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Abstract

A review of the heating, ventilation and air-conditioning control problem for buildings is
presented, and particular emphasis is given to its distinguishing features. Next, we not
only examine how data-driven algorithms have been exploited to tackle the main challenges
present in this area, but also point to promising future investigations both from theoretical
and from practical viewpoints. Rule based control, reinforcement learning, model predictive
control (MPC), and learning MPC techniques are compared on the basis of four attributes
that we expect an ideal solution to possess. Finally, on-line learning MPC with guarantees
is recognized as an approach with high potential that needs to be further investigated by
researchers. Such a solution is likely to be accepted by practitioners since it meets the
industry expectations of reduced deployment time and costs.

Keywords: Heating, ventilation and air-conditioning (HVAC); building control; model pre-
dictive control (MPC); machine learning; reinforcement learning.

1 Introduction

Large heating, ventilation and air-conditioning (HVAC) facilities need to be constantly su-
pervised by technicians, which are hired by companies to ‘adjust settings’, ‘ensure optimal
performance’ and sometimes even operate some subsystems manually [Stluka et al., 2018,
Royapoor et al., 2018]. It is reasonable to assume that a well designed automatic controller
would perform better than a human in such tasks, especially when highly complex objec-
tives are considered such as time-varying electricity prices for instance. Advanced control
techniques are particularly required when consumers provide ancillary services to the power
grid, adjusting their demand in real-time [Gils, 2014, Maasoumy et al., 2014c]. Residen-
tial and commercial buildings have been recognized as suitable candidates for this posi-
tion due to their significant energy consumption allied with temporal flexibility, mainly
associated with HVAC [Motegi et al., 2007, Beil et al., 2016]. However, despite efforts
from researchers to demonstrate the effectiveness of several rigorous control methodolo-
gies for the different HVAC hierarchy levels (e.g. [Arguello-Serrano and Velez-Reyes, 1999,
Huaguang and Cai, 2002, Shin et al., 2002, Anderson et al., 2008, Gondhalekar et al., 2013,
Wang and Hu, 2018]), industrial solutions still rely on PID regulators for low-level devices,
and rule-based schemes combined with finite-state machines for the high-level supervisory
system [Salsbury, 2005, Wang and Ma, 2008, Stluka et al., 2018].

Modern buildings and in particular office buildings are equipped with a plethora
of sensors, usually managed by a central building automation system (BAS): temper-
ature probes, occupancy detectors, luminosity and air-pressure transducers, power me-
ters, among many others. Some authors state that low resolution information and miss-
ing samples are common problems faced in HVAC data collection [Reijula et al., 2013,
Afram and Janabi-Sharifi, 2014b, Žáčeková et al., 2014, Wijayasekara and Manic, 2015],
yet the abundance of measuring instruments has rather been regarded as an opportunity
to develop data-driven solutions to existing problems in the area. Forecasting weather
and thermal loads, obtaining non-parametric models of zones, operating chillers at opti-
mal conditions, estimating occupants’ thermal comfort, and controlling blinding devices
using reinforcement learning (RL) are some of the applications of machine learning in
this domain [Cai et al., 2019, Xuan et al., 2019, Østerg̊ard et al., 2018, Park et al., 2018,
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Atthajariyakul and Leephakpreeda, 2005, Park et al., 2019]. Another important aspect to
be considered is that, by automating several time-consuming tasks present in the design
of model predictive controllers (MPC), machine learning can also contribute to the pop-
ularization of this flexible and powerful framework [Aswani et al., 2012a, Ma et al., 2012b,
Cigler et al., 2013].

Recent reviews in the area of building HVAC systems have addressed the
available modelling approaches for individual equipment and thermal zones
[Whalley and Abdul-Ameer, 2011, Afram and Janabi-Sharifi, 2014a, Afroz et al., 2018]; the
applicability of MPC strategies in the field [Serale et al., 2018], and an industry perspective
of how relevant classical and modern control are to the field according to engineers of different
nationalities [Royapoor et al., 2018]. Additional surveys have investigated the problem of
predicting energy consumption [Zhao and Magoulès, 2012, Wei et al., 2018] and implement-
ing energy savings strategies from a system architecture (static) point of view such as exploit-
ing heat recovery and thermal storage [Chua et al., 2013, Vakiloroaya et al., 2014]. Fuzzy
modelling and control, genetic algorithms and artificial neural networks were covered in
[Singh et al., 2006, Kalogirou, 2009], and RL was briefly discussed in [Wang and Ma, 2008].
The last documents however targeted people with little knowledge on machine learning
and considerable familiarity with HVAC plants and, moreover, were published ten or more
years ago.

Contribution: In this paper, HVAC plants are analyzed from the perspective of a con-
trol engineer and an up-to-date outlook of how data-driven techniques are being used in
the building control context is offered. In addition, we point to obstacles that still have
to be overcome and unexplored areas, hence suggesting ideas for promising future inves-
tigations. Particular emphasis will be given to deploying advanced control techniques in
already existing buildings while minimizing retrofit. Although important for the field,
the subject of fault-detection and diagnosis is not included in the present survey; the
reader is referred to [Katipamula and Brambley, 2005a, Katipamula and Brambley, 2005b,
Namburu et al., 2007, Beghi et al., 2016, Shahnazari et al., 2019] for an overview on this
matter. As for the terminology, we say a given method is ‘data-driven’ simply if it receives
a data-set as an input and yields some product such as a diagnosis, a mathematical model,
or a control law. Although the words ‘adaptive’ and ‘learning’ are sometimes used by the
control community as synonyms (see [Fu, 1970, Sutton et al., 1992, Gaudio et al., 2019] for
more information about the difference), we use the terms ‘adaptive’ and ‘on-line learning’ in-
terchangeably especially when referring to MPC. Both expressions refer to techniques where
mathematical models are updated during operation.

2 The HVAC control problem

2.1 The goals of HVAC systems

The ultimate goal of any HVAC facility is to regulate temperatures in different parts of
a building1 while simultaneously controlling additional variables related to its air qual-
ity. When rooms are occupied by people, the first desideratum is referred to as thermal
comfort, whose definition according to the American Society of Heating, Refrigerating and
Air-Conditioning Engineers (ASHRAE) [ANSI/ASHRAE, 2010] is

“The condition of mind that expresses satisfaction with the thermal environment
and is assessed by subjective evaluation.”

The two most common methods used to quantify thermal comfort are the predicted
mean vote (PMV) and the predicted percentage of dissatisfied (PPD) [ISO, 2005]. These
quantities depend on factors such as clothing insulation, a person’s metabolic rate, rel-
ative air velocity and, naturally, the ambient air temperature. In order to circumvent
the subjectiveness of both the PMV and PPD indexes, the majority of authors as well
as practitioners opt for simply defining temperature envelopes to be respected in each envi-
ronment [Mantovani and Ferrarini, 2015, Ma et al., 2015, Ben-Nakhi and Mahmoud, 2017].
The reader is referred to [Garnier et al., 2014, Garnier et al., 2015, Gupta and Kar, 2018]
for exceptions of this tendency. Besides temperature, carbon dioxide levels (CO2), air hu-
midity and pressure, and the presence of particles must also controlled, especially in the

1The acronym HVAC is occasionally also employed in the field of automotive and aeronautical air condi-
tioning, but these subjects are outside the scope of this document.
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Figure 1: Schematic representation of a typical HVAC system. Air is collected, filtered
and its temperature and humidity are regulated before being sent to the zones. The chiller
and CT are responsible for rejecting the majority of the building’s heat into the atmosphere.
Thermal energy is also exchanged among adjacent zones, as well as the external environment.

case of operating theaters and other safety-critical environments [Balocco et al., 2014]. Con-
straint satisfaction is also an important matter in server rooms, and in the food and drugs
industries.

Minimization of monetary costs incurred by the associated power consumption and
(time-varying) energy prices is typically considered while maintaining thermal comfort
[Ma et al., 2012a, Vakiloroaya et al., 2014]. However, energy markets are nowadays under-
going massive changes to increase its flexibility especially at the consumers side, mainly with
the objective of enhancing the network reliability. In the so called demand response (DR)
scenario, power consumption is adjusted – not necessarily reduced – in real-time with the
objective of contributing to the grid power balance [Yoon et al., 2014]. Due to their signifi-
cant energy consumption in conjunction with their inherent large inertia, it has been shown
that buildings are suitable candidates for this task [Fabietti et al., 2018b, Luc et al., 2018,
Pallonetto et al., 2019]. DR programs are furthermore expected to grow significantly in the
next years (see e.g. the European report [Stromback, 2017]), encouraging specific consumers
to play the role of ancillary service providers in exchange of financial incentives.

2.2 Subsystems, equipment and sources of energy consumption

The interplay between hydraulic circuits, electrical loads and air-flow paths in a typical
building HVAC system is shown in Figure 1. Its main components are the chiller, the
cooling tower (CT), air-handling units (AHUs), air ducts and different zones, defined as a
group of one or more spaces being supplied by the same stream of air.

Chillers are machines mainly composed of an evaporator, which is connected to the AHU
by the so-called ‘chilled water circuit’; and a condenser, connected to the CT by a distinct
water circuit. Heat is removed from the first circuit and sent to the CT to be dispersed into
the atmosphere through the second one. The input AHU extracts fresh air from the external
environment and regulates several of its variables before circulating it into the building’s
ductwork [McDowall, 2007]. At its entrance, a damper controls the inflow of air, and a
series of filters remove undesirable pollutants from it. Next, either the cooling coils use the
chilled water to decrease the air temperature, or an electrical heater is employed to increase
the temperature. The air is then pumped into ducts by a blower (usually centrifugal fans)
driven by induction motors. Finally, endpoint dampers installed in the air outlets adjust the
effective flux delivered to each zone. This strategy is known as variable air volume (VAV),
which contrasts with the constant air volume (CAV) that always operates with constant flux.
The inflow of air mixes itself with the zones’ air, thus acting on its properties. Return air is
then collected by the inlets of the zones and sent to a second, sm aller AHU to be discharged
into the atmosphere or partially recirculated. Recirculation can be accomplished by a simple
duct linking both AHUs, a thermal wheel or a plate heat exchanger [Systemair, 2011]. Even
though they were depicted as two distinct blocks for ease of visualization, the input and
discharge AHUs are most of the times a single physical apparatus.

In the following, we briefly present additional elements that were not included in Figure 1
but may be found in certain HVAC plants – the list is however not exhaustive. Especially
in large installations, thermal energy storage (TES) tanks may be employed to increase
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the system flexibility by accumulating hot or cold water, sometimes in the form of ice
[Zhang et al., 2007, Ma et al., 2012b]. Moreover, humidifiers based on water evaporators
may be placed at the end of the handling units to compensate for the dehumidification
caused by previous stages. Instead of an electrical resistance, the supply AHU may fea-
ture a heating coil in which warm water coming from a boiler or a solar collector circulates
[Hsieh et al., 2017, Rathod et al., 2019]. In locations where weather conditions vary signif-
icantly over the year, it is common to also find heat pumps (HP) in the facilities; modern
equipment are able to operate in both cooling and warming modes as needed, and are called
reversible chillers or reversible heat pumps [Stabat and Marchio, 2009]. As opposed to the
forced-air HVAC system of Figure 1, which is more popular in large commercial buildings,
shopping malls and airports, there are radiant and variable-refrigerant-flow (VRF) plants. In
radiant cooling and radiant heating, currents circulate in electric cables or fluid flows through
pipes that either belong to heat exchange devices or are directly installed inside building ele-
ments such as floors and walls [Širokỳ et al., 2011, Andersen et al., 2014, Zheng et al., 2017].
On the other hand, VRFs are composed of an outdoor unit responsible for rejecting the in-
ternal heat, and indoor units that receive a refrigerant flow (liquid or gas) and chill the inter-
nal air through pure recirculation [Aynur et al., 2009]. Although simple, these approaches
clearly do not allow for controlling the ambient humidity, nor CO2 levels.

If a set of buildings is considered instead of a single one, heat may be produced in a
centralized fashion giving rise to the concept of district-heating (DH) networks2. In such
case, heat production typically takes place in cogeneration plants and is then distributed to
individual buildings through buried insulated pipes. The technologies behind DH networks
have evolved over the years and nowadays DH is particularly present in Nordic and Eastern
European countries [Lund et al., 2014, Werner, 2017, Darivianakis et al., 2017].

Depending on the system architecture, the energy consumption distribution in the system
may vary; still, chillers tend to have higher nominal power when compared to the remaining
equipment (see e.g. [Fong et al., 2006, Lecamwasam et al., 2012]). Pumps located in the
chilled water and condenser water circuits also contribute to the overall demand and, within
the AHUs, electric heaters and motors driving the blowers as well. Instead of operating
the AHU fans always at maximum speed and modifying the air flux through dampers, VAV
control can be achieved by varying the blowers speed. This practice leads to energy savings
and is possible if electronic motor drives are employed.

2.3 Distinguishing characteristics

We summarize herein the main features (F) of the building climate control problem as:

F1 Large sampling periods: With the exception of laboratory experiments in scaled
HVAC plants such as [Xi et al., 2007, Obando et al., 2014], most supervisory con-
trollers gather data at every 15 min or longer periods. In the DR scenario however,
several nested control loops exist, each one operating with substantially different sam-
pling frequencies (see [Gorecki et al., 2017]);

F2 Low-quality measurements: It has been acknowledged by several authors that sensors
tend to be poorly calibrated and have low-resolution [Afram and Janabi-Sharifi, 2014b,
Wijayasekara and Manic, 2015]. At the same time, it should be highlighted that some
variables are acquired at a much faster rate than the supervisory system control fre-
quency, thus allowing for the application of filtering techniques or simply downsam-
pling;

F3 Operations-critical: The occupancy schedule cannot usually be modified for the sake
of conducting identification tests. Moreover, strongly exciting input signals are im-
practicable while the building is occupied since comfort bounds might be violated.
Identification could therefore be conducted during unoccupied periods, e.g. nighttime.
This procedure however would not capture important effects caused by occupants in
the environment (see subsection 3.1);

F4 Difficult modelling: Especially true for large buildings, obtaining a representative
model of its climate dynamics for reliable multi-step ahead predictions that can be used
in different weather conditions is challenging [Privara et al., 2013, Žáčeková et al., 2014,
Váňa et al., 2014, Killian and Kozek, 2016]. This complication is due to the usual
lack of precise information about the numerous construction parameters, preventing

2The analogous concept of district-cooling networks also exists.
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Figure 2: The control architecture of a building HVAC system: supervisory controller, low-
level device controllers (LC), actuators (Ac) and sensors (Se).

white-box models from being practical; the effects of external disturbances, e.g. the
conduction and radiation solar gains; and continuous internal gains variations caused
by changing occupancy rates.

In addition, depending on the electricity contract being applied and the plant architec-
ture, the objective of the control system may range from a simple minimum effort formulation
to a more complex reference tracking problem [Qureshi and Jones, 2018].

2.4 The orthodox and the idealistic solution

The classical approach to the building HVAC control problem relies on a hierarchical struc-
ture as shown in Figure 2. Low-level controllers generally implemented in programmable
logic controller (PLC) hardware handle individual devices through field sensors and actua-
tors. An example of such a control loop would be the air temperature regulation inside the
input AHU with absolute temperature sensors and actuation in the three-way valve that
changes the chilled water flow through the cooling coils. In the upper layer, a high-level su-
pervisory system manages the low-level operation by sending appropriate reference signals,
e.g. speed references for the water pumps and positions for the dampers. Communication
between the two layers is usually carried out through either the Modbus or BACnet (Building
Automation and Control network) protocols. Typically PID controllers or in simpler cases
open-loop commands are employed at the device level3, while rule based controllers (RBC)
incorporating memory in the form of a state machine are used for the management system,
which can include information regarding the building’s schedule and current weather. It is
however well known that tuning PID parameters and decision rules is a daunting task es-
pecially when one seeks to optimize performance. Plus, in the orthodox setting with RBC,
the energy demand can only be adjusted coarsely in real-time, not allowing for following an
explicit DR reference for example.

Based on system description given in this section and the highlighted challenges, we
propose the following list of attributes (A) that an ideal solution for the high-level supervision
problem would be endowed with:

A1 Lifetime adaptability: In view of F5, the ideal technique must require only a rough
mathematical description of the dynamics in the initialization phase – in case it is
model based – and refine it over time during operation. If the chosen technique is
model free, actions or policies are to be updated as more data is available to improve
performance;

A2 Safety4: The process of improving performance or the model on-line should be car-
ried out with guarantees (either deterministic or probabilistic) of safety because of
F4. The chosen identification technique should be preceded by a proper data pre-
processing stage due to F2, and should possess good generalization capabilities given
that aggressive excitation is generally not permitted;

A3 Incorporation of exogenous signal forecasts and complex objectives: In view of the
contributions of both internal and external uncontrontrollable factors to the building

3State-of-the-art control strategies may be used as LCs in the case of heat pumps and compressors in
general [Wallace et al., 2012, Wallace et al., 2015].

4In the present context, safety translates to constraint satisfaction, i.e. compliance with the regulations
concerning the controlled climate variables. It does not refer to the ‘safety-critical’ or ‘life-critical’ concepts.
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dynamics and costs – namely occupancy levels, outside temperature and time-varying
energy prices – exploiting reliable predictions becomes indispensable to maximize per-
formance;

A4 Scalability: In case optimization is present in the loop, the mathematical program
is to be formulated in an scalable and numerically stable manner seeing that, even
though the available computational time is large (F1), the number of variables is also
considerable. In the RL case, the learning process should not take a prohibitive amount
of time to converge even when the state-action space dimension is large.

3 Data-driven techniques in building control

In this section a variety of works coming both from academia and industry are analyzed and
clustered, indicating what the main applications of data-driven techniques in the HVAC con-
text are. A distinction is made between control methodologies that process all information
off-line and those that carry on the learning process during operation.

3.1 Occupancy and occupant behavior predictions

It is possible to classify the impacts of occupants on the indoor climate as passive, which
includes contributing with metabolic heat gains and increasing CO2 levels; and active, which
comprises acting on windows, doors, shading devices, and adjusting local zones’ temperature
setpoints as shown in Figure 3. Therefore, occupancy pattern prediction should be combined
with an estimate of the occupants behavior to correctly assess their effects on the HVAC
control loop. An informative study on the energy savings potential associated with such
information was carried out in [Oldewurtel et al., 2013].

The more elementary problem of predicting if either a zone is occupied or unoccupied
was studied in [Mahdavi and Tahmasebi, 2015], where eight offices located in a university
building were analyzed and three different prediction models were compared. The authors
however state that, even though the two probabilistic models and the deterministic one
were carefully trained with reliable data, the predictive performance of all models was
only modest. A more successful investigation was carried out in [Peng et al., 2018] for
11 different zones: eight single-person offices, two multi-person offices and one meeting
room. By using data from motion sensors collected every 10 minutes, occupants pres-
ence or absence and presence duration patterns were learned respectively with the k-means
and k-nearest neighbors methods. Additionally, an RBC strategy was employed to turn
off cooling when spaces were vacant. Most of the studies in this area are nevertheless
focused on estimating the actual number of occupants, instead of the presence/absence
of them [Capozzoli et al., 2017, Dong et al., 2018, Li and Dong, 2018]. Stochastic agent-
based models [Liao and Barooah, 2010, Liao et al., 2012] and Markov chains in different fla-
vors [Page et al., 2008, Ai et al., 2014, Flett and Kelly, 2016] are the most common design
choices. Finally, the authors of [Chen et al., 2017] considered a midway problem, estimating
levels of occupancy (zero, low, medium and high) with a deep convolutional bidirectional
neural network in a classification setting.

Occupant behavior prediction is a large research area by itself [Yana et al., 2015],
but the following works are considered more relevant to estimating internal HVAC dis-
turbances. Haldi described the fundamental means by which an occupant could af-
fect the building’s thermal evolution and proposed the use of Bernoulli, discrete-time
Markov, and continuous-time Markov processes to predict future occurrences of such actions
[Haldi and Robinson, 2009, Haldi, 2010]. Later, efforts were made to differentiate more sub-
tle details for instance not only forecasting window states simply as open or closed, but also
opening angles [Schweiker et al., 2012]. A review on occupants control over natural ventila-
tion is given in [Roetzel et al., 2010, Barthelmes et al., 2017], while more general aspects of
behavior prediction including acting on blinds were examined in [Lee and Malkawi, 2014].

Different techniques for occupancy and occupant behavior estimation require different
variables to be measured from the environment. In some cases simple motion detectors, CO2

level and luminosity sensors are employed [Candanedo and Feldheim, 2016], whereas other
studies explore cameras and the connection of users’ smartphones to existing WiFi networks
[Balaji et al., 2013]. Clearly, the best solution to a particular building lies in balancing pre-
dictive performance and retrofitting, as acquiring and installing numerous additional sensors
in every zone is not usually desirable in practice. If no occupancy sensors are employed and
the contribution of the internal heat gain to the overall dynamics is significant, the system
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Figure 3: A list of the main internal and external factors that influence the indoor climate.

identification stage may be compromised. This is worsened by the usual correlation between
the building occupancy and time. The reader is referred to [Aswani et al., 2012b] for a
semi-parametric way of dealing with this problem.

3.2 Thermal loads and energy demand forecasting

Accurate predictions of a building’s thermal load and HVAC energy consumption are im-
portant respectively for making effective use of thermal storage systems and determin-
ing the day-ahead baseline power consumption in the DR scenario [Henze et al., 2004,
Fabietti et al., 2018a]. In [Rahman and Smith, 2018] for example, deep recurrent neural
networks were employed to estimate future heating demands of an academic campus build-
ing and, subsequently, and help design a TES system. The prediction techniques are cate-
gorized according to their time-horizon, e.g. hours, days, weeks [Djukanovic et al., 1993,
Zhou et al., 2008, Lam et al., 2010], and according to their nature, either time-series or
multi-variate regression. The most common machine learning models in the regres-
sion case are neural networks [Ferrano and Wong, 1990, Zhao et al., 2016], decision trees
[Johansson et al., 2017], comparisons among them can be found in [Penya et al., 2011,
Zhang et al., 2015]. Some works address the broader problem of predicting the future en-
ergy consumption of a building as a whole, encompassing HVAC loads, lightning, plugs,
elevators, etc. This was the question investigated in [Zeng et al., 2019], where a total of six
different edifices including shopping malls and hotels were studied. The authors stressed
the importance of data pre-processing to achieve reasonable results since they faced miss-
ing samples – constituting 9.62% of all total information for a particular office edifice –
and poor calibration of the energy meters. Focusing exclusively on cooling and heat-
ing loads, twelve buildings with distinct geometries but the same volume were examined
through simulations in [Chou and Bui, 2014]. The geometrical properties of the construc-
tions were used as inputs and both thermal loads as outputs, and favourable numerical
results were obtained for an ensembled model of ANN in conjunction with SVM. See also
[Yun et al., 2012, Bacher et al., 2013] for similar studies. Another problem highly relevant
in practice is power disaggregation, where the contribution of many energy consuming de-
vices are mixed due to physical sensing constraints, but have to be decomposed usually into
equipment-level power information [Yan et al., 2012, Ji et al., 2015, Rahman et al., 2018].

3.3 Batch learning and building climate control

Already in [Sousa et al., 1997], a Takagi-Sugeno fuzzy model was developed from a set of
input-output measurements of a simple single-zone heating problem. A nonlinear MPC
(NMPC) controller was then designed for the single-input single-output system and success-
ful real-time experiments were reported. Although simple, the case study became influential,
possibly due to the attention given both to the theoretical foundations and implementation
details. Later, multiple Takagi-Sugeno fuzzy models were employed to tackle the predic-
tive control of a more realistic AHU setup [He et al., 2005]. The simultaneous control of
temperature and humidity in a single test-chamber was studied [Xi et al., 2007]. There,
two support vector regression models were trained to capture the individual dynamics and
NMPC was adopted to control both the speed of a fan (VAV strategy) and the position of
a three-way valve. Reference tracking experimental results were carried out to demonstrate
the performance of the methodology.

In more recent years, case studies have become more and more complex, tackling re-
alistic residential and commercial buildings. In [Ma et al., 2012b], the design of an MPC
controller was considered for the optimal operation of an HVAC system composed of two
series chillers, a large TES tank and a cooling tower. Historical data were used to build
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a linear model of the University of California Merced campus thermal load, as well as
time-varying bounds for its values. The authors in [Váňa et al., 2014] describe the con-
trol of a large office building in Belgium equipped with radiant heating (pipes conducting
hot water). By defining a resistance-capacitance model of the system, using several heat
fluxes as inputs and zones’ temperatures as outputs, a linear state-space model was identi-
fied with two months recorded data. MPC was applied as the high-level supervisory layer
and a low-level controller was used to act on the two-way valves, guaranteeing the correct
mass flow rate and supply water temperature to achieve specified reference heat fluxes.
[Aswani et al., 2012b] exploited semi-parametric regression to capture air-conditioning and
VAV effects in two distinct environments located in the University of California Berke-
ley, whereas gray-box modelling of a considerably complete residential HVAC system in
Ontario, Canada was tackled in [Afram and Janabi-Sharifi, 2015]. Subsequently, the later
authors also used artificial neural networks (ANNs) for modelling and NMPC control of
the same house [Afram et al., 2017], but instead of specifying heat fluxes, the supervisory
system generated temperature references at each sampling period for local PID controllers.
A comprehensive study of the design and deployment of an MPC controller in a Swiss office
building was given in [Sturzenegger et al., 2016], which included an interesting cost-benefit
analysis of the development, hardware acquisition and installation phases of the project –
an aspect usually neglected in most academic works.

Besides the diverse implementations of MPC, some research has also been done on al-
ternative supervisory systems for efficient HVAC operation. In [Pallonetto et al., 2019] for
example, two rule-based approaches for DR services in a typical Irish house. The RBC
technique which incorporated prediction modules was shown to outperform the standard de-
cision tree in several metrics. Four zones of the Adelaide airport in Australia were analyzed
in [Huang et al., 2015] with ANNs trained to perform multi-step-ahead prediction. A rule-
based on/off scheme was then employed to minimize energy consumption based on the ANNs
prediction and additional occupancy information. Similar investigations combining an ANN
predictor and RBC can be found in [Moon and Kim, 2010, Moon, 2012, Moon et al., 2013].
Directly optimizing the low-level controllers setpoints in a static fashion is a simplified way
of minimizing costs, which is particularly adopted when designing a dynamical model of the
plant is considered infeasible [Lu et al., 2005, Kusiak et al., 2014, Asad et al., 2017]. Hav-
ing numerical optimization in-the-loop may be impractical when the available hardware has
limited processing power; this is unfortunately the case in many small and medium-sized
buildings5. The authors in [Domahidi et al., 2014] proposed the design of a hybrid MPC
controller in the first step, and later approximating it either with SVMs or the Adaptive
Boosting technique to extract a set of simple decision rules, which could be easily imple-
mented even in PLCs. In a similar manner, [May-Ostendorp et al., 2011, Le et al., 2014]
studied simplification strategies but with particular focus on window openings and blind
positioning. Finally, [Drgoňa et al., 2018] reported in details the learning process of an
MPC controller for a residential heating system in Belgium. The feature selection process
including principal component analysis dimensionality reduction was discussed, and decision
trees and time delay neural networks were compared against the original MPC controller as
well as PID and RBC schemes.

3.4 On-line learning and building climate control

Continuous model and/or controller adaptation is a desirable feature in building HVAC
control. In an article published in 1985, the Johnson Controls engineer Clay G. Nesler
stated that [Nesler, 1985]

“To be accepted by the HVAC control industry, the self-tuning controller must:

1. Implement the PI control algorithm.

2. Not require any prior knowledge of the process (e.g., dead time).

3. Be sufficiently robust to operate without supervision.”

While nowadays more sophisticated techniques are to some extent accepted by practitioners
[Royapoor et al., 2018], the requirement for little human intervention, including avoiding
building intricate models, is still a strong desideratum. This can be easily interpreted as a
demand for on-line safe adaptation and learning.

5There has been an increase in cloud-based monitoring solutions offered by HVAC companies in recent
years, a trend that could overcome local hardware limitations.
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Classical indirect and direct adaptive control techniques, i.e. respectively with and
without explicit plant identification, were investigated in [Nesler, 1985, Chen et al., 1990,
Salsbury, 2002, Bai et al., 2008], but experiments were carried out either in single rooms
or in AHU subsystems. An adaptive neuro-fuzzy technique and self-tuning PID con-
trollers based on fuzzy rules were studied in [Jian and Wenjian, 2000, Soyguder et al., 2009],
however only simulation results were presented. By exploiting the strict passivity
property of building thermodynamics [Mukherjee et al., 2012], iterative learning control
(ILC) was applied in simulations to steer the states of six rooms into a temperature-
humidity comfort ellipse [Minakais et al., 2017]. Later, the same authors conducted
experimental results in a scaled six-room building, but focusing exclusively on the
temperature problem [Minakais et al., 2019]. A similar approach was also adopted in
[Lautenschlager and Lichtenberg, 2016], where ILC adjusts the output of an MPC controller
to account for modeling errors.

On-line model refinement of building thermodynamics is still a matter of current inves-
tigation. The main issue being the operational-critical nature of the plant (F4), which often
hinders the system identification process [Agbi et al., 2012, Aswani et al., 2012b]. Building
predictive control employing linear time-varying models was examined in [Pčolka et al., 2016]
and compared with two alternatives. The authors conclude that the proposed approach en-
joys good predicting capabilities while preserving convexity of the optimization problem.
It is moreover claimed that the theoretical guarantees of the formulation are those derived
in [Falcone et al., 2008]. Model augmentation and the use of either an extended Kalman
filter or an unscented Kalman filter for simultaneous parameter and state estimation was
proposed in [Radecki and Hencey, 2013, Maasoumy et al., 2014b, Maasoumy et al., 2014a].
Platt, on the other hand, started with a grey-box model and updated its parameter values
with the recursive use of genetic algorithms for short-term predictions [Platt et al., 2010].
Even though the numerical results presented in the paper were promising, validation was
performed in a single zone system and, if the technique were to be combined with MPC, the
outcome would be a bilevel optimization problem. An alternative approach to on-line learn-
ing was taken in the so called NEUROBAT project and subsequent works [Morel et al., 2001,
Lindelöf et al., 2015], in which two ANNs were employed to learn the closed-loop build-
ing model and forecast the weather, being updated constantly to improve predictions over
time. Control was accomplished by means of supervisory MPC and the experiments, per-
formed over an extensive period of time in several test sites, yielded positive energy sav-
ings in all cases. Learning-based MPC (LMPC) is a predictive control strategy with solid
theoretical foundations and independent of the machine learning tool selected by the user
[Aswani et al., 2013]. This technique was applied to the air-conditioning control of a labora-
tory in order to reduce transient and steady-state energy consumption, with an on-line model
update but fixed uncertainty description [Aswani et al., 2012a]. Finally, by applying results
from the linear set-membership and robust MPC, the authors of [Tanaskovic et al., 2017]
reduced the set of feasible thermal models at every time step, hence accounting for uncer-
tainties, but minimizing conservativeness. Promising simulation results were reported.

An additional class of methods that has being explored in the field of build-
ing control is reinforcement learning [Henze and Schoenmann, 2003, Yu and Dexter, 2010,
de Gracia et al., 2015, Park et al., 2019]. Two distinct variations of Q-learning, namely tab-
ular and batch with an ANN function approximator, were used in [Yang et al., 2015] to con-
trol in simulations several elements of a low exergy building such as photovoltaic-thermal
panels and a heat pump. In [Dalamagkidis et al., 2007] for example, a model-free formula-
tion was adopted to control a reversible HP (off, low, medium and high heating, or cooling),
a fan to provide ventilation (off, low or high) and the position of a window (closed, slightly
open, open, wide open). Regulation of the PMV index was considered and simulation re-
sults showed that the RL strategy achieved performance similar to on/off and fuzzy PD
controller, but only after a training period of four years. See also [Chen et al., 2018] for a
similar study, where the same problem was observed. Deep reinforcement learning for VAV
HVAC control was analyzed in [Wei et al., 2017] with an effective reduction of the temper-
ature comfort zone violation after training. Nonetheless, the presented Q-learning scheme
only started to converge after approximately 75 months for a simple 1-zone case, and 90
months for a 4-zones case, causing the proposal to be infeasible in practice. In a recent study
[Kazmi et al., 2019] discusses how this lengthy process can be accelerated if more than one
agent is learning the same model or policy, and information can be exchanged among them.
A large case study was reported with 32 residential houses implementing the RL algorithm
for thermostatically controlled loads. In [Claessens et al., 2018], a direct implementation of
model-free RL to control of DH networks is reported with promising low learning times.
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4 A perspective and future directions

4.1 Interfacing with already deployed industrial controllers

Clearly, buildings that feature operating HVAC systems are already equipped with some
form of hierarchical control structure as discussed in previous sections. Technicians that
manage PLCs as well as the supervisory system aim at ensuring a smooth and continuous
operation of the overall plant, and hence it is critical for them to trust and feel comfort-
able with the control system as a whole [Henze, 2013]. According to the industrial survey
[Stluka et al., 2018]

“The operations staff are not motivated to try new controls and optimization
software, because operational reliability is their number one goal”.

Therefore, keeping already functional blocks in their place is certainly desirable in practice,
and more complex control strategies should be able to interface with these components
rather than replacing them. The central question is then how to deal with such black-boxes
that execute proprietary firmware. Obtaining informative models of the closed-loop system
is potentially challenging in this context. For example, the implementation of even simple
PID controllers on industrial hardware is far from straightforward: dozens of parameters
are involved, anti-windup schemes and low-pass filters are added to improve performance
and avoid abrupt variations, etc [O’Connor, 2000, Johnson Controls, 2010, Siemens, 2014].
Even in smart thermostats for residential applications, manufacturers claim to implement
‘self-learning algorithms with PID response’ [Siemens, 2018]. Some preliminary research in
the direction of working with already deployed controllers can be found for instance in the
following three works.

In [Ferreira et al., 2012], four rooms of a university building with existing variable re-
frigerant flow and indoor heat exchangers were considered, each one equipped with a local
Mitsubishi thermostat. A pseudo random binary signal (PRBS) constrained to [18, 27]oC
was employed as the temperature setpoint during 23 days for identification purposes, and
the dynamics were captured by a radial basis function neural network. More recently,
a considerably complex residential HVAC system was studied, and grey-box models were
developed for each subsystem; nevertheless, simplistic linear approximation were adopted
for the discontinuous low-level on/off controllers [Afram and Janabi-Sharifi, 2017]. A much
higher level problem was tackled by [Nghiem and Jones, 2017] in the context of DR, where
Gaussian process models for buildings whose BAS implement arbitrary demand adjustment
strategies were proposed.

4.2 How far are we from the ideal solution?

Comparing each one of the works listed in Section 3.3 and Section 3.4 among themselves
would be arduous, especially since they target different HVAC subsystems or even start from
a different set of initial assumptions. Moreover, some of the publications do not propose
new methods and tools, but rather apply existing ones to the problems at hand. In view of
these facts, we instead group only a small but representative subset of them in Table 1, to
conduct a more detailed analysis based on the attributes A1–A4 explained in Section 2.4.
In the aforementioned table, the acronym MPC is used for any predictive control strategy
whose model is not updated on-line, LMPC in case it is, and N/A means not applicable.
The symbol ‘-’ indicates if the method does not possess the associated property, and ‘+’ in
case it does; in the A4 column the more ‘+’ symbols are given to a method, the lower its
computational complexity.

The reinforcement learning approach: Its main advantage is, by definition, the abil-
ity to continuously adapt over time (A1). One can moreover argue that the strict passivity
property of the building thermodynamics are ‘forgiving’ when bad actions are taken by the
learning agent. Nevertheless, to the best of the authors’ knowledge, no work published in
the HVAC area as of now guaranteed any type of safety during this learning process (A2),
an issue that compromises the applicability of this class of methods given their long training
periods. It is thus necessary to explore the existing literature about safe reinforcement learn-
ing and its intersection with control theory if designers want to minimize thermal discomfort
during the initial phase of RL [Perkins and Barto, 2002]. This could be accomplished by a
suitable modification of either the optimization criterion or the exploration process itself. As
an example, instead of making use of heuristic exploratory methods that are blind to the risk
of actions, the initial learning phase may be guided by the available prior knowledge of the

10



problem [Garcıa and Fernández, 2015]. The challenging task would be then to effectively in-
corporate the specifics of the HVAC problem into this framework. From the computational
complexity viewpoint (A4), both [Dalamagkidis et al., 2007] and [Yang et al., 2015] were
given bad scores due to their inherent curse of dimensionality. Time-varying energy prices
and exogenous DR signals could be incorporated in the RL reward function for instance,
yet this could easily lead to convergence problems of the whole algorithm. The difficulty
of dealing with continuous domains should also be highlighted since most of the theory has
been developed for discrete states and controls. Apart from windows states and blinds, the
majority of the remaining quantities within the building context are continuous.

Rule-based methods: They miss the attribute of continuous adaptation (A1, A2)
and most of the times are also designed without any formal guarantee of constraint sat-
isfaction. Implementation is extremely straightforward (A4) and can take into account
occupancy and weather forecasts (A3) when constructing the rules in the form of decision
parameters. If complex objectives are not considered and interpretability of the controller
is prioritized over performance or energy consumption minimization, then RBC becomes
appealing. This is mainly due to the ease of being modified by operators based on their
expert knowledge and experience, justifying why RBC is widely implemented in commercial
products. The proposal of extracting rules from complex hybrid MPC controllers found in
[Domahidi et al., 2014] and similar papers is regarded as promising, but would require ex-
perimental validation in a realistic large-scale building to confirm its sensitivity to modelling
errors, noisy measurements and imprecise weather forecast.

Predictive control techniques: As opposed to RL, both continuous and discrete con-
trol actions can be simultaneously considered in a single MPC formulation – at the expense
of additional computation complexity when compared to the case of exclusive continuous
control. Constraints such as acceptable temperature envelopes and humidity levels for each
zone can be explicitly taken into account in a straightforward fashion. Furthermore, internal
and external disturbance forecasts can be easily exploited (A3). As long as the resulting
optimization problem is convex, we can state that MPC possesses good scalability properties
(A4), especially e.g. in [Tanaskovic et al., 2017] whose technique was translated into a linear
program (LP). Clearly this is not the case of [Lindelöf et al., 2015] since the obtained ANN
dynamic model is nonlinear. In practice however, non-convex problems can be tackled using
heuristic numerical optimization at the risk of not having any convergence guarantees. As
highlighted in [Sturzenegger et al., 2016], monetary savings owing to the adoption of MPC
may not outbalance the efforts associated with model development and controller commis-
sioning, especially when the number of actuators is small compared to the number of zones.
Nevertheless, the growing presence of distributed renewable sources in the electric network
is causing substantial changes in the energy market due to their production uncertainty and
low inertia. This in turn triggers time-dependent or demand-dependent electricity tariffs
and a general rise of energy prices. We believe that the most systematic method to deal
with these factors while minimizing operating is MPC rather than the previous alternatives
(see [Fabietti et al., 2018b] for an example of a realistic DR thermal control study).

The time-consuming task of creating thermodynamic models is expected to become less
problematic in the future with the advance of on-line learning MPC techniques in the field
(A1), especially if associated with a quantification of the model uncertainty and guarantees
of constraint satisfaction (A2). The few works found in the literature that combine those two
properties have reported promising results, but experimental validation on more complex
environments featuring multiple zones and TES subsystems for instance are still needed
to confirm their suitability for real-time HVAC control. One of the limitations of the the
LMPC explored by [Aswani et al., 2013] is that newly collected data-points are only used
to indirectly improve the cost function, but not the prediction model on which constraints
are imposed. On the other hand, [Tanaskovic et al., 2017] does reduce conservativeness
on-line, yet restrict its scope to linear systems. Future investigations can address these
issues while standing on solid theoretical basis coming from the areas of adaptive linear
MPC [Zhang et al., 2017, Lorenzen et al., 2019, Tanaskovic et al., 2019] and safe-learning
[Schreiter et al., 2015, Rosolia and Borrelli, 2017, Hertneck et al., 2018].

5 Conclusions

The field of building HVAC research has been evolving substantially during the last decades,
migrating from the investigation of individual subsystems and devices to the supervisory
control of multiple loops and simultaneous regulation of several climate variables. Case
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studies have become increasingly more complete and, thus, also more complex. In this
context, data-driven methods have been used mainly for predicting internal and external
disturbances acting on the system, and creating models for the dynamics off-line. The later
task reveals itself challenging because of the low-quality measurements normally available,
the operations-critical nature of the HVAC problem that does not allow for strong excitation
during occupied hours, and the effects of unmeasured internal heat gains. Since there are
various possible HVAC system configurations and the commercial and residential settings
fairly differ, it is unlikely that one single modelling approach would be suitable for all the
problem instances.

In view of the A1–A4 attributes defined for the idealistic high-level supervisory control
system, we consider the use of learning model predictive control – especially combined
with of semi-parametric or non-parametric regression for identification – as a promising
alternative that needs to be further explored by researchers. If the associated uncertainty
is quantified during the on-line learning process, conservativeness could be reduced over
time while ensuring thermal comfort. Finally, we see the necessity of staying in the high-
level layer of the control hierarchy, possibly interfacing with existing standard proprietary
systems. Combining all the aforementioned aspects in a single technique would certainly
not only be interesting from an academic viewpoint, but also an anticipated solution by
practitioners.
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Model-based energy efficient control applied to an office building. Journal of Process
Control, 24(6):790–797.

[Wallace et al., 2012] Wallace, M., Das, B., Mhaskar, P., House, J., and Salsbury, T. (2012).
Offset-free model predictive control of a vapor compression cycle. Journal of Process
Control, 22(7):1374–1386.

[Wallace et al., 2015] Wallace, M., Mhaskar, P., House, J., and Salsbury, T. I. (2015). Offset-
free model predictive control of a heat pump. Industrial & Engineering Chemistry Re-
search, 54(3):994–1005.

[Wang and Ma, 2008] Wang, S. and Ma, Z. (2008). Supervisory and optimal control of
building HVAC systems: A review. HVAC&R Research, 14(1):3–32.

[Wang and Hu, 2018] Wang, Z. and Hu, G. (2018). Economic MPC of nonlinear systems
with nonmonotonic lyapunov functions and its application to HVAC control. International
Journal of Robust and Nonlinear Control, 28(6):2513–2527.

[Wei et al., 2017] Wei, T., Wang, Y., and Zhu, Q. (2017). Deep reinforcement learning for
building HVAC control. In Proceedings of the 54th Annual Design Automation Conference
2017, page 22.

[Wei et al., 2018] Wei, Y., Zhang, X., Shi, Y., Xia, L., Pan, S., Wu, J., Han, M., and Zhao,
X. (2018). A review of data-driven approaches for prediction and classification of building
energy consumption. Renewable and Sustainable Energy Reviews, 82:1027–1047.

[Werner, 2017] Werner, S. (2017). International review of district heating and cooling. En-
ergy, 137:617–631.

22

systemair.com/globalassets/downloads/leaflets-and-catalogues/english/nb_ahu.pdf
systemair.com/globalassets/downloads/leaflets-and-catalogues/english/nb_ahu.pdf


[Whalley and Abdul-Ameer, 2011] Whalley, R. and Abdul-Ameer, A. (2011). Heating, ven-
tilation and air conditioning system modelling. Building and Environment, 46(3):643–656.

[Wijayasekara and Manic, 2015] Wijayasekara, D. and Manic, M. (2015). Data-fusion for
increasing temporal resolution of building energy management system data. In Proc. of
the Annual Conference of the IEEE Industrial Electronics Society (IECON), pages 4550–
4555.

[Xi et al., 2007] Xi, X.-C., Poo, A.-N., and Chou, S.-K. (2007). Support vector regression
model predictive control on a HVAC plant. Control Engineering Practice, 15(8):897–908.

[Xuan et al., 2019] Xuan, Z., Xuehui, Z., Liequan, L., Zubing, F., Junwei, Y., and Dongmei,
P. (2019). Forecasting performance comparison of two hybrid machine learning models
for cooling load of a large-scale commercial building. Journal of Building Engineering,
21:64–73.

[Yan et al., 2012] Yan, C., Wang, S., and Xiao, F. (2012). A simplified energy performance
assessment method for existing buildings based on energy bill disaggregation. Energy and
Buildings, 55:563–574.

[Yana et al., 2015] Yana, D., O’Brien, W., Hongc, T., Feng, X., Gunay, H. B., Tahmasebi,
F., and Mahdavi, A. (2015). CHECK simulating multiple occupant behaviors in buildings:
An agent-based modeling approach. Energy and Buildings, 107:264–278.

[Yang et al., 2015] Yang, L., Nagy, Z., Goffin, P., and Schlueter, A. (2015). Reinforcement
learning for optimal control of low exergy buildings. Applied Energy, 156:577–586.

[Yoon et al., 2014] Yoon, J. H., Baldick, R., and Novoselac, A. (2014). Dynamic demand
response controller based on real-time retail price for residential buildings. IEEE Trans-
actions on Smart Grid, 5(1):121–129.

[Yu and Dexter, 2010] Yu, Z. and Dexter, A. (2010). Online tuning of a supervisory fuzzy
controller for low-energy building system using reinforcement learning. Control Engineer-
ing Practice, 18(5):532–539.

[Yun et al., 2012] Yun, K., Luck, R., Mago, P. J., and Cho, H. (2012). Building hourly
thermal load prediction using an indexed ARX model. Energy and Buildings, 54:225–233.
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