 s 

kg5 20 s −1 

kg6 5 s −1 

pt 0.07 mM 

s1 100 

s2 0.001 

K_a 1 s −1 mM 

−1 

kgi 10 mM 

kg7 20 mM 

( continued on next page ) 
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Table 3 ( continued ) 

kg8 5 mM 

kmg7 0.015 

kmg8 0.00012 

kg2 0.5 mM 

kt 0.0025 mM 

kg3 20 s −1 

kg4 5 s −1 

kmg3 0.004 mM 

kmg4 0.0011 mM 

kmaxd 3.2 × 10 −3 mM 

kmind 2.0 × 10 −6 mM 

Kd_mg 1 mM 

τ ne 1 0.1, 1, 10 s 

τ ne 2 500 s 

cyclase coefficient 1 50 × 10 −4 

cyclase coefficient 2 40 × 10 −4 

cyclase coefficient 3 25 × 10 −4 

cyclase coefficient 4 17 × 10 −4 

Diffusion coefficient, NE 0.077 × 10 −5 cm 

2 /s 

Release site density 2.1 × 10 6 /mm 

3 

Gap, extracellular 30 nm 

Fig. 2. Relationship between stimulus input and individual downstream cascade 

components (cAMP → X) and between upstream metabolites and LAC as an output 

example (X → LAC). A) The relationship between the cAMP stimulus and down- 

stream metabolites may exhibit various characteristics such mirroring (as for cAMP 

vs. G6P), or marked hysteresis and response envelopes as for the rest. B) The rela- 

tionship between various upstream cascade components and LAC as an output ex- 

hibit very different hysteresis profiles and dose-dependent phase transitions. Most 

of the phase transitions occur in the transition step between state 3 and 4. In the 

case of ATP vs. LAC, however, the normal X → LAC hysteresis pattern is violated 

since LAC is not produced from ATP, but rather they are co-produced in parallel 

from PYR. 
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 and 4 in Fig. 1 . In the case of the higher dosages (green, red

nd black), the phase transition is manifested as responses that are

rowing more (but not exclusively) along the x-axis, rather than

rowing primarily along the y-axis in the case of the lower con-

entrations (cyan and blue). In the case of cAMP vs. ATP, there is

lso an example of a distinct ceiling to the elevation of ATP with

igher doses of cAMP (near ceilings are also seen in other plots).

his could have physiological implications for the cell’s energy sup-

ly. As will be seen below, these state-dependent hysteresis phase

lots yield rich information about the behavior of an enzymatic

ascade. 

Likewise, when plotting intermediate metabolites (X) vs. the

ownstream product of interest LAC (X → LAC), a variety of phase

atterns emerge ( Fig. 2 B). Again, we observed that the shape of the

urves qualitatively changes between the two lowest states (cyan

nd blue) and the higher states (green, red and black). In the case

f ATP vs. LAC (last panel of Fig. 2 B), the X → LAC pattern is vio-

ated since LAC is not produced from ATP, but rather they are co-

roduced in parallel from PYR. In this case the phase plot takes on

oops or cross-over trajectories, yet the difference in shapes, the

hase transition, between the 2 lower states (cyan and blue) and

he 3 higher states (green, red, black) is preserved. 

.2. State-dependent, dose-response “fingerprints”

We explored one of the implications of the 5-state hystere-

is plots by selecting two independent-variable concentrations of

 metabolite (“A”, could be original ligand or alternative agonist)

hat correspond to significantly different shaped regions (indicated

y the two different vertical dashed lines traversing the graphs

n Fig. 3 A1 and B1). We then record the corresponding output

oncentration of the dependent variable (metabolite “B”) for each

tate. Points corresponding to each dashed line intersecting each

ysteresis curve were plotted within corresponding color-coded

ins ( Fig. 3 A2 and B2). We call the resulting graphs “fingerprint”

lots since they provide a unique identifier of the effects of any

gonist on a downstream product according to the excitation state

f the given enzymatic cascade system. (We chose the relation-

hips PEP vs. PYR and PYR vs. LAC for our samples because their

ysteresis curve shapes are distinctly different and, therefore, bet-

er illustrate the usefulness of response fingerprinting). A finger-

rint plot provides a way of visualizing and identifying the unique

tate-dependent effects of drug doses at any node (enzyme) in a

etabolic network. 
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Fig. 3. State-dependent, dose-response fingerprinting. A1) With the PEP vs. LAC plot as an example, two concentrations of ligand (metabolite A) are chosen at points indicated 

by the two different dashed lines in order to illustrate the very different corresponding concentration responses of metabolite B, depending on the excitation state (different 

colors) of the system. A2) When the responses of metabolite B are plotted for each excitation state (color-coded bins) by the corresponding concentration of metabolite A, 

a fingerprint plot provides a way of visualizing and identifying the unique state-dependent effects of drug doses at any node (enzyme) in a metabolic network. B1 and 2) 

using the PYR vs. LAC relationship (as in A) to illustrate a unique fingerprint profile reflecting the very different hysteresis and phase transition for this pair of metabolites. 
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.3. Production switch at bifurcation point 

Both LAC and ATP can be produced at the PYR bifurcation point,

ith LAC being formed in the cytoplasm and ATP in the mitochon-

ria. In our model, PYR preferentially produces ATP as seen when

AC and ATP signals are normalized by the PYR response ( Fig. 4 A1

nd A2, respectively). Another indication of how the model equa-

ions favor the production of ATP over LAC is seen in the hysteretic

rajectories of their respective phase plots. In the LAC vs. PYR plot,

he phase transition between the two lower states (cyan and blue)

nd the three high excitation states (green, red, black) includes an
nhibitory inflection, or “bite”, taken out of what would have been

he trajectories of the three higher states had there been no phase

ransition (see solid arrow in Fig. 4 A2, left panel). This inhibition of

utput is not seen in the corresponding excitation states for ATP vs.

YR (see dashed arrow, Fig. 4 A2, right panel). There is essentially a

uilt-in break in the production of LAC at higher concentrations of

AMP. 

The PYR bifurcation point can be turned into a switch that fa-

ors the production of LAC instead of ATP. When we reduced the

ate of NaK-ATPase activity by half (which reduced the need for

TP), the hysteresis curves for the higher excitation states of LAC
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Fig. 4. Metabolic bifurcation switch: the PYR bifurcation node favors production of 

ATP over LAC, but can be switched to favor LAC. A1) Plots of LAC/PYR and ATP/PYR 

show how more ATP than LAC is produced from PYR. A2) Hysteresis plots show 

the difference in phase transition between states 3 and 4. The phase shift for LAC 

is characterized by an indentation, or bite, as indicated by the arrow. No such in- 

hibitory inflexion is observed for the ATP phase transition. B) The profile of the 

phase transition for LAC can be converted to one that looks like ATP by halving the 

activity of the ATPase, thereby creating a bifurcation flux that favors the production 

of LAC over ATP. 
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d  
vs. PYR no longer exhibit the inhibition “bite”, but instead resem-

ble the trajectories of the higher excitation states for ATP (compare

solid and dashed arrows in Fig. 4 , panels A2 and B). 

3.5. 3D phase plots 

We have seen how a two-dimensional plot of one metabolite

vs. another in an enzymatic cascade can reveal information about

the phase space of their mutual relationship, as well as the dose-

dependent phase transition. We further explored the changes of

shape in a three-dimensional (3D) phase space using the relation-

ship among cAMP, PYR and LAC in one case, and cAMP, PYR and

ATP in the other (metabolite selection pattern is stimulus (cAMP),

bifurcation metabolite (PYR), and one or the other of the two prod-

ucts (ATP or LAC)). We observed a significant difference in the

phase space for state 1 ( Fig. 5 A, z = LAC in left panel, z = ATP in

right panel), where the arrows indicate the regions of greatest dif-
erence, with the inhibitory inflection, or “bite”, subtracting LAC

esponsiveness. Much less difference between ATP and LAC were

bserved for state 5 ( Fig. 5 B), reinforcing the conclusion that at

igh cAMP concentrations, ATP production is favoured. The model

redicts, therefore, that at ever higher metabolic stimulation, ATP

roduction is increasingly favoured and this effect is more clearly

een in a 3D plot. 

.6. Derivative phase plots 

Another way of looking at the phase transition is plotting the

erivative d[L]/dt vs. the ligand, L, instead of vs. time, t (as in Fig 1 F

nd G). These plots show the rate of change of the dependent vari-

ble concentration against the concentration itself, as well as the

table points of the system (zero intersections). Using LAC and ATP

s examples, we show a clear phase transition between the lower

cyan, blue) and higher stimulated states (green, red, black) as in-

icated by shape change ( Fig. 6 A). 

Visualizing the data this way gives us a more direct analogy to

he dV/dt vs. V plots used to analyse AP behavior. In Fig. 6 B1, an AP

upper panel) and a set of excitatory postsynaptic potentials (EP-

Ps) from a synapse in the Blue Brain Project’s somatosensory cor-

ex simulation are shown ( Markram et al., 2015 ). When these time

omain traces are plotted in the form dV/dt vs. V ( Fig. 6 B2), the re-

ulting derivative phase plot shows the dramatic phase transition

etween EPSPs and the AP (as well as a subtler phase transition

etween the cyan/blue states and the green/red states, suggesting

wo phase transitions for these APs). 

.7. Molecular phase signalling hypothesis 

The main point here, however, is not the total number of phases

n the EPSP to AP transition vs. the low-state to high-state ligand-

ulse (LP) transition, but that the LPs are similar in concept with

he AP, which is essentially a voltage pulse. Different “doses” of

oltage govern whether the response is a subthreshold EPSP or

 suprathreshold AP, whereas different doses of a ligand concen-

ration determine whether a subthreshold concentration trajectory

r a suprathreshold ligand pulse is generated. In both cases, a set

f enzymes forms a system that is involved in a cooperative phe-

omenon we call “molecular phase signalling” (MPS). A summary

f our molecular phase signalling hypothesis is provided in Fig. 7 . 

. Discussion 

With a computational model of energy metabolism, we demon-

trate how an enzymatic cascade may operate as a functional

nit of interdependent reactions rather than just a series of in-

ependent reaction steps. Stimulation of these systems can pro-

uce emergent effects such as state or phase transitions that could

ct as signalling mechanisms, thus expanding the overall infor-

ation processing possibilities for biochemical reaction networks.

e applied this novel analysis of stimulated second-messenger en-

yme cascades to energy metabolism in glia. Astrocytes can be

timulated by the neuromodulator NE to induce glycogenolysis

ia a cAMP-dependent, second-messenger transduction mechanism

Coggan et al., 2018; Subbarao and Hertz, 1990 ), with higher levels

f NE stimulation resulting in corresponding increases in intracel-

ular concentrations of cAMP (Fig. 1B). When we look at down-

tream metabolite levels or their rate of formation, however, we

ee a change in the response trajectory, or phase transition, be-

ween the lower two concentrations of cAMP and the higher three

e.g., for LAC and ATP, Figs. 1 D, E for concentrations and 1 F, G, for

ates of formation, respectively). 

Hysteretic trajectories are observed when plotting cAMP vs.

ownstream metabolites or between upstream metabolites and
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Fig. 5. 3D analysis shows the favored production of ATP is prominent at high metabolic network states. A) at high metabolic excitation state 1, there is a pronounced 

difference between ATP and LAC production when plotted in the same 3D parameter space as cAMP and PYR. Arrow points to empty region (“bite”) signifying inhibition in 

the production of LAC. B) At lowest metabolic excitation state 5, while there is still more ATP produced, the effect is considerably smaller. The model predicts, therefore, that 

at ever higher metabolic stimulation, ATP production is increasingly favoured and this effect is more clearly seen in a 3D plot. 
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AC, our metabolite of interest (Fig. 2). Data viewed in this way

onfirms the phase transitions at higher doses of cAMP and offers

 new way of understanding the complex relationships between

ny two metabolites involved in a cascade system. For our model,

he implication is that higher energy mobilization regimes are en-

ered at the highest stimulation levels. In addition, the striking

imilarity to the phase transition between EPSPs and APs suggests

dditional information carrying capabilities of metabolic systems

Fig. 6) that further experiments will continue to explore. 

Altogether, given the ubiquitous presence and multipurpose

oles of second-messenger transduction systems, our analysis out-

ines a novel approach that should provide a better theoretical

oundation for understanding signalling cascades. This gained com-

etence has implications for understanding the breadth and effi-

iency of biological computations and illuminates a pathway to-

ards more efficient synthetic biology practices. 

.1. Implications of phase or state transitions in hysteresis plots 

Hysteresis in the relationship between ligands in a cascade

an be viewed as a form of system memory containing informa-

ion about recent stimulation states. Glycolytic hysteresis has been

roposed as a mechanism that compounds age-related neurode-

eneration by synergetic mechanisms, since glycolytic gene up-

egulation in response to glucose drains cellular redox capacity

 Mobbs et al., 2007 ). Our results suggest that hysteresis mem-
ry can be more complicated than previously considered, involv-

ng any number of inter-dependent steps, and requiring computa-

ional analysis to sort out. Hysteresis patterns in our model un-

ergo dose-dependent phase transitions that report information

bout neuromodulatory stimulation levels. 

The meaning of phase transition varies by context, but the com-

on idea here is a threshold separating distinct behaviors of a

ystem. The properties of non-equilibrium steady-state phase tran-

itions (NESS) are the same as for those equilibrated ( Ge and

ian, 2011 , Yang and Lee, 1952 ), which is fortunate since bio-

ogical reaction systems are usually not in equilibrium. In biol-

gy, there are numerous examples such as the phase transitions

hat lead to intracellular molecular condensations ( Holehouse and

appu, 2018 ). Here we explored a way of analysing a relatively

arge set of chain-linked, stimulation level-driven, equations de-

cribing a molecular cascade and showed a type of dose-dependent

hase transition akin to that exhibited by the transition from EPSPs

o APs – a phase transition encoded in the Hodgkin-Huxley derived

elationships for specific ion channels that form a cooperative sys-

em for producing an AP. 

An ion channel can be thought of as a voltage-dependent en-

yme trapped in a lipid-bilayer membrane. The excitability state of

eurons in an engram, determined by ion channel states, may al-

er the retrieval strength of a memory or a behavioural outcome

 Pignatelli et al., 2019 , Aizenman and Linden, 20 0 0 ). We propose
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Fig. 6. Ligand-pulse phase signalling: the behaviour of metabolic cascades at multiple levels of excitation resembles that of the transition between EPSPs and APs. A) with 

d[L]/dt vs. L phase plots (where L = ligand) for LAC, top, and ATP, bottom. B1) Action potential (AP), with zoom inset, taken from simulation of neuron from the Blue Brain 

Project’s somatosensory cortex (upper plot) and a set of EPSPs generated from increasing levels of synaptic strength in the same neuron prior to spiking. B2) dV/dt vs. V 

plots for the EPSPS and AP in A with successive zooms to show shapes of EPSP phase plots. Arrow points to lag in filling in one of the lobes of the hysteresis shape. Note 

shapes of weakest EPSP plots (cyan and blue) are a different shape than two mid-size (green and red) and radically different from the shape of the AP trajectory (black). An 

AP can be thought of as a “voltage -pulse” phase signal just as a suprathreshold concentration of ligand produces a “ligand pulse”. 
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that the excitability state of a metabolic cascade might similarly

retain information. 

4.2. State-dependent, dose-response “fingerprints”

Standard practice for most pharmaceutical drug discovery is to

focus on the effects of a therapeutic molecule candidate in a sin-

gle enzyme assay, looking for a change in a particular downstream

effect to determine a mechanism of action (MOA) ( Hughes et al.,

2011 ). This approach has proven largely ineffective when applied

to the development of pharmacotherapies for many diseases un-

derlaid by complex biochemistry such as cancer and most brain

disorders. While multiple drug targets might prove more effec-

tive, there has been relatively scant attention paid to this approach

( Thai et al., 2017 ), likely for the lack of employment of computa-

tional methods. 

Incorporating an understanding of non-linear properties of

metabolic systems would benefit the drug discovery processes

since many disease states are related to dynamical dysfunc-

tions that might require multiple therapeutic targets ( Aradi and

Erdi, 2006 , Belair et al., 1995 , Coggan et al., 2015 , van der Greef

and McBurney, 2005 ). For example, the behavior of biochemical

cascades in single cells is likely to influence synapses and neural

networks ( Destexhe and Marder, 2004 ). Synthetic biology research

and applications also increasingly require computational models to

efficiently design or optimize production ( Teusink and Smid, 2006 )

and are in sore need of tools to predict outcomes of manipulations

( Costello and Martin, 2018 ). 
Our model shows that the behaviour of any given enzyme in

 cascade, or metabolite concentration, will depend on the level

o which the entire system is stimulated. By designing assays for

esponse fingerprinting, a drug’s efficacy and specificity might be

etter pinpointed. In addition, a clear path to a drug cocktail ap-

roach might be indicated by better understanding how the sys-

em responds to perturbations, as has been suggested in a compu-

ational model of multiple sclerosis ( Coggan et al., 2010 ). 

.3. Synthetic biology 

Simulation science could complement the effort s already well-

nderway for optimising the output of useful compounds us-

ng microorganisms by saving time and indentifying solutions

 Martin et al., 2009 ). In the case of S. cerevisiae , for example,

ADPH synthetic pathways have been tweaked to increase produc-

ion goals for pharmaceutical agents ( Kim et al., 2018 ). The molec-

lar switch we demonstrate in Fig. 4 , for example, demonstrates

he effectiveness of computational models for predicting yields and

ptimal intervention sites in metabolic pathways. While bistability

n general, and in the glycolytic pathway in particular, has been ob-

erved and proposed as metabolic switch ( Mulukutla et al., 2014 ,

errell and Xiong, 2001 ), we propose that the excitation state of

ny given system of enzymes, of arbitrary size, will affect the exis-

ence or loci of bistability sites and that computational models can

eveal or predict these points. 
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Information content in phase transitions 
of allosteric macromolucular systems

Voltage Pulse Ligand Pulse 

Molecular Phase Signalling Hypothesis:

a.k.a. action potential 

electrical

dose-dependent (V)

thresholds

phase transitions 
determined
by allosteric properties
of channels,
no diffusion requirement

regenerative propagation
(adaptation for long-
distance signalling and 
sustained stimuli)

small number of macro-
molecules in system

no previous term

chemical

dose-dependent ([...])

thresholds

phase transistions
determined by allosteric
properties of cascade 
components,
no diffusion requirement

non-regenerative 
progagation (proposed
original evolutionary 
invention)

any number of macro-
molecules in system

Fig. 7. Summary of Molecular Phase Signalling hypothesis. In this theory, a dose- 

sensitive phase transition in the hysteretic response trajectory provides information 

about the state of the system of enzymes, whether a small set that responds to a 

voltage dose, or a larger set in a metabolic cascade where nodes respond to ligand 

doses. In the case of metabolite concentrations, the ligand pulse conveys the infor- 

mation. In the case of electric potentials, a voltage pulse (a.k.a., action potential) 

carries the information. This theory could imply an evolutionary link between APs 

and LPs based on the behaviors of sets of allosteric macromolecules that constitute 

a system. 
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.4. Molecular phase signalling and “ligand pulses”

The metabolite production of a simulated enzymatic cascade is

ncoded in the set of differential equations and exhibit emergent,

ose-dependent phase transitions. The idea that the phase tran-

ition contains information in the form of a pulse of ligand (the

P) reminded us of the voltage pulses also known as APs. The

P has ancient evolutionary roots in both bikonta and unikonta

 Brunet and Arendt, 2016 ), the predecessors of plants, fungi and

nimals, and various other eukaryotes, any may have roots down to

he last eukaryotic common ancestor (LECA) or even before. More

ecently in evolution, this voltage cycling mechanism may have

een repurposed for rapid or long distance signalling in modern

ervous systems ( Pineda and Ribera, 2007 ). 

The authors propose that LPs could represent an evolutionarily

onserved, pre-LECA, molecular phase signalling mechanism (see

ig. 7 ), from which APs were adapted for voltage regulation, con-

raction or communication between electrically excitable cells. It

as been thought at least since the 1940s that all multicellular sys-

em functions have their roots in single celled ancestors (cf. works

f GG Simpson, e.g. ( Simpson, 1945 )). Phase analysis of intracellu-

ar signal transduction could be a very useful partner to experi-
entalists trying to precisely measure and understand the signif-

cance of fluctuations of metabolites in single cells, not only neu-

ons, but even bacteria and other cells ( Potvin-Trottier et al., 2018 ).

vidence for the involvement of glia in behaviour begs the ques-

ion of the nature of information processing in non-spiking cells

nd their coupling mechanisms to neurons in heterocelluar com-

unication ( Mu et al., 2019 , Lalo et al., 2011 ). 

AP- or LP-type phenomena in single-celled organisms also sup-

ort our hypothesis. For example, bacterial biofilms can produce

otassium-based depolarization waves for communication within

heir community system ( Prindle et al., 2015 ) - the possible unify-

ng principle being that a group of enzymes, including ion chan-

els, can cooperate to achieve an information processing unit in a

tate-dependent manner ( ̊Agren et al., 2019 ). 

We offer several conclusions or predictions from our metabolic

ascade model analysis, including: 1) A cascade chain of enzymes

ay be considered a system that can exist in multiple simulated

tates, and these states inform their functional properties; 2) Cas-

ade states can result in dose-response “fingerprinting”; 3) Dose-

ependent phase transitions in a cascade can carry information

nalogous to EPSPs (if subthreshold) or APs (if suprathreshold),

esulting in a theory of ”ligand-pulse” (LP) molecular phase sig-

alling. 

We further speculate that enzyme cascades might contribute

o energy efficient computing in the brain by bestowing on single

ells a new dimension of information processing capability. This

dea, in turn, challenges preconceptions about what and where a

rain is computing. 
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