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Feedforward Convolutional Neural Networks (ffCNNs) have become state-of-the-art models both in computer
vision and neuroscience. However, human-like performance of ffCNNs does not necessarily imply human-like
computations. Previous studies have suggested that current ffCNNs do not make use of global shape information.
However, it is currently unclear whether this reflects fundamental differences between ffCNN and human pro-
cessing or is merely an artefact of how ffCNNs are trained. Here, we use visual crowding as a well-controlled,
specific probe to test global shape computations. Our results provide evidence that ffCNNs cannot produce

human-like global shape computations for principled architectural reasons. We lay out approaches that may
address shortcomings of ffCNNs to provide better models of the human visual system.

1. Introduction

Vision is a complex process that remained beyond the reach of
computer systems for decades. Only recently, deep feedforward
Convolutional Neural Networks (ffCNNs) have shown tremendous
success in an impressive number of computer vision tasks, ranging from
object recognition (Krizhevsky, Sutskever, & Hinton, 2012) and seg-
mentation (Girshick, Radosavovic, Gkioxari, Dollar, & He, 2018), to
image synthesis (Goodfellow et al., 2014; Karras, Laine, & Aila, 2018)
and scene understanding (Eslami et al., 2018). ffCNNs and the human
visual system share several similarities. For example, after training on
complex visual datasets such as ImageNet (Deng, Dong, Socher, Li, Li, &
Fei-Fei, 2009), ffCNN neural activities show high correlations with
human and non-human primate neural activities (Khaligh-Razavi &
Kriegeskorte, 2014; Nayebi et al., 2018; Yamins et al., 2014) and the
receptive fields of neurons in the earlier layers of these ffCNNs are
qualitatively similar to those in the retina and early visual cortex
(Lindsey, Ocko, Ganguli, & Deny, 2019; Zeiler & Fergus, 2014). Because
of these similarities, ffCNNs trained on complex visual tasks were
proposed as models of the human visual system (Khaligh-Razavi &
Kriegeskorte, 2014; Kietzmann, McClure, & Kriegeskorte, 2018; Nayebi
et al., 2018; VanRullen, 2017; Yamins et al., 2014). However, human-
like performance of ffCNNs does not necessarily imply human-like
computations. Importantly, several studies have shown that ffCNNs
usually rely on local features while humans strongly rely on global
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shape information (Baker, Lu, Erlikhman, & Kellman, 2018; Brendel &
Bethge, 2019; Doerig, Bornet, et al., 2019; Kim, Bair, & Pasupathy,
2019).

There are two main options to explain why ffCNNs do not process
global shape like humans. First, this difference may come from training.
ffCNNs are typically trained on ImageNet. It is interesting and sur-
prising that local features seem to be the easiest way for these networks
to classify natural images. However, a different training set in which
local features are not predictive of the classes may require networks to
rely on global shape computations. To address this possibility, Geirhos
et al. (2018) created a new dataset in which textural information was of
no avail for object recognition. They used a textural algorithm (Gatys,
Ecker, & Bethge, 2016) to randomly swap textures in ImageNet. For
example, the texture of a cat image was replaced by elephant-skin
texture. This training dataset biased an ffCNN (ResNet50; He, Zhang,
Ren, & Sun, 2016) towards shape-level features, because textural in-
formation was no longer useful for classifying this dataset. They vali-
dated the network’s shape-bias by showing increased robustness to local
noise and textural changes.

Alternatively, ffCNNs may be incapable of matching human global
computations for principled architectural reasons. Even though Geirhos
et al.’s network was able to ignore local features, it may not use global
computations in the same way as humans. One difficulty in addressing
this question is that there is no consensus about how to experimentally
diagnose how deep networks compute global information.
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Fig. 1. Crowding. a. Crowding in a natural
scene. When fixating on the central red dot,
it is more difficult to spot the kid on the
right than on the left, because of the nearby
signposts. Figure reproduced from Doerig,
Bornet, et al. (2019) b. (Un)crowding:
Manassi et al. (2016) presented a vernier
either alone (red dashed line) or surrounded
by a flanker configuration (x-axis). The y-
axis shows the offset for which observers
correctly report the vernier offset direction
in 75% of the trials (threshold; performance
is good when the threshold is low). When
the vernier is presented alone, the task is
easy (red dashed line). Adding a flanking
square (column 1) makes the task much
harder, a classic crowding effect. When
more squares are added, performance re-
covers almost to the unflanked level (second
column, uncrowding). Uncrowding strongly
depends on the configuration (columns 2 to
8). For example, column 4 shows a config-
uration of flankers with a strong un-
crowding effect. In comparison, column 5
has the same flankers but in a different
configuration producing strong crowding.
Figure modified from Doerig, Bornet, et al.
(2019). c. Crowding in ffCNNs: In the feed-
forward framework of vision, embodied by
ffCNNs, crowding occurs by pooling of vi-
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and shows the elements in its receptive field.
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In early layers, receptive fields are small and

the vernier is in the receptive field of a single neuron (green). Neighboring neurons respond to parts of the squares (blue). At this level, the vernier is well represented.
In the next layer, however, information about the vernier is pooled with information about the sourrouding flanker. Vernier-related information is “corrupted” by the
flankers, making the offset direction harder to decode (crowding; blue-green). In subsequent layers, even more target-unrelated information is pooled. For this
reason, we hypothesize that adding more flankers may always lead to more crowding in ffCNNs.

To specifically investigate local vs. global processing in humans and
machines, we use visual crowding as an experimental probe. Crowding
is the technical term for the everyday observation that objects are
harder to perceive in clutter. Neighbouring visual elements are per-
ceived as jumbled or indistinct, and are hard to recognize (Fig. 1; re-
views: Herzog, Sayim, Chicherov, & Manassi, 2015; Levi, 2011;
Whitney & Levi, 2011). This phenomenon is strongest in the periphery,
but also occurs in the fovea (Malania, Herzog, & Westheimer, 2007;
Sayim, Westheimer, & Herzog, 2010). This phenomenon is ubiquitous
in natural vision since elements rarely appear in isolation (Fig. 1a).
Crowding can also be studied with high precision in psychophysical
experiments. For example, when a vernier target (i.e., two vertical bars
with a horizontal offset) is presented alone, the direction of the hor-
izontal offset is easy to report. This task becomes harder in the presence
of a surrounding square flanker (Fig. 1b, column 1). Interestingly, the
global configuration of flankers across the entire visual field determines
crowding. For example, adding flankers as far away as 8.5 degrees from
the 200 arcsec target can improve performance depending on the global
configuration (uncrowding; Fig. 1b; Manassi, Lonchampt, Clarke, &
Herzog, 2016; Manassi, Sayim, & Herzog, 2012). This strong de-
pendency of performance on global configurations provides a qualita-
tive signature which can easily be tested in models. Importantly, (un)
crowding occurs across multiple paradigms (Herzog & Fahle, 2002;
Pachai, Doerig, & Herzog, 2016; Sayim et al., 2010) and is not restricted
to vision (Oberfeld & Stahn, 2012; Overvliet & Sayim, 2016). Hence,
(un)crowding is not an idiosyncratic effect related to a specific para-
digm. It rather reflects a general strategy used by the brain. This kind of
general strategy for vision is precisely what we expect models to
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explain.

Crowding effects have been shown in ffCNNs (Doerig, Bornet, et al.,
2019; Lonngqvist, Clarke, & Chakravarthi, 2019; Volokitin, Roig, &
Poggio, 2017), and may occur by pooling the target and nearby flankers
along the processing hierarchy. We hypothesize that this mechanism
may not produce uncrowding because simple pooling can only dete-
riorate target-relevant information when flankers are added (Fig. 1c).
However, intuitions are not to be trusted in complex systems with
millions of parameters. Furthermore, new global processing strategies
may emerge in shape-biased networks such as Geirhos et al.’s. Hence, it
is currently unclear whether ffCNNs can carry out human-like global
computations that lead to (un)crowding. Here, we thoroughly in-
vestigated (un)crowding in AlexNet (Krizhevsky et al., 2012), an ffCNN
that was used as a model of the human visual system (Khaligh-Razavi &
Kriegeskorte, 2014; Zeiler & Fergus, 2014), ResNet50 (He et al., 2016),
a more sophisticated ffCNN, and the shape-biased network by Geirhos
et al. (2018). We provide experimental evidence suggesting that it is the
architecture of ffCNNs that prevent them from performing human-like
global computations, and not the training procedure.

2. Methods

Code and supplementary material are available online at https://
github.com/adriendoerig/Doerig-Bornet-Choung-Herzog-2019.

2.1. Experiment 1a

We presented different (un)crowding stimuli to AlexNet (trained on
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Fig. 2. Measuring crowding in ffCNNs. To
investigate how well information about the
vernier offset is preserved throughout the
network hierarchy, we trained one decoder
(in red) at each layer to discriminate the
vernier offset direction based on the activity
elicited by the stimulus in this layer. For
v example, the stimulus at the top left of this
figure is presented. This elicits activities in

v

each layer of AlexNet and the decoders are
trained to retrieve the offset direction based

on this activity. Only the decoders are
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trained (red). In the training set, the vernier
and a flanker configuration were simu-
latneously shown, but never overlapped

(top). In the testing set, we presented 72
different (un)crowding configurations and
measured performance for each configura-
tion and each layer. In these testing images,

the vernier was always surrounded by the flanker configuration (bottom). In this example, configurations of squares are shown, but we also used different shapes (see

main text).

ImageNet prior to our experiment) and assessed how information about
the target vernier is preserved along the network hierarchy. We used
decoders to detect vernier offset direction based on the activity in each
layer (Fig. 2). Each layer had its own decoder, consisting of batch
normalization (loffe & Szegedy, 2015), followed by a hidden layer of
512 units, followed by an ELU non-linearity (Clevert, Unterthiner, &
Hochreiter, 2015), finally projecting to a softmax layer composed of 2
nodes coding for left and right offsets. The weights of AlexNet were
frozen during this process, only the decoder weights were trained. The
decoders were trained using Adam optimizers (Kingma & Ba, 2014) to
minimize the cross-entropy between the predicted and the presented
vernier offsets. Each image in the training set consisted of a vernier plus
a non-overlapping random configuration of flankers (composed of
18x18 pixels squares, circles, hexagons, octagons, stars or diamonds).
These configurations had between 1 and 7 columns and between 1 and
3 rows of flankers of the same shape. We added Gaussian noise to each
image. Training was successful, i.e., the network was well able to detect
the vernier offset direction in the training images.

Our main question was how the network generalizes to the (un)
crowding stimuli. Importantly, during training, the vernier target and
the flanking configurations were presented simultaneously but never
overlapped (Fig. 2). During testing the vernier was surrounded by dif-
ferent flanker configurations, as in the psychophysical (un)crowding
stimuli (Fig. 2). The testing set consisted of 72 different configurations
of flankers with Gaussian noise. There were 6400 trials per configura-
tion with the configuration presented at different locations. For each
layer of AlexNet, performance was measured as the proportions of
correct vernier offset discrimination made by the decoder. We repeated
this entire procedure 5 times, including training and testing, and report
averaged performances.

2.2. Experiment 1b

We tested an ffCNN with a more sophisticated architecture
(ResNet50) trained on ImageNet, and the same ffCNN architecture
trained on a dataset tailored to bias the network towards global shape
computations (i.e., Geirhos et al.’s shape-biased version of ResNet50).
To this end, we applied exactly the same procedure as in experiment 1a
to both the original version of ResNet50 and Geirhos et al.’s shape-
biased version. The only difference was that we used 64 hidden units
instead of 512, because this achieved better performance (i.e., better
classification performance on crowded conditions).
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2.3. Experiment 2

In experiment 2, we investigated which parts of the stimulus con-
figurations the network mainly relies on by using an occlusion sensi-
tivity measure (similarly to Zeiler & Fergus, 2014). We used the net-
works with decoders trained in experiment 1. For a given stimulus
configuration, we collected the vernier offset decoder’s output at each
layer. Then we slid a 6x6 pixels Gaussian noise patch over the entire
configuration and measured for each patch position P and network
layer L how much the noise patch affected the vernier offset dis-
crimination. The noise patch had the same statistics as the background
noise, effectively removing parts of the stimulus. The rationale is that
when the patch occludes parts of the stimulus, which are important for
classification, decoder predictions should be strongly affected. On the
other hand, if the patch occludes an unimportant part of the stimulus,
decoder predictions should not be affected. Since the global stimulus
configuration matters for uncrowding, we were interested to see if the
network relies on the global configuration or if it simply focused on the
region close to the vernier.

For each patch location P and layer L, we quantified how much the
noise patch biased vernier offset classification towards or away from
the correct response:

=g - = -
{T . @,L - xL)}left_vemler 4 {T . @};,L - xL)}right_vernier
2 2

scorep 1 =

where X, = (3, %), is the output of the decoder for layer L on the
original stimulus without a noise patch (x and x, respectively corre-
spond to the network’s prediction for a left- or right-offset vernier),
};‘L = (3, y,)p,L is the output of the decoder for layer L with the noise

patch at position P and T is a vector equal to (+1, —1) if the correct
vernier offset is left and (—1, +1) otherwise. To avoid biases related to
offset direction, we computed the mean score of the left- and right-
offset versions of each stimulus.

Using this procedure, we obtained maps indicating which regions of
a stimulus are most important for vernier offset discrimination. We used
four different stimuli from Manassi et al. (2016): a vernier alone, a
vernier flanked by one square (leading to crowding in humans), a
vernier flanked by a row of seven squares (leading to uncrowding in
humans), and a vernier flanked by a row of seven alternating squares
and stars (no uncrowding in humans). Additional stimuli are shown in
the supplementary material.
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Fig. 3. a. Vernier offset discrimination performance for AlexNet with an increasing number of identical flankers. The x-axis shows different flanker configurations.
Each color corresponds to one flanker shape, and brighter colors indicate more flankers (from darkest to lightest: 1, 3, 5 & 7 identical flankers). The single dark blue
bar on the left corresponds to the vernier alone condition. The y-axis indicates the percentage of correct vernier offset responses. Error bars show standard deviation
(N = 5). Unlike humans, for whom performance improves when more identical flankers are added (Fig. 1b, columns 1 & 2; Manassi et al., 2016), performance
deteriorates or stagnates for AlexNet with all flanker shapes. The results of this figure are decoded from layer 5 of AlexNet. Decoding vernier offsets from the other
layers in AlexNet led to similar results (see supplementary material). b. Vernier offset discrimination performance for AlexNet with 72 configurations. The x-axis
shows different flanker configurations sorted by number of flankers. Different colors correspond to different kinds of flanker configurations. The labels correspond to
the number of flankers in the configuration, and an asterisk indicates alternating shapes (e.g. square-circle-square-circle-square). From left to right: vernier alone,
single flanker, 3 identical flankers, 5 identical flankers, 5 flankers alternating between two shapes, 7 identical flankers, 7 flankers alternating between two shapes and
configurations of 3x7 flankers. The y-axis indicates percent correct of vernier offset discrimination for each flanker configuration (the dashed lines show the mean
percent correct for each kind of flanker configuration). The results of this figure are decoded from layer 5 of AlexNet. Decoding vernier offsets from the other layers in
AlexNet led to similar results (see supplementary material). c&d. Vernier offset discrimination performance for (shape-biased) ResNet50 with an increasing number
of identical flankers. c. Original ResNet50 (trained on ImageNet). d. Geirhos et al.’s shape-biased version. The results for both of these networks are qualitatively
similar to the AlexNet results in panel a. The results of this figure are decoded from the output of the third bottleneck unit (see our shared code and He et al., 2016).
Decoding vernier offsets from the other layers led to similar results (see supplementary material).

3. Results depending on the configuration, only the number of shapes seems to
affect crowding in AlexNet — and not the configuration. Although cer-
3.1. Experiment la tain configurations with three flankers have a higher percentage of
correct response than certain configurations with a single flanker, this
Unlike humans, AlexNet shows crowding but not uncrowding. The effect is driven by the shape type and not by the configuration of
vernier offset is easily decoded from each layer when the vernier is shapes. For example, the networks are better at dealing with diamonds
presented alone, and performance drops when a single flanker is added. than squares (Fig. 3a; probably because squares interfere more with
Crucially, performance deteriorates further when more flankers are verniers due to the vertical orientation of their edges). Still, adding
added, regardless of the shape type (Fig. 3a). Squares produced more extra shapes always deteriorates performance compared to a single
crowding than circles, hexagons, octagons or diamonds, presumably shape, regardless of the configuration. This pattern of results is similar
because the vertical bars of the squares interfered with the vernier more in all layers of AlexNet (supplementary material).
strongly. These results hold for all layers of AlexNet (supplementary
material).

Fig. 3b shows that, unlike humans who show strong uncrowding
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3.2. Experiment 1b

We applied the same analysis to the original ResNet50 and Geirhos
et al.’s shape-biased version of ResNet50. The results for both networks
are qualitatively similar to the results for AlexNet in experiment la
(Fig. 3c and d). One difference is that the performance of the decoder is
always below chance level with diamonds. This indicates that in-
formation about the vernier offset survives, even though the diamond
flanker reverses the prediction. Adding additional diamond flankers
brings performance closer to chance level, indicating that less in-
formation about the vernier offset survives, i.e., crowding increases
when adding flankers. Another difference is that the squares lead to the
least amount of crowding, contrary to AlexNet.

First, these results show that using a more sophisticated ffCNN (i.e.,
ResNet50) does not allow ffCNNs to explain global uncrowding effects.
Second, crucially, Geirhos et al.’s training method to bias ffCNNs to-
wards shape does not lead to uncrowding either. This suggests that
ffCNNs do not carry out human-like shape level computations for ar-
chitectural reasons, and not because of the way they are trained.

3.3. Experiment 2

Uncrowding requires global computations across large regions of
the visual space. The configuration in its entirety determines perfor-
mance and not only the elements in the neighborhood of the target
(Doerig, Bornet, et al., 2019; Manassi et al., 2012, 2016). As mentioned,
it has been proposed that ffCNNs focus largely on local features. This is
indeed what we observed in experiment 2 in AlexNet (Fig. 4), ResNet50
(supplementary material), and Geirhos et al.’s shape-biased version of
ResNet50 (Fig. 4): only elements in a local region around the target
matter for classification. The same results also hold for the eight other
stimulus types we tested (supplementary material). In general, as ex-
pected, occluding the vernier target deteriorates performance and oc-
cluding parts of the flanker surrounding the vernier improves perfor-
mance. Occluding other parts of the stimulus, however, does not
generally affect performance. Certain cases are harder to explain, such
as the 1square condition shown in the top right panel of Fig. 4, in which
occluding parts of the vernier improved classification. Although we

vernier 1 square
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cannot provide a definitive explanation, we suggest that this may be
due to the classifier confusing a vertical bar of the square with a vertical
vernier bar. Alternatively, this may be due to the background noise
present in each stimulus. In rare cases, the occluder has an effect even
when it does not cover the stimulus (e.g. in the bottom right panel of
Fig. 4). These cases are also probably due to background noise. Aside
from these small peculiarities, the finding that only elements in the
neighborhood of the vernier affect classification is very stable over all
stimuli and network layers (see images and animations in the supple-
mentary material).

These results suggest that the inability of ffCNNs to explain un-
crowding stems from their focus only on local features close to the
vernier. Importantly, although Geirhos et al.’s shape-biased network is
biased towards global features, still, performance seems determined
only by elements close to the vernier.

4. Discussion

(Un)crowding is ubiquitous. It occurs in vision, audition and haptics
(Manassi et al., 2016; Oberfeld & Stahn, 2012; Overvliet & Sayim, 2016;
Whitney & Levi, 2011). This pervasiveness is not surprising because
elements rarely appear in isolation. Any perceptual system needs to
cope with crowding to process information in cluttered environments.
(Un)crowding is a probe into how the visual system computes global
information.

In this contribution, we asked whether large ffCNNs trained on
complex visual tasks can explain (un)crowding. We chose this approach
because these ffCNNs are often used as brain models. The idea is that
the weights learned by these ffCNNs to solve complex visual tasks may
lead to human-like visual processing. For this reason, we did not change
the ffCNN weights for quantifying (un)crowding, i.e., we only trained
the additional decoders. We found that these ffCNNs do not seem to
carry out human-like global computations.

Experiment 1 shows that current ffCNNs do not explain (un)
crowding. In other words, training an ffCNN on a complex natural
image recognition task does not automatically yield a network per-
forming similarly to the human visual system. Experiment 2 suggests
that this is due to the inability of ffCNNs to take the entire stimulus

Occluding Fig. 4. Occlusion analysis. Results of the occlusion

L

analysis for AlexNet (top) and the shape-biased
ResNet50 (bottom). Stimuli on the left lead to good
performance in humans (i.e., uncrowding), while
stimuli on the right lead to poor performance in hu-
mans (i.e., strong crowding; Manassi et al., 2016).

improves
performance

7 squares

7 alternating squares and stars

For both AlexNet and the shape-biased ResNet50, the
network’s decisions rely only on local elements in the

AlexNet

OOCHIO0O0.

target neighborhood regardless of the global stimulus
configurations. We summed the maps for each layer
to show which stimulus regions are most relevant
across the network. We used all layers for AlexNet,
and, for the shape-biased ResNet50, the third con-

vernier 1square

volutional layer in the first bottleneck plus the output
of the first 9 bottleneck units (see our shared code
and He et al., 2016). We then applied a threshold to
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each map at 0.4 times the maximal value in the map,
for visibility. Per-layer results without thresholding
can be found in the supplementary material, as well
as animations showing what happens as the threshold
value is changed. Results for the original ResNet50
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configuration into account. In ffCNNs, only elements in the target’s
neighborhood affect performance. Global features do not affect how
local parts are processed. In humans, on the other hand, the global
configuration strongly affects processing of local parts. For example,
vernier offset information can be “rescued” by certain global config-
urations.

This difference could not be remedied by a different training pro-
tocol. Indeed, all our results also hold for Geirhos et al.’s shape-biased
ffCNN. We suggest that, although Geirhos et al.’s training procedure
successfully biased the networks towards global features, it does not
show human-like global shape computations. Indeed, the network still
seems limited to combining features by pooling along the feedforward
cascade. Hence, unlike in humans, global configuration cannot affect
processing of local parts. For these reasons, our results suggest that the
inability of ffCNNs to perform human-like object shape processing is
rooted in their feedforward pooling architecture. Because of this pooling,
performance deteriorates when flankers are added. For this principled
reason, we propose that ffCNNs cannot produce uncrowding in general,
independently of the specific ffCNN, training procedure and loss func-
tion. In support of this proposal, we showed in a separate contribution
that ffCNNs specifically trained on classifying verniers and flanking
shapes, as well as counting the number of flankers, do not produce
global (un)crowding either (Doerig, Schmittwilken, Sayim, Manassi, &
Herzog, 2019).

Global processing is not only an issue for ffCNNs but for other
models too. We showed that no existing model of crowding based on
local and feedforward computations can explain uncrowding (Doerig,
Bornet, et al., 2019; Herzog & Manassi, 2015; Manassi et al., 2016;
Pachai et al., 2016). There seems to be a principled difference in
computational strategies, based on architecture, between humans and
feedforward pooling systems.

Hence, despite their well-known power, further aspects need to be
incorporated into ffCNNs. We propose that recurrent, global grouping
and segmentation is crucial to explain how the brain deals with global
configurations (Doerig, Bornet, et al., 2019; Doerig, Schmittwilken,
et al., 2019). Specifically, we propose that a flexible recurrent grouping
process determines which elements are grouped into an object. In the
case of (un)crowding, elements are first grouped together and then only
elements within a group interfere with each other. If the configuration
of flankers ungroups from the target, the target is released from
crowding. Francis, Manassi, and Herzog (2017) proposed a spiking
neural network with a dedicated recurrent grouping process, which is
able to explain why (un)crowding occurs (see also Bornet et al., 2019).
However, this model is tailored to group oriented edges and cannot
generalize to grouping of more complex features. Deep learning models
are promising because they are more flexible and can be trained to deal
with any kind of stimulus.

Doerig, Schmittwilken, et al. (2019) showed that capsules networks
(Sabour, Frosst, & Hinton, 2017), combining CNNs with a recurrent
grouping and segmentation process, can explain (un)crowding, in-
cluding temporal characteristics of uncrowding. Linsley, Kim, and Serre
(2018) proposed recurrent grouping and segmentation modules to im-
prove CNNs, and there are several other approaches to experiment with
grouping and segmentation in recurrent network architectures (Lotter,
Kreiman, & Cox, 2016; Nayebi et al., 2018; Spoerer, Kietzmann, &
Kriegeskorte, 2019; Spoerer, McClure, & Kriegeskorte, 2017). More
work is needed to compare and characterize computations in different
recurrent architectures.

Our results contribute to the expanding literature showing that
there is much more to vision than combining local feature detectors in a
feedforward hierarchical manner (Baker et al., 2018; Brendel & Bethge,
2019; Doerig, Bornet, et al., 2019; Doerig, Schmittwilken, et al., 2019;
Funke et al., 2018; Kar, Kubilius, Schmidt, Issa, & DiCarlo, 2019;
Kietzmann et al., 2019; Kim, Linsley, Thakkar, & Serre, 2019; Lamme &
Roelfsema, 2000; Linsley et al., 2018; Sabour et al., 2017; Spoerer et al.,
2019, 2017; Tang et al., 2018; Wallis et al., 2019). In line with the
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present findings, many studies have highlighted other fundamental
differences between ffCNNs and humans in local vs. global processing.
For example, Baker et al. (2018) showed that ffCNNs but not humans
are affected by local changes to edges and textures of objects. Brendel
and Bethge (2019) showed that ffCNNs classify ImageNet images almost
as well when using small local image patches than when using the
entire images. These results clearly show that image classification is
underconstrained as a testbed. For this reason, well-controlled psy-
chophysical stimuli, which allow detailed analysis, should be used in
addition to image classification (RichardWebster, Anthony, & Scheirer,
2018). Simply testing whether deep learning systems reproduce idio-
syncratic illusions, without linking them to computational mechanisms,
does not provide principled insights. Hence, an important question will
be what are the crucial benchmarks targeting principled computational
processes. Here, using crowding, we showed a fundamental difference
in local vs. global processing between humans and ffCNNs, and suggest
that grouping and segmentation are promising additions to make deep
neural networks better models of vision.

Historically, psychophysical results were seen as stepping stones
towards object recognition models. Today, the picture has been re-
versed: we have powerful artificial vision models, but they do not re-
produce even simple psychophysical results. The fact that ffCNNs can
solve complex visual tasks in a different way than humans reveals that
there are many ways of doing so. There are many roads to Rome.
Despite the diversity of possible strategies to solve complex vision tasks,
deep insights can be derived by comparing the crucial underlying
computations adopted by different systems.
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