Table of content

1. General information 2
2. Experimental details 3
2.1 Synthesis of complex 5 3
2.2 General procedure for hydrogenation of aldehydes, ketones and imines. 3
2.3 General procedure for hydrogenation of methenyl- $\mathrm{H}_{4} \mathrm{MPT}^{+}$mimic substrates 3
2.4 General procedure for asymmetric relay hydrogenation 3
2.5 Reaction condition optimization 4
3. Characterization of complex 5 6
4. Characterization of compounds 10
5. Spectra 18
6. HPLC traces 54
Reference 69

1. General information

A. Chemicals and Reagents

All manipulations were carried out under an inert $\mathrm{N}_{2}(\mathrm{~g})$ atmosphere using glovebox techniques. Solvents were purified using a two-column solid-state purification system (Innovative Technology, NJ, USA) and transferred to the glovebox without exposure to air. Deuterated solvents were purchased from Cambrige Isotope Laboratories, Inc. and Gute Chemie, and were degassed and stored over activated $3 \AA$ molecular sieves. Compounds $\boldsymbol{9}^{[1,2]}, \mathbf{1 1}^{[3]}, \mathbf{1 2}^{[4]}, \mathbf{1 3}^{[5]}$ was synthesized according to literature. All other reagents were purchased from commercial sources. Liquid compounds were degassed by standard freeze-pump-thaw procedures prior to use.

B. Physical Methods

The ${ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}$ and ${ }^{13} \mathrm{C}$ spectra were recorded on a Bruker Avance 400 spectrometer. The chemical shifts (δ) are given in parts per million relative to solvent peaks $\left(\mathrm{CDCl}_{3} \delta 7.26 \mathrm{ppm}{ }^{1} \mathrm{H}\right.$ NMR and 77.16 ppm in ${ }^{13} \mathrm{C}$ NMR, $\mathrm{CD}_{3} \mathrm{CN}$, 1.94 ppm in ${ }^{1} \mathrm{H}$ NMR and 1.32 in ${ }^{13} \mathrm{C}$ NMR, $\mathrm{CD}_{2} \mathrm{Cl}_{2}, 5.32 \mathrm{ppm}$ in ${ }^{1} \mathrm{H}$ NMR and 53.84 in ${ }^{13} \mathrm{C}$ NMR, THF- $d_{8}, 1.72 \mathrm{ppm}$ in ${ }^{1} \mathrm{H}$ NMR and 25.31 in ${ }^{13} \mathrm{C}$ NMR). IR spectra of the complexes were recorded as solution samples on a Varian 800 FT-IR spectrometer. Elemental analyses were performed on a Carlo Erba EA 1110 CHN instrument at EPFL. X-ray diffraction studies were carried out in the EPFL Crystallographic Facility. Data collections were performed at low temperature using four-circle kappa diffractometers equipped with CCD detectors. Data were reduced and then corrected for absorption. Solution, refinement and geometrical calculations for all crystal structures were performed by SHELXTL. ${ }^{[6,7]}$

2. Experimental details

2.1 Synthesis of complex 5

Scheme 1 Synthesis of complex 5.
Compound 6 ($600 \mathrm{mg}, 1.0$ equiv.) was dissolved in 25 mL dry THF in a Schlenk flask. To this solution, $n-$ BuLi (1.0 equiv.) was added dropwise at $0^{\circ} \mathrm{C}$ and the solution was further stirred for 30 min at $0^{\circ} \mathrm{C}$. In another Schlenk flask a THF solution of $\mathrm{Mn}(\mathrm{CO})_{5} \mathrm{Br}\left(1.10 \mathrm{~g}, 1.0\right.$ equiv.) was cooled to $-78{ }^{\circ} \mathrm{C}$. The solution of deprotonated 6 was then added dropwise to the $\mathrm{Mn}(\mathrm{CO})_{5} \mathrm{Br}$ solution at $-78{ }^{\circ} \mathrm{C}$. The resulting mixture was allowed to slowly warm to room temperature and was further heated to $50^{\circ} \mathrm{C}$. After stirring at $50^{\circ} \mathrm{C}$ overnight, the mixture was cooled to room temperature. The THF solvent was removed. The residue was further purified by silica gel chromatography in glovebox using ethyl acetate/hexane as eluent. Yield 71%. Single crystal suitable for X-ray test was obtained via layer diffusion of pentane to a THF solution of complex at $-22{ }^{\circ} \mathrm{C}$.

2.2 General procedure for hydrogenation of aldehydes, ketones and imines.

Substrate (1.0 equiv., 1 mmol for aldehydes and ketones, 0.2 mmol for imines), N-methyl pyrrolidine (0.5 equiv.), complex 5 (0.02 equiv.) and dry THF (1 mL for aldehydes and ketone, 0.5 mL for imines) were added to a 2 mL tube. The tube was then put into a 50 mL autoclave. After addition of $50 \mathrm{bar}_{\mathrm{H}_{2}}$ gas, the autoclave was heated to $100{ }^{\circ} \mathrm{C}$ for 24 h . Products were isolated and purified through a short silica gel chromatography using ethyl acetate/hexane as eluent.

2.3 General procedure for hydrogenation of methenyl-H4MPT ${ }^{+}$mimic substrates

Substrate (1.0 equiv., 0.1 mmol), N-methyl pyrrolidine (5 equiv.), complex 5 (0.025 equiv.) and 3 mL dry dioxane were added to a 10 mL vial. The vial was then put into a 250 mL autoclave. After addition of 50 bar H_{2} gas, the autoclave was heated to $80^{\circ} \mathrm{C}$ for 24 h . Yield of $\mathbf{1 0 a}$ and $\mathbf{1 0 b}$ was determined by ${ }^{1} \mathrm{H}$ NMR using 1,3,5-trimethoxybenzene as internal standard. 10c-e were isolated and purified through a silica gel chromatography using ethyl acetate/hexane as eluent.

2.4 General procedure for asymmetric relay hydrogenation

Substrate (1.0 equiv., 0.1 mmol), 13 ($0.02 \mathrm{mmol}, 0.2$ equiv.), La(OTf)3 ($0.02 \mathrm{mmol}, 0.2$ equiv.), complex 5 (0.1 equiv.) and 1 mL dry CHCl_{3} were added to a 2 mL tube. The tube was then put into a 50 mL autoclave. After addition of 50 bar H_{2} gas, the autoclave was heated to $80{ }^{\circ} \mathrm{C}$ for 48 h. Products were isolated and purified through preparative TLC. Ee was determined by chiral HPLC using OD-H column.

2.5 Reaction condition optimization

Table S1 Optimization of reaction conditions for hydrogenation of benzaldehyde and acetophenone.

			$\stackrel{\mathrm{H}_{2}}{\text { catalyst }}$		$R_{R^{2}}$			
	substrate	Catalyst ($\mathrm{mol} \%$)	$\begin{aligned} & \hline \begin{array}{l} \text { Base } \\ (\mathrm{mol} \%) \end{array} \end{aligned}$	solvent	$\begin{aligned} & \mathrm{T} \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	Time	$\begin{aligned} & \hline \mathrm{P} \\ & \text { (bar) } \end{aligned}$	Yield (\%)
1	benzaldehyde	4(5)	MP(25)	THF	50	16 h	50	7
2	benzaldehyde	4(5)	MP(25)	THF	80	16 h	50	100
3	benzaldehyde	4(5)	MP(25)	$\mathrm{CH}_{3} \mathrm{CN}$	80	16 h	50	72
4	benzaldehyde	4(5)	MP(25)	MeOH	80	16 h	50	84
5	benzaldehyde	4(1)	MP(20)	THF	80	16 h	50	100
6	benzaldehyde	4(1)	MP(20)	THF	80	16 h	30	98
7	benzaldehyde	4(1)	MP(20)	THF	80	16 h	10	88
8	benzaldehyde	4(1)	MP(20)	THF	80	16 h	1	1
9	acetophenone	4(2)	MP(50)	THF	100	24 h	50	45
10	acetophenone	5(2)	MP(50)	THF	100	24 h	50	91

$\mathrm{MP}=N$-methyl pyrrolidine

Table S2 Optimization of reaction conditions for hydrogenation of 9a

	catalyst	Base	Concentration	Yield
1	$\mathbf{5}$ (20 mol\%)	MP(1.0 equiv.)	0.50	25\%
2	5 (20 mol\%)	MP (2.0 equiv.)	0.50	53\%
3	5 (20 mol\%)	MP(5.0 equiv.)	0.50	67\%
4	5 (10 mol\%)	MP (5.0 equiv.)	0.50	62\%
5	5 (10 mol\%)	MP (5.0 equiv.)	0.25	87\%
6	5 (10 mol\%)	MP (5.0 equiv.)	0.17	90\%
7	5 (5.0 mol\%)	MP(5.0 equiv.)	0.17	94\%
8	5 (2.5 mol\%)	MP(5.0 equiv.)	0.17	92\%
9	4 (2.5 mol\%)	MP(5.0 equiv.)	0.17	43\%
10	$\mathbf{1 1}(2.5 \mathrm{~mol} \%)$	MP(5.0 equiv.) $\mathrm{KOtBu}(10 \mathrm{~mol} \%)$	0.17	0\%
11	$\mathbf{1 2}(2.5 \mathrm{~mol} \%)$	MP(5.0 equiv.) $\mathrm{KOtBu}(10 \mathrm{~mol} \%)$	0.17	0\%

Table S3 Optimization of reaction conditions for asymmetric hydrogenation of 13a catalyzed by $\mathbf{5}$.

	Additive (\%)	Acid (\%)	solvent	Yield	ee
1	--	$\mathbf{1 7 a}(10)$	dioxane	$<2 \%^{\mathrm{a}}$	--
2	$\mathbf{1 9}(20)$	$\mathbf{1 7 a}(10)$	dioxane	$70 \%^{\mathrm{a}}$	--
3	$\mathbf{1 9}(20)$	$\mathbf{1 7 b}(5)$	dioxane	$<2 \%^{\mathrm{a}, \mathrm{c}}$	--
4	$\mathbf{1 9}(20)$	$\mathbf{1 7 b}(5)$	toluene	$36 \% \%^{\mathrm{a}, \mathrm{c}}$	70%
5	$\mathbf{1 9}(20)$	$\mathbf{1 7 b}(5)$	mesitylene	$81 \% \%^{\mathrm{b}, \mathrm{c}}$	80%
6	$\mathbf{1 3}(20)$	$\mathbf{1 8}(20)$	mesitylene $^{<} \times 5 \%$	--	
7	$\mathbf{1 3}(20)$	$\mathbf{1 8}(20)$	CHCl_{3}	46%	94%
8	$\mathbf{1 3}(20)$	$\mathrm{Sm}(\mathrm{OTf})_{3}(20)$	CHCl_{3}	$<5 \%$	--
9	$\mathbf{1 3}(20)$	$\mathrm{La}(\mathrm{OTf})_{3}(20)$	CHCl_{3}	63%	96%

17a, $\mathrm{R}=\mathrm{H}$
17b, $R=2,4,6$-triisopropyl phenyl

18

19

13
${ }^{\mathrm{a}} 18 \mathrm{~h}$ of reaction time; ${ }^{\mathrm{b}} 72 \mathrm{~h}$ of reaction time; ${ }^{\mathrm{c}} 60^{\circ} \mathrm{C}$

3. Characterization of complex 5

${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{THF}-d_{8}\right) \delta 7.77(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.82(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, 3.15 (s, 3H), 2.74 (s, 6H).
${ }^{13}$ C NMR (101 MHz, THF) $\delta 218.26,216.55,214.90,213.62,168.47,161.40,141.41,109.20,105.54$, 44.29, 27.46.

HRMS (APCI/QTOF) m/z: [M + Na] ${ }^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{MnN}_{3} \mathrm{NaO}_{5}{ }^{+} 368.0050$; Found 368.0049
IR: $v\left(\mathrm{~cm}^{-1}\right) 1952(\mathrm{~s}$, terminal CO), 1975 (s, terminal CO), and 2072 (s , terminal CO)
Anal. Calcd for $\mathrm{C}_{11} \mathrm{H}_{7} \mathrm{MnN}_{2} \mathrm{O}_{5}$: C, 45.2; H, 3.5; N, 12.2. Found: C, 45.1; H, 3.5; N, 12.0.

Crystal structure

Experimental. Single clear pale yellow plate-shaped crystals of complex 5 were obtained by recrystallisation from THF/pentane at $-22{ }^{\circ} \mathrm{C}$. A suitable crystal of $0.54 \times 0.24 \times 0.16$ mm^{3} was selected and mounted on a suitable support on a SuperNova, Dual, Cu at zero, Atlas diffractometer. The crystal was kept at a steady $T=140.00$ (10) K during data collection. The structure was solved with the ShelXT ${ }^{[6]}$ structure solution program using the dual solution method and by using Olex2 ${ }^{[8]}$ as the graphical interface. The model was refined with version 2018/3 of ShelXL ${ }^{[6]}$ using full matrix least squares on $\mid \boldsymbol{F} \boldsymbol{|}^{\mathbf{2}}$ minimisation.

Crystal Data. $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{MnN}_{3} \mathrm{O}_{5}, M_{r}=345.20$, monoclinic, $P 2{ }_{1} / c$ (No. 14), $\mathrm{a}=13.2766(3) \AA, \mathrm{b}=6.48128(12) \AA, \mathrm{c}=$ $17.8426(4) \AA, \quad \beta=103.307(2)^{\circ}, \quad \alpha=\quad \gamma=90^{\circ}, \quad V=$ 1494.12(5) $\AA^{3}, T=140.00(10) \mathrm{K}, Z=4, Z^{\prime}=1, \mu(\mathrm{CuK} \alpha)=$ 7.447, 9742 reflections measured, 3033 unique ($R_{\text {int }}=0.0260$) which were used in all calculations. The final $w R_{2}$ was 0.0781 (all data) and R_{l} was $0.0285(\mathrm{I}>2(\mathrm{I})$).

Compound	Complex 5
Formula	$\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{MnN}_{3} \mathrm{O}_{5}$
$D_{\text {calc. }} / \mathrm{g} \mathrm{cm}^{-3}$	1.535
μ / mm^{-1}	7.447
Formula Weight	345.20
Colour	clear pale yellow
Shape	plate
Size/mm ${ }^{3}$	$0.54 \times 0.24 \times 0.16$
T/K	140.00(10)
Crystal System	monoclinic
Space Group	$P 2{ }_{1} / \mathrm{c}$
$a /$ Å	13.2766(3)
b/A	6.48128(12)
c/Å	17.8426(4)
$\alpha 1^{\circ}$	90
βl°	103.307(2)
$\gamma{ }^{\circ}$	90
V/A ${ }^{3}$	1494.12(5)
Z	4
Z'	1
Wavelength/Å	1.54184
Radiation type	$\mathrm{CuK} \alpha$
$\Theta_{\text {min }} I^{\circ}$	5.094
$\Theta_{\max } 1^{\circ}$	75.239
Measured Refl.	9742
Independent Refl.	3033
Reflections with I >	2936
2(I)	
$R_{\text {int }}$	0.0260
Parameters	224
Restraints	19
Largest Peak/e \AA^{-3}	0.421
Deepest Hole/e \AA^{-3}	-0.383
GooF	1.057
$w R_{2}$ (all data)	0.0781
$w R_{2}$	0.0772
R_{1} (all data)	0.0294
R_{1}	0.0285

Detailed experimental procedure:
A clear pale yellow plate-shaped crystal with dimensions of $0.54 \times 0.24 \times 0.16 \mathrm{~mm}^{3}$ was mounted on a suitable support. Data were collected using a SuperNova, Dual, Cu at zero, Atlas diffractometer operating at $T=$ 140.00(10) K.

Data were measured using ω scans using $\mathrm{CuK} \alpha$ radiation. The total number of runs and images was based on the strategy calculation from the program CrysAlisPro (Rigaku, V1.171.38.46, 2015). The maximum resolution achieved was $\Theta=75.239^{\circ}(0.83 \AA)$.

The diffraction pattern was indexed. The total number of runs and images was based on the strategy calculation from the program CrysAlisPro (Rigaku, V1.171.38.46, 2015) and the unit cell was refined using CrysAlisPro (Rigaku, V1.171.38.46, 2015) on 5255 reflections, 54% of the observed reflections.

Data reduction, scaling and absorption corrections were performed using CrysAlisPro (Rigaku, V1.171.38.46, 2015). The final completeness is 100.00% out to 75.239° in Θ. A Gaussian absorption correction was performed using CrysAlisPro 1.171.38.46 (Rigaku Oxford Diffraction, 2018) Numerical absorption correction based on Gaussian integration over a multifaceted crystal model/Empirical absorption correction using spherical harmonics as implemented in SCALE3 ABSPACK scaling algorithm.. The absorption coefficient μ of this material is $7.447 \mathrm{~mm}^{-1}$ at this wavelength $(\lambda=1.542 \AA)$ and the minimum and maximum transmissions are 0.197 and 0.766 .

The structure was solved and the space group $P 2_{1} / c$ (\# 14) determined by the ShelXT ${ }^{[6]}$ structure solution program using dual and refined by full matrix least squares on $|\boldsymbol{F}|^{2}$ using version 2018/3 of ShelXL ${ }^{[7]}$. All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model.

There is a single molecule in the asymmetric unit, which is represented by the reported sum formula. In other words: Z is 4 and Z^{\prime} is 1 .

CCDC- 1958229 contains the supplementary crystallographic data for 5 . These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

IR spectrum

Figure S1 IR spectrum of complex 5 in THF solution

4. Characterization of compounds

8j
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.45-7.28(\mathrm{~m}, 5 \mathrm{H}), 7.25-7.17(\mathrm{~m}, 2 \mathrm{H}), 6.81-6.73(\mathrm{~m}, 1 \mathrm{H})$, $6.71-6.63(\mathrm{~m}, 2 \mathrm{H}), 4.36(\mathrm{~s}, 2 \mathrm{H}), 4.08(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13}{ }^{1}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 148.34,139.64,129.49,128.85,127.74,127.45,117.81,113.09,48.55$.

8k
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.32$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$), $7.21(\mathrm{dd}, J=8.5,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.92$ (d, $J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.75(\mathrm{ddd}, J=8.4,6.8,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.28(\mathrm{~s}, 2 \mathrm{H}), 4.01(\mathrm{~s}, 1 \mathrm{H})$, 3.83 (s, 3H).
${ }^{13}{ }^{13}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.98,148.29,131.50,129.36,128.93,117.63,114.14,112.98,55.40$, 47.92.

81
${ }^{1}$ H NMR (400 MHz , Chloroform- d) $\delta 7.36-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.17(\mathrm{~m}, 2 \mathrm{H}), 6.76(\mathrm{tt}, J=7.3,1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.68-6.60(\mathrm{~m}, 2 \mathrm{H}), 4.33(\mathrm{~s}, 2 \mathrm{H}), 4.10(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}^{2}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 147.91,138.10,132.98$, 129.42, 128.86, 128.81, 117.94, 113.03, 47.73.

8m
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.43-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.15-7.08(\mathrm{~m}, 2 \mathrm{H}), 6.71$ $-6.64(\mathrm{~m}, 1 \mathrm{H}), 6.58-6.50(\mathrm{~m}, 2 \mathrm{H}), 4.52(\mathrm{q}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{~s}, 1 \mathrm{H}), 1.55(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 147.36,145.32,129.23,128.76,127.00,125.98,117.40,113.46,53.62$, 25.13.

${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.35-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.07(\mathrm{~m}, 2 \mathrm{H}), 6.92-6.85(\mathrm{~m}, 2 \mathrm{H})$, $6.67(\mathrm{tt}, J=7.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.59-6.50(\mathrm{~m}, 2 \mathrm{H}), 4.47(\mathrm{q}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~s}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$, $1.52(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.61,147.42,137.34,129.21,127.02,117.33,114.12,113.47,55.36$, 52.98, 25.09.

9a
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, Acetonitrile- $\left.d_{3}\right) \delta 7.64-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.05(\mathrm{~m}, 8 \mathrm{H}), 4.68(\mathrm{~s}, 4 \mathrm{H}), 2.27(\mathrm{~s}$, 3 H).
${ }^{13} \mathrm{C}$ NMR (101 MHz , Acetonitrile- d_{3}) $\delta 170.14,158.64(\mathrm{dd}, J=253.9,3.3 \mathrm{~Hz}), 147.27,134.06(\mathrm{t}, J=$ $10.1 \mathrm{~Hz}), 131.02,129.16,114.30(\mathrm{t}, J=16.1 \mathrm{~Hz}), 113.91(\mathrm{dd}, J=19.3,3.6 \mathrm{~Hz}), 53.22$, 21.67.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta-118.50$.

9b
${ }^{1} \mathrm{H}$ NMR (400 MHz, Acetonitrile- d_{3}) $\delta 7.56(\mathrm{tt}, J=8.6,6.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.44-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.27$ (m, 2H), $7.22-7.07(\mathrm{~m}, 4 \mathrm{H}), 4.72(\mathrm{~s}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz , Acetonitrile- d_{3}) $\delta 169.04,158.44$ (dd, $J=254.3,3.2 \mathrm{~Hz}$), 141.52, $134.22(\mathrm{t}, J=$ $10.1 \mathrm{~Hz}), 130.91,130.85,119.97,113.99(\mathrm{dd}, J=19.1,3.6 \mathrm{~Hz}), 113.80(\mathrm{t}, J=16.0 \mathrm{~Hz}), 53.41$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta-118.12$.

9c
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, Acetonitrile $\left.-d_{3}\right) \delta 9.08(\mathrm{~s}, 1 \mathrm{H}), 7.62-7.52(\mathrm{~m}, 4 \mathrm{H}), 7.51-7.37(\mathrm{~m}, 6 \mathrm{H}), 4.58(\mathrm{~s}$, 4H).
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 152.42,136.87,131.02,128.85,119.69,50.03$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta-151.78$.

9d
${ }^{1} \mathrm{H}$ NMR (400 MHz , Acetonitrile- d_{3}) $\delta 9.07(\mathrm{~s}, 1 \mathrm{H}), 7.60-7.53(\mathrm{~m}, 4 \mathrm{H}), 7.52-7.33(\mathrm{~m}, 5 \mathrm{H}), 4.56(\mathrm{~s}$, 4H).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 152.64,136.75,135.75,133.75,131.06,130.96,129.03,121.35,119.79$, 50.18, 50.12.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta-151.71$.

9e
${ }^{1} \mathrm{H}$ NMR (400 MHz , Acetonitrile- d_{3}) $\delta 8.81(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.07(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 4 \mathrm{H})$, 4.50 (s, 4H), 3.84 (s, 6H).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta 160.08,151.71,130.03,121.46,116.02,56.43,50.45$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) δ-151.79.

10a
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}\right.$, Acetonitrile $\left.-d_{3}\right) \delta 7.23(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.01-6.89(\mathrm{~m}, 4 \mathrm{H}), 6.84(\mathrm{q}, J=8.4$, $7.5 \mathrm{~Hz}, 4 \mathrm{H}), 6.07(\mathrm{~s}, 1 \mathrm{H}), 4.10-3.95(\mathrm{~m}, 2 \mathrm{H}), 3.67-3.51(\mathrm{~m}, 2 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz , Acetonitrile- d_{3}) $\delta 159.92$ (dd, $J=247.2,7.8 \mathrm{~Hz}$), 139.30, 138.70, 129.52,
$128.96,125.13(\mathrm{t}, J=10.3 \mathrm{~Hz}), 123.87(\mathrm{t}, J=13.8 \mathrm{~Hz}), 113.00(\mathrm{dd}), 80.05(\mathrm{p}, J=4.5 \mathrm{~Hz}), 51.36(\mathrm{t}, J$ $=3.6 \mathrm{~Hz}), 21.10$.
${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta-119.24$.
HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{~F}_{4} \mathrm{~N}_{2}{ }^{+}$387.1479; Found 387.1478

10b
${ }^{1} \mathrm{H}$ NMR (400 MHz , Acetonitrile- d_{3}) $\delta 7.33$ (dd, $\left.J=8.5,2.1 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.16(\mathrm{dd}, J=8.5,2.1 \mathrm{~Hz}, 2 \mathrm{H})$, $6.98(\mathrm{qd}, J=7.8,7.3,3.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.86(\mathrm{q}, J=8.4,7.3 \mathrm{~Hz}, 4 \mathrm{H}), 6.03(\mathrm{~s}, 1 \mathrm{H}), 4.07-3.94(\mathrm{~m}, 2 \mathrm{H})$, $3.71-3.54$ (m, 2H).
${ }^{13} \mathrm{C}$ NMR (101 MHz , Acetonitrile- d_{3}) $\delta 160.00$ (dd, $J=247.4,7.5 \mathrm{~Hz}$), 140.71, 134.60, 130.67, $128.92,125.58(\mathrm{t}, J=10.3 \mathrm{~Hz}), 123.54(\mathrm{t}, J=13.9 \mathrm{~Hz}), 113.09(\mathrm{dd}), 79.94(\mathrm{p}, J=4.0 \mathrm{~Hz}), 51.47$. ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{CN}$) $\delta-119.26$.
HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{16} \mathrm{ClF}_{4} \mathrm{~N}_{2}{ }^{+}$407.0933; Found 407.0931.

10c
${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform-d) $\delta 7.33(\mathrm{t}, J=7.7 \mathrm{~Hz}, 4 \mathrm{H}), 6.84(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.70(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 4 \mathrm{H}), 4.69(\mathrm{~s}, 2 \mathrm{H}), 3.67(\mathrm{~s}, 4 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.52,129.48,117.77,112.57,65.98,46.60$.
HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{~N}_{2}{ }^{+}$223.1230; Found 223.1225.

10d
${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform- d) $\delta 7.30(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.57(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.62(\mathrm{~s}, 2 \mathrm{H}), 3.63(\mathrm{~h}, J=6.8,6.4 \mathrm{~Hz}$, 4H).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 146.39,145.05,129.52,129.30,122.66,118.00,113.57,112.65$, 66.03, 46.72, 46.62.

HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{ClN}_{2}{ }^{+}$257.0840; Found 257.0846.

10e
${ }^{1} \mathrm{H}$ NMR (400 MHz , Methylene Chloride- d_{2}) $\delta 6.87(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 4 \mathrm{H}), 6.63(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}), 4.54$ ($\mathrm{s}, 2 \mathrm{H}$), $3.75(\mathrm{~s}, 6 \mathrm{H}), 3.57(\mathrm{~s}, 4 \mathrm{H})$.
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 152.57,141.88,115.22,113.81,67.74,56.04,47.78$.
HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}$285.1598; Found 285.1591.

16a
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.44-7.33(\mathrm{~m}, 5 \mathrm{H}), 7.07-6.99(\mathrm{~m}, 2 \mathrm{H}), 6.87(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.81(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 1 \mathrm{H}), 4.22(\mathrm{br}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.32,141.03,136.48,132.49,129.11,127.60,125.31,120.51,117.09$, 115.01, 59.39.

HRMS (APPI/LTQ-Orbitrap) m/z: $\left[\mathrm{M}+\mathrm{H}_{-1}\right]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{NO}_{2}{ }^{+}$224.0706; Found 224.0697.

16b
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.33(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.09-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.89-6.77(\mathrm{~m}, 4 \mathrm{H})$, $5.00(\mathrm{~s}, 1 \mathrm{H}), 4.18(\mathrm{br}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 165.64,160.22,141.14,132.69,128.93,128.53,125.26,120.53,117.13$, 114.98, 114.53, 58.97, 55.48.

HRMS (APCI/QTOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{NO}_{3}{ }^{+}$256.0968; Found 256.0969.

16c
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.45-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.12-6.98(\mathrm{~m}, 4 \mathrm{H}), 6.89(\mathrm{td}, J=7.8,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.83(\mathrm{dd}, J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~s}, 1 \mathrm{H}), 4.21(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.23,164.37,161.91,141.06,132.39,132.24,132.21,129.59,129.50$, 125.39, 120.77, 117.17, 116.22, 116.00, 115.08, 58.82.
${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-112.44$.
HRMS (APPI/LTQ-Orbitrap) m/z: [M + H-1 $]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{FNO}_{2}{ }^{+}$242.0612; Found 242.0601.

${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.18(\mathrm{~s}, 1 \mathrm{H}), 7.15-7.09(\mathrm{~m}, 2 \mathrm{H}), 7.07-6.97(\mathrm{~m}, 2 \mathrm{H}), 6.90-6.83$ $(\mathrm{m}, 1 \mathrm{H}), 6.83-6.76(\mathrm{~m}, 1 \mathrm{H}), 4.99(\mathrm{~s}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.64,141.14,137.75,137.50,133.85,132.68,130.31,128.88,125.23$, 124.95, 120.46, 117.10, 114.97, 59.26, 19.98, 19.65.

HRMS (APCI/QTOF) m/z: [M + H $]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NO}_{2}{ }^{+}$254.1176; Found 254.1176.

16e
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.35-7.26(\mathrm{~m}, 2 \mathrm{H}), 7.28-7.17(\mathrm{~m}, 3 \mathrm{H}), 7.03-6.95(\mathrm{~m}, 2 \mathrm{H}), 6.84$ $(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.66(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{dd}, J=7.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{br}, 1 \mathrm{H}), 2.83$ (hept, J $=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.30(\mathrm{dq}, J=14.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.09(\mathrm{dq}, J=15.0,7.7 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.55,141.24,140.49,132.32,128.88,128.54,126.60,125.09,120.52$, 116.91, 115.34, 54.57, 32.79, 31.87.

HRMS (APCI/QTOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NO}_{2}{ }^{+}$254.1176; Found 254.1174.

${ }^{1} \mathrm{H}$ NMR (400 MHz, Chloroform- d) $\delta 6.98(\mathrm{t}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{~d}, J=7.7$ $\mathrm{Hz}, 1 \mathrm{H}), 3.91(\mathrm{dd}, J=7.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.60-4.25(\mathrm{br}, 1 \mathrm{H}), 2.00-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.77(\mathrm{~h}, J=8.4,8.0$ $\mathrm{Hz}, 1 \mathrm{H}), 1.51-1.27(\mathrm{~m}, 4 \mathrm{H}), 0.92(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.81,141.17,132.50,125.05,120.28,116.83,115.20,54.93,31.04$, 27.45, 22.46, 13.97.

HRMS (APCI/QTOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NO}_{2}{ }^{+}$206.1176; Found 206.1173.

16 g
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.42-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.20(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.04(\mathrm{dd}, J=8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H}), 4.10(\mathrm{dd}, J=11.1,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{br}, 1 \mathrm{H}), 3.34(\mathrm{dd}, J=13.7,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{dd}, J=13.7$, $11.0 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 166.40,141.27,136.00,131.94,129.42,129.29,127.61,125.26,120.55$, 116.99, 115.48, 56.04, 37.08.

HRMS (APCI/QTOF) m/z: [M + H $]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{NO}_{2}{ }^{+}$240.1019; Found 240.1019.

16h
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.03-6.91(\mathrm{~m}, 2 \mathrm{H}), 6.86-6.70(\mathrm{~m}, 2 \mathrm{H}), 3.99(\mathrm{~s}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J$ $=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.09(\mathrm{~m}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.06(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.82,140.87,132.23,125.08,119.92,116.72,114.85,60.55,30.06$, 18.98, 17.74.

HRMS (APPI/LTQ-Orbitrap) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{NO}_{2}{ }^{+}$192.1019; Found 192.1011.

$16 i$
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.49-7.31(\mathrm{~m}, 5 \mathrm{H}), 6.94-6.79(\mathrm{~m}, 2 \mathrm{H}), 6.77-6.61(\mathrm{~m}, 2 \mathrm{H})$, $4.52(\mathrm{dd}, J=8.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{dd}, J=10.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{dd}, J=10.7,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.60-$ 4.20 (br, 1H).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.67,139.22,133.93,128.94,128.46,127.32,121.60,119.10,116.72$, 115.54, 71.06, 54.34.

HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NO}^{+}$212.1070; Found 212.1070.

16j
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.39-7.28(\mathrm{~m}, 2 \mathrm{H}), 6.92(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.89-6.76$ (m, $2 \mathrm{H}), 6.76-6.63(\mathrm{~m}, 2 \mathrm{H}), 4.53-4.40(\mathrm{~m}, 1 \mathrm{H}), 4.40-4.04(\mathrm{~m}, 2 \mathrm{H}), 3.98(\mathrm{t}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}$, 3H).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.79,143.73,133.85,131.13,128.50,121.55,119.20,116.71,115.63$, 114.35, 71.15, 55.48, 53.76.

HRMS (ESI/QTOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NO}_{2}{ }^{+}$242.1176; Found 242.1175.

${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform-d) $\delta 7.36(\mathrm{~m}, 4 \mathrm{H}), 6.90-6.78(\mathrm{~m}, 2 \mathrm{H}), 6.76-6.64(\mathrm{~m}, 2 \mathrm{H}), 4.50(\mathrm{dd}$, $J=8.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-4.40(\mathrm{br}, 1 \mathrm{H}), 4.26(\mathrm{dd}, J=10.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{dd}, J=10.7,8.4 \mathrm{~Hz}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.68,137.75,134.26,133.48,129.15,128.68,121.74,119.44,116.82$, 115.70, 70.80, 53.77.

HRMS (ESI/QTOF) m/z: [M + H] ${ }^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{ClNO}^{+}$246.0680; Found 246.0680.

161
${ }^{1} \mathrm{H}$ NMR (400 MHz , Chloroform- d) $\delta 7.44-7.32(\mathrm{~m}, 5 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.58$ $(\mathrm{d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{~d}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{t}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.55-$ 3.80 (br, 1H)
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.18,138.71,132.55,129.03,128.65,127.31,123.39,121.42,116.92$, 116.09, 70.98, 54.18.

5. Spectra

NMe NMe2 Mn complex.2.fid $13 \mathrm{C}\{1 \mathrm{H}\} \mathrm{cpd}$
NMe NMe2 pure spectra in THF

Complex 5
 \int

9c

$\begin{array}{ll}270 & 260 & 250 & 240 & 230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$ PHJ-B5-123-salt.2.fid
F19CPD

9c
u
e

[^0]

[^1]

$\begin{array}{llllllllllllllllllllllllll}10 & 0 & -10 & -20 & -30 & -40 & -50 & -60 & -70 & -80 & -90 & -100 & -110 & -120 & -130 & -140 & -150 & -160 & -170 & -180 & -190 & -200 & -210\end{array}$

[^2]

9b

$\begin{array}{llllllllllllllllllllllllll}10 & 0 & -10 & -20 & -30 & -40 & -50 & -60 & -70 & -80 & -90 & -100 & -110 & -120 & -130 & -140 & -150 & -160 & -170 & -180 & -190 & -200 & -210\end{array}$

9a

> 9a
> $\begin{array}{llllllllllllllllllllllllll}10 & 0 & -10 & -20 & -30 & -40 & -50 & -60 & -70 & -80 & -90 & -100 & -110 & -120 & -130 & -140 & -150 & -160 & -170 & -180 & -190 & -200 & -210\end{array}$

10d

10d

(10)

00	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10

	1							1	1			T			T			T	
00	190	180	170	160	150	140	130	120	110	$\begin{gathered} 100 \\ \mathrm{f} 1(\mathrm{ppm}) \end{gathered}$	90	80	70	60	50	40	30	20	10

16c

$\begin{array}{ll}280 & 270 & 260 & 250 & 240 & 230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0\end{array}$

[^3]

16I

ul

[^4]
6. HPLC traces

Ee of product 16 was determined by HPLC using chiral column OD-H. Eluents of $\mathrm{iPrOH} /$ hexane (30/70 or 10/90) was used. Racemic samples were prepared via hydrogenation using Pd / C catalyst.

Figure S2 HPLC report of racemic 16a

Figure S3 HPLC report of enantioenriched 16a

16b

Figure S4 HPLC report of racemic 16b

Figure S5 HPLC report of enantioenriched 16b

Figure S6 HPLC report of racemic 16c

Figure S7 HPLC report of chiral 16c

HPLC report of enantioenriched 16 c

16d

Figure S8 HPLC report of racemic 16d

Figure S9 HPLC report of enantioenriched 16d

16e

Figure S10 HPLC report of racemic $\mathbf{1 6 e}$

Figure S11 HPLC report of enantioenriched 16e

Figure S12 HPLC report of racemic $\mathbf{1 6 f}$

Figure S13 HPLC report of racemic $\mathbf{1 6 f}$

Sorted By : Signal
Multiplier: : $\quad 1.0000$
Dilution: : 1.0000
Use Multiplier \& Dilution Factor with ISTDs

Signal 1: DAD1 A, Sig=254,4 Ref=330,100

Figure S14 HPLC report of racemic $\mathbf{1 6 g}$

Figure S15 HPLC report of enantioenriched 16f

Figure S16 HPLC report of racemic $\mathbf{1 6 h}$

Area Percent Report				
Sorted By	:	Signal		
Multiplier:		:	1.0000	
Dilution:		:	1.0000	
Use Multiplier \& D	lution	Factor with	ISTDs	
Signal 1: DAD1 A, Sig=254,4 Ref=off				
Peak RetTime Type $\# \quad[\mathrm{~min}]$	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ 8 \end{gathered}$

Figure S17 HPLC report of enantioenriched 16h

Area Percent Report				
Sorted By	Signal			
Multiplier:		:	1.0000	
Dilution:		:	1.0000	
Use Multiplier \& Dilution Factor with ISTDs				
Signal 1: DAD1 A, Sig=254,4 Ref=off				
Peak RetTime Type	Width	Area	Height	Area
$1 \quad 10.244 \mathrm{BB}$	0.2608	585.28052	29.77947	50.0409
14.087 BB	0.3214	584.32446	21.41022	49.9591

Figure S18 HPLC report of racemic 16i

Figure S19 HPLC report of enantioenriched $\mathbf{1 6 i}$

16j

Sorted By	$:$	Signal	
Multiplier:	$:$	1.0000	
Dilution:		$:$	1.0000

ilution: 1.0000
Signal 1: DAD1 A, Sig=254,4 Ref=off

Figure S20 HPLC report of racemic 16j

Figure S21 HPLC report of enantioenriched 16j

16k

Sorted By $\quad:$	Signal		
Multiplier:		$:$	1.0000
Dilution:		1.0000	
Use Multiplier $\&$	Dilution Factor	with	ISTDs

Signal 1: DAD1 A, Sig=254,4 Ref=off

Peak \#	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$		$\begin{aligned} & \text { Width } \\ & {[\mathrm{min}]} \end{aligned}$	$\begin{gathered} \text { Area } \\ {[\text { mAU*s] }} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \text { \% } \end{gathered}$
1	12.202	BB	0.2845	835.94067	34.64918	50.6863
2	22.538	BB	0.5261	813.30438	18.12062	49.31

Figure S22 HPLC report of racemic 16k

Figure S23 HPLC report of enantioenriched 16k

16I

Figure S24 HPLC report of racemic 161

Figure S25 HPLC report of enantioenriched 161

Reference

[1] K. F. Kalz, A. Brinkmeier, S. Dechert, R. A. Mata, F. Meyer, J. Am. Chem. Soc. 2014, 136, 16626-16634.
[2] M. Hatazawa, N. Yoshie, H. Seino, Inorg. Chem. 2017, 56, 8087-8099.
[3] R. van Putten, E. A. Uslamin, M. Garbe, C. Liu, A. Gonzalez-de-Castro, M. Lutz, K. Junge, E. J. M. Hensen, M. Beller, L. Lefort, E. A. Pidko, Angew. Chem. Int. Ed. 2017, 56, 7531-7534.
[4] S. Elangovan, C. Topf, S. Fischer, H. Jiao, A. Spannenberg, W. Baumann, R. Ludwig, K. Junge, M. Beller, J. Am. Chem. Soc. 2016, 138, 8809-8814.
[5] J. Wang, Z.-H. Zhu, M.-W. Chen, Q.-A. Chen, Y.-G. Zhou, Angew. Chem. Int. Ed. 2019, 58, 1813-1817.
[6] G. M. Sheldrick, Acta Cryst. 2015, A71, 3-8.
[7] G. M. Sheldrick, Acta Cryst. 2015, C71, 3-8.
[8] O. V. Dolomanov, Bourhis, L. J., Gildea, R. J., Howard, J. A. K., Puschmann, H. , J. Appl. Cryst. 2009, 42, 339-341.

[^0]: $\begin{array}{llllllllllllllllllllllllllll}10 & 0 & -10 & -20 & -30 & -40 & -50 & -60 & -70 & -80 & -90 & -100 & -110 & -120 & -130 & -140 & -150 & -160 & -170 & -180 & -190 & -200 & -210\end{array}$

[^1]: $\begin{array}{lll}270 & 260 & 250 & 240 & 230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^2]:

[^3]:

[^4]: $\begin{array}{llllllllllllllllllllllllllllllllllll}260 & 260 & 250 & 240 & 230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -1\end{array}$

