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Abstract—A new scheme for the problem of centralized coded
caching with non-uniform demands is proposed. The distinguish-
ing feature of the proposed placement strategy is that it admits
equal sub-packetization for all files while allowing the users
to allocate more cache to the files which are more popular.
This creates natural broadcasting opportunities in the delivery
phase which are simultaneously helpful for the users who have
requested files of different popularities. For the case of two
files, we propose a new delivery strategy based on interference
alignment which enables each user to decode his desired file
following a two-layer peeling decoder. Furthermore, we extend
the existing converse bounds for uniform demands under uncoded
placement to the nonuniform case. To accomplish this, we
construct N ! auxiliary users, corresponding to all permutations
of the N files, each caching carefully selected sub-packets of the
files. Each auxiliary user provides a different converse bound.
The overall converse bound is the maximum of all these N !
bounds. We prove that our achievable delivery rate for the case
of two files meets this converse, thereby establishing the optimal
expected memory-rate trade-off for the case of K users and two
files with arbitrary popularities under uncoded placement.

Index Terms—Coded Caching, Non-Uniform Demands, Com-
binatorial Design

I. INTRODUCTION

W IRELESS traffic has been dramatically increasing in
recent years, mainly due to the increasing popularity of

video streaming services. Caching is a mechanism for Content
Distribution Networks (CDNs) to cope with this increasing
demand by placing the contents closer to the users during off-
peak hours. The attractive possibility of replacing expensive
bandwidth with cheap memories has caused an outburst of
research in the recent years [1]–[9]. Coded caching [1] is a
canonical formulation of a two-stage communication problem
between a server and many clients which are connected to the
server via a shared broadcast channel. The two stages consist
of filling in the caches of the users during off-peak hours and
transmitting the desired data to them at their request, typically
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during the peak hours. The local caches of the users act as
side information for an instance of the index coding problem
where different users may have different demands. Logically,
if a content is more likely to be requested, it is desirable to
cache more of it during the first stage. Furthermore, by di-
versifying the contents cached at different users, broadcasting
opportunities can be created which are simultaneously helpful
for several users [1].

In general, there exists a trade-off between the amount of
cache that each user has access to and the delivery rate at
the second stage. Significant progress has been made towards
characterizing this trade-off for worst case and average case
demands under uniform file popularities [1]–[3], [10], [11].
The optimal memory-rate region under uncoded placement is
known [3], [12], and the general optimal memory-rate region
has been characterized within a factor of 2 [2]. Furthermore,
many achievability results have been proposed based on coded
placement [11], [13], [14]. Some of these schemes outperform
the optimal caching scheme under uncoded placement [3],
establishing that uncoded placement is in general sub-optimal.

By contrast, the coded caching problem with non-uniform
file popularities, an arguably more realistic model, has re-
mained largely open. The existing achievability schemes
are generally speaking straightforward generalizations of the
caching schemes that are specifically tailored to the uniform
case. Here we briefly review some of these works.

A. Related Work

The main body of work on non-uniform coded caching has
been concentrated around the decentralized paradigm where
there is no coordination among different users [10]. The core
idea here is to partition the files into L groups where the files
within each group have similar popularities [15]. Within each
group, one performs the decentralized coded caching strategy
of [10] as if all the files had the same probability of being
requested. In the delivery phase, coding opportunities among
different groups are ignored and as a result, the total delivery
rate is the sum of the delivery rates for the L partitions. It was
subsequently suggested to use L = 2 groups [16]–[18] and to
allocate no cache at all to the group which contains the least
popular files. This simple scheme was proven to be within
a multiplicative and additive gap of optimal for arbitrary file
popularities [18].

The problem of centralized coded caching with non-uniform
demands has also been extensively studied [19]–[23]. Here, in
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order to create coding opportunities among files with varying
popularities, a different approach has been taken. Each file
is partitioned into 2K subfiles corresponding to all possible
ways that a given subfile can be shared among K users. This
creates coding opportunities among subfiles that are shared
among equal number of users, even if they belong to files with
different popularities. The delivery rate can be minimized by
solving an optimization problem that decides what portion of
each file must be shared among i users, for any i ∈ [0 : K].
It was proven in [21] that if the size of the cache belongs to
a set of base-cases M of size NK + 1, the best approach
is to allocate no cache at all to the least popular files while
treating the other files as if they were equally probable of
being requested. Memory-sharing among such points must be
performed if the cache size is not a member ofM. The set of
base-cases depends on the popularities of the files, the number
of users and the number of files, and can be computed via an
efficient algorithm [21].

The graph-based delivery strategies that are predominantly
used in this line of research [17], [21] are inherently limited,
in that they do not capture the algebraic properties of summa-
tion over finite fields. For instance, one can easily construct
examples where the chromatic-number index coding scheme
in [17] is sub-optimal, even for uniform file popularities.
Suppose we have only one file A = {A1, A2, A3} and 3
users each with a cache of size 1/3 file. Assume user i
caches Ai. In this case, the optimal delivery rate is 2/3 but
the clique-cover (or chromatic-number) approach in [17] only
provides a delivery rate of 1. This is due to the fact that
from A1 ⊕ A2 and A2 ⊕ A3 one can recover A1 ⊕ A3, a
property that the graph-based model in [17] fails to reflect.
This issue was addressed in a systematic manner by Yu et. al.
in [3] which introduced the concept of leaders. Our delivery
scheme in this paper provides an alternative mechanism for
overcoming this limitation, which transcends the uniform file
popularities and can be applied to nonuniform demands. This
is accomplished via interference alignment as outlined in the
proof of achievability of Lemma 1 in Section VI.

In [23] it was proven that a slightly modified version of
the decentralized scheme in [16] is optimal for the centralized
caching problem when we have only two users. In [22], a
centralized caching strategy was proposed for the case where
the number of users K is prime and the case where K divides(
K
t

)
, where

(
K
t

)
is the subpacketization of each file. The

placement scheme allows for equal subpacketization of all
the files while more stringent requirements are imposed for
caching subfiles of less popular files. This concept is closely
related to what was presented in [24] which serves as the
placement scheme for the current paper.

B. Our Contributions

In this paper, we first propose a centralized placement strat-
egy for an arbitrary number of users and files, which allows
for equal subpacketization of all the files while allocating
less cache to the files which are less likely to be requested.
This creates natural coding opportunities in the delivery phase
among all the files regardless of their popularities. Next, we

propose a delivery strategy for the case of two files and an
arbitrary number of users. This delivery strategy consists of
two phases. First, each file is compressed down to its entropy
conditioned on the side information available at the users
who have requested it. Simultaneously, this encoding aims at
aligning the subfiles which are unknown to the users who
have not requested them. In the second phase of the delivery
strategy, the two encoded files are further encoded with an
MDS code and broadcast to the users. Each user will be able to
decode his desired file following a two-layer peeling decoder.
By extending the converse bound for uncoded placement
first proposed in [3] to the non-uniform case, we prove that
our joint placement and delivery strategy is optimal for two
files with arbitrary popularities under uncoded placement. To
summarize, our main contributions are the following:
• A new placement strategy is developed for non-uniform

caching with K users and N files (Section V). This
scheme allows for equal sub-packetization of every file,
while allocating more cache to files that are more popular.
A simple modification of the proposed scheme can be
applied to user-dependent file popularities. More broadly,
the proposed multiset indexing approach to subpacketiza-
tion can be expected to find applications in other coding
problems of combinatorial nature with heterogeneous
objects, such as Coded Data shuffling [25], Coded Map-
Reduce [26], and Fractional Repetition codes [27] for
Distributed Storage.

• An extension of the converse bound under uncoded
placement first proposed in [3] to non-uniform caching
with K users and N files is established (Section VII).

• A new delivery strategy is presented for the case of
two files which relies on source coding and interference
alignment (Section VI). The achievable expected delivery
rate meets the extended converse bound under uncoded
placement, hence establishing the optimal memory-rate
tradeoff for non-uniform demands for the case of two
files. If each file has probability 1/2, this approach leads
to an alternative delivery strategy for uniform caching of
two files, which can be of independent interest.

The rest of the paper is organized as follows. We introduce
the notation used throughout the paper and the formal problem
statement in Sections II and III. In Section IV we will explain
the main ideas behind our caching strategy via a case study.
The general placement and delivery strategy are presented in
Sections V and VI. We will then propose our converse bound
under uncoded placement in Section VII. In Section VIII we
will prove that our proposed caching strategy is optimal for
the case of two files. Finally, in Section IX, we will provide
numerical results, and conclude the paper in Section X.

II. NOTATION

For two integers a, b define
(
a
b

)
= 0 if b < 0 or b > a. For

n+1 non-negative integers a, b1, . . . , bn that satisfy
∑N
i=1 bi =

a, define(
a

b1, . . . , bn

)
=

(
a

b1

)(
a− b1
b2

)
· · ·
(
a−

∑N−1
i=1 bi
bn

)
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=
a!

b1! · · · bn!
. (1)

For a positive integer a define [a] = {1, . . . , a}. For two
integers a, b define [a : b] = {a, a+1, . . . , b}. For two column
vectors u and v denote their vertical concatenation by [u;v].
For a real number a, define bac as the largest integer no greater
than a. Similarly, define dae as the smallest integer no less than
a. For q ∈ R+ and a discrete random variable X with support
X define Hq(X) as the entropy of X in base q:

Hq(X) = −
∑
x∈X

P(X = x) logq P(X = x). (2)

Suppose we have a function f(·) : D → R where D is a
discrete set of points in Rn. Let T be the convex hull of D.
Define

g(t) = Lr→tf(r)

g(·) : T → R (3)

as the lower convex envelope of f(·) evaluated at point t ∈ T .

III. MODEL DESCRIPTION AND PROBLEM STATEMENT

We follow the canonical model in [1] except here we con-
centrate on the expected delivery rate as opposed to the worst
case delivery rate. For the sake of completeness, we repeat the
model description here. We have a network consisting of K
users that are connected to a server through a shared broadcast
link. The server has access to N files W1, . . . ,WN each of
size F symbols over a sufficiently large field Fq . Therefore,
Hq(Wi) ≤ F . Each user has a cache of size M symbols over
Fq . An illustration of the network has been provided in Figure
1. The communication between the server and the users takes
place in two phases, placement and delivery.

In the placement phase, each user stores some function
of all the files Zi = fi(W1, . . . ,WN ), i ∈ [K] in his local
cache. Therefore, for a fixed (normalized) memory size M ,
a placement strategy M consists of K placement functions
Zi = fi(W1, . . . ,WN ), i ∈ [K] such that Hq(Zi) ≤ MF for
all i ∈ [K]. After the placement phase, each user requests
one file from the server. We represent the request of the i’th
user with di ∈ [N ] which is drawn from a known probability
distribution p. Furthermore, the requests of all the users are
independent and identically distributed. After receiving the
request vector d, the server transmits a delivery message
Xd,M,F through the broadcast link to all the users. User i
then computes a function Ŵdi = gi(Xd,M,F , Zi,d) in order
to estimate Wdi . For a fixed placement strategy M, fixed file
size F , and fixed request vector d we say that a delivery rate
of Rd,M,F is achievable if a delivery message Xd,M,F and
decoding functions gi(·), i ∈ [K] exist such that

P(gi(Xd,M,F , Zi,d) 6= Wdi) = 0, ∀i ∈ [N ], (4)

and

Hq(Xd,M,F ) ≤ Rd,M,FF. (5)

For a fixed placement strategy M, we say that an expected
delivery rate R̄M is achievable if there exists a sequence of

Z1
. . . . . . ZK

W1
. . . WN Server

Users

Fig. 1: An illustration of the caching network. A server is
connected to K users via a shared broadcast link. Each user
has a cache of size MF symbols where he can store an
arbitrary function of the files W1, . . . ,WN .

achievable delivery rates {Rd,M,F |d ∈ [N ]K , F ∈ N} such
that

lim sup
F→∞

EdRd,M,F ≤ R̄M. (6)

Finally, for a memory of size M , we say that an expected
delivery rate R̄ is achievable if there exists a placement
strategy M = (Z1, . . . , ZK) with Hq(Zi) ≤ MF for all
i ∈ [K], for which an expected delivery rate of R̄M ≤ R̄
is achievable.
Our goal in this paper is to characterize the minimum expected
delivery rate for all M under the restriction of uncoded
placement. In other words, the placement functions must be
of the form

Zi = fi(W1, . . . ,WN )

= (W1|A1
, . . . ,WN |AN ) for all i ∈ [K], (7)

where Aj ⊆ [F ] for all j ∈ [N ], and Wj |Aj refers to the
subset of symbols of the file Wj which are indexed in the set
Aj .

IV. MOTIVATING EXAMPLE: THE CASE OF FOUR USERS
AND TWO FILES

Consider the caching problem with two files W1 and W2

and K = 4 users. Assume the probability of requesting
W2 is lower than the probability of requesting W1. In this
section we will demonstrate how to find the optimal expected
delivery rate for any memory size for this particular choice
of parameters, while explaining the main principles behind
our joint placement and delivery strategy. We start by fixing
two integers r1, r2 such that 0 ≤ r2 ≤ r1 ≤ K. As we will
see soon, any choice of (r1, r2) corresponds to a particular
(M1,M2) where Mi is the amount of cache that each user
allocates to file Wi, normalized by the size of one file. For
the sake of brevity, we will explain our strategy only for
(r1, r2) = (2, 1). The delivery rate for other possible choices
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Z1 Z2

W1,{1,2},{1},W1,{1,2},{2} W1,{1,2},{2},W1,{1,2},{1}
W1,{1,3},{1},W1,{1,3},{3} W1,{2,3},{2},W1,{2,3},{3}
W1,{1,4},{1},W1,{1,4},{4} W1,{2,4},{2},W1,{2,4},{4}

W2,{1,2},{1} W2,{1,2},{2}
W2,{1,3},{1} W2,{2,3},{2}
W2,{1,4},{1} W2,{2,4},{2}

Z3 Z4

W1,{1,3},{3},W1,{1,3},{1} W1,{1,4},{4},W1,{1,4},{1}
W1,{2,3},{3},W1,{2,3},{2} W1,{2,4},{4},W1,{2,4},{2}
W1,{3,4},{3},W1,{3,4},{4} W1,{3,4},{4},W1,{3,4},{3}

W2,{1,3},{3} W2,{1,4},{4}
W2,{2,3},{3} W2,{2,4},{4}
W2,{3,4},{3} W2,{3,4},{4}

TABLE I: The proposed placement scheme for N = 2 , K =
4, (r1, r2) = (2, 1).

of (r1, r2) will be summarized at the end of this section.
Next, we will characterize the entire (M1,M2, R) region that
can be achieved by our algorithm. Finally, we will illustrate
how to find the optimal choice of (M1,M2) for a particular
cache size M .

Define the parameter S =
(
K
r1

)(
r1
r2

)
. We divide each of

the two files into S subfiles and index them as W1,τ1,τ2 and
W2,τ1,τ2 such that τ2 ⊆ τ1 ⊆ [K] and |τ1| = r1, |τ2| = r2. In
this example, S =

(
4
2

)(
2
1

)
= 12. The 12 subfiles of Wi are

then denoted by Wi,{1,2},{1}, Wi,{1,2},{2}, Wi,{1,3},{1},
Wi,{1,3},{3}, Wi,{1,4},{1}, Wi,{1,4},{4}, Wi,{2,3},{2},
Wi,{2,3},{3}, Wi,{2,4},{2}, Wi,{2,4},{4}, Wi,{3,4},{3},
Wi,{3,4},{4}. In our placement strategy, user j stores
the subfiles W1,τ1,τ2 for which j ∈ τ1, as well as the subfiles
W2,τ1,τ2 for which j ∈ τ2. Since τ2 ⊆ τ1, the users naturally
store fewer subfiles of W2 than W1. In our running example,
each user stores six subfiles of W1 but only three subfiles of
W2. The cache contents of each user has been summarized
in Table I.

Note that this placement scheme results in a memory of
size M = 3

4 . As we will see soon, the memory size is in
general M =

∑N
i=1Mi where Mi = ri

K is the amount of
cache dedicated by each user to file Wi. It is important to
note that despite the fact that each user has allocated more
cache to file W1, all the subfiles are of equal size. This is a
key property of the proposed placement scheme which allows
us to efficiently transmit messages in the delivery phase which
are simultaneously helpful for users who have requested files
of different popularities.

Let us now turn to the delivery phase. To make matters
concrete, let us suppose that the first three users have de-
manded W1 and the last user is interested in W2. Therefore,
our demand vector is d = (1, 1, 1, 2). We define Ωi as the
subset of users who have requested file Wi. In this case,
Ω1 = {1, 2, 3} and Ω2 = {4}.

For the delivery phase, we construct a compressed de-
scription W ∗i for each file Wi. For users in Ωi recovering
W ∗i implies recovering Wi, that is, Hq(Wi|W ∗i , Zj) = 0.
Moreover, among all W ∗i that satisfy this property, our par-
ticular construction minimizes both maxj∈Ωi Hq(W

∗
i |Zj) and

maxj /∈Ωi Hq(W
∗
i |Zj) at the same time. The general construc-

tion of W ∗i is presented in Section VI, along with proofs

of its properties. For the example at hand, our construction
specializes to

W ∗1 =
[
W ∗1,{4},{4};W

∗
1,{4},{};W

∗
1,{},{}

]
, (8)

where

W ∗1,{4},{4} =
[
W
∗(1)
1,{4},{4};W

∗(2)
1,{4},{4}

]
,

W ∗1,{4},{} =
[
W
∗(1)
1,{4},{};W

∗(2)
1,{4},{}

]
,

W ∗1,{},{} =
[
W
∗(1)
1,{},{};W

∗(2)
1,{},{}

]
, (9)

and

W
∗(1)
1,{4},{4} = W1,{1,4},{4} +W1,{2,4},{4} +W1,{3,4},{4},

W
∗(2)
1,{4},{4} = W1,{1,4},{4} + 2W1,{2,4},{4} + 3W1,{3,4},{4},

W
∗(1)
1,{4},{} = W1,{1,4},{1} +W1,{2,4},{2} +W1,{3,4},{3},

W
∗(2)
1,{4},{} = W1,{1,4},{1} + 2W1,{2,4},{2} + 3W1,{3,4},{3},

W
∗(1)
1,{},{} = W1,{1,2},{1} +W1,{1,2},{2} +W1,{1,3},{1}

+W1,{1,3},{3} +W1,{2,3},{2} +W1,{2,3},{3},

W
∗(2)
1,{},{} = W1,{1,2},{1} + 2W1,{1,2},{2} +W1,{1,3},{1}

+ 2W1,{1,3},{3} +W1,{2,3},{2} + 2W1,{2,3},{3}.
(10)

Therefore, the subfiles of W ∗1 are W
∗(1)
1,{4},{4},W

∗(2)
1,{4},{4},

W
∗(1)
1,{4},{},W

∗(2)
1,{4},{},W

∗(1)
1,{},{},W

∗(2)
1,{},{}. We can represent this

in matrix form as follows.

W ∗1 =


0 0 0 0 0 1 0 0 0 1 0 1
0 0 0 0 0 1 0 0 0 2 0 3
0 0 0 0 1 0 0 0 1 0 1 0
0 0 0 0 1 0 0 0 2 0 3 0
1 1 1 1 0 0 1 1 0 0 0 0
1 2 1 2 0 0 1 2 0 0 0 0





W1,{1,2},{1}
W1,{1,2},{2}
W1,{1,3},{1}
W1,{1,3},{3}
W1,{1,4},{1}
W1,{1,4},{4}
W1,{2,3},{2}
W1,{2,3},{3}
W1,{2,4},{2}
W1,{2,4},{4}
W1,{3,4},{3}
W1,{3,4},{4}



.

(11)

If a user in Ω1 successfully receives W ∗1 , he can, with the
help of side information already stored in his cache, recover
the entire W1. For instance, user 1 only needs to solve
the following set of equations for W1,{2,3},{2},W1,{2,3},{3},
W1,{2,4},{2}, W1,{2,4},{4},W1,{3,4},{3},W1,{3,4},{4}.

W
∗(1)
1,{4},{4}

W
∗(2)
1,{4},{4}

W
∗(1)
1,{4},{}

W
∗(2)
1,{4},{}

W
∗(1)
1,{},{}

W
∗(2)
1,{},{}


−


0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 0 1 0
1 1 1 1 0 0
1 2 1 2 0 0




W1,{1,2},{1}
W1,{1,2},{2}
W1,{1,3},{1}
W1,{1,3},{3}
W1,{1,4},{1}
W1,{1,4},{4}





5

=


0 0 0 1 0 1
0 0 0 2 0 3
0 0 1 0 1 0
0 0 2 0 3 0
1 1 0 0 0 0
1 2 0 0 0 0




W1,{2,3},{2}
W1,{2,3},{3}
W1,{2,4},{2}
W1,{2,4},{4}
W1,{3,4},{3}
W1,{3,4},{4}

 . (12)

This is possible since user 1 knows the left-hand side of the
equation, and the matrix on the right hand-side is invertible.
Therefore, our goal boils down to transferring the entire W ∗1 to
all the users in Ω1. Following a similar process, we construct
the description W ∗2 as follows

W ∗2 =
[
W ∗2,{1},{1};W

∗
2,{2},{2};W

∗
2,{3},{3};

W ∗2,{1,2},{1};W
∗
2,{1,2},{2};W

∗
2,{1,3},{1};

W ∗2,{1,3},{3};W
∗
2,{2,3},{2};W

∗
2,{2,3},{3}

]
, (13)

where

W ∗2,{i},{i} = W2,{i,4},{i} ∀i ∈ {1, 2, 3},
W ∗2,{i,j},{i} = W2,{i,j},{i} ∀(i, j) s.t. i, j ∈ [3], i 6= j. (14)

That is, in this example, W ∗2 consists of the subfiles of W2

which are unknown to user 4. Again, transferring the entire
W ∗2 to user 4, guarantees his successful recovery of W2.

To simplify matters, we will require every user in [K] to
recover the entire [W ∗1 ;W ∗2 ]. In order to accomplish this, we
transmit C[W ∗1 ;W ∗2 ] over the broadcast link. The matrix C
here is an MDS matrix of 12 rows and 15 columns. The
number of rows of this matrix is determined by the maximum
number of subfiles of [W ∗1 ;W ∗2 ] which are unknown to any
given user. In this example, a user in Ω1 has precisely 12
unknowns in [W ∗1 ;W ∗2 ] (6 subfiles of W ∗1 and 6 subfiles of
W ∗2 ). On the other hand, a user in Ω2 knows 4 out of the 6
subfiles of W ∗1 . Therefore, a total of 11 subfiles of [W ∗1 ;W ∗2 ]
are unknown to him. Hence, the matrix C must have 12 rows.
Once a user in [K] receives C[W ∗1 ;W ∗1 ], he can remove the
columns of C which correspond to the subfiles he already
knows. The resulting matrix will be square (or overdetermined)
which is invertible owing to the MDS structure of C. This will
allow every user to decode [W ∗1 ;W ∗2 ]. Subsequently, each user
in Ωi can proceed to decode Wi with the help of his side
information. Recall that we started by dividing each file into
12 subfiles, and the delivery message consists of 12 linear
combinations of such subfiles. Therefore, the delivery rate for
this particular request vector is R = 1.

As we will see in the next section, the delivery rate of
our strategy only depends on the request vector d through
N = Range(d), the set of indices of all the files that have
been requested at least once. Therefore, we showed that with
N = 2,K = 4, (r1, r2) = (2, 1), and assuming N = {1, 2},
we can achieve a delivery rate of R = 1. We can perform the
same process for every choice of (r1, r2) ∈ Z2 that satisfies
0 ≤ r2 ≤ r1 ≤ K. The result is summarized in Table II. Note
that if N = {i}, the delivery rate is simply 1− ri

K .

N
(r1, r2) (0, 0) (1, 0) (1, 1) (2, 0) (2, 1)

{1, 2} 2 7/4 5/4 3/2 1
{1} 1 3/4 3/4 1/2 1/2
{2} 1 1 3/4 1 3/4

N
(r1, r2) (2, 2) (3, 0) (3, 1) (3, 2) (3, 3)

{1, 2} 2/3 5/4 3/4 1/2 1/4
{1} 1/2 1/4 1/4 1/4 1/4
{2} 1/2 1 3/4 1/2 1/4

N
(r1, r2) (4, 0) (4, 1) (4, 2) (4, 3) (4, 4)

{1, 2} 1 3/4 1/2 1/4 0
{1} 0 0 0 0 0
{2} 1 3/4 1/2 1/4 0

TABLE II: The set of delivery rates of our proposed scheme
for all possible choices of 0 ≤ r2 ≤ r1 ≤ K and all possible
N ⊆ [N ]. We have N = 2 and K = 4.

By performing memory-sharing among all such points, we
are able to achieve the lower convex envelope of the points in
Table II. The expected delivery rate as a function of (r1, r2)
for a probability distribution of (p1, p2) = (0.8, 0.2) has been
plotted in Figure 2. Note that the dotted half of the figure
where r2 > r1 would correspond to switching the roles of
the two files W1 and W2 and allocating more cache to the
less popular file. The next question is how to find the best
delivery rate for a particular cache size M. For this, we first
have to restrict Figure 2 to the trajectory r1 + r2 = MK. As
an example, we have plotted the thick red curve on the figure
which corresponds to r1 + r2 = 3 (or M = 3/4). In order to
find the best caching strategy for a cache size of M = 3/4,
we need to choose the global minimum of this red curve.
This can be done efficiently due to the convexity of the curve,
and as we will see in Section VIII-A, can be even performed
via binary search over the set of break points of the curve.
As marked on the figure with a red circle, for this particular
example with K = 4, N = 2, (p1, p2) = (0.8, 0.2),M = 3/4,
the expected delivery rate is 0.79 which can be achieved by
allocating a cache of size M1 = r1/K = 0.5 to file W1 and
M2 = r2/K = 0.25 to file W2. Theorem 3 from Section VIII
will tell us that under the restriction of uncoded placement,
this is the best expected delivery rate that one can achieve for
the given (K,N,p,M).

V. THE PLACEMENT STRATEGY

In this section we describe our general placement strategy.
Note that our placement strategy can be applied to an arbitrary
number of files and users and can even be adapted to user-
specific file popularities (see Remark 2). Without loss of
generality, suppose that the files are indexed in decreasing
order of their popularity. In other words, file Wi is at least
as popular as file Wi+1 for all i ∈ [N − 1]. The placement
strategy begins with selecting integers r1, . . . , rN such that
0 ≤ rN ≤ · · · ≤ r1 ≤ K. Each ri is proportional to the
amount of cache that we are willing to allocate to file Wi. We
divide each file into

S =

(
K

rN , rN−1 − rN , . . . , r1 − r2,K − r1

)
(15)
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Fig. 2: The expected delivery rate for the caching problem
with 4 users and 2 files versus (r1, r2). The probabilities of
the two files are 0.8 and 0.2 respectively. The thick red curve
determines the set of (r1, r2) which results in a cache of size
M = 3/4. The red circle on the curve is the minimizer of
the red curve, which provides the optimal delivery rate under
uncoded placement for the given (K,N,p,M).

subfiles of equal size. We label each subfile by N sets
τ1, . . . , τN where |τj | = rj for j ∈ [N ] and τj ⊆ τj−1 for
j ∈ [2 : N ] and τ1 ⊆ [K]. It should be evident that there
are exactly S such subfiles. Next, for file Wi, we require each
user k to store the subfile Wi,τ1,...,τN if and only if k ∈ τi.
This process has been summarized in Algorithm 1, and an
illustration for the case of N = 2 has been provided in Figure
3. We can compute the amount of cache dedicated by each
user to file i as follows

Mi =

(
K−r2
r1−r2

)
× · · · ×

(
K−ri
ri−1−ri

)(
K−1
ri−1

)(
ri
ri+1

)
× · · · ×

(
rN−1

rN

)
S

=

(
K−r2
r1−r2

)
× · · · ×

(
K−ri
ri−1−ri

)(
K−1
ri−1

)(
ri
ri+1

)
× · · · ×

(
rN−1

rN

)(
K−r2
r1−r2

)
× · · · ×

(
K−ri
ri−1−ri

)(
K
ri

)(
ri
ri+1

)
× · · · ×

(
rN−1

rN

)
=
ri
K
. (16)

This results in a total normalized cache size of

M =

N∑
i=1

Mi =

∑N
i=1 ri
K

. (17)

Remark 1. In the special case of r1 = · · · = rN , all the sets
τi will be equal, and can be represented by only one set τ .
In this case, our placement phase is equivalent to the uniform
placement strategy proposed in [1].
Remark 2. More generally, each user j could choose a
permutation π : [N ] → [N ] and store file Wi,τ1,...,τN if
and only if j ∈ τπ(i). This would allow different users
to have different preferences in terms of the popularities of
the files, while still keeping all the cache sizes equal, and
maintaining the same sub-packetization for all files. To provide
a simple example, suppose we have two users and two files
W1 and W2 with (r1, r2) = (2, 1) resulting in a cache size

[K]
τ1

τ2

Cache W1,τ1,∗

Cache W2,τ1,τ2

Fig. 3: Van Diagram of the placement strategy for the case
of two files. Users whose indices appear in τ1 cache W1,τ1,τ2

for all τ2 ⊆ τ1, |τ2| = r2. Users whose indices appear in τ2
cache W2,τ1,τ2 .

of M = 3/2. In this case, user 1 could cache W1,{1,2},{1}
and W1,{1,2},{2} but only W2,{1,2},{1}. On the other hand,
user 2 could cache W2,{1,2},{1} and W2,{1,2},{2} but only
W1,{1,2},{2}. This caching scheme preserves the property that
each file has the same number of subfiles, while allowing each
user to give higher priority to a different file.

Algorithm 1 The Placement Strategy for N files and K users

Input: (W1, . . . ,WN ), (r1, . . . , rN ),K
Output: The placement contents (Z1, . . . , ZK).

1: S =
(

K
rN ,rN−1−rN ,...,r1−r2,K−r1

)
.

2: Break each file Wi into S non-overlapping subfiles of
equal size and index them as

Wi = {Wi,τ1,...,τN |τN ⊆ · · · ⊆ τ1 ⊆ [K], |τj | = rj ,

∀j ∈ [N ]} .

3: for i ∈ [K] do
4: Zi = {Wj,τ1,...,τN | for all j ∈ [N ] and all (τ1, . . . , τN )

such that i ∈ τj} .
5: end for
6: Return (Z1, . . . , ZK).

Remark 3. The combinatorial designs in the Maddah-Ali and
Niesen placement strategy [1] have recently been used in
other closely related fields such as Coded Data Shuffling [25]
and Coded Map-Reduce [26]. Despite being very useful at
capturing the symmetric commonalities of different objects,
it is not trivial how one can systematically generalize this
combinatorial design to heterogeneous networks. We believe
that our proposed multiset indexing tool provides a flexi-
ble, yet systematic extension of this scheme to asymmetric
settings. For instance, consider a uniform caching problem
with heterogeneous cache sizes. Let us assume that we have
S different cache sizes M1, · · · ,MS . Define (r1, · · · , rS) =
(KM1

N , · · · , KMS

N ) and for simplicity assume ri ∈ Z. Divide
each file Wi into subfiles of equal size Wi,τ1,··· ,τS such that
|τj | = rj , τj ⊆ τj−1 and τ1 ⊆ [K]. We could then let the
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users with cache size Mj store Wi,τ1,··· ,τS for all i ∈ [N ]
if and only if their indices are in τj . As a second example,
suppose we want to design a Fractional Repetition code [27]
for distributed storage where some servers store more data
than the others, and play a central role in the data-recovery
criterion or the repair process in a distributed storage network.
Again, one can systematically design such a storage code with
the proposed multiset-indexing framework.

VI. DELIVERY STRATEGY FOR N = 2

Let Ω1,Ω2 ⊆ [K] represent the subsets of the users that
have requested files W1 and W2, respectively. Therefore Ω1∩
Ω2 = ∅ and Ω1 ∪ Ω2 = [K]. Also define K1 = |Ω1| and
K2 = |Ω2| = K −K1. Note that if K1 = 0, a delivery rate
of R = 1− r2

K can be trivially achieved. Similarly, if K2 = 0,
we can achieve a delivery rate of R = 1 − r1

K . Let us now
assume that both files have been requested.

The general idea behind the delivery scheme is as follows.
First, we encode each file Wi, i ∈ [2] as W ∗i in such a way that
decoding W ∗i provides enough information for each user in Ωi
to decode Wi. In other words, we want that Hq(Wi|Zj ,W ∗i ) =
0 for all j ∈ Ωi, i ∈ [2]. The server transmits sufficient
information for all the users in [K] to recover both W ∗1 and
W ∗2 . Subsequently, each user in Ωi proceeds to recover Wi

based on W ∗i and the contents of his cache. Moreover, the
goal is for W ∗i to have a significant overlap with the cache
of the users outside Ωi, i.e., maxj∈[K]\Ωi Hq(W

∗
i |Zj) is as

small as possible. The following lemma lays the foundation
for our search for the ideal W ∗1 and W ∗2 .

Lemma 1. Suppose Ω1 6= ∅ and Ω2 6= ∅. For each i ∈ [2],
assume W ∗i satisfies

Hq(Wi|W ∗i , Zj) = 0, ∀j ∈ Ωi. (18)

Then W ∗i must satisfy

max
m∈Ωi

Hq(W
∗
i |Zm) ≥

(
K−1
ri

)(
K
ri

) F (19)

and

max
`∈[K]\Ωi

Hq(W
∗
i |Z`) ≥

(
K−2
ri

)(
K
ri

) F. (20)

Furthermore, there exist W ∗1 and W ∗2 that satisfy Equations
(18), (19) and (20) with equality.

Proof of converse: To prove Equation (19), note that

Hq(W
∗
i |Zm) = Hq(W

∗
i , Zm|Zm) ≥ Hq(Wi|Zm). (21)

But, Hq(Wi|Zm) is the number of subfiles of Wi unknown to
user m, multiplied by the size of one subfile, which is given
by

Hq(Wi|Zm) =

∏i−1
j=1

(
K−rj+1

rj−rj+1

)(
K−1
ri

)∏N
j=i+1

(
rj−1

rj

)∏i−1
j=1

(
K−rj+1

rj−rj+1

)(
K
ri

)∏N
j=i+1

(
rj−1

rj

) F

=

(
K−1
ri

)(
K
ri

) F. (22)

To prove Equation (20), let us concentrate on one arbitrary
pair (m, `) where m ∈ Ωi and ` ∈ [K]\Ωi.

Hq(W
∗
i |Z`) ≥ Hq(W

∗
i |Z`, Zm) = Hq(W

∗
i , Zm|Z`, Zm)

(a)

≥ Hq(Wi|Z`, Zm)
(b)
=

(
K−2
ri

)(
K
ri

) F, (23)

where (a) follows from Equation (18) and (b) is due to
our placement strategy. To see why (b) holds, note that
Hq(Wi|Z`, Zm) is the number of subfiles of Wi unknown to
both users ` and m, multiplied by the size of one subfile. This
is given by

Hq(Wi|Z`, Zm) =

∏i−1
j=1

(
K−rj+1

rj−rj+1

)(
K−2
ri

)∏N
j=i+1

(
rj−1

rj

)∏i−1
j=1

(
K−rj+1

rj−rj+1

)(
K
ri

)∏N
j=i+1

(
rj−1

rj

) F

=

(
K−2
ri

)(
K
ri

) F. (24)

Most of this section will be dedicated to constructing W ∗1
and W ∗2 that satisfy the achievability part of Lemma 1. Once
we have designed such W ∗1 and W ∗2 , we will construct a
delivery message that helps all the users decode both.

Let (ρ1, ρ2) be an arbitrary pair of sets such that ρ2 ⊆
ρ1 ⊆ Ω1 and si

4
= |ρi| ≤ ri for i ∈ [2]. Let W2,ρ1,ρ2

be a
column vector whose elements are the subfiles of W2 of the
form W2,ρ1∪x1,ρ2∪x2

for all x2 ⊆ x1 ⊆ Ω2. The order of the
elements in W2,ρ1,ρ2

is immaterial, as long as it is known to
the users. This vector has κ2(s1, s2) elements where

κ2(s1, s2) =

(
K2

r2 − s2

)(
K2 − (r2 − s2)

r1 − s1 − (r2 − s2)

)
. (25)

However, note that each user in Ω2 knows all but θ2(s1, s2)
elements of W2,ρ1,ρ2

where

θ2(s1, s2) =

(
K2 − 1

r2 − s2

)(
K2 − (r2 − s2)

r1 − s1 − (r2 − s2)

)
=
K2 − (r2 − s2)

K2
κ2(s1, s2). (26)

From the perspective of a user in Ω1, the story is entirely
different. He either knows the entire W2,ρ1,ρ2

(if his index is
in the set ρ2) or he does not know anything about W2,ρ1,ρ2

.
We shall encode the vector W2,ρ1,ρ2

of length κ2(s1, s2) as a
new vector W ∗2,ρ1,ρ2

of length θ2(s1, s2) in such a way that
decoding W ∗2,ρ1,ρ2

enables each user in Ω2 to decode W2,ρ1,ρ2 .
By doing so, we are simultaneously aligning the subfiles of W2

which are unknown to the users in Ω1 to the extent possible.
Let C2,s1,s2 be an arbitrary MDS matrix with θ2(s1, s2) rows

and κ2(s1, s2) columns. We know that if we remove any of
κ2(s1, s2)−θ2(s1, s2) columns of C2,s1,s2 , the resulting square
matrix is invertible. Define

W ∗2,ρ1,ρ2
= C2,s1,s2W2,ρ1,ρ2

. (27)
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Let W ∗2 be a vertical concatenation of all the vectors W ∗ρ1,ρ2

for all (ρ1, ρ2). Let us calculate the length of the vector W ∗2 .

length(W ∗2 ) =
∑

ρ2⊆ρ1⊆Ω1

θ2(|ρ1|, |ρ2|)

=
∑
s1,s2

(
K1

s2

)(
K1 − s2

s1 − s2

)
θ2(s1, s2)

=
∑
s1,s2

(
K1

s2

)(
K2 − 1

r2 − s2

)(
K1 − s2

s1 − s2

)(
K2 − (r2 − s2)

(r1 − r2)− (s1 − s2)

)
=
∑
s2

(
K1

s2

)(
K2 − 1

r2 − s2

)∑
s3

(
K1 − s2

s3

)(
K2 − (r2 − s2)

(r1 − r2)− s3

)
(a)
=

(
K − 1

r2

)(
K − r2

r1 − r2

)
= S

(
K−1
r2

)(
K−r2
r1−r2

)(
K
r2

)(
K−r2
r1−r2

) = S

(
K−1
r2

)(
K
r2

) .

(28)

where we have defined s3 = s1 − s2, and (a) follows from
applying the Vandermonde identity to each summation. We
can also compute the number of subfiles in W ∗2 which are
unknown to a user j ∈ Ω1 as

ej =
∑

ρ2⊆ρ1⊆Ω1
j 6∈ρ2

θ2(|ρ1|, |ρ2|)

=
∑

ρ2⊆ρ1⊆Ω1

(
K1 − 1

s2

)(
K1 − s2

s1 − s2

)
θ2(s1, s2)

=
∑
s1,s2

(
K1 − 1

s2

)(
K2 − 1

r2 − s2

)(
K1 − s2

s1 − s2

)(
K2 − r2 + s2

r1 − r2 − s1 + s2

)
=
∑
s2

(
K1 − 1

s2

)(
K2 − 1

r2 − s2

)∑
s3

(
K1 − s2

s3

)(
K2 − r2 + s2

r1 − r2 − s3

)

=

(
K − 2

r2

)(
K − r2

r1 − r2

)
= S

(
K−2
r2

)(
K−r2
r1−r2

)(
K
r2

)(
K−r2
r1−r2

) = S

(
K−2
r2

)(
K
r2

) .

(29)

It is not difficult to see that Hq(W
∗
2 |Zj) = ej

F
S which matches

the lower-bound presented in Lemma 1, Equation (20). Fur-
thermore, Hq(W

∗
2 |Zm) for m ∈ Ω2 is upper-bounded by

length(W ∗2 )FS which matches Equation (19). Quite similarly,
by reversing the roles of the two files in the description above,

one can find a column vector W ∗1 of length S
(K−1
r1

)
(Kr1)

with

S
(K−2
r1

)
(Kr1)

subfiles unknown to any user in Ω2. This also serves

as a proof for the achievability part of Lemma 1. Now that we
defined W ∗1 and W ∗2 , it is left to construct a delivery message
that enables all the users in [K] to decode both. To accomplish
this, we construct the delivery message as

Xd = C[W ∗1 ;W ∗2 ], (30)

where C represent an MDS matrix with

Smax

{
(K−1
r2

)
(Kr2)

+
(K−2
r1

)
(Kr1)

,
(K−1
r1

)
(Kr1)

+
(K−2
r2

)
(Kr2)

}
rows and

S

(
(K−1
r1

)
(Kr1)

+
(K−1
r2

)
(Kr2)

)
columns. Note that the number of

rows of C is chosen to be the maximum number of subfiles of

[W ∗1 ;W ∗2 ] unknown to any user in [K]. The resulting delivery
rate is

R = max

{(
K−1
r2

)(
K
r2

) +

(
K−2
r1

)(
K
r1

) ,

(
K−1
r1

)(
K
r1

) +

(
K−2
r2

)(
K
r2

) } . (31)

The delivery strategy has been summarized in Algorithm 2.

Algorithm 2 The Delivery Strategy for N = 2 files and K
users

Input: (W1,W2), (r1, r2),d,K
Output: The delivery message Xd.

1: Ω1 = {i ∈ [K]|di = W1} and Ω2 = [K]\Ω1.
2: Ki = |Ωi| for i ∈ {1, 2}.
3: for i ∈ [2] do
4: if Ωi = [K] then
5: R = K−ri

K .
6: Let C be an SR by S MDS matrix.
7: Return Xd = CWi.
8: end if
9: end for

10: for i ∈ [2] do
11: for s1 ∈ [0 : min{r1, |Ω[2]\{i}|}] do
12: for s2 ∈ [0 : min{r2, s1}] do
13: κi(s1, s2) =

(
Ki

r2−s2

)(
Ki−(r2−s2)

r1−s1−(r2−s2)

)
.

14: θi(s1, s2) = Ki−(ri−si)
Ki

κi(s1, s2).
15: Let Ci,s1,s2 be a θi(s1, s2) by κi(s1, s2) MDS

matrix.
16: for ρ1 ⊆ Ω[2]\{i} s.t. |ρ1| = s1 do
17: for ρ2 ⊆ ρ1 s.t. |ρ2| = s2 do
18: Let Wi,ρ1,ρ2

be a vertical concatenation
of the subfiles {Wi,ρ1∪x1,ρ2∪x2 |x2 ⊆
x1 ⊆ Ωi}.

19: W ∗i,ρ1,ρ2
= Ci,s1,s2Wi,ρ1,ρ2

.
20: end for
21: end for
22: end for
23: end for
24: end for
25: R = max

{
(K−1
r2

)
(Kr2)

+
(K−2
r1

)
(Kr1)

,
(K−1
r1

)
(Kr1)

+
(K−2
r2

)
(Kr2)

}
.

26: Let C be a SR by S
(

(K−1
r1

)
(Kr1)

+
(K−1
r2

)
(Kr2)

)
MDS matrix.

27: for i ∈ [2] do
28: Let W ∗i be a vertical concatenation of the vectors{

W ∗i,ρ1,ρ2
|ρ2 ⊆ ρ1 ⊆ Ω[2]\{i}

}
.

29: end for
30: Return Xd = C[W ∗1 ;W ∗2 ].

A. Correctness

In this section we prove the correctness of Algorithm 2 by
establishing that upon receiving Xd every user will be able
to recover his requested file. The decoding process for each
user is done in two phases reminiscent of a peeling algorithm.
In the first phase, each user decodes both W ∗1 and W ∗2 . In
the second phase, each user i discards W ∗

d̄i
where d̄i is the
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index of the file that has not been requested by user i. He
then proceeds to decode Wdi using only W ∗i and the side
information stored in his cache.

Decoding Step 1: First let us show that after receiving Xd,
every user can recover the entire [W ∗1 ;W ∗2 ]. Remember that

C is an MDS matrix with SR rows and S
(

(K−1
r1

)
(Kr1)

+
(K−1
r2

)
(Kr2)

)
columns. Let γi represent the set of columns of C correspond-
ing to the elements of [W ∗1 ;W ∗2 ] which user i already knows
from the side information available in his cache. Let Cγ̄i rep-
resent the submatrix of C obtained by removing the columns
indexed in γi. If this matrix is square (or overdetermined), user
i will be able to invert it and recover [W ∗1 ;W ∗2 ]. Therefore,

we need to prove that |γi| ≥ S
(

(K−1
r1

)
(Kr1)

+
(K−1
r2

)
(Kr2)

)
−SR. This

inequality directly follows from Equations (28), (29) and (31):

|γi| = S

(
K−1
rd̄i

)
(
K
rd̄i

) − S
(
K−2
rd̄i

)
(
K
rd̄i

)
≥ Smin

{(
K−1
r1

)(
K
r1

) − (K−2
r1

)(
K
r1

) ,

(
K−1
r2

)(
K
r2

) − (K−2
r2

)(
K
r2

) }

= S

((
K−1
r1

)(
K
r1

) +

(
K−1
r2

)(
K
r2

) )− SR. (32)

Decoding Step 2: Now we show that if a user in Ω1 has
the entire W ∗1 , he can decode it for W1. Similarly, if a user in
Ω2 has the entire W ∗2 , he can recover W2. It should however
be noted that users in Ωdi will not be able to recover Wd̄i .
The proof idea is very similar to Step 1. Remember that
W ∗1 = {W ∗1,ρ1,ρ2

|ρ2 ⊆ ρ1 ⊆ Ω2}. We will show that once
a user in Ω1 has access to W ∗1,ρ1,ρ2

he will be able to decode
{W1,ρ1∪x1,ρ2∪x2

|x2 ⊆ x1 ⊆ Ω1} for all ρ2 ⊆ ρ1 ⊆ Ω2. To see
why, note that W ∗1,ρ1,ρ2

= C1,s1,s2W1,ρ1,ρ2
where si = |ρi|.

The matrix C1,s1,s2 is an MDS matrix with θ1(s1, s2) rows
and κ1(s1, s2) columns. The number of subfiles of W1,ρ1,ρ2

unknown to user i ∈ Ω1 is equal to θ1(s1, s2). User i can thus
discard the remaining κ(s1, s2)−θ1(s1, s2) columns of C1,s1,s2
and invert the resulting square matrix in order to recover his
unknowns.

B. Expected Achievable Rate

To summarize, we characterized the delivery strategy for
every choice of (M1,M2) of the form Mi = ri

K with ri ∈
[0 : K], and a non-trivial request vector. Two questions are
left to be addressed. First, what if MiK is not an integer, and
second, for a fixed total cache size of M , what are the optimal
values of M1 and M2? To answer the first question, we observe
that the lower convex envelope of all the points (M1,M2, R)
with MiK ∈ Z is achievable by simply performing memory-
sharing among such points. If (M1K,M2K) is not a pair
of integers, we rely on this memory-sharing strategy to find
an achievability scheme. We postpone the second question to
Section VIII-A, once we have a better understanding of the
optimal memory-sharing strategy for arbitrary (M1,M2). For
now, we write the achievable expected delivery rate as the

minimum over all possible choices of (M1,M2) that satisfy
M1 +M2 = M .

Theorem 1. Consider the coded caching problem with 2 files
W1 and W2, and K users each equipped with a cache of size
M . Denote the probability of requesting file Wi by pi where
p1 + p2 = 1. Then the following expected delivery rate is
achievable.

R̄(M) = min
t1,t2

t1+t2=KM

(K − t1
K

pK1 +
K − t2
K

pK2

+ (1− pK1 − pK2 )Lr→t max((R1(r1, r2), R2(r1, r2))
)

(33)

where

R1(r1, r2) =

(
K−1
r1

)(
K
r1

) +

(
K−2
r2

)(
K
r2

) ,

R2(r1, r2) =

(
K−2
r1

)(
K
r1

) +

(
K−1
r2

)(
K
r2

) . (34)

for all (r1, r2) ∈ Z2 s.t. 0 ≤ r1, r2 ≤ K.

Proof: Based on the proof of correctness of Algorithm 2,
we know that if we allocate a cache of size Mi = ri/K to file i
for i ∈ [2], and if both files are requested, then we can achieve
a delivery rate of Rr1,r2 = max{R1(r1, r2), R2(r1, r2)}. If
only file i has been requested, then we can easily achieve a
delivery rate of K−ri

K . By performing memory-sharing among
all such points (r1, r2), we are able to achieve the lower
convex envelope of all the points ((r1, r2), R̄r1,r2) where
R̄r1,r2 = K−r1

K pK1 + K−t2
K pK2 + (1 − pK1 − pK2 )Rr1,r2 , and

0 ≤ r1, r2 ≤ K and ri ∈ Z. By restricting this lower convex
envelope to the plane which yields a cache of size M , we can
characterize the achievable expected rate, R̄t1,t2 , for all (t1, t2)
s.t. t1/K + t2/K = M and 0 ≤ t1, t2 ≤ K, (t1, t2) ∈ R2.
We can then choose the pair (t1, t2) for which the rate R̄t1,t2
is minimized.

Remark 4. In the special case of r1 = r2, our joint placement
and delivery strategy achieves the same delivery rate as in [3].

This is because (K−1
r )

(Kr )
+

(K−2
r )

(Kr )
=

( K
r+1)−(K−2

r+1 )
(Kr )

. Although the
two placement strategies become equivalent when r1 = r2, the
delivery strategies remain distinct. In other words, Algorithm 2
offers an alternative delivery strategy for the uniform caching
of two files, which can be of independent interest.

Remark 5. The key of our proposed delivery strategy is to
construct, for each requested file Wi, a compressed description
W ∗i that will be decoded by every user, even those who did
not request Wi. One of the main results of our paper is that
for the case of two users, this leads to optimal performance.
Unfortunately, the same basic strategy fails to attain the lower
bound developed below in Section VII. Nonetheless, we con-
jecture that this lower bound can indeed be attained using our
general placement scheme together with an improved delivery
strategy. However, the delivery strategy must fundamentally
rely on the alignment of the undesired messages at each user,
in a more subtle way than through the computation of W ∗i . In
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particular, such alignments must occur across the subfiles of
multiple undesired files, not just one.

VII. CONVERSE BOUND FOR UNCODED PLACEMENT

In this section we will derive a converse bound for the
expected delivery rate under uncoded placement for arbitrary
K, N and p. For a request vector d, we define Range(d) as
the set of indices of the files that are requested at least once in
d. That is, Range(d) = {i ∈ [N ] | ∃j ∈ [K] s.t. dj = i}. To
prove our converse bound, we will follow in the footsteps of
Lemma 2 in [3] which provides an uncoded converse bound for
uniform file popularities. To start with, fix a request vector d
and let N = Range(d) and let ui be the index of an arbitrary
user such that dui = Wi, and let U = {ui|i ∈ N}.

The general idea behind the proof in [3] is to construct
a virtual user whose cache contains a subset of the symbols
stored by the users in U . This is done in such a way that
the virtual user can recover all the files {Wi|i ∈ N} after
receiving the delivery message Xd. For instance, let us fix a
bijective function π : [|N |] → N . The virtual user can store
the entire cache of user uπ(1), but since (Xd, Zuπ(1)

) enables
him to decode Wπ(1), he will only cache the symbols in Zuπ(2)

which do not belong to Wπ(1). Similarly, he can discard the
symbols in Zuπ(3)

which belong to either Wπ(1) or Wπ(2),
and so on. The converse bound is simply Hq({Wi|i ∈ N}|Z)
where Z is the cache of the virtual user.

This converse bound depends on the particular request
vector d and the choice of the “leaders" U . To remove
these dependencies, one can take the average of the converse
bound over all possible request vectors that share the same
Range(d) = N as well as all possible choices of the leaders.
Finally, note that the converse bound also depends on π(·)
which indicates in which order different files indexed in N are
processed by the virtual user. We create one virtual user for
each π. Since every such virtual user must be able to recover
all the files {Wi|i ∈ N}, the overall converse bound will be
the maximum of the |N |! bounds obtained in this fashion.

Theorem 2. Consider the problem of coded caching with N
files with probabilities (p1, . . . , pN ) and K users such that
each user has a cache of size M . The expected delivery rate
under uncoded placement must satisfy

R̄ ≥ min
t∑

ti=MK
0≤ti≤K

 ∑
N⊆[N ]

∑
d∈[N ]K

Range(d)=N

K∏
i=1

pdi max
π:[|N |]→N

Rπ(t,N )


(35)

where the maximum is taken over all bijections π : [|N |]→ N ,
and

Rπ(t,N ) =
∑

i∈[|N |]

(1− tπ(i) + btπ(i)c)

(
K−i
btπ(i)c

)(
K

btπ(i)c
)

+ (tπ(i) − btπ(i)c)

(
K−i

btπ(i)c+1

)(
K

btπ(i)c+1

)
 . (36)

Proof: The proof closely follows that of Lemma 2 in
[3] with a few minor but important differences. To start with,
we assume that all the users together have dedicated a total
(normalized) cache of size ti to file Wi where 0 ≤ ti ≤
K. Since each user has a cache of size M , we must have∑N
i=1 ti = KM . As can be seen in the statement of Theorem

2, the converse bound for a particular request vector d, only
depends on d through N , the set of indices of the files that
have been requested at least once. For a fixed request vector,
we also define Ωi ⊆ [K], i ∈ N as the set of indices of the
users who have requested file Wi. For i ∈ N , let ui ∈ Ωi be
the index of an arbitrary user who has requested file Wi, and
let U = {ui|i ∈ N}. Suppose an auxiliary user has access to
the entire cache of user uπ(i) except for the symbols which
belong to the files within {Wπ(`)|` ∈ [|N |], ` < i}, for all
i ∈ [|N |]. Provided that this auxiliary user has received Xd,
he must be able to recover all the files within {Wi|i ∈ N}.
For this to be feasible, the delivery rate must satisfy [3]

R(t,N ) ≥

1

F

∑
i∈[|N |]

F∑
j=1

1
(
Kπ(i),j ∩ {uπ(`)|` ∈ [|N |], ` ≤ i} = ∅

)
,

(37)

where Kπ(i),j represents the subset of the users that have
cached the j’th symbol of file Wπ(i). We take the average
of the expression above over all request vectors d that have
the same Range(d) = N and over all possible choices of the
set U . We obtain

R(t,N ) ≥ 1

F

∑
i∈[|N |]

F∑
j=1

(K−|Kπ(i),j |
i

)(
K
i

) . (38)

Similarly, we can build a new virtual user for every possible
bijection π : [|N |] → N . Each virtual user, gives us a new
converse bound. Therefore, we have

R(t,N ) ≥ 1

F
max

π:[|N |]→N

∑
i∈[|N |]

F∑
j=1

(K−|Kπ(i),j |
i

)(
K
i

) . (39)

Let an,i represent the number of symbols of file Wi cached
by exactly n users, normalized by F . We can write

R(t,N ) ≥ max
π:[|N |]→N

∑
i∈[|N |]

K∑
n=0

(
K−n
i

)(
K
i

) an,π(i)

= max
π:[|N |]→N

∑
i∈[|N |]

K∑
n=0

(
K−i
n

)(
K
n

) an,π(i). (40)

For any i, consider the sequence cn,i =
(K−in )
(Kn)

, n ∈ [0 : K]

where
(
a
b

)
= 0 if b > a. Let gi : R → R be the continuous
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piecewise linear function whose corner points are cn,i. In other
words,

gi(x) =



(1− x+ bxc)cbxc,i + (x− bxc)cbxc+1,i

if bxc ∈ [0 : K − 1],

(1− x)c0,i + xc1,i if bxc < 0,

(K − x)cK−1,i + (x−K + 1)cK,i

if bxc > K − 1.

(41)

Note that gi(x) is a convex function for any i ∈ [|N |] . Further-
more, the sequence an,i, n ∈ [0 : K] satisfies

∑K
n=0 an,i = 1

and an,i ≥ 0. Therefore, by Jensen’s inequality we have
K∑
n=0

an,icn,i =

K∑
n=0

an,igi(n) ≥ gi(
K∑
n=0

nan,i). (42)

But note that
∑K
n=0 nan,i = ti. As a result,

K∑
n=0

an,icn,i ≥ gi(ti) = (1− ti + btic)cbtic,i

+ (ti − btic)cbtic+1,i

= (1− ti + btic)

(
K−i
btic
)(

K
btic
) + (ti − btic)

(
K−i
btic+1

)(
K

btic+1

) . (43)

Based on this, we can continue to bound Equation (40) as

R(t,N ) ≥

max
π:[|N |]→N

∑
i∈[|N |]

(1− tπ(i) + btπ(i)c)

(
K−i
btπ(i)c

)(
K

btπ(i)c
)

+(tπ(i) − btπ(i)c)

(
K−i

btπ(i)c+1

)(
K

btπ(i)c+1

)
 . (44)

Taking the expected value of this expression over all N and
the minimum of the resulting expression over all possible
(t1, . . . , tN ) provides the desired lower bound.
Remark 6. The minimization problem in Theorem 2 can be
solved with standard convex optimization tools thanks to the
fact that the right hand side of Equation (35) as well as the
minimization constraints are convex in t. To establish this fact,
one only needs to show that

J(x) = (1− x+ bxc)

(
K−i
bxc
)(

K
bxc
) + (x− bxc)

(
K−i
bxc+1

)(
K
bxc+1

) (45)

is convex in x. But this expression is piece-wise linear in x.
So, it is sufficient to prove that the slopes of the consecutive
segments of J(x) increase by x. Or, in other words,(

K−i
bxc+1

)(
K
bxc+1

) − (K−ibxc )(
K
bxc
) ≤ ( K−ibxc+2

)(
K
bxc+2

) − ( K−ibxc+1

)(
K
bxc+1

) . (46)

This fact can be proven via elementary manipulations and is
omitted for conciseness.

VIII. OPTIMALITY RESULT FOR N = 2

In this section we prove that for the special case of N = 2,
the converse bound provided by Equation (35) is tight. Our
proof of optimality also sheds light on the points which
contribute to the lower convex envelope at each (M1,M2)
in Equation (33). As it turns out, it is always sufficient to
look at the vicinity of the point (M1,M2), and perform
memory-sharing among points of the form (r1, r2) where
ri ∈ {bMiKc, dMiKe}. We start with a useful observation
and then present a corollary of Theorem 1.

Proposition 1. Suppose K, r1, r2 are three positive integers
such that 0 ≤ r2 < r1 ≤ K. We have(

K−1
r1

)(
K
r1

) +

(
K−2
r2

)(
K
r2

) ≥ (K−2
r1

)(
K
r1

) +

(
K−1
r2

)(
K
r2

) (47)

if and only if r1 + r2 ≤ K.

Proof: Define A1 =
(K−2
r1

)
(Kr1)

+
(K−1
r2

)
(Kr2)

and A2 =
(K−1
r1

)
(Kr1)

+

(K−2
r2

)
(Kr2)

. Each Ai can be computed as

Ai =
(K − 1)(2K − r1 − r2)− ri(K − ri)

K(K − 1)
. (48)

Therefore,

A2 −A1 =
r1(K − r1)− r2(K − r2)

K(K − 1)

=
(r1 − r2)(K − r1 − r2)

K(K − 1)
. (49)

Given that r1 > r2, we have A2 − A1 ≥ 0 if and only if
r1 + r2 ≤ K.

Corollary 1. For the caching problem with K users, two files
with probabilities p1, p2 and cache size M , the following
expected delivery rate is achievable for any (t1, t2) ∈ R2 that
satisfies t1 + t2 = MK.

R̄t1,t2 = pK1
K − t1
K

+ pK2
K − t2
K

+ (1− pK1 − pK2 ) max(R1, R2), (50)

where

R1 = (1 + bt1c − t1)

(
K−1
bt1c

)(
K
bt1c
) + (t1 − bt1c)

(
K−1
bt1c+1

)(
K

bt1c+1

)
+ (1 + bt2c − t2)

(
K−2
bt2c

)(
K
bt2c
) + (t2 − bt2c)

(
K−2
bt2c+1

)(
K

bt2c+1

) , (51)

R2 = (1 + bt1c − t1)

(
K−2
bt1c

)(
K
bt1c
) + (t1 − bt1c)

(
K−2
bt1c+1

)(
K

bt1c+1

)
+ (1 + bt2c − t2)

(
K−1
bt2c

)(
K
bt2c
) + (t2 − bt2c)

(
K−1
bt2c+1

)(
K

bt2c+1

) . (52)

Proof: We distinguish between two regimes.
Regime 1. t1 − bt1c + t2 − bt2c ≥ 1. We will perform
memory sharing between three points (r1, r2) ∈ T where
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T = {(bt1c, bt2c+1), (bt1c+1, bt2c), (bt1c+1, bt2c+1)}. The
coefficients that we use for memory-sharing are respectively
θ1, θ2, θ3 where θ1 = 1− t1 + bt1c , θ2 = 1− t2 + bt2c and
θ3 = 1−θ1−θ2 = t1−bt1c+t2−bt2c−1. The amount of cache
dedicated to file W1 is thus bt1cθ1+(1+bt1c)θ2+(bt1c+1)θ3

K = t1
K .

Similarly, the amount of cache dedicated to file W2 is t2
K .

If only one file i is requested, we can trivially achieve
R = K−ti

K . Let us assume both files have been requested.
There are two possibilities. Either bt1c + bt2c + 2 ≤ K or
bt1c+bt2c+1 ≥ K. In the first case, we know that Inequality
(47) holds for every (r1, r2) ∈ T . As a result, the following
delivery rate can be achieved

R = (1− t1 + bt1c)

(
K−1
bt1c

)(
K
bt1c
) + (1− t1 + bt1c)

(
K−2
bt2c+1

)(
K

bt2c+1

)
+ (1− t2 + bt2c)

(
K−1
bt1c+1

)(
K

bt1c+1

) + (1− t2 + bt2c)

(
K−2
bt2c

)(
K
bt2c
)

+ (t1 − bt1c+ t2 − bt2c − 1)

(
K−1
bt1c+1

)(
K

bt1c+1

)
+ (t1 − bt1c+ t2 − bt2c − 1)

(
K−2
bt2c+1

)(
K

bt2c+1

)
= (1 + bt1c − t1)

(
K−1
bt1c

)(
K
bt1c
) + (t1 − bt1c)

(
K−1
bt1c+1

)(
K

bt1c+1

)
+ (1 + bt2c − t2)

(
K−2
bt2c

)(
K
bt2c
) + (t2 − bt2c)

(
K−2
bt2c+1

)(
K

bt2c+1

)
= R1. (53)

In the second case, the direction of Inequality (47) is reversed
for all (r1, r2) ∈ T . In this case, the following delivery rate
can be achieved

R = (1− t1 + bt1c)

(
K−2
bt1c

)(
K
bt1c
) + (1− t1 + bt1c)

(
K−1
bt2c+1

)(
K

bt2c+1

)
+ (1− t2 + bt2c)

(
K−2
bt1c+1

)(
K

bt1c+1

) + (1− t2 + bt2c)

(
K−1
bt2c

)(
K
bt2c
)

+ (t1 − bt1c+ t2 − bt2c − 1)

(
K−2
bt1c+1

)(
K

bt1c+1

)
+ (t1 − bt1c+ t2 − bt2c − 1)

(
K−1
bt2c+1

)(
K

bt2c+1

)
= (1 + bt1c − t1)

(
K−2
bt1c

)(
K
bt1c
) + (t1 − bt1c)

(
K−2
bt1c+1

)(
K

bt1c+1

)
+ (1 + bt2c − t2)

(
K−1
bt2c

)(
K
bt2c
) + (t2 − bt2c)

(
K−1
bt2c+1

)(
K

bt2c+1

)
= R2. (54)

Therefore, we are able to achieve max(R1, R2). By taking
the expectation over all possible request vectors, we achieve
R̄t1,t2 as in Equation (50).

Regime 2. t1−bt1c+t2−bt2c ≤ 1. In this case we choose our
set T = {(bt1c+1, bt2c), (bt1c, bt2c+1), (bt1c, bt2c)} and our
coefficients θ1 = t1−bt1c , θ2 = t2−bt2c and θ3 = 1− t1 +
bt1c − t2 + bt2c. Again we perform memory-sharing between
the three points in T with the given coefficients. This allows us
to achieve a delivery rate of K−ti

K if only file Wi is requested.
If both are requested, we can achieve R = max{R1, R2}. By
taking the expectation over all request vectors, we find the
same delivery rate as in Equation (50).

It is easy to see that the achievable rate characterized by
Corollary 1 lies on our converse bound in Equation (35). This
implies that at any cache allocation point (t1, t2), there are
only three points (r1, r2) that contribute to the lower convex
envelope. We first check whether t1−bt1c+ t2−bt2c ≥ 1. If
this inequality holds, then we perform memory sharing among
the three points {(bt1c, bt2c + 1), (bt1c + 1, bt2c), (bt1c +
1, bt2c+ 1)}. Otherwise, we perform memory-sharing among
{(bt1c+ 1, bt2c), (bt1c, bt2c+ 1), (bt1c, bt2c)}. Based on this
observation, we can summarize our joint placement and de-
livery strategy as in Algorithm 3. The next theorem follows
immediately from Corollary 1 and Theorem 2.

Algorithm 3 The joint placement-delivery strategy for N = 2
and arbitrary M,K,p

Input: W1,W2,M,K,p
Output: The cache contents (Z1, . . . , ZK) and all the
delivery messages {Xd|d ∈ [N ]K}.

1: t = (t1, t2) = arg min R̄t1,t2 where R̄t1,t2 is given by
Equation (50).

2: r1 = bt1c, r2 = bt2c.

Placement
3: if t1 − r1 + t2 − r2 ≥ 1 then
4: θ0 = 0, θ1 = 1− t1 + r1, θ2 = 1− t2 + r2,

θ3 = 1− θ1 − θ2.
5: Q1 = (r1, r2 + 1), Q2 = (r1 + 1, r2),

Q3 = (r1 + 1, r2 + 1).
6: else
7: θ0 = 0, θ1 = t1 − r1, θ2 = t2 − r2, θ3 = 1− θ1 − θ2.
8: Q1 = (r1 + 1, r2), Q2 = (r1, r2 + 1), Q3 = (r1, r2).
9: end if

10: Pj =
∑j
i=0 θi for j ∈ [0 : 3].

11: W j
i = Wi|[Pj−1F+1:PjF ] for i ∈ [2], j ∈ [3] where Wi|A

refers to the symbols of Wi indexed in in the set A.
12: (Zi1, . . . , Z

i
K) = output of Algorithm 1 applied on

((W i
1,W

i
2), Qi,K) for i ∈ [3].

13: Zj = (Z1
j , Z

2
j , Z

3
j ) for j ∈ [K].

Delivery
14: for all request vectors d do
15: X

(i)
d = output of Algorithm 2 applied on

((W i
1,W

i
2), Qi,d,K) for i ∈ [3].

16: Xd = (X
(1)
d , X

(2)
d , X

(3)
d ).

17: end for
18: Return ((Z1, . . . , ZK), {Xd|d ∈ [N ]K}).
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Theorem 3. For the coded caching problem with K users, two
files with probabilities p1, p2 and cache size M , the optimal
expected delivery rate under uncoded placement is

R̄∗ = min
0≤t2≤t1≤K
t1+t2=KM

R̄t1,t2 , (55)

where R̄t1,t2 is given by Equation (50). Furthermore, this can
be achieved by the joint placement and delivery strategy in
Algorithm 3.

A. Finding the optimal memory allocation

The delivery rate in Equation (50) as a function of (t1, t2) is
convex. As a result, the optimal (t1, t2), which is the solution
to

(t∗1, t
∗
2) = arg min

0≤t2≤t1≤K
t1+t2=KM

R̄t1,t2 , (56)

can be found by solving a convex optimization problem.
However, note that our delivery rate is in fact a piece-wise
linear function of (t1, t2), the break points of which can be
easily characterized. Based on the following theorem, we can
find the optimal (t1, t2) by simply performing binary search
over a discrete set of feasible points.

Theorem 4. There exists a solution (t∗1, t
∗
2) to Equation (56)

that satisfies (t∗1, t
∗
2) ∈ P and

m+(t∗1) ≥ pK1 − (1− p1)K

K(1− pK1 − (1− p1)K)
,

m−(t∗1) ≤ pK1 − (1− p1)K

K(1− pK1 − (1− p1)K)
, (57)

where we define

m+(t1)
4
=



( K−1
bt1c+1)

( K
bt1c+1)

− (K−1
bt1c)

( K
bt1c)

+
( K−2
dKM−t1e−1)

( K
dKM−t1e−1)

− ( K−2
dKM−t1e)

( K
dKM−t1e)

if M ≤ 1,

( K−2
bt1c+1)

( K
bt1c+1)

− (K−2
bt1c)

( K
bt1c)

+
( K−1
dKM−t1e−1)

( K
dKM−t1e−1)

− ( K−1
dKM−t1e)

( K
dKM−t1e)

if M > 1.

m−(t1)
4
=



(K−1
dt1e)

( K
dt1e)

− ( K−1
dt1e−1)

( K
dt1e−1)

+
( K−2
bKM−t1c)

( K
bKM−t1c)

− ( K−2
bKM−t1c+1)

( K
bKM−t1c+1)

if t1 > t2 and M ≤ 1,

(K−2
dt1e)

( K
dt1e)

− ( K−2
dt1e−1)

( K
dt1e−1)

+
( K−1
bKM−t1c)

( K
bKM−t1c)

− ( K−1
bKM−t1c+1)

( K
bKM−t1c+1)

if t1 > t2 and M > 1,

−m+(t1) if t1 = t2.

P 4=
{

(t1, t2) ∈ R2|0 ≤ t2 ≤ t1 ≤ K, t1 + t2 = KM,

(t1 − bt1c)(t2 − bt2c)(t1 − t2) = 0
}
. (58)

Proof: As we limit our achievable delivery rate to a line
t1 +t2 = KM , we obtain a piecewise linear and convex curve
R̄(t1). It can be readily seen from Equation (50) that the break
points of this curve occur when t1 ∈ Z or t2 ∈ Z or at the
extreme point when t1 = t2. This establishes the choice of the
feasible sets P in the statement of the theorem.
If M ≤ 1, we know that R1 is the maximizer of Equation
(50). We can thus rephrase the expected delivery rate as

R̄t1,t2 = (1− pK1 − pK2 )

[
(1 + bt1c − t1)

(
K−1
bt1c

)(
K
bt1c
)

+ (t1 − bt1c)

(
K−1
bt1c+1

)(
K

bt1c+1

) + (1 + bt2c − t2)

(
K−2
bt2c

)(
K
bt2c
)

+(t2 − bt2c)

(
K−2
bt2c+1

)(
K

bt2c+1

)]+ pK1
K − t1
K

+ pK2
K − t2
K

= t1

[
(1− pK1 − (1− p1)K)

((
K−1
bt1c+1

)(
K

bt1c+1

) − (K−1
bt1c

)(
K
bt1c
)

+

(
K−2

bKM−t1c
)(

K
bKM−t1c

) − ( K−2
bKM−t1c+1

)(
K

bKM−t1c+1

))+
(1− p1)K − pK1

K

]
+ c.

(59)

Define Q 4= {t1 ∈ R|∃t2 ∈ R s.t. (t1, t2) ∈ P} . As long
as t1 is in the open interval between two fixed consecutive
members of Q, the value of c does not change. As a result,
the expression above provides us with the slope of the line
segment which connects two consecutive points in the piece-
wise linear function R̄(t1). Our goal is to find the value of
t1 ∈ Q such that the slope of this curve is non-negative at
t1 + ε and non-positive at t1 − ε. This is given by Equation
(57). Note that we are using the identity (1+bac−a)g(bac)+
(a−bac)g(bac+1) = (dae−a)g(dae−1)+(a−dae+1)g(dae)
to simplify the expressions for m+(t1) and m−(t1). Similar
analysis can be made if M > 1.

IX. NUMERICAL RESULTS

In this section we provide a numerical analysis of our
caching strategy and compare it with the literature. First, we
fix K = 6, M = 1 and N = 2, and find the optimal expected
delivery rate (under uncoded placement) as a function of the
probability of the first file, using Theorem 3. To accomplish
this, we first have to find the optimal (t1, t2) = (M1K,M2K)
as a function of p1 following Theorem 4. This optimal
expected delivery rate has been plotted in Figure 4. A few valu-
able insights can be gained from this curve. Firstly, when the
probabilities of the two files are close, the heuristic approach
of applying uniform coded caching is indeed optimal. The
range of probabilities for which this property holds ultimately
depends on K and M , but for our example is given by
|p1 − p2| < 0.48. This is the region that has been marked by
(t1, t2) = (3, 3) on the figure. Similarly, when one file is very
popular (in this case |p1−p2| > 0.78), it is optimal to allocate
the entire cache to it, and ignore the other file in the placement
phase. This region has been labeled as (t1, t2) = (6, 0).
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Fig. 4: The optimal expected delivery rate (under uncoded
placement) for the non-uniform caching problem with K = 6,
N = 2 and M = 1, versus the probability of requesting W1.

But perhaps the most interesting scenario is when the prob-
abilities lie somewhere in between. Figure 4 tells us that there
is a range of probabilities (in this example 0.48 < |p1−p2| <
0.78) for which no memory-sharing strategy is optimal. For
this range, one must rely on Algorithm 3 with non-trivial
choices of (t1, t2) to attain the optimal expected delivery rate.
For this particular example, we must set (t1, t2) = (4, 2)
for 0.48 < |p1 − p2| < 0.70 and (t1, t2) = (5, 1) for
0.70 < |p1 − p2| < 0.78.

Now, let us instead fix p1 and find the optimal expected
delivery rate as a function of the cache size M . For K = 6,
we rely on the previous plot to choose p1 = 0.85 in order
to emphasize the scenario where grouping is strictly sub-
optimal, at least at M = 1. In Figure 5 we have plotted
the optimal expected delivery rate for this choice of p1, and
compared it to the two possible grouping strategies [15]–[18]:
Run corresponds to the uniform caching which ignores the
differences in the probabilties of the two files, whereas Rnc is
the delivery rate for a caching strategy that creates two groups
each containnig one file, and ignores the coding opportunities
between the two. The expression for Run can be given [3] by
the lower convex envelop of the points

Run = pK1 (1− r

K
) + (1− p1)K(1− r

K
)

+ (1− pK1 − (1− p1)K)

[(
K
r+1

)
−
(
K−2
r+1

)(
K
r

) ]
, (60)

where r = KM
2 ∈ N. As for Rnc, it is easy to see that if

M ≤ 1, the best memory allocation is to assign the entire
cache to W1. If M > 1, the remaining memory is given to
file W2. This results in a delivery rate of

Rnc =

{
(1− pK1 )(2−M) if M > 1,

−pK1 − (1− p1)K(1−M) + 2−M if M ≤ 1.

(61)
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Fig. 5: top: Comparison of the expected delivery rate for our
scheme Rop (optimal under uncoded placement), and the two
possible grouping strategies: Run performs uniform caching
and ignores the differences in the probabilties, whereas Rnc
ignores the coding opportunities between the two files. The
parameters are K = 6, N = 2 and p1 = 0.85. bottom:
zoomed in on the vicinity of M = 1.

As visible in Figure 5, the most discrepancy between the
grouping and optimal strategies occur around M = 1, where
the optimal expected delivery rate is 0.582, whereas Rnc ≈
0.623 and Run ≈ 0.625, about 7 percent larger than the
optimal rate. On the other hand, at the extreme values of M ,
all three strategies are optimal. This is not very surprising: if
M = 0 or M = 2, all three strategies are equivalent. It is
therefore natural that in the vicinity of such extreme values
there is no major difference in their performances.

X. CONCLUDING REMARKS

The majority of the existing literature on coded caching
with non-uniform demands is focused on grouping strategies
which can achieve constant additive or multiplicative gaps
to the optimal expected delivery rate. This paper serves as
a step towards the ambitious task of designing nonuniform
coded caching strategies which are optimal under uncoded
placement. Moreover, we believe that there is great potential
to the multiset indexing extension of the uniform placement
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strategy proposed in this paper, as it can be readily applied
to other combinatorial problems of heterogeneous nature. Our
delivery strategy for the case of two files may also serve as a
stepping stone for a closer investigation of the application of
interference alignment in coded caching.
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