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Abstract	
 
 
 

Metabolism	is	a	network	of	biotransformations	that	sustain	life	in	cells.	Over	the	past	

decades,	metabolism	has	been	studied	in	multiple	contexts,	ranging	from	medicine	to	

industrial	manufacturing.	In	particular,	lipid	metabolism	has	been	linked	to	various	

physiopathologies,	 and	 its	 study	 could	 lead	 to	 new	 diagnostics	 and	 treatments.	

Metabolic	networks	are	extremely	complex	and	a	systems	approach	 is	essential	 in	

deciphering	 the	 different	 levels	 of	 cellular	 organization	 and	 regulation	 that	 an	

organism	 possesses.	 Genome-scale	 metabolic	 models	 (GEMs)	 encompass	 all	 the	

available	 information	 for	 an	 organism,	 though	 their	 large	 size	 and	 complexity	

introduce	 a	 lot	 of	 uncertainty	 in	 the	 accuracy	 of	 predictions.	 GEM	 reductions	 are	

usually	done	 in	 an	ad	hoc	manner	 to	produce	 context-specific	models,	 and	 cannot	

serve	multiple	studies.	

The	study	of	regulatory	mechanisms	requires	the	development	of	kinetic	models	that	

can	accurately	capture	dynamic	responses	to	perturbations.	To	this	end,	constraint-

based	 models	 can	 be	 enhanced	 through	 the	 integration	 of	 kinetic	 information.	

Constructing	 consistent	 large-scale	kinetic	models	 is	 a	 challenging	endeavor,	 since	

detailed	 knowledge	 about	 regulatory	mechanisms	 and	 kinetic	 parameter	 values	 is	

scarce.	

Examining	 the	mechanisms	 of	 enzymatic	 and	metabolic	 restructuring	 in	 states	 of	

mutation	could	increase	our	fundamental	understanding	of	how	diseases	evolve,	and	

facilitate	 phenotype	mapping.	 Metabolic	 Control	 Analysis	 (MCA)	 has	 been	 a	 well-

established	tool	for	the	prediction	and	evaluation	of	genetic	modification	strategies.	

However,	it	fails	to	account	for	the	physiological	limitations	of	an	organism	and	can	

often	lead	to	unrealistic	predictions.	
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In	 this	 thesis,	 we	 developed	 computational	 models,	 tools,	 and	 methodologies	 to	

facilitate	the	study	of	lipids	and	their	regulatory	mechanisms.	Firstly,	we	constructed	

and	 curated	 a	 metabolic	 model	 that	 focuses	 on	 lipid	 metabolism,	 through	 the	

integration	of	detailed	lipid	pathways	into	a	GEM	of	S.	cerevisiae.	This	model	was	then	

systematically	reduced	around	these	pathways	to	provide	a	more	manageable	model	

size	for	complex	studies.	We	show	that	this	model	is	as	consistent	and	inclusive	as	

other	 yeast	GEMs,	 and	 can	be	used	as	 a	 scaffold	 for	 integrating	 lipidomics	data	 to	

improve	predictions	in	studies	of	lipid-related	biological	functions.	Secondly,	we	used	

this	 model	 as	 a	 basis	 to	 build	 a	 large-scale	 kinetic	 model.	 Enzymes	 in	 the	 lipid	

metabolism	are	typically	promiscuous	and	multifunctional,	giving	rise	to	enzymatic	

coupling.	To	accurately	 capture	 these	properties,	we	assigned	suitable	kinetic	 rate	

expressions	 to	 the	 reactions	 in	 the	 network.	We	 generated	 populations	 of	 kinetic	

parameter	 sets	 through	 a	 sampling-based	workflow	and	we	demonstrate	 how	 the	

consideration	of	enzymatic	coupling	is	essential	for	factual	predictions.	Thirdly,	we	

developed	 a	 constraint-based	 formulation	 that	 utilizes	 MCA-based	 control	

coefficients	 for	 the	 consistent	 derivation	 of	 metabolic	 engineering	 strategies.	 We	

show	how	the	parametrization	and	 introduction	of	biological	constraints	enhances	

this	 formulation	in	comparison	to	the	classical	MCA	approach,	and	we	highlight	 its	

ability	to	generate	alternative	optimal	strategies.	Fourthly,	we	defined	and	introduced	

additional	mathematical	objectives	and	constraints	to	this	formulation	to	enable	the	

mapping	of	enzymes	that	are	responsible	 for	different	phenotypes.	Concluding,	we	

discuss	the	contribution	and	potential	applications	of	this	thesis.	

	

	

	

	

	

Keywords:	 metabolism,	 lipids,	 S.	 cerevisiae,	 pathway	 integration,	 model	 reduction,	

thermodynamics,	 kinetic	 models,	 enzyme	 promiscuity,	 metabolic	 engineering	 strategies,	

mutant	identification	
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Résumé	
 
 
 

Le	métabolisme	est	le	réseau	de	réactions	biochimiques	qui	permet	la	vie	cellulaire.	

Au	 cours	 des	 dernières	 décennies,	 le	 métabolisme	 a	 été	 étudié	 dans	 plusieurs	

domaines,	allant	de	la	médecine	à	la	production	chimique	industrielle.	En	particulier,	

le	métabolisme	des	lipides	est	lié	à	plusieurs	types	de	physiopathologies,	et	son	étude	

promet	de	nouvelles	pistes	pour	le	développement	de	diagnostics	et	traitements.	Les	

réseaux	métaboliques	sont	extrêmement	complexes,	et	une	approche	systémique	est	

essentielle	 pour	 déchiffrer	 les	 différents	 niveaux	 d’organisation	 cellulaire	 et	 de	

régulation	que	possède	un	organisme.	Les	modèles	métaboliques	à	échelle	du	génome	

(GEMs)	 contiennent	 toute	 l’information	 génétique	 d’un	 organisme	 ;	 toutefois,	 leur	

grande	taille	et	complexité	sont	la	source	d’incertitudes	dans	leur	capacité	prédictive.	

Les	 GEMs	 sont	 souvent	 réduits	 de	 façon	 ad	 hoc,	 afin	 de	 produire	 des	 modèles	

spécifiques	à	un	contexte	d’étude	et	ces	modèles	ne	peuvent	donc	pas	être	utilisés	de	

façon	indépendante.	

L’examen	 des	 mécanismes	 régulatoires	 requiert	 le	 développement	 de	 modèles	

cinétiques	 ayant	 la	 capacité	 de	 capturer	 des	 réponses	 dynamiques	 à	 des	

perturbations.	A	cet	effet,	les	modèles	à	base	de	contraintes	peuvent	être	améliorés	

grâce	 à	 l’intégration	 d’informations	 cinétiques.	 La	 construction	 consistante	 de	

modèles	 cinétiques	 de	 grande	 échelle	 reste	 cependant	 un	 défi,	 à	 cause	 du	 peu	

d’informations	disponibles	concernant	 les	mécanismes	de	régulation	et	 les	valeurs	

des	paramètres	cinétiques.	

L’étude	des	mécanismes	de	 restructuration	enzymatique	et	métabolique	 lors	de	 la	

mutation	promet	d’étendre	notre	compréhension	de	l’évolution	des	maladies,	et	de	

faciliter	la	cartographie	de	phénotypes.	L’analyse	du	Contrôle	Métabolique	(MCA)	est	
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un	outil	bien	établi	pour	la	prédiction	et	l’évaluation	de	la	réponse	d’un	organisme	à	

des	modifications	 génétiques.	 Toutefois,	 cet	 outil	 ne	 considère	 pas	 les	 limitations	

physiologiques	d’un	organisme,	et	peut	rendre	des	prédictions	irréalistes.	

Dans	cette	thèse,	nous	avons	développé	des	modèles,	des	outils	et	des	méthodologies	

informatiques	qui	facilitent	l’étude	des	lipides	et	de	leurs	mécanismes	régulatoires.	

Tout	d’abord,	nous	avons	construit	et	édité	un	modèle	métabolique	du	métabolisme	

des	lipides,	à	travers	l’intégration	de	voies	de	biosynthèse	détaillées	des	lipides	dans	

un	GEM	de	S.	cerevisiae.	Ce	modèle	a	ensuite	été	systématiquement	réduit	autour	de	

ces	voies	afin	de	produire	un	modèle	de	taille	plus	adaptée	à	des	études	complexes.	

Nous	montrons	ensuite	que	ce	modèle	est	aussi	 consistant	et	 inclusif	que	d’autres	

GEMs	 de	 levures,	 et	 qu’il	 peut	 être	 utilisé	 comme	 échafaudage	 pour	 intégrer	 des	

données	 lipidiques	et	ainsi	améliorer	 les	prédictions	dans	 les	études	des	 fonctions	

biologiques	 reliées	 aux	 lipides.	De	plus,	 nous	 avons	utilisé	 ce	modèle	 comme	base	

pour	 la	 construction	 d’un	 modèle	 cinétique	 de	 grande	 échelle.	 Les	 enzymes	 du	

métabolisme	 des	 lipides	 sont	 typiquement	 peu	 spécifiques	 et	 multifonctionnelles,	

provoquant	 un	 couplage	 enzymatique.	 Pour	 capturer	 précisément	 ces	 propriétés,	

nous	 avons	 assigné	 à	 chaque	 réaction	 du	 réseau	 métabolique	 une	 expression	

cinétique	 appropriée.	 Nous	 avons	 ensuite	 généré	 des	 populations	 de	 paramètres	

cinétiques	à	travers	une	méthode	d’échantillonnage	aléatoire,	et	nous	montrons	que	

la	prise	en	compte	du	couplage	enzymatique	est	essentielle	à	des	prédictions	précises.	

Ensuite,	nous	avons	développé	une	formulation	à	base	de	contraintes	qui	utilise	les	

coefficients	de	contrôle	obtenus	par	MCA,	afin	de	concevoir	des	stratégies	d’ingénierie	

métaboliques	cohérentes.	Nous	montrons	aussi	que	le	paramétrage	et	l’introduction	

de	 contraintes	biologiques	améliorent	 la	 formulation	en	 comparaison	à	 l’approche	

MCA	 classique,	 et	 nous	 démontrons	 la	 capacité	 de	 notre	 modèle	 à	 générer	 des	

stratégies	optimales	alternatives.	Enfin,	nous	avons	défini	et	introduit	des	objectifs	et	

contraintes	 supplémentaires	 dans	 cette	 formulation	 afin	 d’établir	 une	

correspondance	causale	entre	enzymes	et	phénotypes.	En	conclusion,	nous	discutons	

de	la	contribution	et	des	applications	potentielles	de	cette	thèse.	
	

Mots-clés:	métabolisme,	lipides,	S.	cerevisiae,	 Intégration	de	voies	métaboliques,	réduction	

de	 modèles,	 thermodynamique,	 modèles	 cinétiques,	 enzymes	 non-spécifiques,	 stratégies	

d’ingénierie	métabolique,	identification	de	mutants
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Chapter	1	–	Introduction	
 
 
 

1.1			Background	

Metabolism	is	the	sum	of	all	life-sustaining	biochemical	transformations	that	occur	in	

organisms.	Through	metabolism,	fuel	is	generated	and	provided	to	perform	cellular	

processes	 such	 as	 the	 synthesis	 of	 proteins,	 lipids,	 nucleic	 acids,	 and	 some	

carbohydrates.	These	sets	of	enzyme-catalyzed	reactions	allow	cells	to	grow,	sustain	

their	structures,	and	respond	to	environmental	changes.	Metabolism	and	metabolic	

pathways	 have	 been	 the	 focus	 of	 numerous	 studies	 over	 the	 last	 decades.	 These	

studies	 focused	 on	 a	 wide	 variety	 of	 scientific	 areas	 from	 medicine	 to	 industrial	

manufacturing.	 	 While	 many	 of	 the	 underlying	 mechanisms	 have	 been	 revealed,	

others	remain	uncovered.	For	example,	metabolic	syndrome	has	been	associated	with	

cancer,	 obesity,	 inflammation,	 insulin	 resistance	 and	 fully	developed	diabetes,	 and	

elevated	risk	of	cardiovascular	disease	(DeBerardinis	and	Thompson	2012,	Despres	

and	 Lemieux	 2006,	 Hotamisligil	 2017).	 Moreover,	 metabolic	 synergy	 in	 the	 gut	

microbiota,	an	assortment	of	organisms	that	operate	in	unison	with	the	host,	has	been	

identified	 as	 a	 prominent	 area	 of	 study	 in	 the	 promotion	 of	 health	 but	 also	 the	

initiation	of	disease	(Marchesi	et	al.	2016).	

Metabolic	engineering	 is	 the	design	and	development	of	microbial	 strains	 that	can	

aptly	produce	valuable	compounds,	and	is	instrumental	in	industrial	biotechnology.	

Today	more	than	ever,	climate	change	and	threatened	energy	security	have	rendered	

the	production	of	sustainable	alternatives	to	fossil	fuels	a	necessity	(Ragauskas	et	al.	

2006,	Rodionova	et	al.	2017).	The	conversion	of	renewable	biomass	to	valuable	fuels	

and	products	through	metabolic	engineering	has	enabled	the	development	of	large-

scale	 biorefineries	 (Khan,	 Shin	 and	 Kim	 2018)	 as	 well	 as	 advances	 in	
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biomanufacturing	through	the	use	of	cell-free	systems	(Zhang	2010).	Throughout	the	

years,	metabolism	has	 been	 established	 as	 a	 prosperous	 area	 of	 research	 and	 has	

maintained	its	importance	in	the	ever-shifting	biology	field.	

Metabolism	 is	 extremely	 complex	 and	 thus	 requires	 a	 systems	 approach	 towards	

deciphering	 the	 fundamental	mechanisms	 and	 cellular	 processes	 that	 will	 lead	 to	

solutions	 for	 metabolic	 engineering	 applications.	 Metabolic	 networks	 and	 their	

mathematical	representations	are	indispensable	the	study	of	all	the	different	levels	of	

cellular	organization	and	regulation.	These	networks	are	built	through	gene-protein-

reaction	 (GPR)	 associations	 (Francke,	 Siezen	 and	 Teusink	 2005),	 and	 are	 the	

backbone	 of	 metabolic	 models	 (Christensen	 and	 Nielsen	 2000).	 Stoichiometric	

metabolic	models	are	based	on	a	stoichiometric	matrix,	which	stores	the	information	

of	all	 the	metabolites	and	their	stoichiometric	participation	 in	each	reaction	of	 the	

network.	Due	to	the	advent	and	advancement	of	genome	sequencing	techniques	over	

the	years,	these	models	systematically	evolved	into	genome-scale	metabolic	networks	

(GEMs).	GEMs	contain	the	entirety	of	available	information	for	an	organism	and	are	

built	 using	 a	 bottom-up	 approach,	 which	 includes	 draft	 reconstruction,	 manual	

curation,	conversion	to	a	mathematical	model,	and	validation	(Price	et	al.	2003,	Thiele	

and	 Palsson	 2010).	 Swift	 progress	 in	 genome	 sequencing	 techniques	 are	 making	

available	the	complete	genome	sequence	for	an	array	of	organisms.	The	genomic	data	

can	thus	be	incorporated	into	metabolic	models,	making	them	more	comprehensive,	

and	enhancing	their	predictive	capabilities.	

The	ever-increasing	availability	of	omics	data	is	leading	to	a	rapid	increase	of	model	

size	and	complexity.	As	such,	metabolic	models	cannot	be	intuitively	understood	or	

analyzed.	To	this	end,	a	variety	of	computational	tools	have	been	developed	for	the	

analysis	of	 these	models	(Tomar	and	De	2013).	The	metabolite	mass	balances	 in	a	

metabolic	network	form	a	set	of	linear	equations.	Accompanied	by	the	quasi-steady	

state	assumption,	which	assumes	that	there	is	no	accumulation	of	any	metabolite	in	

the	system,	and	the	definition	of	an	appropriate	cellular	objective,	this	set	of	equations	

defines	a	constraint-based	optimization	problem.	In	a	properly	constructed	metabolic	

network,	 the	 number	 of	 equations	 (mass	 balances)	 is	 smaller	 than	 the	 number	 of	

variables	(reaction	fluxes),	meaning	that	the	system	is	underdetermined	and	that	the	
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optimization	 problem	 formulated	 for	metabolic	 networks	 does	 not	 have	 a	 unique	

solution	(Bonarius,	Schmid	and	Tramper	1997).	

Flux	 Balance	 Analysis	 (FBA)	 introduces	 linear	 constraints	 to	 the	 mathematical	

problem	 in	 the	 form	 of	 inequalities,	 leading	 to	 a	 feasible	 solution	 space,	 which	 is	

delimited	by	imposed	bounds	on	the	system	variables	(Orth,	Thiele	and	Palsson	2010,	

Varma	and	Palsson	1994).	However,	since	this	space	is	convex,	there	is	only	one	global	

optimum	value	for	a	specified	objective	function.	Biologically,	this	means	that	there	is	

an	infinite	number	of	flux	distributions	throughout	the	network	that	satisfy	the	same	

cellular	 objective.	 Many	 different	 objectives	 have	 been	 proposed	 and	 tested	

throughout	the	evolution	of	systems	biology,	 in	an	effort	to	efficiently	navigate	the	

solution	 space	 and	 capture	 the	 cell’s	 physiology.	 The	 most	 predominantly	 used	

objective	functions	are	the	maximization	of	biomass	production	and	ATP	formation	

(Schuetz,	Kuepfer	and	Sauer	2007).	Another	popular	objective	is	the	minimization	of	

the	sum	of	all	fluxes	in	the	network,	a	formulation	which	is	called	parsimonious	FBA	

(Lewis	 et	 al.	 2010).	 Very	 recently,	 multi-objective	 methods	 employing	 up	 to	 four	

simultaneous	cellular	objectives	have	been	proposed	(Dai	et	al.	2019,	Gardner,	Hodge	

and	 Boyle	 2019).	 The	 existence	 of	 multiple	 alternative	 solutions	 results	 in	 an	

associated	uncertainty	in	terms	of	metabolic	fluxes,	that	increases	with	the	size	of	the	

model.	

Researchers	have	proposed	numerous	methods	to	characterize	and	ultimately	reduce	

this	uncertainty	(Mahadevan	and	Schilling	2003).	The	first	method	to	this	end	is	to	

identify	 the	 reaction	 directionalities	 in	 the	 network.	 If	 an	 enzyme	 is	 catalytically	

reversible,	 then	 the	reaction	directionality	depends	on	 the	reaction’s	displacement	

from	 thermodynamic	 equilibrium.	 In	 a	 metabolic	 network,	 kinetically	 reversible	

reactions	can	be	either	bidirectional,	which	means	that	they	can	operate	in	both	the	

forward	and	reverse	directions,	or	unidirectional,	which	means	that	they	can	operate	

only	 in	one	direction.	Few	enzymes	have	been	classified	as	kinetically	 irreversible,	

and	 the	 vast	 majority	 catalyzes	 reactions	 that	 can	 operate	 in	 both	 directions.		

Therefore,	the	integration	of	thermodynamic	feasibility	constraints	is	an	invaluable	

tool	 in	reducing	the	uncertainty	stemming	from	bidirectionality,	as	they	can	reveal	

the	 thermodynamically	 permissible	 directionalities	 of	 reactions	 (Soh	 and	

Hatzimanikatis	 2014).	 Using	 the	 change	 in	 Gibbs	 Free	 Energy	 of	 reactions,	
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thermodynamics	 can	 also	 give	 estimate	 each	 reaction’s	 displacement	 from	

equilibrium	which,	apart	from	participating	in	the	estimation	of	directionalities,	is	an	

important	 information	 for	 constructing	 dynamic	models.	 Over	 the	 years,	 multiple	

approaches	have	been	proposed	for	the	formulation	of	thermodynamic	constraints	in	

metabolic	 networks	 (Ataman	 and	Hatzimanikatis	 2015).	 A	 prominent	 approach	 in	

this	 field	 is	 Thermodynamics-based	 Flux	 Analysis	 (TFA)	 (Henry,	 Broadbelt	 and	

Hatzimanikatis	2007),	which	employs	a	mixed-integer	 linear	programming	 (MILP)	

formulation,	 uses	 Gibbs	 free	 energy	 constraints	 as	 a	 function	 of	 logarithmic	

concentrations,	 and	 computes	 the	 reaction	 directionality	 based	 on	 their	

thermodynamically	feasible	ranges,	thus	introducing	a	minimum	possible	bias	in	the	

calculations.	 TFA	 also	 accommodates	 the	 integration	 of	metabolomics	 data	 in	 the	

network,	 since	 the	 thermodynamic	 feasibility	 constraints	 introduce	 metabolite	

concentrations	as	variables	in	the	formulation.	

In	 order	 to	 improve	 the	 accuracy	 of	 model	 predictions,	 approaches	 that	 aim	 to	

incorporate	 various	 types	 of	 experimental	 data	 through	 network	 constraints	 have	

been	 proposed.	 Efforts	 have	 been	 made	 in	 relating	 gene	 expression	 levels	 with	

metabolic	fluxes	through	genomics	(Lerman	et	al.	2012,	O'Brien	et	al.	2013,	Pandey,	

Hadadi	and	Hatzimanikatis	2019)	and	proteomics	(Liu	et	al.	2014,	Yang	et	al.	2016).	

Recently,	resource	allocation	limitations	along	with	enzyme	kinetic	properties	have	

been	 added	 to	 these	 models	 (Sánchez	 et	 al.	 2017),	 along	 with	 thermodynamic	

feasibility	constraints	(Salvy	and	Hatzimanikatis	2019).	

With	 GEMs	 being	 the	 most	 detailed	 representations	 of	 metabolism,	 but	 of	 large	

complexity,	and	data-driven	context-specific	models	often	being	constructed	in	an	ad	

hoc	manner,	multiple	frameworks	for	a	systematic	way	to	produce	consistent	context-

specific	models	have	been	proposed	to	bridge	this	gap	(Singh	and	Lercher	2019).	One	

of	 them	is	redGEM	(Ataman	et	al.	2017),	a	 framework	that	employs	a	graph-based	

search	algorithm	to	construct	reduced	metabolic	models	of	variable	size	from	GEMs	

by	focusing	on	selected	metabolic	subsystems.	The	generated	models	are	consistent	

with	their	parent	model	in	terms	of	flux	and	concentration	variability	and	essential	

genes/reactions	 (Hameri,	 Fengos	 and	 Hatzimanikatis	 2019).	 The	 companion	

algorithm	to	this	framework	is	called	lumpGEM	(Ataman	and	Hatzimanikatis	2017),	

and	further	reduces	the	complexity	of	GEMs	in	terms	of	network	topology.	lumpGEM	
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uses	 an	 optimization	 formulation	 to	 identify	 and	 enumerate	 the	 possible	 reaction	

subnetworks	 that	 are	 required	 for	 the	 production	 of	 each	 biomass	 building	 block	

(BBB)	 from	core	carbon	metabolites.	Moreover,	each	of	 these	subnetworks	 is	 then	

lumped	into	a	single	reaction,	forming	reduced	models	that	are	not	dependent	on	the	

biosynthetic	networks	of	BBBs.		

Although	 stoichiometric	 models	 of	 metabolism	 are	 great	 tools	 for	 the	 analysis	 of	

steady	 state	 flux	 and	 concentration	 distributions,	 they	 cannot	 capture	 dynamic	

responses	 to	 perturbations	 and	 transient	 behaviors	 of	 cells.	 Over	 the	 past	 years,	

constraint-based	 modeling	 has	 been	 enhanced	 through	 formulations	 that	 aim	 to	

capture	these	properties	by	 integrating	kinetic	 information	(Saa	and	Nielsen	2017,	

Strutz	 et	 al.	 2019).	 Since	 detailed	 knowledge	 about	 regulatory	 mechanisms	 and	

kinetic	parameter	 values	 is	 still	 limited,	 constructing	 consistent	 large-scale	kinetic	

models	 is	a	difficult	 task	(Hameri	et	al.	2019).	The	uncertainty	stemming	 from	the	

deficiency	 of	 knowledge	 in	 combination	 with	 model	 complexity	 can	 lead	 to	 the	

existence	 of	 multiple	 kinetic	 parametrizations	 of	 models	 that	 describe	 the	 same	

observed	 physiology	 (Link,	 Christodoulou	 and	 Sauer	 2014).	 In	 early	 efforts	 to	

generate	 kinetic	 models	 of	 metabolism,	 researchers	 proposed	 various	 simplified	

kinetic	 formulations	 in	order	 to	 accommodate	parameter	 fitting	using	 in	 vivo	 data	

(Hatzimanikatis	and	Bailey	1997,	Savageau	1969).	However,	 these	methods	do	not	

account	 for	 thermodynamic	 principles,	 and	 their	 predictions	 are	 limited	 to	 the	

vicinity	of	the	chosen	operational	parameters.	

Advances	 in	sampling-based	strategies	 for	kinetic	model	construction	and	analysis	

have	bridged	 this	gap	by	generating	populations	of	kinetic	parameters	 that	 satisfy	

thermodynamic	constraints.	Both	the	Ensemble	Modeling	(EM)	(Tran,	Rizk	and	Liao	

2008)	 and	 Optimization	 and	 Risk	 Analysis	 of	 Complex	 Living	 Entities	 (ORACLE)	

(Miskovic	 and	Hatzimanikatis	 2010)	workflows	 efficiently	 sample	 the	 permissible	

parameter	 space	 and	 produce	 a	 multitude	 of	 kinetic	 models	 around	 a	 selected	

metabolic	steady	state.	EM	then	prunes	the	generated	models	through	comparison	

with	experimental	data	to	select	a	unique	set	of	parameters	that	describes	the	desired	

physiology.	 On	 the	 other	 hand,	 ORACLE	 considers	 all	 of	 the	 generated	models	 as	

distributions	 of	 kinetic	 parameters,	 and	 performs	 statistical	 quantification	 and	

analysis,	thus	introducing	a	lesser	amount	of	bias.	Smart	Monte-Carlo	sampling	can	
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also	 be	 applied	 to	 reduce	 uncertainty	 in	 kinetic	 parameters	 and	 allow	 for	 the	

definition	of	more	complex	kinetic	mechanisms	(Miskovic	et	al.	2019b).	Recently,	a	

method	 that	 combines	 parameter	 sampling	 methods	 and	 machine	 learning	

techniques	was	proposed,	using	integrated	datasets	to	prune	the	a	priori	generated	

kinetic	 parameters	 (Andreozzi,	 Miskovic	 and	 Hatzimanikatis	 2016,	Miskovic	 et	 al.	

2019a).	

When	studying	dynamic	properties,	one	important	aspect	is	the	identification	of	the	

enzyme	(or	enzymes)	which	controls	the	amount	of	flux	through	a	metabolic	pathway.	

For	a	long	time,	the	belief	that	a	single	enzyme	controls	the	flux	rate	was	predominant,	

and	 the	 reaction	being	 catalyzed	by	 said	 enzyme	was	 the	 rate-limiting	 step	of	 the	

pathway.	With	 the	 introduction	 of	 Metabolic	 Control	 Analysis	 (MCA)	 (Kacser	 and	

Burns	 1973b),	 it	 became	 evident	 that	 these	 relationships	 are	 not	 intuitive,	 and	

metabolic	control	 is	distributed	among	multiple	enzymes	in	the	network	(Schuster	

1999).	 MCA	 uses	 Control	 Coefficients	 (CCs)	 to	 quantitively	 capture	 a	 network’s	

response	 to	 perturbations	 on	 systemic	 parameters.	 Since	 its	 conception,	 the	MCA	

framework	has	been	extensively	developed	(Fell	and	Sauro	1985,	Hatzimanikatis	and	

Bailey	1996,	Hatzimanikatis	and	Bailey	1997,	Heinrich	and	Rapoport	1974)	and	has	

been	established	as	a	powerful	tool	in	multiple	scientific	areas,	such	as	biotechnology	

and	 medicine	 (Bowden	 1999,	 Cascante	 et	 al.	 2002,	 Nishiguchi	 et	 al.	 2019,	 Ward,	

Chatzivasileiou	 and	 Stephanopoulos	 2019).	 However,	 MCA	 is	 a	 local	 sensitivity	

method	and	is	thus	limited	to	the	study	of	small	perturbations	around	the	reference	

steady	state.		

	

	

1.2			Aim	and	Scope	

1.2.1.	Lipid	metabolism	

Lipids	are	a	diverse	group	of	hydrophobic	organic	compounds	that	includes	fats,	oils,	

waxes,	and	hormones.	They	also	include	phospholipids,	sphingolipids,	and	steroids,	

which	comprise	the	major	components	of	cellular	membranes.	Due	to	their	structure	

they	serve	multiple	purposes	in	an	organism,	such	as	acting	as	energy	storage	sources	
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and	 participating	 in	 signaling	 cascades.	 Lipids	 also	 regulate	 a	 range	 of	 biological	

processes	 spanning	 from	 cell	 proliferation	 and	 apoptosis	 to	 angiogenesis	 and	

immunity.	

The	 metabolism	 of	 lipids	 and	 its	 regulation	 has	 been	 closely	 associated	 with	

numerous	 physiopathologies.	 Lipid	metabolism	provides	 the	 cell	membranes	with	

the	required	lipids	in	the	correct	proportions	to	ensure	their	proper	function	and	is	

responsible	 for	 the	 appropriate	 adjustment	 of	 these	 proportions	 in	 response	 to	

external	 stimuli.	 Impaired	 lipid	homeostasis	 can	 lead	 to	acute	metabolic	disorders	

such	as	Parkinson’s	and	Alzheimer’s	disease,	and	diabetes	(Kosicek	and	Hecimovic	

2013,	 Markgraf,	 Al-Hasani	 and	 Lehr	 2016,	 Santiago	 and	 Potashkin	 2013).	 An	

atypically	 active	 lipid	metabolism	has	also	been	observed	 in	 cancer	 cells,	 allowing	

them	to	rapidly	proliferate	(Alves	et	al.	2016,	Ogretmen	and	Hannun	2004,	Vriens	et	

al.	2019).	Although	lipid	pathways	are	in	principle	well	characterized,	the	intricacies	

of	their	networks	are	yet	to	be	completely	understood.	

Lipidome	 is	 the	 term	 used	 to	 describe	 the	 totality	 of	 lipid	 species	 present	 in	 an	

organism.	 Lipidomics	 is	 the	 large-scale	 study	 of	 lipid	 networks	 and	 pathways	 in	

biological	systems,	and	its	aim	is	to	interpret	and	characterize	the	lipidome	(Dennis	

2009).	 Similar	 to	 genomics,	 advancements	 in	 mass	 spectrometry	 (MS)-based	

methodologies	also	enable	 the	detailed	analysis	and	mapping	of	 the	 lipidome.	The	

identification	and	quantification	of	thousands	of	lipid	species	can	greatly	facilitate	our	

basic	understanding	of	cellular	metabolism	and	regulation	(Han	2016,	Wenk	2005),	

and	aid	 in	 the	development	of	medical	diagnostics	and	 treatments	 (Lydic	and	Goo	

2018).	

Lipidome	characterization	 is	accompanied	by	the	need	of	appropriate	tools	 for	the	

analysis	of	 the	data	and	statistical	quantification	 thereof.	Computational	metabolic	

models	of	various	lipid	pathways	have	emerged	in	an	effort	to	evaluate	the	vast	omics	

data	available.	Top-down	approaches	have	been	used	 to	 construct	 context-specific	

models	 of	 metabolism	 from	 condition-specific	 metabolome	 data,	 and	 process	 this	

data	 in	a	mathematical	 formulation	 to	extract	 information	content	so	as	 the	active	

network	is	deduced	(Cakir	et	al.	2009).	These	models,	however,	are	usually	limited	to	

specific	data	sets	and	cannot	serve	multiple	studies	(Cook	and	Nielsen	2017).	
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1.2.2.			Yeast	as	a	model	organism	

Yeast	 has	 been	 established	 as	 a	 prominent	model	 organism	 for	 the	 study	 of	 lipid	

biochemistry	 (Klug	and	Daum	2014).	Apart	 from	a	very	well	documented	genome	

sequence	(Goffeau	et	al.	1996,	Mewes	et	al.	1997),	yeast	is	easy	and	inexpensive	to	

cultivate	and	genetically	modify	(Santos	and	Riezman	2012).	Even	shortly	after	the	

whole	genome	sequence	of	S.	cerevisiae	was	published,	wide	mutant	strain	collections	

were	 made	 available	 and	 their	 number	 has	 only	 increased	 since	 (Goffeau	 2000,	

Norman	 and	 Kumar	 2016).	 S.	 cerevisiae	 can	 synthesize	 most	 of	 the	 lipid	 classes	

currently	 identified,	 and	 possesses	 a	 high	 degree	 of	 homology	 with	 the	 human	

genome.	Moreover,	 the	majority	of	 regulatory	mechanisms	are	preserved	between	

the	 two	 species,	 thus	 yeast	 could	 perform	 brilliantly	 as	 a	 platform	 to	 study	 lipid	

dysregulation	in	human	cells.	(Natter	and	Kohlwein	2013,	Nielsen	2009,	Petranovic	

et	al.	2010).		

The	 first	 GEM	 of	 yeast	 was	 published	 in	 2003	 for	 the	 metabolic	 network	 of	 	 S.	

cerevisiae	(Forster	et	al.	2003).	Since	then,	multiple	yeast	GEMs	have	been	updated	

and	 published	 by	 several	 research	 groups	 (Lopes	 and	 Rocha	 2017).	 One	 of	 these	

models,	 namely	 iIN800	 (Nookaew	 et	 al.	 2008),	 especially	 focused	 in	 the	 accurate	

representation	 of	 lipid	 pathways,	 although	 it	 only	 considered	 two	 cellular	

compartments.	 In	 an	 effort	 to	 enforce	 community	 standards	 and	 resolve	

inconsistencies	 in	 annotation,	 a	 consensus	 network	 reconstruction	 has	 been	

developed,	with	its	latest	version	being	Yeast	8	(Lu	et	al.	2019).	Yeast	8	is	the	largest	

and	most	detailed	yeast	GEM	to	date;	it	encompasses	almost	4000	reactions	involving	

more	than	2500	metabolites.	Although	GEMs	are	a	useful	resource	in	studying	lipids	

in	 the	 context	of	 cell	metabolism,	 their	 large	 size	 introduces	a	 lot	of	mathematical	

complexity,	and	it	can	be	difficult	to	handle.	

	

1.2.3.	Kinetic	modeling	of	lipids	

For	the	study	of	lipid	metabolism	and	its	regulation,	kinetic	models	are	essential.	Lipid	

regulatory	mechanisms	are	imperative	to	maintain	membrane	permeability	and	cell	

homeostasis.	Multiple	efforts	to	capture	the	complexities	of	these	mechanisms	have	

been	 made	 the	 past	 decades	 using	 both	 deterministic	 and	 stochastic	 approaches	
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(Alvarez-Vasquez	 et	 al.	 2011,	 Alvarez-Vasquez	 et	 al.	 2004,	 Gupta	 et	 al.	 2011,	

Knoblauch	et	al.	2000,	Schutzhold	et	al.	2016).	However,	all	of	these	studies	focused	

on	smaller	parts	of	the	lipid	network	by	examining	few	pathways	at	a	time,	and	the	

reasons	 are	 manifold.	 As	 mentioned	 above,	 large-scale	 kinetic	 modeling	 is	 very	

demanding	 and	 requires	 an	 extensive	 parametrization	 with	 little	 available	

knowledge.	 Furthermore,	 enzymes	 associated	 with	 lipid	 pathways	 are	 highly	

promiscuous,	which	means	 that	 they	 do	 not	 have	 an	 affinity	 for	 a	 particular	 lipid	

species	but	for	whole	lipid	classes	(Carbonell,	Lecointre	and	Faulon	2011).	This	effect	

has	been	not	taken	into	account	in	the	vast	majority	of	existing	studies,	although	it	

has	 been	 shown	 to	 be	 crucial	 in	 predicting	 accurately	 the	 network’s	 dynamic	

responses	(Savoglidis	et	al.	2016).	

	

1.2.4.			Metabolic	engineering	strategies	in	sustainability	and	health	

Industrial	bioprocesses	exploit	microorganisms	by	using	them	as	cell	factories	that	

convert	 sugars	 into	 valuable	 chemicals.	Mathematical	modeling	 is	 vital	 tool	 in	 the	

constant	 development	 of	 such	 processes	 and	 kinetic	 models	 of	 metabolism	 are	

especially	utilized	 in	synthetic	biology	and	metabolic	design	 (Almquist	et	al.	2014,	

Sarkar	and	Maranas	2019).	Metabolic	engineering	aims	to	increase	the	production	of	

valuable	compounds	through	genetic	modifications.	Synthetic	biology	is	taking	this	

process	one	step	further	by	creating	genetic	material	that	is	not	native	to	an	organism,	

and	incorporating	it	in	its	genetic	makeup.	Kinetic	models	can	be	used	to	predict	and	

evaluate	the	effects	of	modifying	various	components	of	a	cell	factory	and	assist	in	the	

design	 of	 modification	 strategies.	 The	 key	 aspect	 of	 manipulating	 an	 organism’s	

capabilities	 is	 the	 identification	 of	 possible	 gene	 modification	 targets,	 which	

ultimately	translates	in	changes	in	enzymatic	expression	levels.	MCA	has	also	been	

widely	 used	 to	 extract	 vital	 information	 concerning	 metabolic	 engineering	

approaches	 (Fell	 1998,	 He,	Murabito	 and	Westerhoff	 2016,	Moreno-Sanchez	 et	 al.	

2008,	Volke	et	al.	2019).	CCs	express	on	a	basic	level	the	influence	that	each	genetic	

modification	will	have	in	flux	rates	and	concentration	levels	throughout	the	network.	

However,	MCA	fails	to	account	for	cascade-like	effects	that	these	modifications	may	

cause	 due	 to	 fact	 that	 CCs	 only	 consider	 the	 changes	 that	 a	 single	 parameter	will	
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instigate	in	the	network,	uncoupled	from	the	rest.	Additionally,	MCA	does	not	include	

any	form	of	physiological	constraints,	often	leading	to	unrealistic	predictions.	

Stepping	back	from	cell	factories,	humans	have	been	selecting	desirable	traits	in	one	

species	and	transferring	them	to	another	for	centuries	(i.e.	cross-breeding	in	plants	

and	animals).	Although	the	genetic	engineering	tools	to	allow	the	transfer	of	genetic	

material	 and	 the	 traits	 associated	with	 it	 are	widely	 available,	 the	mechanisms	 of	

evolutionary	 selection	 are	 still	 not	 completely	 understood.	 Over	 the	 past	 years,	

studies	have	focused	on	the	development	of	computational	tools	for	the	prediction	of	

mutant	fitness	and	the	pruning	of	mutant	libraries	(Heckmann,	Zielinski	and	Palsson	

2018,	Zaugg	et	al.	2014).	Even	though	the	genetic	restructuring	taking	place	in	each	

mutant	 generation	 can	 be	 studied	 a	 posteriori,	 the	 progression	 of	 metabolic	

restructuring	remains	 largely	unexplored.	Analogously,	 the	study	of	enzymatic	and	

metabolic	restructuring	could	immensely	increase	our	fundamental	understanding	of	

how	diseases	evolve.	To	date,	sequencing	the	genome	of	the	patient	has	been	the	first	

step	to	diagnosis	and	treatment.	However,	even	by	selectively	resequencing	parts	of	

the	 genome,	 the	 cost	 can	 amount	 to	 thousands	 of	 dollars	 (Benner	 et	 al.	 2008).	As	

computational	biomedicine	and	personalized	medicine	are	still	in	their	infancy,	the	

search	 for	 efficient	 tools	 aiding	 in	 phenotyping	 and	 the	 identification	 of	 relevant	

biomarkers	is	still	ongoing	(Ho	and	Chen	2017,	Jain	2013).	

	

	

1.3			Thesis	Overview	

In	Chapter	2	we	present	a	novel	metabolic	model	that	focuses	on	the	lipid	metabolism	

of	S.	cerevisiae.	This	model	was	assembled	by	gathering	available	detailed	pathway	

knowledge	of	the	lipid	network	and	integrating	it	into	an	already	existing	GEM.	This	

integrated	model	was	then	systematically	reduced	around	the	subsystems	defined	by	

these	 pathways	 using	 the	 redGEM	 and	 lumpGEM	 framework,	 to	 provide	 a	

comprehensive	network	of	manageable	size	for	complex	studies	of	metabolism.	We	

additionally	curated	this	model	with	GPR	annotations	and	thermodynamic	feasibility	
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constraints,	and	show	it	is	as	consistent	and	inclusive	as	other	yeast	GEMs	regarding	

the	focus	and	detail	on	the	lipid	metabolism.	

In	Chapter	3	we	employ	the	ORACLE	framework	to	construct	a	kinetic	model	of	the	

lipid	 metabolism	 in	 yeast,	 using	 the	 stoichiometric	 model	 that	 was	 developed	 in	

Chapter	 2.	 We	 calibrated	 this	 model	 using	 lipidomics	 data	 and	 accounted	 for	

promiscuity	 in	 the	 enzymatic	 properties.	 We	 demonstrate	 the	 significance	 of	

enzymatic	promiscuity	through	MCA,	and	show	that	 the	model’s	predictions	are	 in	

agreement	with	biological	observations.	This	model	is	to	our	knowledge	the	largest	

and	most	detailed	kinetic	model	of	the	lipid	metabolism	to	date.	

In	 Chapter	 4	 we	 develop	 a	 formulation	 that	 uses	 MCA-based	 CCs	 to	 generate	

constraint-based	 models	 for	 the	 consistent	 derivation	 of	 metabolic	 engineering	

strategies.	We	systematically	introduced	and	parametrized	sets	of	relevant	biological	

constraints	to	the	network.	Finally,	the	advantages	of	this	formulation	in	comparison	

to	 the	 classical	MCA	approach	and	 its	 ability	 to	generate	alternative	 strategies	are	

highlighted.	

In	 Chapter	 5	 we	 enhance	 the	 formulation	 that	 was	 developed	 in	 Chapter	 4	 to	

accommodate	reverse	metabolic	engineering	design.	The	optimization	objective	was	

appropriately	modified	in	order	to	enable	the	mapping	of	underlying	enzymatic	and	

metabolic	restructuring	mechanisms	of	the	cell	between	various	physiological	states.	

Furthermore,	an	additional	workflow	was	defined	for	the	identification	of	underlying	

cell	mutations	using	metabolomics	data.	

Concluding,	in	Chapter	6	we	summarize	the	conclusions	of	this	thesis	and	discuss	the	

applications	 and	 future	 perspectives	 of	 the	 developed	 tools	 and	workflows	 in	 the	

research	field.	
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Chapter	2	–	redLips:	a	
comprehensive	mechanistic	model	
of	the	lipid	metabolic	network	of	
yeast	

 
 
 

2.1			Introduction	

Even	 the	 slightest	 changes	 in	 cellular	 membrane	 composition,	 which	 all	 serve	 a	

specific	biological	purpose,	can	affect	many	cellular	functions	from	signaling	cascades	

to	the	modulation	of	membrane	fluidity	(Guan	et	al.	2009).	Because	they	are	the	main	

structural	component	of	cellular	membranes,	lipid	imbalances	have	been	shown	to	be	

involved	 in	 various	 physiopathologies	 concerning	 membrane	 lipid	 homeostasis	

(Holthuis	and	Menon	2014).	Yeast	is	a	very	prominent	model	organism	for	the	study	

of	 numerous	 parts	 of	 cell	 metabolism	 including,	 but	 not	 limited	 to,	 lipid-related	

cellular	 processes	 (de	 Kroon	 2017,	 Klose	 et	 al.	 2012)	 because	 it	 is	 easy	 and	

inexpensive	 to	cultivate	and	modify	 its	genome	 for	experiments,	and	 it	has	a	well-

documented	 genome	 sequence	 (Santos	 and	 Riezman	 2012).	 Consequently,	 an	

increasing	 spectrum	 of	 yeast	 mutants	 has	 been	 made	 available,	 providing	 great	

opportunities	 for	 studies	 on	 the	 effects	 of	 lipid	 metabolism	 perturbations	 at	

molecular	and	cellular	levels.		One	additional	feature	of	yeast	is	its	high	homology	to	

the	 human	 genome.	Most	 importantly,	 the	majority	 of	 regulatory	mechanisms	 are	

preserved	between	the	species	(Petranovic	et	al.	2010).	This	means	that	yeast	could	

potentially	be	used	as	a	platform	to	study	lipid	dysregulation	in	humans,	making	the	

study	 of	 potential	 causalities	 and	 treatments	 critically	 easier.	 The	 similarities	 and	

differences	of	the	two	organisms,	along	with	the	potentials	for	comparative	analysis	
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have	been	reviewed	in	detail	by	Nielsen	(2009).	Unfortunately,	the	intricacies	of	how	

lipids	 tie	 to	many	 biological	 functions,	 including	 those	 leading	 to	 disease,	 remain	

unknown.	This	means	 that	comprehensive	 lipid	 identification	and	characterization	

and	detailed	 studies	 of	 lipidomics	 are	needed	 for	 a	 fundamental	 understanding	 of	

cellular	metabolism	(da	Silveira	Dos	Santos	et	al.	2014,	Han	2016,	Ivanova	et	al.	2009,	

Kontush	 and	 Chapman	 2010,	 Wenk	 2005),	 and	 as	 such,	 recent	 interdisciplinary	

approaches	are	beginning	to	reveal	novel	lipid	functions	and	interactions	(Harayama	

and	Riezman	2018).	Eventually,	lipidome	profiling	could	be	used	as	a	predictive	tool	

to	further	enhance	our	knowledge	of	the	underlying	molecular	mechanisms	typifying	

lipid	dysregulation.	

While	traditionally	established	work	on	cellular	lipid	metabolism	has	been	limited	to	

the	analysis	of	individual	classes	of	lipids	or	specific	lipid	species,	progress	in	mass	

spectrometry	(MS)-based	methodologies	has	allowed	the	analysis	of	the	entirety	of	

the	 lipids	 in	 a	 cell.	 Computational	 metabolic	 models	 of	 various	 pathways	 have	

emerged	 in	an	effort	 to	evaluate	 the	vast	omics	data	available,	and	many	different	

approaches	 for	 their	construction	and	curation	with	 incorporated	omics	data	have	

been	developed	(Joyce	and	Palsson	2006).	This	mostly	involves	genome-scale	models	

(GEMs)	of	metabolism,	which	are	reconstructions	of	an	organism’s	metabolism	from	

genomic,	biochemical,	and	physiological	data,	and	in	principle,	contain	the	majority	of	

known	 information	 for	 the	 modeled	 organism.	With	 the	 increasing	 availability	 of	

omics	data,	however,	comes	increasing	mathematical	complexity,	and	it	can	be	very	

complicated	 to	 handle	 the	 incorporation	 of	 experimental	 data	 in	 such	 large-scale	

models.	The	potential	of	dynamic	modeling	 through	 the	generation	of	 appropriate	

sets	 of	 ordinary	 differential	 equations	 that	 describe	 the	 network	 topology	 is	 also	

hindered	 by	 the	 model’s	 size.	 Mathematically,	 a	 larger	 model	 also	 leads	 to	 an	

increased	solution	space,	which	ultimately	contributes	to	increased	uncertainty	in	the	

model’s	 predictions.	 Therefore,	 it	 is	 essential	 that	 a	 network	 is	 manageable	 with	

respect	to	size	without	a	loss	of	information,	so	the	redGEM	framework	was	proposed	

as	a	way	to	systematically	reduce	GEMs	around	a	biological	context	of	interest	with	

minimal	loss	of	information	and	connectivity	(Ataman	et	al.	2017).	On	the	other	hand,	

due	to	the	rapid	discovery	of	novel	species	through	innovative	technologies,	a	gap	is	

emerging	between	the	existing	pathway	representations	of	lipids	and	lipid	structure	
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databases.	An	approach	aiming	to	bridge	this	gap	has	been	proposed,	termed	Network	

Integrated	Computational	Explorer	 for	Lipidomics	(NICELips)	(Hadadi	et	al.	2014),	

and	 this	 framework	 can	 postulate	 novel	 lipid	 biosynthesis	 pathways	 using	

generalized	enzymatic	reaction	rules.	Specific	to	yeast	metabolism,	the	first	GEM	of	S.	

cerevisiae	was	published	in	2003	(Forster	et	al.	2003),	and	over	the	years,	multiple	

yeast	GEMs	have	been	updated	and	published	by	several	research	groups	(Lopes	and	

Rocha	 2017).	 Due	 to	 inconsistencies	 in	 annotation,	 a	 community	 consensus	

reconstruction	has	been	developed,	with	its	latest	versions	being	Yeast	7	and	Yeast	8	

(Aung,	Henry	and	Walker	2013,	Lu	et	al.	2019).	Very	recently,	a	novel	method	for	the	

representation	of	lipid	requirements	in	GEMs	was	proposed	(Sanchez	et	al.	2019).	

We	thus	sought	to	develop	a	metabolic	model	that	could	act	as	detailed	repository	of	

lipid	metabolism	for	S.	cerevisiae.	Starting	from	the	network	provided	by	Savoglidis	et	

al.	(2016),	we	gathered	all	relevant	reaction	and	pathway	information	available	in	the	

literature	and	databases.	To	ensure	consistency	with	the	well	annotated	GEMs,	we	

incorporated	these	data	into	a	GEM	of	the	yeast	S.	cerevisiae,	expanding	its	preexisting	

lipid	description.	We	then	performed	a	systematic	reduction	of	the	integrated	model	

around	the	lipid	subsystems	to	preserve	the	focus	of	the	model	on	the	lipid	metabolic	

pathways	 and	 to	 simultaneously	 retain	 the	 connections	 to	 the	 rest	 of	 the	 cell	

metabolism.	To	 ensure	 consistency	of	 the	 cell	 biomass	 composition,	we	 computed	

lumped	reactions	to	establish	the	production	of	all	biomass	building	blocks	(BBBs).	

These	steps	made	sure	that	our	final	model,	termed	“reduced	lipids-centric	model”	

(redLips),	is	inclusive	yet	concise	and	as	consistent	as	the	other	available	yeast	GEMs.	

We	have	created	a	detailed	 thermodynamic	database	 for	all	 the	metabolites	of	 the	

network	and	performed	a	complete	thermodynamic	curation	of	redLips,	a	procedure	

that	decreases	the	mathematical	uncertainty	and	imposes	physiological	constraints.	

We	 also	demonstrate	how	 it	 can	be	used	 as	 a	 scaffold	 for	 lipidomic	measurement	

implementation.	 redLips	 can	 be	 modified	 to	 accommodate	 simulations	 and	

predictions	for	human	(or	other)	metabolism,	thus	creating	a	platform	to	study	lipid	

regulation	for	applications	across	organisms.	
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2.2			Materials	and	Methods	

2.2.1			Starting	reaction	network	

We	used	the	model	of	Savoglidis	et	al.	(2016)	as	a	base	to	gather	and	reassemble	the	

available	 knowledge	 on	 lipid	 metabolism	 to	 date.	 The	 LIPID	 MAPS	 classification	

system	 distinguishes	 eight	 major	 lipid	 categories:	 fatty	 acyls,	 glycerolipids,	

glycerophospholipids,	 sphingolipids,	 sterol	 lipids,	prenol	 lipids,	 saccharolipids,	and	

polyketides	(Fahy	et	al.	2005,	Fahy	et	al.	2009),	and	the	above	cited	model	focused	on	

the	sphingolipid	biosynthesis	pathway	and	included	some	of	the	glycerophospholipid	

biosynthetic	route.	The	model	was	curated	using	thermodynamic	and	lipidomics	data,	

and	an	extensive	study	on	the	control	asserted	by	the	highly	multifunctional	enzymes	

of	the	system	was	conducted.		

The	resulting	gathered	lipid	reactions	network	(GLRN)	was	constructed	by	combining	

information	 found	 in	 the	 literature,	GEMs,	 and	databases.	Primary	 sources	of	data	

include	 the	 online	 repositories	 Saccharomyces	 Genome	 Database	 (SGD,	

https://www.yeastgenome.org,	 (Cherry	 et	 al.	 1998)),	 KEGG	

(https://www.genome.jp/kegg/),	 and	 Lipid	 Maps	 (https://www.lipidmaps.org)	 as	

well	as	relevant	journal	publications	and	books	(Dickinson	and	Schweizer	2004).	

	

2.2.2			Consistent	reduction	of	models	

An	issue	that	arises	when	modeling	only	a	part	of	cell	metabolism	is	the	connection	to	

the	rest	of	the	network.	For	example,	if	the	lipid	network	was	to	be	studied	without	

including	the	TCA	cycle,	ATP	would	need	to	be	obtained	through	an	artificial	transport	

reaction	from	the	extra-model	domain	to	the	intra-model	domain,	though	there	is	no	

such	 compartmental	 transport	 in	 reality.	 This	 can	 lead	 to	 uncertainty	 on	 the	

concentration	levels	as	well	as	to	a	major	question	of	the	relevant	flux	constraints.	To	

create	a	consistent	and	reliable	model,	we	would	need	to	constrain	the	flux	values	of	

all	 these	 transport	 reactions	 (which	 would	 include	 mostly	 cofactors)	 to	 realistic	

values.	

To	overcome	this	issue,	we	decided	to	effectively	couple	our	model	with	a	GEM	that	

will	account	for	any	non-realistic	assumptions	that	would	have	to	be	made.	We	did	
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this	 by	 first	 incorporating	 our	 detailed	 lipid	 network	 into	 a	 GEM	 of	 choice,	 thus	

expanding	 the	 lipid	 metabolism	 pathways	 already	 present,	 then	 we	 utilized	 the	

redGEM	framework	to	obtain	a	reduced	model	using	our	original	subsystems	as	the	

starting	network.	

redGEM	 is	 a	 framework	 developed	 by	 Ataman	 et	 al.	 (Ataman	 et	 al.	 2017)	 to	

systematically	 and	 consistently	 reduce	 genome-scale	models.	 It	 focuses	 on	 chosen	

parts	(subsystems)	of	the	metabolic	networks	that	are	then	connected	to	each	other	

up	 to	a	user-defined	degree	of	 connection.	This	measure	describes	 the	distance	 in	

terms	of	reaction	steps	between	a	subsystem	pair	and	can	be	either	imposed	by	the	

user	 for	 all	 subsystem	 pairs	 or	 can	 be	 equal	 to	 the	 intrinsic	 minimum	 distance	

between	 each	 pair.	 Subsequently,	 the	 resulting	 core	 network	 is	 connected	 to	 the	

biomass	building	blocks	(BBBs)	using	lumpGEM	(Ataman	and	Hatzimanikatis	2017).	

In	redGEM,	a	graph	search	algorithm	is	employed	to	identify	all	possible	connections	

between	 metabolites	 belonging	 either	 to	 the	 same	 subsystem	 or	 different	 ones	

(excluding	cofactors).	The	 first	 step	 is	 the	 intra-expansion	of	 the	starting	network,	

connecting	metabolites	within	each	subsystem	of	interest.	Then	these	subsystems	are	

step-wise	 connected	 to	each	other,	 first	 adding	 the	one-step	 connections,	 then	 the	

two-step	connections	(which	will	involve	an	intermediate),	etc.,	thus	creating	the	core	

network.	 The	 degree	 of	 connection	 is	 symbolized	 as	 D#,	 where	 #	 is	 the	 number	

corresponding	to	the	desired	connection	length.	

After	 the	 network	 expansion,	 lumpGEM	 is	 used	 to	 identify	 sets	 of	 biosynthetic	

subnetworks	that	will	synthesize	each	BBB	that	cannot	already	be	produced	by	the	

core	network.	In	other	words,	lumpGEM’s	objective	is	the	minimization	of	the	number	

of	reactions	that	need	to	be	added	to	the	core	to	allow	the	production	of	each	BBB.	

These	sets	are	then	collapsed	into	elementally	balanced	lumped	reactions.	lumpGEM	

first	identifies	the	minimal	subnetwork	of	reactions	needed	to	connect	the	expanded	

network	to	each	BBB.	Subsequently,	all	alternative	subnetworks	of	this	minimal	size	

can	also	be	computed	and	are	then	translated	into	a	single	lumped	reaction	that	 is	

tested	 for	 feasibility	 in	 terms	 of	 stoichiometry	 and	 thermodynamics.	 Various	

consistency	checks	are	performed	to	ensure	the	minimal	loss	of	information	during	

the	reduction	process.	These	checks	include	flux	variability	and	essentiality	studies	in	
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both	stoichiometric	and	thermodynamic	levels	of	curation	between	the	GEM	and	the	

reduced	model.	

	

2.2.3			Genome	Scale	Model	(before	integration)	

We	 integrated	 the	GLRN	 into	 the	well-known	and	well-studied	 iMM904	GEM	 (Mo,	

Palsson	and	Herrgard	2009),	which	is	annotated,	ensuring	that	it	was	straightforward	

to	match	each	reaction	and	its	metabolites	between	the	two	networks.	iMM904	also	

includes	a	large	number	of	cellular	compartments	compared	to	most	yeast	GEMs.	The	

interested	reader	may	refer	to	(Lopes	and	Rocha	2017),	(Sanchez	and	Nielsen	2015)	

and	 (Osterlund,	 Nookaew	 and	 Nielsen	 2012)	 for	 a	 more	 detailed	 review	 of	 the	

development	and	evolution	of	various	S.	cerevisiae	GEMs.	

	

2.2.4			Gathered	Lipid	Reactions	Network	(before	integration)	

The	GLRN	encompasses	more	than	500	enzymatic	reactions	and	300	metabolites.	We	

considered	7	cellular	compartments	where	all	the	reactions	take	place,	which	are	the	

cytosol,	 mitochondria,	 endoplasmic	 reticulum	 (ER),	 peroxisomes,	 Golgi	 apparatus,	

vacuole,	and	nucleus	(as	well	as	extracellular	space).	The	model	can	be	organized	into	

15	 subsystems:	 glycolysis,	 pyruvate	metabolism,	 fatty	 acid	 biosynthesis,	 fatty	 acid	

mitochondrial	 biosynthesis,	 fatty	 acid	 elongation,	 fatty	 acid	 degradation,	

phospholipid	 biosynthesis,	 sphingolipid	 biosynthesis,	 sterol	 biosynthesis	 and	

esterification,	 sterol	 metabolism,	 mevalonate	 pathway,	 dolichol	 biosynthesis,	

cardiolipin	 biosynthesis,	 carnitine	 shuttle,	 and	 triacylglyceride	 decomposition.	We	

did	not	consider	any	membrane	compartments	or	lipid	bodies	in	our	study	since	our	

thermodynamic	 calculations	 do	 not	 hold	 for	 non-aqueous	 solutions,	 as	 will	 be	

explained	shortly,	and	we	instead	opted	for	consistency	over	extensive	detail.	

The	localization	assignment	for	each	reaction	was	made	according	to	the	Yeast7	and	

Yeast8	 consensus	 GEMs	 (Aung,	 Henry	 and	Walker	 2013,	 Lu	 et	 al.	 2019).	 For	 the	

reactions	that	are	not	included	in	this	model,	the	N-terminal	amino	acid	sequence	of	

the	associated	gene	was	used	to	predict	localization	(Emanuelsson	et	al.	2007).	
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2.2.5			Genome	Scale	Model	(after	integration)	

After	we	integrated	the	GLRN	into	the	GEM,	the	integrated	model	had	2181	reactions	

and	1551	metabolites.	The	 lipid-related	reaction	subsystems	of	 iMM904	that	were	

mostly	 expanded	were	 the	 fatty	 acid	 biosynthesis	 and	 degradation,	 as	well	 as	 the	

sterol	biosynthesis	and	esterification,	all	of	which	existed	mostly	as	lumped	reactions	

or	 were	 missing	 parts	 of	 the	 pathways.	 The	 phospholipid	 and	 sphingolipid	

biosynthetic	 pathways	 originally	 included	 mostly	 mass-imbalanced	 and	 pooled	

reactions	and	were	also	greatly	enhanced,	with	parts	like	phospholipid	remodeling	

being	added.	Similarly,	the	lipid	species	that	were	added	to	the	model	mostly	included	

fatty	 acids	 of	 different	 carbon	 chain	 lengths,	 complex	 sphingolipids,	 monolyso-

glycerophospholipids,	and	fatty	acid	biosynthesis	and	degradation	as	well	as	sterol	

intermediates,	over	all	of	the	cellular	compartments.	

	

2.2.6			Lipidomics	–	biosynthetic	fluxes	

Lipids	are	an	essential	component	of	the	cell’s	various	membranes	and	are	critical	for	

cell	survival.	Thus,	being	essential	to	biomass	formation,	they	should	be	present	in	the	

modeled	assumption	of	the	biomass	composition.	However,	few	GEMs	even	consider	

these	lipids	as	part	of	the	growth	requirements,	let	alone	encompass	the	lipid	network	

in	detail.	We	have	identified	37	metabolites	that	should	be	considered,	which	are	4	

phospholipids	(phosphatidylethanolamine,	phosphatidylcholine,	phosphatidylserine	

and	 phosphatidylinositol),	 4	 lyso-phospholipids	 (lyso-phosphatidylethanolamine,	

lyso-phosphatidylcholine,	 lyso-phosphatidylserine	 and	 lyso-phosphatidylinositol),	

20	complex	sphingolipids,	ergosterol,	4	sterol	esters	(ergosterol,	episterol,	lanosterol	

and	zymosterol	esters),	dolichol,	as	well	as	long	and	very	long	chain	fatty	acids.		

We	 did	 not	wish	 to	 alter	 the	 biomass	 reaction	 already	 defined	 in	 iMM904,	 so	we	

defined	35	additional	biosynthetic	reactions.	These	reactions	are	all	single	(or	double)	

species	 exchange	 reactions,	 all	 of	which	are	essential	 to	 cell	 growth.	This	 artificial	

representation	corresponds	to	elementary	fluxes	of	the	aforementioned	lipid	species	

towards	biomass	formation.	These	fluxes	can	be	constrained	based	on	experimental	

concentration	measurements	(when	available)	as:	

&(()* − ,-) ≤ 01 ≤ &(()* + ,-),	
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where	01 	are	 the	 biosynthetic	 reaction	 fluxes,	()* 	the	mean	of	 the	 lipidomic	 content	
measurements,	,-	the	experimental	measurements’	 standard	deviation	of	()* ,	 and	&	
the	specific	growth	rate	of	the	cell	as	calculated	from	the	flux	through	the	biomass	

objective	function.	

It	 is	 important	 to	 note	 that	 when	 a	 species	 is	 already	 considered	 in	 the	 biomass	

composition	 of	 the	 GEM,	 the	 experimental	 constraint	 is	 altered	 accordingly	 to	

consider	the	corresponding	amount	required	for	each	contribution.	

	

2.2.7			Thermodynamics	

Next,	 we	 performed	 a	 complete	 thermodynamic	 curation	 of	 the	 integrated	model	

using	TFA	(Salvy	et	al.	2019)	to	further	reduce	the	solution	space	of	the	problem	and	

help	 identify	 reaction	directionalities.	For	a	 reaction	 to	be	 feasible	 in	 the	assumed	

directionality,	 the	 net	 change	 in	 Gibbs	 free	 energy	 of	 a	 reaction	 (Δ56$7 )	must	 be	
negative	in	this	direction.		

Lipids	are	very	complex	molecules,	and	thermodynamic	information	about	them,	such	

as	the	Gibbs	free	energies	of	 formation	and	dissolution	constants,	 is	scarce.	Where	

available,	experimental	observations	indicating	a	pathway	direction	were	used,	which	

in	 turn	 provided	 insight	 for	 the	 whole	 reaction	 network.	 Otherwise,	 group	

contribution	methods	were	used,	which	predict	properties	of	complex	molecules	by	

using	group	or	atom	properties	(Mavrovouniotis	1990,	Mavrovouniotis	1991).	Thus,	

very	complicated	molecules	can	be	decomposed	into	a	number	of	simple	groups,	and	

their	individual	contributions	to	the	total	properties	can	be	estimated.		

Since	thermodynamic	properties	depend	on	the	pH	of	the	environment,	we	needed	to	

assign	a	pH	value	to	each	considered	compartment	(Orij	et	al.	2009,	Paroutis,	Touret	

and	Grinstein	2004,	Preston,	Murphy	and	Jones	1989).	For	cross-membrane	transport	

reactions,	we	also	needed	to	take	the	membrane	potential	difference,	if	any	(Cohen	

and	Venkatachalam	2014),	into	account.	Finally,	all	of	the	calculated	changes	in	Gibbs	

free	energy	needed	to	be	adjusted	with	the	associated	compartmental	ionic	strength	

(Ataman	2016).	All	of	these	values	can	be	found	in	Table	2.1.	
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Table	 2.1.	 Values	 for	 pH	and	 ionic	 strength	 (in	M)	 for	 each	model	 compartment,	 and	 cross-
membrane	potentials	(in	mV)	for	each	set	of	these	compartments	(where	applicable)	–	opposite	
arrow	direction	will	correspond	to	the	same	value	with	opposite	sign.	

#	 Compartment	 pH	
Ionic	Strength	

(M)	

Cross-membrane	

potential	(mV)	

I	 Cytosol	 7	 0.25	 n/a	
II	 Endoplasmic	Reticulum	 7.2	 0	 n/a	
III	 Golgi	Apparatus	 6.35	 0	 n/a	
IV	 Mitochondria	 7.5	 0.25	 IV	®	I:	180	
V	 Nucleus	 7	 0	 V	®	I:	15	
VI	 Peroxisome	 8.2	 0	 n/a	
VII	 Vacuole	 6.17	 0	 n/a	
VIII	 Extracellular		 5	 0	 VIII	®	I:	-60	

	

	

To	estimate	the	properties	of	a	lipid	containing	a	fatty	acyl	carbon	chain,	we	needed	

to	assume	a	chain	length	for	each	of	the	attached	R	groups.	We	chose	C16:0	(where	

the	first	number	denotes	the	carbon	chain	length	and	second	denotes	the	number	of	

unsaturations	on	this	chain)	for	all	species,	since	this	chain	length	represents	the	vast	

majority	 of	 lipids	 in	 eukaryotes.	Regardless,	 this	 assumption	does	not	 carry	much	

weight	in	our	model,	since	the	group	contribution	method	used	to	estimate	the	Gibbs	

free	energy	of	a	reaction	considers	only	the	groups	that	undergo	a	molecular	change.	

Consequently,	if	the	R	group	is	not	the	reactive	part	of	the	molecule	participating	in	

the	 reaction,	 its	 length	 will	 not	 affect	 the	 calculated	 Δ56$7 	value.	 One	 more	
assumption	 that	 needed	 to	 be	 made	 was	 that	 no	 reactions	 occurred	 inside	

membranes.	 It	 is	 known	 that	 this	 is	 not	 the	 case	 for	 numerous	 lipid	

biotransformations,	 but	 since	 all	 thermodynamic	 properties	 have	 been	 measured	

with	the	assumption	of	an	aqueous	solution	and	are	computed	accordingly,	it	was	a	

necessary	assumption.	

With	 these	 in	 mind,	 we	 curated	 a	 thermodynamic	 database	 containing	 all	 the	

thermodynamic	properties	of	the	model’s	metabolites,	such	as	pKa,	standard	Gibbs	

free	 energy	 of	 formation,	 formula,	 charge,	 etc.	 These	 properties	 were	 calculated	

through	Chemaxon	(https://www.chemaxon.com).	This	database	covers	90.4%	of	the	
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integrated	network’s	metabolites,	which	allowed	us	to	calculate	87.4%	of	the	Δ56$7	
of	the	network	reactions.	

Assumptions	made	about	the	thermodynamic	constraints,	such	as	temperature	and	

pH,	 or	 even	 uncertainty	 in	 the	 calculation	 and	 the	 standard	 deviation	 of	

measurements,	 can	 render	 networks	 computationally	 infeasible.	 Additionally,	

especially	 concerning	 lipid	 metabolism,	 channeling	 phenomena	 can	 lead	 to	

apparently	infeasible	reactions	in	a	certain	directionality.	Regardless,	since	we	were	

confident	in	most	of	the	reaction	directionalities	in	our	network,	we	could	adjust	some	

thermodynamic	 constraints	 to	 attain	 feasible	 solutions	 in	 what	 we	 consider	

physiological	conditions.	More	specifically,	in	order	to	retain	consistency	with	yeast	

physiology,	 we	 relaxed	 62	 thermodynamic	 feasibility	 constraints	 in	 terms	 of	 the	

Δ56$7 .	These	constraints	correspond	in	majority	to	lipid	species	transport	reactions	
across	intracellular	compartments.	This	is	actually	a	case	for	which	our	computations	

may	not	hold,	though,	since	lipid	species	do	not	cross	membranes	in	the	same	way	as	

most	others.	The	complete	list	of	the	Δ56$7	relaxations	can	be	found	in	supplementary	
Table	S2.3.	

	

2.2.8			Fatty	Acid	chain	lengths	

Lipid	 species	 consist	of	R	groups	of	 acyl	 chains	exchanged	between	 themselves	or	

provided	by	 free	 fatty	acids.	These	chains	vary	 in	size	and	usually	contain	an	even	

number	of	carbon	atoms	from	4	to	28	as	well	as	often	one	unsaturation.	As	mentioned	

previously,	 the	most	abundant	fatty	acids	 in	yeast	have	a	16-carbon	chain,	and	the	

second	most	abundant	have	an	18-carbon	chain,	which	together	comprise	more	than	

70%	of	the	total	fatty	acid	population	(Daum	et	al.	1999,	Schneiter	et	al.	1999).	In	this	

model,	we	consider	acyl	chains	only	of	even	chain	 lengths	varying	from	C8	to	C26.	

Because	any	chain	length	or	combination	thereof	could	react	to	form	a	lipid	species,	

we	treated	the	fatty	acids	(in	both	inactive	and	coenzyme	A	[CoA]-activated	form)	as	

metabolite	pools,	which	comprised	all	of	the	fatty	acyl	providers.	We	also	defined	a	

metabolite	pool	for	polyprenol	diphosphates,	which	include	species	possessing	14	to	

22	prenyl	units.	
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2.2.9			Lipidomics	–	concentrations	

As	mentioned	above,	experimental	measurements	can	be	used	to	constrain	fluxes	and	

effectively	 couple	 them	 to	 biomass	 formation.	 The	 metabolic	 concentrations	 of	

species	can	also	be	constrained	through	lipidomics	as:	

89(:)* − ,-) ≤ ;<1 ≤ 89(:)* + ,-),	

where	:)* 	is	the	mean	of	the	concentration	measurements,	,-	the	standard	deviation	
of	 the	experimental	measurements	of	:)* ,	 and	;<1 	are	 the	natural	 logarithms	of	 the	
concentrations	for	each	compound.	

	

2.2.10			Media	

To	ensure	that	the	maximum	growth	rate	predicted	by	the	model	reflects	a	typical	

growth	rate	for	yeast	in	aerobic	conditions	(about	0.32-0.48	h-1),	we	constrained	the	

maximum	uptake	of	glucose	(which	we	considered	to	be	the	sole	carbon	source)	to	4	

mmol×gDW-1×h-1	 (Orij	 et	 al.	 2012).	 The	 other	 uptakes	 allowed	 were	 the	 following	

inorganics:	 hydrogen,	 water,	 ammonium,	 oxygen	 (limited	 to	 20	 mmol×gDW-1×h-1),	

phosphate,	and	sulfate.	We	also	had	the	option	to	allow	a	basal	uptake	of	exogenous	

ethanolamine	(we	chose	a	value	of	up	to	0.02	mmol×gDW-1×h-1)	to	activate	the	reaction	

catalyzed	by	ethanolamine	kinase	(EKI1),	the	first	step	of	phosphatidylethanolamine	

(PE)	synthesis	via	the	Kennedy	pathway.	

	

	

	

2.3			Results	and	Discussion	

2.3.1			redGEM	output	model	

To	form	our	lipid-focused	reduced	metabolic	model,	we	first	applied	the	redGEM	and	

lumpGEM	algorithms	to	the	previously	defined	subsystems	of	interest,	GLRN,	and	the	

glycolysis	pathway.	We	also	included	the	electron	transport	chain	(ETC)	reactions	to	

the	starting	subsystems	to	ensure	consistent	energy	associations	and	that	the	growth	

rates	were	as	equivalent	to	the	GEM	as	possible.	For	this	reduction,	we	set	the	degree	
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of	connection	to	3,	which	means	that	pairwise	subsystem	connections	of	up	to	3	steps	

each	will	be	added	during	the	subsequent	network	expansions.	The	resulting	model	

encompassed	1130	reactions,	of	which	639	were	enzymatic,	419	were	transport	or	

boundary,	35	were	biosynthetic	(as	described	in	the	Materials	and	Methods	section),	

and	 37	 were	 lumped	 reactions.	 Additionally,	 the	 reduced	 model	 included	 800	

metabolites,	404	of	which	were	unique	across	compartments.	

After	 formation	of	 the	 reduced	model,	 to	 ensure	and	evaluate	 its	 function	and	 the	

minimal	 loss	of	 information	 from	 the	 integrated	model,	we	 conducted	 consistency	

checks	 in	 terms	 of	 enzyme	 essentiality	 and	 thermodynamic	 flux	 variability.	 The	

results	from	these	tests	can	be	found	in	supplementary	Tables	S2.1	and	S2.2.	These	

tests	showed	that,	as	expected,	redLips	exhibits	equal	or	less	variability	in	terms	of	

flux	ranges	compared	to	the	integrated	GEM,	since	some	information	will	unavoidably	

be	lost	through	the	reduction	process.	In	any	case,	all	of	the	flux	values	in	the	solution	

space	of	redLips	are	a	subset	of	the	integrated	GEM’s	solution	space,	as	they	would	

otherwise	be	 inconsistent.	 Similarly,	 redLips	has	more	essential	 enzymes	 than	 the	

integrated	GEM,	 though	 the	 essential	 enzymes	 of	 the	 latter	 are	 all	 a	 subset	 of	 the	

former.	This	discrepancy	can	occur	mainly	because	of	two	reasons:	First,	it	is	possible	

that	some	of	the	enzymes	that	are	essential	for	redLips	and	non-essential	for	the	GEM	

participate	in	lumped	reactions,	thus	are	indispensable	for	growth.	Additionally,	this	

means	 that	 these	 enzymes	 catalyze	 reactions	 that	 are	present	 in	 all	 the	 computed	

alternatives	for	one	(or	more)	BBB	for	the	minimal	subnetwork	size.	Second,	some	

alternative	pathways	compensating	 for	 the	 loss	of	 this	enzymatic	activity	might	be	

lost	due	to	the	reduction	process,	making	it	essential	in	the	reduced	model.	

	

2.3.2			Overview	of	the	reactions	and	metabolites	in	each	expansion	step	

In	 order	 to	 get	 a	 clearer	 picture	 of	 redLips’	 structure	 and	 the	 overall	 network	

connectivity,	 we	 took	 a	 closer	 look	 at	 the	 reactions	 added	 to	 the	 model	 in	 each	

expansion	 step	 with	 respect	 to	 reactions	 that	 can	 carry	 flux.	 In	 the	 following	

discussion,	the	number	of	reactions	comprising	the	graph	search	output	will	be	given	

in	parentheses	next	to	the	number	of	feasible	(flux	carrying)	reaction	additions.	The	

starting	 subsystems	 include	 540	 reactions	 and	 609	metabolites	 (307	 unique	 ones	
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across	compartments)	in	total.	The	complete	list	of	subsystems	included	in	redLips	

and	the	respective	numbers	of	reactions	in	each	of	them,	along	with	the	number	of	

reactions	added	in	each	expansion	of	the	starting	network	are	given	in	detail	in	Table	

2.2.	

In	the	D1	expansion	of	the	model	(one-step	connections	between	core	subsystems),	

most	 of	 the	 added	 reactions	 were	 transport	 reaction	 across	 compartments.	 The	

starting	subsystems	did	not	 include	any	transport	reactions,	and	all	of	 the	existing	

ones	that	connect	metabolites	belonging	to	the	starting	network	were	added	at	this	

stage	since	they	are	one	step	connections.	Concerning	the	central	carbon	pathways,	

one	reaction	from	the	TCA	cycle	was	included,	namely	the	oxidation	of	succinate	to	

fumarate	 and	 the	 reaction	 catalyzed	by	 transaldolase	 from	 the	pentose	phosphate	

pathway.	At	this	stage,	a	total	of	199	(243)	reactions	were	added	to	the	core	model	

along	 with	 12	 (22)	 new	 metabolites,	 of	 which	 9	 (17)	 were	 unique	 across	

compartments.	

In	the	D2	expansion,	a	total	of	44	(57)	reactions	were	added	to	the	D1	model.	This	

seems	like	a	significantly	smaller	number	than	in	the	previous	step,	though	since	the	

vast	 majority	 of	 the	 computed	 one-step	 reactions	 were	 transport	 reactions,	 this	

number	 is	much	 larger	 than	 the	 enzymatic	 reactions	 that	were	 added	 to	 the	 core	

during	the	D1	expansion.	These	reactions	involve	35	(43)	new	metabolites,	30	(38)	of	

which	are	unique,	and	 include:	 the	condensation	of	acetyl-CoA	and	oxaloacetate	to	

form	 citrate	 in	 the	 cytosol	 and	 the	 peroxisomes	 (TCA	 cycle)	 and	 the	 reactions	

catalyzed	by	transketolase	activity	(pentose	phosphate	pathway).	

The	D3	expansion	of	the	model	encompassed	51	(71)	additional	reactions,	including	

two	more	reactions	from	the	pentose	phosphate	pathway.	In	terms	of	compounds,	57	

(75)	 new	 metabolites	 were	 added,	 of	 which	 56	 (72)	 were	 unique	 across	

compartments.	Lastly,	 a	 final	graph	search	added	 the	reactions	 in	which	only	core	

metabolites	 participate	 and	 that	 had	 not	 already	 been	 added	 to	 the	model	 in	 any	

expansion	 step,	which	were	most	 commonly	 transport	 reactions	 for	 cofactors	 and	

boundary	reactions.	In	our	case,	there	were	250	(594)	reactions	that	matched	those	

criteria.	
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Table	2.2.	List	of	subsystems	 included	 in	redLips,	and	the	corresponding	number	of	reactions	
that	were	added	in	each	step	of	the	reduction	process.	Total	number	of	reactions	per	subsystem	
and	the	percentage	coverage	of	the	corresponding	integrated	GEM	subsystem	is	also	reported.	
Boldface	denotes	the	lipid	pathway	subsystems.	FGS:	Final	Graph	Search,	PP:	Post-Processing.	
(*)The	biomass	reaction	representing	cell	growth	is	not	part	of	either	the	starting	network	or	
any	expansion	step.	(**)The	lumped	reactions	are	not	part	of	the	expansion	steps,	and	they	are	
computed	and	added	to	the	model	after	D3	and	before	FGS.	

Subsystem	
Starting	

Network	
D1	 D2	 D3	 FGS	 PP	

Total	#	of	

reactions	(%	
coverage	of	the	

integrated	GEM)	

Alanine	and	Aspartate	Metabolism	 -	 -	 4	 -	 -	 -	 4	(44.4%)	

Alternate	Carbon	Metabolism	 1	 -	 -	 10	 -	 -	 11	(40.7%)	

Anapleurotic	Reactions	 -	 5	 -	 -	 	 	 7	(63.6%)	

Arginine	and	Proline	Metabolism	 -	 -	 -	 2	 -	 -	 2	(6.1%)	

Cardiolipin	Biosynthesis	 7	 -	 -	 -	 -	 -	 7	(100%)	

Carnitine	Shuttle	 4	 -	 -	 -	 -	 -	 4	(100%)	

Citric	Acid	Cycle	 -	 1	 2	 -	 5	 3	 11	(84.6%)	

Complex	Alcohol	Metabolism	 -	 -	 -	 2	 -	 -	 2	(7.4%)	

Cysteine	Metabolism	 -	 -	 -	 1	 2	 -	 3	(30%)	

Dolichol	Biosynthesis	 30	 -	 -	 -	 -	 -	 30	(100%)	

Fatty	Acid	Biosynthesis	 67	 -	 -	 -	 -	 -	 67	(100%)	
Fatty	Acid	Biosynthesis	

Mitochondrial	
39	 -	 -	 -	 -	 -	 39	(100%)	

Fatty	Acid	Degradation	 99	 -	 -	 -	 -	 -	 99	(100%)	

Fatty	Acid	Elongation	 28	 -	 -	 -	 -	 -	 28	(100%)	

Glutamate	Metabolism	 -	 -	 -	 1	 4	 -	 5	(29.4%)	

Glutamine	Metabolism	 -	 -	 -	 3	 1	 -	 4	(100%)	

Glycerolipid	Metabolism	 -	 1	 3	 -	 1	 -	 5	(55.6%)	

Glycine	and	Serine	Metabolism	 -	 -	 1	 5	 1	 1	 8	(42.1%)	

Glycolysis/Gluconeogenesis	 12	 -	 4	 3	 1	 -	 20	(100%)	

Glycoprotein	Metabolism	 -	 -	 2	 1	 -	 -	 3	(42.9%)	

Histidine	Metabolism	 -	 -	 -	 1	 -	 -	 1	(7.1%)	

Methane	Metabolism	 -	 -	 -	 -	 1	 -	 1	(50%)	

Methionine	Metabolism	 -	 -	 -	 1	 3	 -	 4	(20%)	

Mevalonate	pathway	 10	 -	 -	 -	 -	 -	 10	(100%)	

NAD	Biosynthesis	 -	 -	 -	 -	 4	 -	 4	(16.7%)	
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Nucleotide	Salvage	Pathway	 -	 -	 -	 -	 14	 -	 14	(16.9%)	

Oxidative	Phosphorylation	 17	 -	 -	 -	 -	 -	 17	(89.5%)	

Pentose	Phosphate	Pathway	 -	 1	 2	 2	 -	 -	 5	(38.5%)	

Phospholipid	Biosynthesis	 60	 -	 -	 -	 -	 -	 60	(100%)	
Purine	and	Pyrimidine	
Biosynthesis	 -	 -	 1	 4	 5	 -	 10	(19.2%)	

Pyruvate	Metabolism	 8	 1	 2	 1	 -	 -	 12	(92.3%)	

Riboflavin	Metabolism	 -	 -	 -	 1	 -	 -	 1	(7.1%)	

Sphingolipid	Biosynthesis	 58	 -	 -	 -	 -	 -	 58	(100%)	

Sterol	Biosynthesis	 31	 -	 -	 -	 -	 -	 31	(100%)	

Sterol	Metabolism	 10	 3	 1	 -	 -	 -	 14	(100%)	

TAG	Decomposition	 3	 -	 -	 -	 -	 -	 3	(100%)	

Threonine	and	Lysine	Metabolism	 -	 -	 -	 1	 -	 -	 1	(5.3%)	
Tyrosine,	Tryptophan,	and	
Phenylalanine	Metabolism	 -	 -	 1	 4	 1	 -	 6	(13.6%)	

Valine,	Leucine,	and	Isoleucine	
Metabolism	 -	 -	 -	 3	 -	 -	 3	(15.8%)	

Other	 -	 -	 -	 -	 	 	 2	(20%)	

Biomass	Synthesis	 35	 -	 -	 -	 -	 -	 36(*)	(100%)	

Lumped	Reactions	 -	 -	 -	 -	 -	 -	 37(**)	(n/a)	

Pooling	Reactions	 21	 -	 -	 -	 -	 -	 21	(100%)	

Exchange	Reactions	 -	 -	 -	 -	 60	 -	 60	(36.4%)	

Transport	Reactions	 -	 187	 21	 4	 148	 -	 360	(59.6%)	

	

 
 
 

It	is	interesting	to	note	that	as	we	increased	the	user-defined	degree	of	connection	

between	the	core	subsystems,	more	amino	acid	biosynthetic	routes	were	added.	Also,	

some	parts	of	the	metabolism	were	located	many	steps	away	from	our	core	network	

as	we	defined	it,	so	ultimately	were	not	added.	One	example	of	this	was	the	TCA	cycle	

that	started	to	form	for	the	D1	and	D2	model	expansions,	though	no	new	reactions	

were	 added	 in	 the	 D3	 model.	 It	 therefore	 remained	 incomplete,	 missing	 three	

reactions	 to	 convert	 α-ketoglutarate	 to	 succinate	 through	 succinyl-CoA	 and	 one	

reaction	to	balance	the	intermediate	byproducts.	To	ensure	a	more	comprehensive	
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and	consistent	network,	we	included	these	four	reactions	in	our	model	a	posteriori.	

For	 the	complete	 list	of	 reactions	of	 the	model,	 the	 interested	reader	may	refer	 to	

supplementary	Table	S2.3.	

 

2.3.3			Generated	lumped	reactions	

After	the	network	expansion,	we	generated	lumped	reactions	connecting	the	required	

BBBs	 to	 ensure	 their	 adequate	 production	 for	 the	 desired	 amount	 of	 growth.	 The	

biomass	composition,	as	defined	in	iMM904,	is	comprised	of	42	BBBs,	and	14	of	those	

could	be	sufficiently	produced	by	our	generated	core	network.	Therefore,	we	needed	

to	 generate	 associated	 lumped	 reactions	 for	 28	 BBBs.	 As	 mentioned	 previously,	

lumpGEM	computes	the	minimal	set	of	reactions	(called	a	subnetwork)	that	need	to	

be	added	to	the	core	network	to	produce	a	target	BBB,	which	are	then	lumped	into	

one	reaction.	For	each	of	these	subnetworks,	all	alternative	subnetworks	of	the	same	

size	 were	 also	 computed,	 to	 allow	 for	 flexibility	 of	 the	 network	 in	 terms	 of	

biosynthetic	routes.	In	total,	38	lumped	reactions	were	computed	that	corresponded	

to	 lumped	 subnetworks	 of	 various	numbers	 of	 reactions.	A	detailed	 report	 on	 the	

number	of	generated	lumped	reactions	per	BBB	and	the	size	of	the	computed	minimal	

subnetworks	can	be	found	in	Table	2.3.	

At	 this	point	of	 the	workflow,	we	made	several	 interesting	observations	about	 the	

ability	of	the	core	network	to	produce	several	BBBs.	Even	though	their	biosynthetic	

routes	were	 explicitly	 present	 in	 the	model,	 two	BBBs,	 namely	 PC	 and	 ergosterol,	

could	not	be	produced	by	the	core	network.	This	production	was	hindered	by	the	lack	

of	 adenosyl-methionine,	 which	 the	 core	 could	 synthesize	 from	 adenosine	

triphosphate	 (ATP)	 and	 methionine	 by	 methionine	 adenosyltransferase,	 though	

methionine	was	another	BBB	that	could	not	be	produced	by	the	core	network.	Using	

lumpGEM,	we	estimated	the	minimal	set	of	reactions	that	we	would	need	to	add	to	

the	model	to	enable	the	production	of	methionine.	Two	alternative	subnetworks	were	

computed,	each	consisting	of	11	reactions.	It	is	noteworthy	that	in	both	subnetworks,	

the	algorithm	computes	 the	most	efficient	methionine	pathway	 to	be	 the	 textbook	

biosynthetic	route	from	aspartate.	This	additionally	serves	as	an	excellent	validation	

point:	the	algorithm	will	always	compute	the	most	efficient	biosynthetic	pathways,	

which	should	be	-and	are-	the	physiologically	observed	ones.	As	seen	in	Figure	2.1,	
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this	pathway	converts	aspartate	to	homoserine,	followed	by	homocysteine,	which	will	

finally	 be	 converted	 to	methionine	 (Mountain	 et	 al.	 1991).	 The	 subnetworks	 also	

include	methionine	biosynthesis	through	sulfate	assimilation	(Thomas	et	al.	1992),	

with	a	few	extra	reactions	included	for	mass	balancing.	The	only	difference	between	

the	 two	 alternative	 subnetworks	 lies	 in	 the	 dehydrogenation	 of	 L-aspartate	

semialdehyde	 to	homoserine;	 this	 reaction	 can	use	NADH	or	NADPH	as	 a	 cofactor	

(model	reactions	HSDxi	and	HSDyi,	respectively).	

	

	

  
	

Figure	 2.1.	 The	 L-methionine	 minimal	 subnetwork	 (in	 blue).	 The	 purple	 box	 highlights	 the	
textbook	methionine	biosynthetic	route	starting	from	aspartate.	The	orange	box	highlights	the	
sulfate	assimilation	pathway	for	methionine	biosynthesis.	Reactions	in	red	are	part	of	the	core	
network	and	part	of	the	biosynthetic	routes.	Reactions	in	green	are	part	of	the	core	network	but	
not	part	of	the	biosynthetic	routes	and	serve	the	mass	balancing	of	the	subnetwork.	

 
	
	

Interestingly,	the	lumped	reaction	computed	for	the	synthesis	of	methionine	was	still	

insufficient	 for	 the	 production	 of	 ergosterol	 and	 PC	 because,	 in	 both	 of	 these	

pathways,	adenosyl	homocysteine	was	produced	though	not	consumed	by	any	other	

reaction	of	the	core.	Therefore,	additional	lumped	reactions	needed	to	be	generated	

to	remove	this	product	and	mass	balance	the	two	pathways.	It	just	so	happens	that	

the	minimal	subnetworks	required	for	both	of	these	cases	produced	methionine	and	
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were	 identical	 and	 unique.	 This	 subnetwork	 consisted	 of	 4	 reactions,	 which	 is	

considerably	 smaller	 size	 than	 the	 11-reaction	 methionine	 subnetworks.	

Furthermore,	 since	 ergosterol	 and	 PC	 share	 the	 same	 subnetwork,	 the	 computed	

lumped	reaction	only	needed	to	be	added	to	the	model	once,	resulting	in	the	addition	

of	37	lumped	reactions.	Finally,	these	pathways	can	be	observed	graphically	in	Figure	

2.2	 and	 Figure	 2.3.	 Figures	 2.1,	 2.2,	 and	 2.3	were	 created	 using	 the	 ESCHER	web	

application	(King	et	al.	2015).	

	

	

	
	

Figure	2.2.	The	ergosterol	minimal	subnetwork	(in	blue).	Reactions	in	red	are	part	of	the	core	
network	and	part	of	the	biosynthetic	route.	Reactions	in	green	are	part	of	the	core	network	but	
not	part	of	the	biosynthetic	route,	serving	instead	as	the	mass	balance	for	the	subnetwork.	

	



 Chapter 2 – redLips: a comprehensive mechanistic model of the lipid metabolic network of yeast 
 
 
 

 31 

 

 
	

Figure	2.3.	The	phosphatidylcholine	(PC)	minimal	subnetwork	(in	blue).	Reactions	 in	red	are	
part	of	the	core	network	and	part	of	the	biosynthetic	route.	Reactions	in	green	are	part	of	the	
core	network	but	not	part	of	the	biosynthetic	route,	serving	instead	as	the	mass	balance	for	the	
subnetwork.	

	

	

	

2.3.4			Thermodynamics	

The	thermodynamic	curation	of	redLips	stemmed	from	the	curation	of	the	integrated	

GEM,	as	described	in	the	Materials	and	Methods	section.		We	used	the	same	data	to	

ensure	that	all	reactions	in	the	network	are	thermodynamically	feasible,	by	imposing	

the	relevant	physiological	constraints,		The	compounds	whose	properties	could	not	

be	 computed	 contain	 an	 acyl-carrier	 protein	 (ACP)	molecule,	which	 is	 a	 large	 and	

complicated	molecule	with	a	stereochemical	structure	that	cannot	be	computed	by	

GCM,	as	well	as	other	related	or	bound	species.	The	coverage	of	our	database	amounts	

to	 89%	 of	 the	metabolites	 of	 redLips,	meaning	 85.5%	 of	 the	Δ56$7 	values	 for	 the	
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network	reactions	could	be	computed.	These	computations	included	the	relaxation	of	

62	 thermodynamic	constraints,	as	described	 in	 the	Materials	and	Methods	section.	

The	 complete	 thermodynamic	 curation	data	 can	be	 found	 in	 supplementary	Table	

S2.3.	

	

	

Table	 2.3.	 Biomass	 building	 blocks	 for	 iMM904,	 the	 size	 of	 the	 subnetworks	 generated	 by	
lumpGEM,	and	the	corresponding	number	of	lumped	reactions.	(*)Produced	by	the	core	network.	

Biomass	Building	Block	 Size	of	

Subnetwork	
#	of	generated	lumped	

reactions	
1,3-beta-D-Glucan	 3	 1	
AMP	 10	 1	
L-Arginine	 7	 1	
L-Asparagine	 1	 1	
CMP	 7	 1	
L-Cysteine	 5	 1	
dAMP	 13	 1	
dCMP	 10	 1	
dGMP	 15	 2	
dTMP	 12	 2	
Ergosterol	 4	 1	
Glycogen	 3	 1	
GMP	 12	 1	
L-Histidine	 12	 1	
L-Isoleucine	 9	 4	
L-Leucine	 8	 1	
L-Lysine	 8	 2	
L-Methionine	 11	 2	
Phosphatidylcholine	 4	 1	
L-Phenylalanine	 7	 1	
L-Proline	 4	 2	
Riboflavin	 18	 1	
L-Threonine	 5	 2	
Trehalose	 2	 1	
L-Tryptophan	 9	 1	
L-Tyrosine	 7	 2	
UMP	 6	 1	
L-Valine	 3	 1	
Glycine	 (*)	 (*)	
L-Alanine	 (*)	 (*)	
L-Aspartate	 (*)	 (*)	
L-Glutamate	 (*)	 (*)	
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L-Glutamine	 (*)	 (*)	
L-Serine	 (*)	 (*)	
Mannan	 (*)	 (*)	
Phosphatidate	 (*)	 (*)	
Sulfate	 (*)	 (*)	
Phosphatidyl-1D-myo-
inositol	

(*)	 (*)	

Phosphatidylethanolamine	 (*)	 (*)	
Phosphatidylserine	 (*)	 (*)	
Triglyceride	 (*)	 (*)	
Zymosterol	 (*)	 (*)	

	

	

 

2.3.5			Gene	Essentiality	Analysis	and	Comparison	

redLips	was	curated	to	include	gene-reaction	relationships	in	the	form	of	logical	rules.	

These	rules	were	assigned	through	an	exhaustive	search	in	other	yeast	GEMs,	majorly	

iIN800	 (Nookaew	 et	 al.	 2008)	 and	 iMM904	 (Mo,	 Palsson	 and	 Herrgard	 2009,	

Zomorrodi	and	Maranas	2010),	and	in	literature	through	the	Saccharomyces	Genome	

Database	 (SGD,	 https://www.yeastgenome.org,	 (Cherry	 et	 al.	 1998)).	 Available	

experimental	evidence	 for	gene	essentiality	were	gathered	from	literature	through	

the	 Phenotype	 repository	 of	 SGD.	 All	 the	 genes	 whose	 deletions	 would	 result	 in	

inviability	or	auxotrophy	beyond	our	defined	media	were	classified	as	essential.	

In	order	 to	benchmark	and	evaluate	 the	performance	of	our	model,	we	performed	

gene	 essentiality	 analysis	 for	 redLips	 and	 iMM904,	 for	 single-gene	knockouts,	 and	

compared	the	results.	The	detailed	predictions	for	each	of	the	models	are	available	in	

supplementary	 Table	 S2.4.	 redLips	 encompasses	 459	 genes	 opposed	 to	 905	 for	

iMM904.	Out	of	these,	439	are	common	between	the	two	models	(Figure	2.4a).	The	

20	genes	that	are	part	of	redLips	and	not	iMM904	are	all	encoding	enzymes	catalyzing	

lipid	related	reactions.	

	redLips	predicted	correctly	50	genes	as	essential	(true	positive)	and	372	genes	as	

non-essential	 (true	negative).	Nine	genes	were	predicted	 falsely	as	essential	 (false	

positive)	and	28	as	non-essential	(false	negative)	(Figure	2.4b).	Out	of	 the	28	false	

negative	predictions,	one	gene,	namely	YJL097W	(PHS1)	is	not	part	of	the	iMM904	
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gene	annotation.	PHS1	encodes	the	enzyme	that	catalyzes	the	elongation	of	very	long	

chain	fatty	acids,	which	are	then	used	as	building	blocks	for	complex	sphingolipids.	

The	 false	 negative	 prediction	 occured	 because	 of	 the	 definition	 of	 biomass	

composition	requirements	in	the	model.	Sphingolipids	were	not	considered	as	BBBs,	

thus	their	formation,	or	lack	thereof,	does	not	affect	the	predicted	growth.	Moreover,	

among	 the	 rest	 of	 the	 false	 negative	 predictions	we	 identified	 four	 genes,	 namely	

YBR265W	 (TSC10),	 YDL015C	 (TSC13),	 YKL004W	 (AUR1),	 and	 YMR296C	 (LCB1),	

which	 all	 are	 essential	 for	 sphingolipid	 production,	 either	 directly	 or	 through	 the	

metabolism	of	very	long	chain	fatty	acids.	Similarly,	the	YMR013C	(SEC59)	gene	was	

a	 false	 negative	 prediction	 because	 dolichol	 species	 were	 not	 considered	 in	 the	

biomass	composition.	

Intrestingly,	 by	 imposing	 a	 minimum	 flux	 value	 on	 at	 least	 three	 of	 the	 defined	

biosynthetic	reactions	for	lipid	species	(namely	Bipc_a,	Bmipc_a,	and	Bdolp),	it	was	

possible	to	attain	the	correct	prediction	of	true	positive	for	four	out	of	five	of	these	

genes,	with	the	exception	of	LCB1	(Figure	2.4c).	The	imposed	flux	value	was	equal	to	

10-6	 mmol×gDW-1×h-1,	 which	 corresponds	 to	 the	 smallest	 BBB	 flux	 contributing	 to	

biomass	in	the	network.	This	shows	the	significance	and	value	of	the	addition	of	these	

reactions	 and	 highlights	 the	 importance	 of	 a	 consistently	 defined	 cell	 lipid	

composition.	 The	 results	 of	 this	 analysis	 when	 these	 fluxes	 were	 enforced	 are	

available	in	supplementary	Figure	S2.1.	

When	comparing	the	results	of	the	two	models	for	their	common	genes	(Figure	2.4d),	

redLips	 performed	 better	 in	 predicting	 experimentally	 essential	 genes;	 iMM904	

predicted	45	true	positives	which	were	a	subset	of	the	50	predicted	by	redLips.	The	

five	 additional	 genes	 encode	 enzymes	which	 catalyze	 reactions	 belonging	 to	 lipid	

pathways,	 serine	metabolism	and	glycolysis	 (Figure	2.4f).	 Correspondingly,	 the	27	

false	negative	genes	for	redLips	were	a	subset	of	iMM904’s	32.	Four	of	them	could	be	

turned	 into	 true	 positives	 if	 the	 sphingolipid	 requirements	 of	 the	 biomass	 were	

modified	 as	mentioned	 previously.	 Other	 false	 negative	 genes	 included	 YDR208W	

(MSS4),	YLR240W	(VSP34),	and	YNL267W	(PIK1),	all	related	to	PI	synthesis.	This	part	

of	the	network	is	fairly	complex	and	in	possesion	of	multiple	alternative	biosynthetic	

reaction	routes.	Furthermore,	PI	derivative	species	have	been	known	to	be	especially	

active	in	signalling	and	membrane	trafficking	(Downes,	Gray	and	Lucocq	2005,	Krauss	
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and	Haucke	2007),	the	mechanisms	of	which	are	either	unknown	or	not	included	in	

the	model.	

redLips	 and	 iMM904	 each	predicted	nine	 false	 positive	 genes,	 four	 of	which	were	

common.	In	redLips,	these	predictions	occured	mostly	due	to	alternative	pathways	

missing	from	the	network;	while	this	was	expected	due	to	redLips	being	a	reduced	

model,	about	half	of	these	genes	were	false	positives	for	iMM904	as	well	(Figure	2.4e).	

The	 rest	 of	 the	 false	 negatives	 stemmed	 from	 the	 inclusion	 of	 ergosterol	 in	 the	

biomass	composition	of	the	model.	While	ergosterol	is	essential	to	yeast	cells,	mutants	

incapable	of	synthesizing	it	are	viable	by	accumulating	ergosterol	precursors	in	their	

membranes	(Kato	and	Wickner	2001,	Liu	et	al.	2017),	an	effect	that	was	not	included	

in	either	of	the	models.	

In	 conclusion,	 the	 gene	 essentiality	 analysis	 and	 comparison	 of	 redLips	 opposite	

iMM904	showcases	the	ability	of	redLips	to	make	accurate	predictions,	and	in	most	

cases	performing	better	than	the	GEM.	Genes	that	are	not	part	of	iMM904’s	annotation	

were	included	in	the	gene-reaction	relationships	of	redLips,	and	the	vast	majority	of	

genes	 that	 encode	 enzymes	which	 catalyze	 lipid	 related	 reactions	were	 predicted	

correctly	as	essential	or	non-essential.	
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Figure	2.4.	(a)	Venn	diagram	of	the	genes	included	in	redLips	and	iMM904.	(b)	Gene	essentiality	
analysis	 in	 redLips	 and	 comparison	with	 experimental	 evidence.	 (c)	 Improvements	 that	 can	
made	 to	 the	 predictions	 by	 enforcing	 lipid	 biosynthetic	 requirements.	 (d)	 Gene	 essentiality	
analysis	in	both	redLips	and	iMM904	for	the	enzymes	they	have	in	common;	and	comparison	
with	experimental	evidence.	(e)	The	nine	genes	that	correspond	to	false	positive	predictions	of	
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redLips	and	explanations	of	the	occurrence.	(e)	The	five	true	positive	predicted	genes	of	redLips	
that	iMM904	predicts	falsely	negative.	The	Matthews	Correlation	Coefficient	(MCC)(Matthews	
1975)	is	also	reported	for	each	case.	

	

 
 
 

2.3.6			Comparison	with	yeast	GEMs	

Comparing	redLips	with	the	available	yeast	GEMs	provided	insight	into	the	network	

in	terms	of	comprehensiveness	and	pathway	connectivity.	As	mentioned	previously,	

our	model	includes	all	the	major	lipid	species	and	respective	biosynthetic	pathways.		

One	common	difference	between	models	that	can	lead	to	very	dissimilar	numbers	in	

reactions	and	species	 is	the	considered	fatty	acyl	chains.	As	stated	in	the	Materials	

and	Methods	section,	glycerophospholipids	possess	two	fatty	acyl	chains	(four	in	the	

case	 of	 CL).	 In	 our	 model,	 we	 defined	 a	 fatty	 acid	 pool	 that	 participates	 in	 the	

formation	of	these	species,	thus	considering	only	one	metabolite	of	each	class	with	an	

attached,	 generic	 fatty	 acyl	 (the	 assumed	 length	 is	 still	 C16:0	 for	 thermodynamic	

calculations).	Some	other	GEMs,	namely	Yeast7	and	Yeast8,	consider	four	individual	

fatty	acid	species	as	reactants	in	these	biotransformations:	C16:0,	C18:0,	C16:1,	and	

C18:1.	 Naturally,	 this	 leads	 to	 a	 very	 large	 combinatory	 number	 of	 reactions	 and	

species.	For	example,	if	we	consider	a	species	with	two	fatty	acyl	tails,	there	are	ten	

possible	 combinations	 leading	 to	 ten	 model	 metabolites.	 This	 number	 can	 grow	

exponentially	 if	 one	 considers	 the	 large	 number	 of	 fatty	 acyl	 derivatives	 and	

remodeling	 reactions.	The	 same	 issue	arises	with	 fatty	acyl-CoAs.	 Since	 the	aim	of	

redLips	is	to	be	used	as	a	scaffold	for	omics	integration	and	its	nature	is	not	context	

limited	to	specific	species	or	pathways	in	order	to	enable	versatility,	this	is	a	pitfall	

we	 aimed	 to	 avoid	 in	 order	 to	 preserve	 a	 concise	 representation.	 As	 mentioned	

earlier,	a	model	including	all	the	combinatoric	occurrences	will	be	difficult	to	curate	

and	handle.	It	is	important	to	note	that,	in	the	case	of	available	experimental	data	or	

focused	 studies,	 separately	 considering	 these	 species	 can	 be	 beneficial	 for	 the	

accuracy	of	predictions	(Sanchez	et	al.	2019),	and	should	be	taken	 into	account	by	

expanding	the	associated	parts	of	the	network	species	and	reactions	accordingly.	



2.3   Results and Discussion 
 
 
 

 38 

Another	difference	between	redLips	and	other	models	is	that	some	other	models,	for	

example	 iIN800	(Nookaew	et	al.	2008),	 include	multiple	 identical	reactions	 if	 their	

respective	associated	enzymes	are	encoded	by	multiple	genes	or	in	cases	of	multiple	

enzyme	paralogs.	This	practice	is	acceptable	according	to	genome	annotation,	but	it	

leads	 to	misleading	 computations;	 the	mechanistic	 representation	 of	 the	 network	

calculates	 the	 net	 flux	 through	 each	 reaction	 irrespective	 of	 which	 enzyme	 is	

catalyzing	it.	This	means	that	the	resulting	net	flux	value	for	this	particular	reaction	

will	be	the	sum	of	all	the	discreet	flux	values	for	each	reaction	copy.	To	resolve	this	

point,	we	considered	only	unique	reaction	occurrences	in	redLips	that	represent	the	

net	reaction	rate	 for	each	biotransformation.	The	exception	 to	 this	rule	 is	 the	case	

where	the	same	biotransformation	occurs	in	different	cellular	compartments.	Since	

the	metabolites	in	each	compartment	are	modeled	separately,	this	consideration	does	

not	result	in	duplicate	reactions—in	mathematical	terms,	the	stoichiometric	matrix	

will	 not	 have	 duplicate	 columns.	 In	 circumstances	 where	 enzymatic	 or	 kinetic	

properties	 are	 relevant	 for	 a	 study	and	 require	 a	 separate	 consideration	 for	 these	

instances,	the	model	can	simply	be	modified	to	incorporate	them.		

We	also	present	a	detailed	comparison	of	our	network	to	the	other	yeast	networks	in	

Table	2.4.	Included	in	this	table	are	the	number	of	lipid-related	reactions,	species,	and	

cellular	compartments	considered	in	each	model.	To	ensure	accurate	comparability,	

we	curated	the	number	of	reactions	and	species	of	interest	for	all	considered	models.	

The	criteria	we	used	were	as	follows:	(i)	We	considered	only	one	generic	instance	of	

metabolites	possessing	one	or	more	fatty	acyl	chains.	This	applies	both	to	species	and	

reactions.	As	discussed	previously,	each	model	considers	a	different	number	of	fatty	

acyl	 chain	 lengths,	 and	 in	 combination,	 this	 can	 lead	 to	 misleadingly	 different	

statistics.	(ii)	We	didn’t	consider	metabolite	pools	or	pooling	reactions.	Similarly,	each	

model	considers	various	diverse	metabolite	pools	that	can	be	heavily	connected	to	

the	network	by	a	large	number	of	pooling	reactions.	(iii)	We	didn’t	consider	duplicate	

reactions	unless	 they	occurred	 in	different	 compartments.	 (iv)	We	didn’t	 consider	

transport	and	boundary	reactions.	Since	each	model	considers	a	different	number	of	

cellular	compartments,	the	number	of	transport	reactions	varies	accordingly.	(v)	We	

didn’t	consider	disconnected	reactions;	there	were	rare	occurrences	of	reactions	in	

which	both	reactants	and	products	did	not	participate	 in	any	other	reaction	 in	 the	
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network.	These	reactions	serve	for	annotation	purposes	and	most	probably	will	be	

gap-filled	in	the	future,	but	they	do	not	contribute	to	the	functionality	of	the	model.		

Using	this	comparison,	we	can	see	in	Table	2.4	that	redLips	covers	at	least	as	many	

species	 as	 the	 other	 GEMs	 and	 more	 reactions	 than	 most	 of	 them.	 The	 major	

differences	in	the	non-curated	numbers	of	species	and	reactions	can	be	attributed	to	

the	reasons	listed	above	as	well	as	the	number	of	compartments	of	each	model.	If	we	

go	through	the	reactions	per	pathway,	we	can	see	that	the	majority	of	differences	stem	

from	the	biosynthetic	routes	for	PI	derivatives,	such	as	glycosyl-phosphatidylinositol	

(GPI)	anchors	for	proteins	and	inositol	and	PI	polyphosphates.	These	molecules	play	

a	major	 role	 in	 cell	 signaling,	which	was	beyond	 the	 scope	of	 redLips	at	 this	 time.	

Signaling	cascades	in	lipid	metabolism	is	a	vast	area	of	study	on	its	own,	and	we	feel	

that	it	would	be	best	served	with	a	dedicated	model.	Another	difference,	especially	

concerning	 the	 Yeast7	 and	 Yeast8	models,	 was	 in	 phospholipid	 biosynthesis.	 The	

larger	numbers	in	these	models	are	due	to	the	consideration	of	five	additional	cellular	

compartments,	 including	membranes,	and	the	assignment	of	reactions	occurring	in	

more	than	one	of	them.	
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2.4			Conclusions	

In	 conclusion,	 redLips	 is	 a	 metabolic	 model	 that	 captures	 the	 complexity	 of	 lipid	

metabolism	by	preserving	and	uniting	the	vast	majority	of	known	lipid	reactions	and	

pathways	while	avoiding	the	pitfall	of	excessive—and	often	times	redundant—detail.	

It	 was	 created	 by	 gathering,	 merging,	 and	 upgrading	 existing	 lipid	 metabolic	

pathways,	integrating	them	into	the	iMM904	GEM	of	S.	cerevisiae	and	subsequently	

reducing	this	model	around	the	major	lipid-related	subsystems	using	the	redGEM	and	

lumpGEM	frameworks.	Additionally,	it	is	consistent	with	the	organism	biochemistry	

as	 well	 as	 thermodynamic	 principles	 and	 can	 be	 further	 constrained	 through	

lipidomics	measurements,	applied	both	as	flux	and	concentration	bounds.	redLips	can	

be	used	as	a	concise	platform	for	studying	lipid	metabolism	across	different	species,	

and	 is	 a	valuable	 tool	 for	health	or	 industry	 related	 research.	We	believe	 that	 this	

model	will	continue	to	accommodate	future	discoveries	through	the	incorporation	of	

new	reactions	and	species	as	well	as	providing	a	coherent	base	to	link	cell	signaling	

routes	and	building	kinetic	models.
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Chapter	3	–	Exploring	the	effect	of	
enzymatic	coupling	on	kinetic	
modeling	and	metabolic	control	
across	the	lipid	pathways	of	yeast	

 
 
 

3.1			Introduction	

3.1.1			Stoichiometric	Modeling	of	Metabolism	

Over	 the	 past	 decades,	 computational	 models	 of	 metabolism	 have	 emerged	 as	 a	

valuable	tool	for	hypothesis	assessment	and	strategy	design.	These	models	are	based	

on	 a	 mathematical	 representation	 of	 connectivity	 in	 the	 represented	 network,	

associating	reactions	with	metabolites.	This	representation,	called	the	stoichiometric	

matrix,	 stores	 the	 information	 of	 all	 the	 metabolites	 and	 their	 stoichiometric	

participation	in	each	reaction	of	the	network.	For	the	study	of	these	models,	tools	like	

Flux	Balance	Analysis	 (FBA)	 (Orth,	Thiele	 and	Palsson	2010)	 are	well-established.	

FBA	is	a	constraint-based	method	that	allows	the	calculation	of	the	steady	state	flux	

distribution	throughout	 the	metabolic	network	through	an	optimization	algorithm.	

However,	the	resulting	solution	is	not	unique,	but	rather	infinite	solutions	exist	within	

a	 solution	 space	 which	 is	 delimited	 by	 the	 model’s	 bounds	 and	 constraints.	 A	

consistent	way	to	reduce	the	allowable	solution	space	of	the	problem	and	to	enforce	

physiological	 limitations	 is	 with	 the	 introduction	 of	 thermodynamic	 feasibility	

constraints.	The	three	main	approaches	that	have	been	used	to	this	end	are	the	Energy	

Balance	 Analysis	 (EBA)	 (Beard,	 Liang	 and	 Qian	 2002),	 the	 Network-Embedded	

Thermodynamic	analysis	(NET	analysis)	(Zamboni,	Kümmel	and	Heinemann	2008),	
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and	the	Thermodynamics-based	flux	analysis	(TFA)	(Salvy	et	al.	2019),	as	reviewed	

thoroughly	by	Ataman	and	Hatzimanikatis	(2015).	

Nevertheless,	 stoichiometric	 models	 are	 not	 able	 to	 capture	 dynamic	 metabolic	

responses	to	perturbations	in	cellular	and	process	parameters,	nor	they	can	consider	

regulation	at	the	enzyme	and	post-translational	levels	(Miskovic	et	al.	2015).	These	

studies	 are	 vital	 for	 the	 elucidation	 of	 the	 mechanisms	 of	 cellular	 regulation	 and	

membrane	homeostasis.	Kinetic	models	are	necessary	in	order	to	investigate	these	

subjects.		

	

3.1.2			Kinetic	Modeling	of	Metabolism	

Kinetic	 models	 are	 an	 essential	 tool	 for	 the	 study	 of	 cellular	 metabolism	 and	 for	

understanding	the	dynamics	of	its	regulation	mechanisms.	However,	the	assignment	

of	appropriate	rate	expressions	for	the	reactions	in	the	network	is	challenging,	since	

enzymatic	mechanisms	are	seldom	fully	characterized.	Moreover,	information	about	

the	parameter	values	in	these	rate	expressions	is	scarce,	rendering	the	construction	

of	large-scale	kinetic	models	a	difficult	endeavor	(Miskovic	et	al.	2015).	To	overcome	

this	uncertainty,	 the	majority	of	 studies	have	used	simple	mass-action	kinetic	 rate	

expressions	to	describe	the	reactions	in	the	network.	However,	it	has	been	shown	that	

properties	such	as	the	reaction	displacement	from	thermodynamic	equilibrium	and	

the	 enzyme	 saturation	 need	 to	 be	 taken	 into	 account	 for	 accurate	 predictions	

(Chakrabarti	et	al.	2013,	Soh,	Miskovic	and	Hatzimanikatis	2012).		The	Optimization	

and	Risk	 Analysis	 of	 Complex	 Living	 Entities	 (ORACLE)	 framework	 (Miskovic	 and	

Hatzimanikatis	2010)	accounts	for	this	uncertainty	by	incorporating	stoichiometric,	

thermodynamic	and	physiological	constraints	a	priori	to	applying	kinetic	data	to	the	

model	 and	produces	 populations	 of	 thermodynamically	 feasible	 kinetic	models	 by	

sampling	the	kinetic	parameter	space	(Wang,	Birol	and	Hatzimanikatis	2004,	Wang	

and	Hatzimanikatis	2006a,	Wang	and	Hatzimanikatis	2006b).	

In	most	metabolic	 networks,	 groups	 of	 compounds	 are	 conserved	 throughout	 the	

network	and	are	thus	subject	to	conservation	constraints.	The	total	concentration	of	

each	of	these	groups,	which	are	called	conserved	moieties,	remains	constant	over	time	

even	 though	 the	 individual	 concentrations	might	 change.	 In	a	biological	 sense,	 the	

conserved	 moieties	 are	 transferred	 from	 one	 biomolecule	 to	 another	 inside	 the	
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metabolic	 network,	 but	 are	 not	 synthesized	 or	 degraded	 in	 this	 network,	 or	

exchanged	with	the	environment.	In	a	mathematical	sense,	a	conserved	moiety	in	a	

metabolic	model	 introduces	 linearly	 dependent	 rows	 in	 the	 stoichiometric	matrix,	

since	the	summation	of	all	the	components’	mass	balances	is	invariant	over	time	and	

thus	 constant	 and	 equal	 to	 zero.	Additionally,	 the	 concentration	 levels	 of	moieties	

have	been	 reported	 to	 affect	 the	metabolic	 control	 over	 fluxes	 and	 concentrations	

within	 the	network,	 by	 affecting	 the	 thermodynamic	 equilibrium	displacements	of	

reactions	(Hameri	et	al.	2019,	Kholodenko,	Sauro	and	Westerhoff	1994,	Wang,	Birol	

and	Hatzimanikatis	2004).	Consequently,	it	is	important	to	identify	the	existence	and	

properties	 of	 moieties	 in	 the	metabolic	 network	 before	 proceeding	 to	 the	 kinetic	

parametrization	of	the	problem.	

	

3.1.3			Lipid	Regulation	

Lipids	 are	 a	 diverse	 group	 of	 biomolecules	 that	 serve	 multiple	 purposes	 in	 an	

organism.	They	comprise	the	major	components	of	cellular	membranes,	act	as	energy	

storage	sources	and	participate	in	signaling	cascades.	Lipid	metabolic	pathways	need	

to	 be	 tightly	 regulated	 in	 order	 to	maintain	 a	 physiologically	 healthy	 operation	 of	

cellular	processes.	Lipid	metabolism	is	responsible	for	providing	the	required	lipids	

in	the	correct	proportions	for	the	correct	function	of	cell	membranes	and	be	able	to	

adapt	 their	 production	 levels	 in	 response	 to	 external	 stimuli.	 Imbalance	 of	 lipid	

species	 can	 lead	 to	 severe	 metabolic	 disorders	 including,	 but	 not	 limited	 to,	

Parkinson’s	 and	 Alzheimer’s	 disease	 (Kosicek	 and	 Hecimovic	 2013,	 Santiago	 and	

Potashkin	2013),	as	well	as	diabetes	(Markgraf,	Al-Hasani	and	Lehr	2016,	Santiago	

and	Potashkin	2013)	and	liver	steatosis	(Bradbury	2006).	Cancer	cells	also	have	an	

atypically	active	 lipid	metabolism	that	allows	 their	 rapid	proliferation	 (Alves	et	al.	

2016,	Ogretmen	and	Hannun	2004,	Vriens	et	al.	2019).	

Kinetic	models	of	the	lipid	metabolism	have	been	around	for	years	(Farquhar	et	al.	

1965).	 Studies	 on	 this	 subject	 have	 employed	 both	 deterministic	 and	 stochastic	

approaches	 to	 the	 problem	 in	 an	 effort	 to	 understand	 the	 mechanisms	 of	 lipid	

regulation	 in	 both	 mammalian	 (Bhattacharya	 et	 al.	 2014,	 Hubner	 et	 al.	 2008,	

Knoblauch	et	al.	2000,	Watterson	et	al.	2013)	and	yeast	cells	(Alvarez-Vasquez	et	al.	
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2011,	Alvarez-Vasquez	et	al.	2005,	Alvarez-Vasquez	et	al.	2004,	Alvarez-Vasquez	et	al.	

2007,	Savoglidis	et	al.	2016,	van	Eunen	et	al.	2013).	Although	multiple	efforts	have	

been	 made	 to	 accurately	 capture	 the	 dynamic	 properties	 of	 the	 lipid	 metabolic	

network,	 the	vast	majority	of	studies	are	context-specific	and	context-limited.	This	

means	that	their	networks	are	based	on	ad	hoc	reductions	of	genome-scale	metabolic	

models	(GEMs)	and	their	parameters	were	fitted	to	specific	datasets	and	thus	cannot	

serve	multiple	studies.		

	

3.1.4			Metabolic	Control	Analysis	

Sensitivity	analysis	has	successfully	been	applied	in	multiple	engineering	fields	and	

can	be	expanded	to	accommodate	systems	biology	(Hatzimanikatis	and	Bailey	1996).	

Metabolic	control	analysis	(MCA)	(Kacser,	Burns	and	Fell	1995)	is	a	widely	used	tool	

that	 has	 facilitated	 the	 study	 of	 the	 local	 sensitivity	 of	 metabolic	 networks	 to	

perturbations	near	a	steady	state	(Fell	and	Sauro	1985,	Reder	1988b),	and	of	cellular	

regulation	 (Hatzimanikatis	 and	 Bailey	 1997,	 Heinrich	 and	 Rapoport	 1974).	 MCA	

quantifies	the	magnitude	to	which	a	change	in	a	system	parameter	will	affect	a	system	

variable,	which	in	our	case	translates	into	the	effect	that	altering	an	enzyme	activity	

will	have	on	reaction	rates	or	metabolic	concentrations	in	reference	to	a	given	steady	

state.	As	a	local	sensitivity	analysis	tool,	the	limitation	of	this	technique	is	that	it	can	

only	be	applied	to	estimate	responses	to	small	perturbations	in	biological	systems.		

	

3.1.5			Aim	and	Contribution	

In	conclusion,	the	main	obstacle	in	the	construction	of	consistent	kinetic	models	is	the	

scarcity	 of	 well-characterized	 enzymatic	mechanisms	 and	 their	 parameter	 values,	

which	leads	to	uncertainty	in	the	model’s	predictions.	This	uncertainty	is	amplified	

for	 large-scale	metabolic	networks,	which	 is	why	most	studies	consider	only	small	

parts	of	them.	However,	the	inconsistent	reduction	of	metabolic	networks	introduces	

more	uncertainty	in	the	models,	and	can	lead	to	unrealistic	predictions.	To	address	

these	issues,	we	sought	to	develop	a	large-scale	kinetic	model	that	focuses	on	the	lipid	

metabolic	pathways.	We	used	the	redLips	model	(Chapter	2)	as	a	basis	for	our	study,	

which	was	constructed	through	a	systematic	reduction	around	the	lipid	network	of	S.	
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cerevisiae.	redLips	already	includes	thermodynamic	feasibility	constraints,	which	are	

essential	 for	 the	 calculation	 of	 metabolite	 concentration	 levels	 and	 reaction	

displacement	from	thermodynamic	equilibrium,	and	is	an	excellent	scaffold	for	the	

integration	 of	 experimental	 data.	 Since	 metabolic	 models	 can	 represent	 multiple	

physiologies	 within	 their	 flux	 and	 concentration	 solution	 space,	 a	 representative	

profile	 needs	 to	 be	 selected	 prior	 to	 building	 a	 kinetic	 model.	 Consequently,	 the	

resultant	kinetic	model	will	be	able	to	describe	dynamic	responses	to	perturbations	

around	 the	 selected	 profile.	 Thus,	 to	 ensure	 consistency	 with	 the	 organism’s	

physiology,	 we	 first	 analyzed	 the	 diverse	 physiological	 states	 that	 our	 model	 can	

describe,	in	terms	of	metabolite	concentrations	and	metabolic	fluxes.	Subsequently,	

we	 selected	 a	 representative	 profile	 in	 terms	 of	 reaction	 fluxes	 and	 metabolite	

concentrations	around	which	the	kinetic	model	could	be	built.	In	order	to	accurately	

capture	 the	 enzymatic	 coupling	 effect	 that	 arises	 from	 the	 promiscuous	 and	

multifunctional	enzymes	which	are	typical	in	lipid	metabolism,	we	used	the	notion	of	

apparent	inhibitors	when	devising	kinetic	rate	laws	for	the	reactions	in	the	network.	

We	 generated	 populations	 of	 kinetic	 parameter	 sets	 through	 the	 sampling-based	

ORACLE	workflow	and	demonstrated	how	the	consideration	of	enzymatic	coupling	is	

essential	for	factual	predictions.	The	kinetic	version	of	the	redLips	model	along	with	

the	statistically	analyzed	sets	of	kinetic	parameters	can	be	used	to	perform	dynamic	

simulations	 and	 to	 facilitate	 the	 discovery	 and	 design	 of	 metabolic	 engineering	

strategies.	Furthermore,	to	our	knowledge,	it	is	the	largest	and	most	detailed	kinetic	

model	of	the	lipid	metabolism	to	date.	

	

	
	
	

3.2			Materials	and	Methods	

3.2.1			Kinetic	modeling	techniques	and	metabolic	control	

Within	 the	 MCA	 method	 two	 important	 variables	 are	 calculated:	 flux	 control	

coefficients	(FCCs)	and	concentration	control	coefficients	(CCCs).	These	coefficients	

are	 defined	 as	 the	 fold	 change	 of	metabolic	 fluxes	 and	metabolite	 concentrations,	

respectively,	in	response	to	changes	of	system	parameters,	usually	enzyme	activities.	
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The	elasticities	with	respect	to	a	parameter	or	variable	are	also	computed.	While	CCs	

are	global	quantities,	elasticities	are	local	quantities	and	express	the	sensitivity	of	a	

reaction	to	a	change	in	the	respective	parameter	or	variable.	The	complete	derivation	

of	 this	 method	 and	 the	 corresponding	 mathematical	 expression	 can	 be	 found	 in	

(Wang,	Birol	and	Hatzimanikatis	2004).		

	

The	control	coefficients	are	defined	as	follows:		

• Flux	control	coefficient	(FCC):	 	 !"# =
%	'(#
%	'("

= "	%#
#	%"

= "	)#
#	)"

	

• Concentration	control	coefficient	(CCC):	 !"* =
%	'(*
%	'("

= "	%*
*	%"

= "	)*
*	)"

	

In	all	cases,	concentrations	are	represented	by	x,	parameters	by	p	and	fluxes	by	v.	

	

As	mentioned	previously,	there	exists	a	certain	degree	of	uncertainty	associated	with	

kinetic	models,	which	is	propagated	through	the	workflow	and	ultimately	translated	

into	uncertainty	in	the	control	coefficients.	This	is	why	the	generation	of	a	very	large	

number	of	kinetic	models	is	essential,	and	any	uncertainty	can	then	be	statistically	

quantified	and	analyzed.	ORACLE	employs	smart	Monte	Carlo	sampling	techniques	in	

order	to	reduce	this	uncertainty	and	allow	for	the	definition	of	more	complex	kinetic	

mechanisms,	 while	 introducing	 the	 minimum	 possible	 amount	 of	 bias	 in	 the	

calculations	(Miskovic	et	al.	2019b).	The	key	steps	of	the	workflow	are	the	following	

(Miskovic	et	al.	2015):	Firstly,	the	stoichiometry	of	the	metabolic	network	is	defined,	

and	constraints	and	data	stemming	 from	fluxomics	and	metabolomics	are	added	 if	

available.	 The	 model	 is	 then	 curated	 by	 introducing	 thermodynamic	 feasibility	

constraints.	 FBA	 and	 TFA	 analyses	 are	 performed	 to	 compute	 thermodynamically	

feasible	 flux	 distribution	 profiles	 for	 the	 system,	 and	 representative	 physiological	

steady	 states	 are	 identified.	 Next,	 metabolite	 concentration	 levels	 are	 sampled	

according	to	the	chosen	physiology.	The	displacement	of	enzymatic	reactions	 from	

thermodynamic	 equilibrium	 is	 also	 computed	 based	 on	 these	 concentrations.	 For	

each	 reaction,	 a	 kinetic	 mechanism	 is	 assigned	 based	 on	 available	 literature,	 and	

experimental	values	of	kinetic	parameters	can	be	added.	Then,	the	enzymatic	degrees	
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of	 saturation	 are	 sampled,	 and	 populations	 of	 thermodynamically	 and	

stoichiometrically	 feasible	 kinetic	 models	 are	 parameterized	 consistently	 to	 the	

sampled	 concentration	 and	 flux	 profiles.	 Finally,	 each	 resulting	 kinetic	 model	 is	

evaluated	on	stability.	Experimental	or	 literature	data	can	also	be	used	 to	validate	

these	kinetic	models.	The	ones	that	are	unstable	or	inconsistent	with	data	are	rejected	

in	 this	 pruning	 phase,	while	 the	 ones	 that	 pass	 this	 test	 can	 be	 used	 for	 dynamic	

simulations	and	MCA	analysis.	Control	coefficients	are	calculated	and	perturbation	

analysis	 of	 the	 system	 is	 performed.	 These	 results	 can	 be	 analyzed	 to	 formulate	

hypotheses	for	the	design	of	metabolic	engineering	strategies.	

 

3.2.2			The	effect	of	enzymatic	coupling	on	Control	Coefficients	

Promiscuous	 enzymes	 catalyze	multiple	 reactions	 in	 the	 network	 and	 give	 rise	 to	

enzymatic	 coupling	 effects.	 Enzymatic	 coupling	 requires	 an	 appropriate	

reformulation	of	the	parameter	elasticity	matrix,	as	defined	above.	In	the	absence	of	

the	enzymatic	coupling	effect,	the	parameter	elasticity	matrix	Π	is	an	identity	matrix,	

since	for	every	reaction	there	exists	only	one	corresponding	enzymatic	activity,	and	

the	 elasticity	 matrix	 element	 with	 respect	 to	 this	 activity	 will	 be	 equal	 to	 unity.	

However,	 in	 the	 case	of	 enzymes	 that	 catalyze	multiple	 reactions	 in	 the	metabolic	

network,	changes	in	the	activity	of	one	of	those	enzymes	will	have	an	equal	impact	on	

the	maximal	reaction	rate	values	of	all	the	reactions	that	it	catalyzes.	Therefore,	for	

each	of	those	enzymes,	a	single	estimated	change	needs	to	be	calculated,	accounting	

for	all	the	individual	predicted	changes	for	each	catalyzed	reaction.	Consequently,	a	

structural	 change	 in	 the	Π	matrix	 needs	 to	 be	 introduced	 (Savoglidis	 et	 al.	 2016),	

reducing	its	dimension	of	enzymatic	activities	appropriately,	which	will	in	turn	result	

in	a	reduction	of	equal	magnitude	in	the	dimensions	of	the	calculated	CC	matrices.	

 

3.2.3			The	updated	redLips	network	

For	 this	 study	we	used	 the	 redLips	model	 that	was	described	 in	Chapter	2,	which	

focuses	 on	 the	 lipid	 metabolic	 network	 of	 the	 yeast	 S.	 cerevisiae.	 The	 model	 was	

slightly	modified	to	facilitate	the	assignment	of	kinetic	mechanisms	to	each	reaction	

in	 the	 network.	 Firstly,	 we	 updated	 the	 elementary	 biosynthetic	 drains	 of	 lipid	
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species,	which	were	modeled	as	exchange	reactions,	to	occur	in	two	steps:	initially	the	

biomolecule	 is	 transported	 from	 the	 cytosol	 to	 the	 extracellular	 domain	 and	

subsequently	from	the	extracellular	domain	across	the	system	boundary.	Secondly,	

we	allowed	a	number	of	metabolites	to	be	able	to	diffuse	outside	of	the	cell	by	adding	

the	 appropriate	 transport	 reactions.	 These	 reactions	 are	 permitted	 to	 carry	 a	

maximum	flux	value	of	10-6	mmol×gDW-1×h-1,	representing	a	small	diffusion	rate	that	

occurs	naturally	between	the	cell	and	its	surroundings.	Not	all	metabolites	can	diffuse	

through	membranes	without	dedicated	transporters,	and	according	to	this	fact,	the	

criteria	 we	 used	 for	 the	 choice	 of	 these	 compounds	 are	 the	 following:	 (i)	 the	

metabolite	 cannot	 be	 phosphorylated,	 (ii)	 its	 structure	 cannot	 be	 complex,	 (iii)	 it	

doesn’t	already	have	an	assigned	transport	to	the	extracellular	domain.	Additionally,	

the	added	reactions	for	each	species	must	be	able	to	carry	flux.	This	led	to	the	addition	

of	transport	reactions	for	52	species.	Finally,	the	resulting	model	encompasses	1275	

reactions	and	890	metabolites	and	was	curated	to	include	thermodynamic	feasibility	

constraints	for	all	the	added	reactions.	This	curation	led	to	90.1%	coverage	in	terms	

of	 metabolite	 thermodynamic	 properties	 and	 resulted	 in	 the	 estimation	 of	 the	

associated	change	in	Gibbs	free	energy	for	86.8%	of	the	network’s	reactions.	

	

3.2.4			Experimental	data	integration	

In	 order	 to	 integrate	 experimental	measurements	 to	 our	 network,	 and	 reduce	 the	

solution	 space	 of	 the	 problem,	we	 introduced	 sets	 of	 constraints	 that	 allow	 us	 to	

impose	bounds	on	both	fluxes	and	concentrations.	To	this	end,	we	used	lipidomics	

measurements	 provided	 by	 the	 Riezman	 lab	 (University	 of	 Geneva)	 that	

corresponded	to	28	lipid	species.	These	data	can	be	found	in	supplementary	Table	

S3.1.	

For	the	fluxes,	we	used	the	equations	described	in	the	Materials	and	Methods	section	

of	Chapter	2,	to	effectively	couple	the	biomass	production	rate	to	the	flux	through	each	

elementary	lipid	biosynthetic	reaction	as	follows:	

+(-./ − 12) ≤ 56 ≤ +(-./ + 12),	

where	56 	are	 the	 biosynthetic	 reaction	 fluxes,	-./ 	the	mean	of	 the	 lipidomic	 content	

measurements,	12	the	experimental	measurements’	 standard	deviation	of	-./ ,	 and	+	
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the	specific	growth	rate	of	the	cell	as	calculated	from	the	flux	through	the	biomass	

objective	function.	

For	the	concentrations,	we	were	faced	with	a	common	–	yet	underdiscussed	–	issue,	

which	 is	 the	 distribution	 of	 species	 within	 cellular	 compartments.	 Since	

concentrations	of	lipids	are	measured	after	cell	lysis	there	is	no	available	data	on	the	

intracellular	allocation	of	each	molecule.	To	address	this	 issue,	we	used	the	sets	of	

constraints	 proposed	 by	 Tokic,	 Miskovic	 and	 Hatzimanikatis	 (2019)	 to	 impose	

bounds	on	each	species	per	cellular	compartment	while	maintaining	consistency	with	

the	experimental	measurements.	These	constraints	are	formulated	as	follows.	

For	the	concentration	!9 	of	a	metabolite	M	measured	in	the	range	!9 	∈	:	!9	, !9	;	we	

have:	

<=(!9) ≥?@6<=(!96)	

where	!96 	is	 the	concentration	of	 the	metabolite	M	 in	compartment	 i,	 and	@6 	is	 the	

volume	fraction	of	compartment	i	with	respect	to	the	entire	cell.		

	

The	concentration	!9 	will	clearly	also	be	subject	to	the	bounds:	

<= A	!9	B ≤ <=(!9) ≤ <=C	!9	D	

	

Accordingly,	each	concentration	!96 	will	be	subject	to	the	bounds:	

<= A	!96	B ≤ <=(!96) ≤ <=C	!96	D	

	

!96 	and	!96 	are	calculated	as:	

!96 = E@F G	
!9 + (@6 − 1) ∗ JK

@6
	 , LK	M	

!96 	= EN= G	
!9 + (@6 − 1) ∗ LK

@6
	 , JK	M	
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where	LB	and	UB	are	the	physiological	lower	and	upper	bound	on	intracellular	

metabolite	concentrations,	with	values	10-7M	and	10-2M,	respectively.	

Since	 the	 provided	 lipidomics	 measurements	 were	 given	 in	 nM	 units,	 we	 used	 a	

specific	 cell	 volume	value	of	 2	mL×gDW-1	 	 as	 reported	by	Van	Urk	 et	 al.	 (1988)	 to	

convert	them	to	mmol×gDW-1	units,	which	multiplied	by	the	specific	growth	rate	yield	

the	 units	 considered	 for	 reaction	 rates	 in	 our	 model,	 namely	 mL×gDW-1×h-1.	 The	

metabolite	concentration	in	our	network	are	modeled	in	M,	thus	no	conversion	was	

required.	

	

3.2.5			Sampling	the	solution	space	

As	 the	 mathematical	 problem	 still	 remains	 underdetermined	 after	 these	 curation	

steps,	there	is	a	large	solution	space	of	thermodynamically	feasible	states	that	needs	

to	be	explored	in	order	to	confidently	choose	a	representative	flux	and	concentration	

reference	steady	state	around	which	we	can	build	populations	of	kinetic	models.	To	

this	 end,	we	 sampled	 the	 solution	 space	 using	 an	 artificially	 centered	 hit	 and	 run	

(ACHR)	 sampling	 algorithm.	 We	 generated	 50’000	 samples	 for	 the	 fluxes	 and	

concentrations	 each,	 and	 then	we	 selected	 the	 sample	 closest	 to	 the	 center	 of	 the	

sampled	space	as	our	representative	state	for	both	cases.	

	
	
	
	

3.3			Results	and	Discussion	

3.3.1			Bidirectional	Reactions	and	Flux	Directionality	Profiles	

An	 important	 aspect	 to	 be	 considered	 in	 every	 metabolic	 model	 is	 that	 of	 the	

physiology	of	the	studied	organism.	Especially	for	building	kinetic	models,	a	steady	

state	that	represents	well	the	observed	physiology	needs	to	be	selected	prior	to	the	

generation	of	the	kinetic	parameters.	To	this	end,	we	investigated	the	model’s	feasible	

steady	state	flux	distributions,	by	studying	the	flexibility	of	the	network	in	terms	of	

flux	variability	and	bidirectional	 reactions	 (BDRs).	Most	of	 the	enzymes	catalyzing	

each	 reaction	 can	 operate	 in	 both	 directions,	 rendering	 the	 vast	 majority	 of	 the	
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reactions	kinetically	reversible.	However,	even	if	a	reaction	is	kinetically	reversible,	it	

is	not	a	necessity	that	it	 is	also	bidirectional.	In	reality,	there	will	always	be	both	a	

forward	and	reverse	flux,	but	in	terms	of	net	fluxes	many	reactions	will	only	operate	

towards	a	certain	direction	in	physiological	conditions.	The	FBA	formulation	usually	

predicts	that	most	reactions	can	carry	flux	in	both	directions,	but	the	TFA	formulation	

greatly	 decreases	 their	 number	 since	 thermodynamic	 feasibility	 constraints	 are	

imposed.		

Specific	 to	 redLips,	 121	 reactions	 were	 bidirectional	 after	 the	 thermodynamic	

curation	of	 the	model.	The	vast	majority	of	 these	reactions	consisted	of	 transports	

between	cellular	compartments,	specifically	76	transport	and	2	boundary	reactions.	

The	remainder	of	the	BDRs	belonged	to	the	TCA,	oxidative	phosphorylation,	glycolysis	

and	gluconeogenesis,	 the	 carnitine	 shuttle,	 and	 to	 a	 smaller	degree	 to	 the	pentose	

phosphate	 pathway,	 nucleotide	 salvage	 pathway,	 pyruvate	 and	 amino	 acid	

biosynthesis.	A	big	number	of	BDRs	leads	to	an	astronomical	amount	of	combinations	

for	 the	 steady-state	 flux	 distribution	 of	 the	network,	 or	 flux	 directionality	 profiles	

(FDPs).	 Theoretically,	 n	 BDRs	 correspond	 to	 2n	 FDPs.	 Hence,	 it	 was	 crucial	 to	

determine	which	of	these	reactions	can	be	further	constrained	according	to	biological	

information,	 and	 ultimately	 to	 choose	 one	 prominent	 and	 physiologically	

representative	FDP.	

As	a	first	step	we	constrained	reactions	for	which	evidence	of	a	certain	operational	

directionality	 exist.	 Specifically,	we	made	 the	 following	 assumptions:	 (i)	 glycolysis	

operates	 towards	 the	 production	 of	 pyruvate,	 (ii)	 the	TCA	 cycle	 operates	 as	 a	 full	

cycle,	 and	 (iii)	 the	 pentose	 phosphate	 pathway	 (PPP)	 operates	 according	 to	 the	

direction	 of	 glycolysis,	 from	 fructose	 6-phosphate	 towards	 glyceraldehyde	 3-

phosphate.	 We	 further	 constrained	 a	 number	 of	 transport	 reactions	 for	 which	

evidence	of	directionality	exists,	such	as	nucleotide	transports.	In	total,	we	imposed	

directionalities	on	38	reactions,	which	lead	to	the	constraint	of	41	reactions	to	operate	

in	one	direction.	Next,	we	constrained	the	biomass	production	to	be	at	least	99%	of	

the	maximal	 computed	production,	 and	performed	 thermodynamic	 flux	 variability	

analysis	(TVA)	to	examine	how	the	flexibility	of	the	network	was	altered.	8	reactions	

became	unidirectional	for	this	case.	Subsequently,	we	made	the	assumption	that	the	

cell	will	always	strive	for	minimal	enzyme	usage,	which	translates	to	a	minimal	sum	
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of	fluxes	through	the	network.	The	objective	of	minimizing	the	sum	of	fluxes	is	also	

known	as	parsimonious	approach	(Lewis	et	al.	2010),	and	applying	it	to	the	network	

lead	to	17	additional	reactions	assuming	a	directionality.	Ultimately,	the	number	of	

BDRs	 was	 reduced	 to	 55,	 mostly	 consisting	 of	 species	 transports,	 for	 which	 no	

relevant	assumptions	could	be	made.	Theoretically,	55	BDRs	would	lead	to	up	to	255	

FDPs.	This	number	of	possible	FDPs	is	enormous	and	further	expert	knowledge	and	

experimental	 data	 are	 required	 in	 order	 to	 further	 reduce	 the	 number	 of	 BDRs.	

Moreover,	even	after	reducing	more	this	number,	further	analysis	of	alternative	FDPs	

should	be	performed.	Here,	we	have	chosen	one	of	these	FDPs	because	it	satisfies	the	

available	data,	physio-chemical	constraints,	and	our	assumptions.	The	complete	list	

of	 bidirectional	 reactions	 and	 the	 step	 by	 step	 determination	 of	 their	 respective	

directionalities	can	be	found	in	supplementary	Table	S3.2.	

It	is	interesting	to	note	that	if	we	do	not	predefine	any	directionalities	before	applying	

the	maximal	biomass	demand	and	parsimonious	TFA,	most	reactions	considered	in	

our	 assumptions	 will	 present	 the	 same	 directionality	 as	 when	 enforcing	 those	

assumptions.	 For	 example,	 glycolysis	will	 be	 operating	 towards	 the	 production	 of	

pyruvate;	the	only	reaction	retaining	its	bidirectionality	in	the	glycolysis	pathway	will	

be	 the	 one	 catalyzed	 by	 glucose-6-phosphate	 isomerase	 (PGI),	 a	 reaction	 that	 has	

been	known	to	be	capable	of	operating	in	both	forward	and	reverse	directions.	

	

3.3.2			Conserved	moieties	

In	 the	 redLips	 network	 we	 identified	 17	 conserved	 moieties.	 These	 include	 well	

reported	and	expected	groups,	such	as	the	pyrimidine	nucleotides,	other	nucleotide-

composed	molecules	such	as	quinones	and	quinols,	cytochromes,	and	carnitine,	ACP	

and	Coenzyme	A	(CoA)	bound	species	among	others.	Most	of	the	moieties	consist	of	

two	or	three	metabolites,	while	the	two	largest	groups	consist	of	85	and	129	species,	

for	the	ACP	and	CoA	bound	moieties	respectively.	The	full	list	of	conserved	moieties	

can	be	found	in	supplementary	Table	S3.3.	
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3.3.3			Kinetic	mechanisms	–	Apparent	inhibition	through	competing	
substrates	

One	 of	 the	most	 important	 steps	 in	 building	 a	 kinetic	model	 is	 the	 assignment	 of	

mechanisms	 that	 accurately	 describe	 the	 enzyme	 kinetics	 for	 each	 reaction.	 Lipid	

associated	enzymes	are	multifunctional	and	promiscuous,	which	means	that	they	are	

capable	of	catalyzing	multiple	reactions	in	the	network	and	are	able	to	bind	several	

different	species	(Carbonell,	Lecointre	and	Faulon	2011,	Tidhar	and	Futerman	2013).	

In	 the	 traditional	 inhibitory	 action,	 the	 inhibitor	 species	 competitively	 bind	 to	 the	

active	 sites	 of	 the	 enzyme,	 but	 no	 biochemical	 transformation	 takes	 place.	 In	 our	

instance,	 this	 is	not	the	case;	 the	multiple	alternative	substrates	that	the	 identified	

enzymes	can	accept	in	its	catalytic	sites	bind	to	the	enzyme	and	form	complexes	that	

lead	to	product	formation.	This	mechanism	is	still	a	form	of	competitive	inhibition	but	

requires	a	special	form	of	a	kinetic	rate	expression	to	describe	each	of	the	individual	

reactions.	To	this	end,	we	used	the	notion	of	apparent	inhibitors	and	the	derived	rate	

expressions	as	defined	by	Savoglidis	et	al.	(2016).	

For	 the	 case	 of	 our	 model	 we	 identified	 53	 enzymes	 that	 catalyze	 a	 total	 of	 346	

reactions	 in	the	redLips	network.	Within	these	enzymes	we	identified	four	distinct	

physiological	possibilities	that	may	–	or	may	not	–	give	rise	to	apparent	inhibition	and	

are	worth	discussing:	

• The	 first	 case	 (case	 I)	 is	 the	 simplest	 case	 of	 substrate	 competition;	 for	

example,	 the	 enzyme	 encoded	 by	 SCS7,	 exhibiting	 sphingolipid	 alpha-

hydroxylase	activity.	In	this	instance	we	have	one	enzyme	catalyzing	the	alpha	

hydroxylation	 of	 sphingolipid-associated	 very	 long	 chain	 fatty	 acids,	 which	

corresponds	 to	 three	 reactions	 all	 occurring	 in	 the	 endoplasmic	 reticulum.	

Thus,	the	substrates	of	these	enzymes	are	competing	for	the	same	binding	site	

of	the	enzyme	and	will	act	as	apparent	inhibitors	to	one	another.	Similarly,	in	

the	case	of	isoenzymes	we	consider	one	reaction	group	that	encompasses	all	

of	them	and	their	catalyzed	reactions,	since	the	reactions’	substrates	will	be	

competing	 for	 the	 active	 sites	 of	 both	 these	 enzymes	 simultaneously,	

analogously	to	case	I.	There	is	however	one	exception	to	this	rule	which	relates	

to	selectivity,	or	binding	affinity;	the	enzyme	might	be	able	to	bind	multiple	

species	but	be	strongly	selective	towards	one	of	them,	as	is	the	case	with	the	
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example	of	the	three	elongases,	ELO1,	ELO2	and	ELO3.	For	simplicity,	in	such	

circumstance	we	will	consider	each	of	the	enzymes	separately	as	multiples	of	

case	I.	

• The	second	case	(case	II)	can	be	observed	when	an	enzyme	is	multifunctional;	

for	example,	the	enzyme	encoded	by	FOX2,	exhibiting	both	3-hydroxyacyl-CoA	

dehydrogenase	and	enoyl-CoA	hydratase	activities.	This	enzyme	catalyzes	22	

reactions,	all	occurring	in	the	peroxisomes,	but	not	all	substrates	bind	to	the	

same	active	site	of	the	enzyme.	Therefore,	in	this	case	we	need	to	consider	two	

reaction	groups,	each	consisting	of	11	reactions,	the	substrates	of	which	act	as	

inhibitors	only	within	their	assigned	group.	

• The	 third	 case	 (case	 III)	 arises	when	 the	 same	enzyme	 is	 found	 in	multiple	

cellular	compartments;	for	example	the	enzyme	encoded	by	AUR1,	exhibiting	

phosphatidylinositol:ceramide	 phosphoinositol	 transferase	 activity.	 This	

enzyme	operates	in	both	the	endoplasmic	reticulum	and	the	Golgi	apparatus,	

catalyzing	 ten	 reactions	 in	 total.	 The	 substrates	 of	 these	 reactions	 cannot	

compete	for	binding	if	they	are	not	located	in	the	same	compartment.	Thus,	for	

this	case	we	need	to	define	two	reaction	groups,	one	per	cellular	component,	

each	consisting	of	five	reactions.		

• It	is	important	to	note	that	we	do	not	consider	cofactors	as	apparent	inhibitors.	

For	instance,	there	are	multiple	reactions	that	involve	either	a	NAD+/NADH	or	

a	NADP+/NADPH	cofactor	pair	interchangeably.	In	reality	the	phosphorylated	

and	non-phosphorylated	species	compete	for	the	binding	site,	but	our	focus	

was	to	investigate	these	inhibitory	mechanisms	and	their	effect	solely	in	the	

lipid	 species	 pathways	 for	 this	 study.	 Thus,	 the	 final	 case	 (case	 IV)	

encompasses	promiscuous	enzymes	that	apart	from	catalyzing	multiple	lipid-

related	 reactions,	 they	 can	 catalyze	 these	 reactions	 with	 multiple	 cofactor	

pairs.	For	this	case	we	defined	separate	reaction	groups	per	cofactor	pair,	since	

the	 apparent	 inhibitors	will	 not	 be	 affected	 by	 the	 reacting	 cofactor,	 and	 it	

makes	it	easier	to	visualize	in	terms	of	numbers.	

The	aforementioned	cases	of	apparent	inhibition	led	us	to	define	a	total	of	62	reaction	

groups	to	describe	the	enzymatic	coupling	effects	in	the	network.	The	procedure	we	

used	is	the	following:	(i)	We	identified	the	reactions	which	are	catalyzed	by	the	same	

enzyme	or	enzymatic	activity.	(ii)	We	separated	these	reactions	if	they	occurred	in	
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multiple	 cellular	 compartments.	 (iii)	 We	 further	 separated	 these	 reactions	 if	 the	

catalytic	activity	was	not	the	same	for	all	of	them.	For	this	step	we	used	the	Enzyme	

Commission	(E.C.)	number	to	define	the	activity	type,	under	the	assumption	that	one	

enzymatic	active	site	accommodates	only	reactions	with	a	specific	E.C.	number.	Thus,	

if	 two	 (or	 more)	 reactions	 catalyzed	 by	 a	 common	 enzyme	 have	 been	 assigned	

different	E.C.	numbers	(up	to	the	second	level)	we	assume	that	there	is	more	than	one	

active	site	involved,	and	consequently	no	apparent	inhibition	is	taking	place.	Cases	of	

catalytic	promiscuity	 in	 a	 single	 active	 site	have	 recently	been	documented	 (Velez	

Rueda	et	al.	2019),	although	none	of	 the	reported	proteins	are	part	of	 the	redLips	

network.	All	 of	 the	 identified	 enzymes	along	with	 the	 corresponding	 case,	 defined	

reaction	groups	and	number	of	 catalyzed	reactions	can	be	 found	 in	Table	3.1.	The	

complete	list	of	reactions	per	group	can	be	found	in	supplementary	Table	S3.4.	

	

	

	

	

Table	3.1.	Promiscuous	enzymes	in	the	redLips	network,	identified	by	their	standard	gene	name,	

along	with	the	corresponding	case,	defined	reaction	groups	and	number	of	catalyzed	reactions.	

Gene	Std.	Name	 Case	 Groups	Defined	 #	Reactions	Catalyzed	

ALE1	 I	 ALE1	 4	
ARE2	 I	 ARE2	 5	

AUR1	 III	 AUR1_ER	

AUR1_GOLGI	

5	
5	

BTS1	 I	 BTS1	 2	
CEM1	 I	 CEM1	 8	
DPL1	 I	 DPL1	 2	
ECI1	 I	 ECI1	 3	
ELO1	 I	 ELO1	 2	
ELO2	 I	 ELO2	 2	
ELO3	 I	 ELO3	 3	
ERG20	 I	 ERG20	 2	

ERG25	 IV	 ERG25_A	

ERG25_B	

6	
6	

ERG26	 IV	 ERG26_A	

ERG26_B	

2	
2	

ERG27	 I	 ERG27	 2	
ERG9	 I	 ERG9	 2	
ETR1	 I	 ETR1	 8	
FAA1	 II	 FAA1_A	 4	
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FAA1_B	 5	
FAA2	 I	 FAA2	 14	
FAA3	 I	 FAA3	 3	

FAS1	 II	
FAS1_A	

FAS1_B	

FAS1_C	

8	
8	
2	

FAS2	 II	 FAS2_A	

FAS2_B	

8	
8	

FAT1	 I	 FAT1	 4	

FOX2	 II	 FOX2_A	

FOX2_B	

12	
12	

HTD2	 I	 HTD2	 8	
IFA38	 I	 IFA38	 7	
IPT1	 I	 IPT1	 5	
ISC1	 I	 ISC1	 15	

LAC1	 III	 LAC1_CYTOSOL	

LAC1_ER	

2	
2	

LCB3	 I	 LCB3	 2	
LCB4	 I	 LCB4	 2	
LRO1	 I	 LRO1	 2	
OAR1	 I	 OAR1	 8	
OLE1	 I	 OLE1	 8	
OPI3	 I	 OPI3	 2	
PHS1	 I	 PHS1	 7	
PLB3	 I	 PLB3	 4	
POT1	 I	 POT1	 12	
POX1	 I	 POX1	 16	
PXA1	 I	 PXA1	 11	
RER2	 I	 RER2	 11	
SCS7	 I	 SCS7	 3	
SCT1	 I	 SCT1	 2	
SPS19	 I	 SPS19	 4	
SRT1	 I	 SRT1	 5	
SUR1	 I	 SUR1	 5	
SUR2	 I	 SUR2	 2	
TAZ1	 I	 TAZ1	 2	

TES1	 III	 TES1_CYTOSOL	

TES1_PEROXISOME	

10	
14	

TGL1	 I	 TGL1	 5	
TGL3	 I	 TGL3	 2	
TSC13	 I	 TSC13	 7	

YDC1/	YPC1	 I	 YDC1	/	YPC1	 2	
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3.3.4			Kinetic	mechanisms	–	Rest	of	the	network	

For	the	rest	of	the	reactions	of	the	redLips	network,	we	also	had	to	assign	appropriate	

kinetic	mechanisms	to	describe	their	enzymatic	properties.	It	is	important	to	note	that	

in	the	case	of	boundary	reactions	no	mechanism	is	assigned	since	they	are	artificial	

representations	serving	to	mass-balance	the	network,	thus	these	reactions	are	not	a	

part	 of	 the	 resulting	 kinetic	 model.	 Within	 the	 ORACLE	 framework,	 the	 biomass	

reaction	will	also	be	split	into	individual	biosynthetic	fluxes	for	each	building	block	

that	 contributes	 to	 cell	 growth.	 In	 total	 1161	 reactions	 were	 assigned	 kinetic	

mechanisms,	 with	 the	 majority	 being	 uni-uni	 reactions	 which	 were	 described	 by	

Michaelis-Menten	kinetics.	These	reactions	were	404	in	number,	followed	by	the	346	

reactions	that	were	assigned	a	form	of	apparent	inhibition	kinetics.	The	rest	of	the	

reactions	follow	a	form	of	reversible	hill	kinetics,	depending	on	their	stoichiometry,	

convenience	kinetics	if	one	or	more	of	their	stoichiometric	coefficients	is	larger	than	

unity	or	the	number	participating	metabolites	is	more	than	four,	simple	mass-action	

kinetics	if	the	participating	reactants	are	all	defined	as	small	molecules	or	inorganics,	

and	 irreversible	 mass-action	 kinetics	 for	 the	 cases	 of	 enzymatic	 irreversibility,	

pooling	or	lumped	reactions	and	the	elementary	biosynthetic	and	diffusion	reactions.	

A	 remark	 must	 be	 made	 for	 the	 enzyme	 Phosphofructokinase-1	 (PFK1),	 which	

converts	 fructose	 6-phosphate	 and	 ATP	 to	 fructose	 1,6-bisphosphate	 and	 ADP.	

Phosphofructokinase	activity	is	also	subject	to	allosteric	control,	with	ATP	inhibiting	

the	enzyme,	and	AMP	along	with	fructose	2,6-bisphosphate	reversing	the	inhibition	

by	allosteric	activation.	Thus,	a	special	kinetic	mechanism	needs	to	be	assigned	to	this	

particular	reaction	in	order	to	accurately	capture	these	phenomena.	Other	enzymes	

of	the	network	have	also	been	reported	to	being	subject	to	allosteric	or	another	type	

of	 control	 but	 were	 not	 considered	 in	 this	 study.	 The	 statistics	 of	 the	 assigned	

mechanisms	over	the	whole	network	and	their	description	can	be	seen	in	Table	3.2.	

The	complete	mathematical	expressions	can	be	found	in	Appendix	A.	
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Table	 3.2.	 Overall	 assigned	 kinetic	 mechanisms	 in	 the	 redLips	 network	 according	 to	 each	

enzymatic	function	and	stoichiometry.	

Stoichiometry	 Kinetic	Mechanism	
Number	of	
reactions	

Uni	–	Uni	

Reversible	Michaelis	Menten	 404	
Irreversible	Michaelis	Menten	 125	
Mass-action	kinetics	 28	
Convenience	kinetics	with	Apparent	Inhibition	 56	

Bi	–	Bi	

Reversible	Hill	 138	
PFK	specific	mechanism	 1	
Irreversible	Michaelis	Menten	 3	
Mass-action	kinetics	 1	
Convenience	kinetics	with	Apparent	Inhibition	 185	

Bi	–	Uni	/	Uni	–	Bi	

Reversible	Hill		 32	
Mass-action	kinetics	 2	
Convenience	kinetics	with	Apparent	Inhibition	 74	

Ter	–	Bi	/	Bi	–	Ter	

Reversible	Hill	 7	
Irreversible	Michaelis	Menten	 1	
Mass-action	kinetics	 1	
Convenience	kinetics	with	Apparent	Inhibition	 25	

More	complex	

stoichiometry	

Convenience	kinetics	 37	
Convenience	kinetics	with	Apparent	Inhibition	 6	

Other	stoichiometry	
Irreversible	Michaelis	Menten	 33	
Mass-action	kinetics	 2	

	

	

	

Another	 fine	 point	 that	 needs	 to	 be	 addressed	 at	 this	 stage	 concerns	 the	

parametrization	of	the	kinetic	rate	expressions	when	enzymatic	coupling	effects	are	

present.	Consider	the	example	case	of	two	reactions	that	are	catalyzed	by	the	same	

enzyme	 and	 involve	 the	 same	 co-substrates	 irrespective	 to	 apparent	 inhibition	

effects.	Since	in	essence	the	same	biomolecule	creates	a	complex	in	the	same	binding	

site	of	the	same	enzyme	for	both	of	these	reactions,	the	binding	affinity	between	this	

molecule	 and	 this	 enzyme,	 expressed	 through	 the	 respective	 Michaelis	 constant,	

needs	to	be	equal	in	the	rate	expressions	for	these	two	reactions.	This	property	was	

enforced	in	the	sampling	algorithm	of	the	ORACLE	workflow.	
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3.3.5			The	importance	of	accounting	for	the	enzymatic	coupling	effect	

Apart	 from	the	need	 to	account	 for	common	binding	affinities,	enzymatic	coupling	

also	 requires	 an	 appropriate	 reformulation	 of	 the	 parameter	 elasticity	 matrix,	 as	

presented	in	the	Materials	and	Methods	section.	Depending	on	the	consideration	–	or	

lack	thereof	–	of	enzymatic	coupling	effects,	we	can	distinguish	four	distinct	cases	of	

mathematical	complexity:	The	simplest	case,	and	most	common	in	literature,	is	the	

disregard	of	enzymatic	coupling	effects,	meaning	that	the	apparent	inhibition	terms	

are	 absent	 in	 the	 rate	 expressions	 of	 all	 reactions.	 The	 second	 case	 presents	 a	

simplistic	 approach	 to	 modeling	 enzymatic	 coupling,	 which	 is	 includes	 the	

restructuring	 of	 the	 parameter	 elasticity	 matrix	 Π,	 but	 without	 accounting	 for	

apparent	inhibition	in	the	kinetic	rate	expressions.	In	both	of	these	cases,	the	kinetic	

parameter	 sets	 are	 identical,	 but	 the	 calculation	 of	 corresponding	 CCs	 will	 be	

different.	On	the	other	hand,	we	have	the	occasion	where	enzymatic	coupling	effects	

are	considered	directly	in	the	kinetic	mechanisms	and	reaction	rates,	which	gives	rise	

to	two	more	cases	with	respect	to	the	inclusion	–	or	lack	thereof	-	of	the	restructuring	

of	 the	parameter	elasticity	matrix	Π.	Bearing	 in	mind	 the	network	complexity	and	

consequent	uncertainty,	we	generated	9’400	sets	of	kinetic	parameters	for	this	model	

using	the	ORACLE	framework,	accounting	for	enzymatic	coupling	effects	in	the	kinetic	

mechanisms	assigned.	We	additionally	generated	10’000	sets	of	kinetic	parameters	

without	 considering	 any	 enzymatic	 coupling	 effects	 in	 the	 reaction	 kinetics.	 The	

corresponding	FCCs	and	CCCs	were	calculated	for	each	parameter	set	of	both	of	these	

cases	according	to	the	expressions	defined	in	the	Materials	and	Methods	section	for	

both	the	cases	of	identity	and	restructured	Π	matrix.		

According	 to	 the	 definition	 of	 CCs,	 a	 positive	 or	 negative	 CC	 value	means	 that	 by	

increasing	 the	corresponding	enzyme	activity,	 the	concerned	 flux	or	concentration	

value	 will	 also	 increase	 or	 decrease,	 respectively.	 In	 Figure	 3.1,	 we	 present	 a	

comparison	of	the	results	generated	for	each	of	the	aforementioned	four	cases	with	

reference	to	the	phosphatidylinositol	synthase	(PIS1)	reaction.	The	biosynthesis	of	PI	

is	 a	 major	 part	 of	 the	 phospholipid	 biosynthetic	 pathways	 and	 serves	 well	 in	

demonstrating	the	differences	between	the	four	examined	cases.	In	complete	absence	

of	the	enzymatic	coupling	effect	(Figure	3.1a),	the	enzymatic	activities	that	appeared	

to	 affect	 most	 this	 reaction	 flux	 were	 the	 inositol-3-phosphate	 synthase	 (INO1),	
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hexokinase	 (HXK1),	 and	 inositol	 monophosphatase	 (INM1).	 All	 of	 these	 enzymes	

presented	positive	control	over	PIS1,	meaning	that	an	increase	in	their	activity	would	

result	in	an	increased	flux	through	the	reaction.	This	trend	is	logically	explained	since	

all	three	enzymes	catalyze	the	reactions	upstream	of	PIS1,	and	lead	to	the	production	

of	inositol,	one	of	the	two	building	blocks	of	phosphatidylcholine	(PI).	

	Moving	 to	 the	 case	 where	 a	 restructured	 Π	 matrix	 was	 used	 but	 the	 kinetic	

mechanisms	remained	devoid	of	apparent	inhibition	terms,	we	already	noted	some	

key	differences	between	the	CC	distributions	and	rankings.	Of	course,	since	the	only	

difference	between	this	and	the	previous	case	is	the	form	of	the	parameter	elasticity	

matrix,	only	the	CCs	of	enzymes	catalyzing	more	than	one	reaction	were	affected.	The	

three	top	enzymatic	activities	affecting	PIS1	one	remained	the	same	as	in	the	previous	

case,	although	inositol	phosphosphingolipid	phospholipase	C	(ISC1)	appeared	in	the	

fourth	 position.	 ISC1	 catalyzes	 15	 reactions.	 Sphingolipid	 degradation	 through	

hydrolysis,	 catalyzed	 by	 ISC1,	 produces	 myo-inositol	 phosphate,	 a	 precursor	 to	

inositol	and	therefore	a	vital	component	of	PI	biosynthesis,	while	PI	itself	participates	

in	the	biosynthesis	of	sphingolipids.	Another	enzyme	that	had	more	control	over	PIS1	

when	the	restructured	parameter	elasticity	matrix	was	taken	into	account,	is	inositol	

phosphorylceramide	synthase	(AUR1).	AUR1	catalyzes	five	reactions	that	encompass	

the	 synthesis	 of	 the	 first	 complex	 sphingolipids	 group,	 namely	 inositol	

phosphoceramides	 (IPCs),	 by	 attaching	 the	 head	 group	 of	 PI	 to	 a	 ceramide	 and	

producing	an	IPC	and	diacylglycerol.	
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When	accounting	 for	 the	enzymatic	coupling	effect,	but	not	using	a	restructured	Π	

matrix	 (Figure	 3.1c),	 the	 enzymes	 that	 exhibited	 the	most	 control	 over	 PIS1	were	

significantly	 different.	 The	 top	 ranked	 ones	 were	 acetyl-CoA	 carboxylase	 (ACC1),	

endoplasmic	reticular	dolichol	kinase	(DOLP	or	SEC59),	and	pyruvate	decarboxylase	

(PDC	or	PDC1),	with	the	two	first	having	negative	and	the	latter	positive	control	over	

the	 reaction.	 This	 result	 suggested	 a	 connection	 between	 the	 synthesis	 of	 PI	 and	

acetyl-CoA,	 and	 even	 the	 dephosphorylation	 of	 dolichol-phosphates.	 These	

connections	 have	 not	 been	 previously	 reported	 in	 literature	 and	 could	 lead	 to	

significant	discoveries	in	the	regulatory	mechanisms	of	PI	synthesis.	The	previously	

top	ranked	enzymes	appeared	in	a	lower	ranking,	with	INO1	at	the	fourth	and	INM1	

at	the	eighth	place,	while	HXK1	did	not	appear	at	all	in	the	top	20	controlling	enzymes.	

It	is	interesting	to	note	that	the	values	of	the	CCs	for	those	particular	enzymes	in	both	

of	 the	 cases	were	more	or	 less	 equal,	 but	 that	was	not	 the	 case	with	ACC1,	which	

appeared	twentieth	in	rank	for	the	first	case,	was	absent	in	the	second	case,	and	first	

in	 the	 third	 case.	 This	 occurrence	 in	 fact	 strongly	 suggests	 that	 the	 effect	 that	

enzymatic	 coupling	will	 have	 in	 the	 calculation	of	CCs	 for	 enzymes	 that	 catalyze	a	

single	 reaction	 is	 not	 straightforward,	 and	 it	 strengthens	 the	 importance	 of	 its	

consideration.	We	could	also	identify	some	of	the	promiscuous	enzymes	appearing	in	

lower	rankings	of	the	top	20	for	this	case,	of	course	in	separated	forms	since	the	Π	

matrix	was	considered	as	an	identity	matrix	and	the	contributions	of	each	enzymatic	

control	 were	 not	 combined	 into	 a	 single	 CC.	 Namely,	 these	 enzymes	 were	 the	

OLE1_C18_1	(fatty	acid	desaturase),	ELO2_C18	and	ELO2_C20	(fatty	acid	elongase),	

as	well	as	ISC1a_5	(inositol	phosphosphingolipid	phospholipase	C).	

Finally,	 accounting	 for	 the	 enzymatic	 coupling	 effect	 and	 using	 a	 restructured	 Π	

matrix	(Figure	3.1d)	further	altered	the	resulting	highest	control	asserting	enzymes.	

As	mentioned	earlier,	only	the	CCs	of	enzymes	catalyzing	more	than	one	reaction	were	

affected	between	this	and	 the	previous	case,	 resulting	 from	the	 form	of	parameter	

elasticity	matrix.	By	adding	up	the	control	contributions	for	promiscuous	enzymes,	

ISC1	 climbed	 up	 to	 exerting	 the	 most	 control	 over	 PIS1.	 The	 succeeding	 ranked	

enzymes	were	unaffected,	with	ACC1,	DOLP	and	PDC	following.	Fatty	acid	desaturase	

(OLE1)	 appeared	 also	 in	 this	 case,	 but	 in	 a	 lower	 rank,	 3-hydroxyacyl-CoA	

dehydrogenase	and	enoyl-CoA	hydratase	(FOX2a	and	FOX2b)	appeared	in	ranks	14	
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and	15	respectively,	while	 fatty	acid	elongase	(ELO2)	did	not	appear	 in	 the	top	20	

ranked	enzymes.	

These	observations	led	us	to	the	classification	of	the	enzymatic	activities	appearing	in	

each	ranking	into	a	few	comprehensive	categories,	which	are	accordingly	denoted	in	

Figure	 3.1	 with	 different	 colors.	 A	 number	 of	 enzymes,	 namely	 INO1,	 INM1,	 and	

ERG13	(in	red),	appeared	in	all	four	cases	in	the	top	20	ranks,	and	even	though	the	

mean	value	of	each	of	their	distribution	might	have	changed,	the	sign	of	the	control	

remained	 unaffected.	 On	 the	 other	 hand,	 while	 some	 enzymes	 such	 as	 3-

phosphoshikimate	 1-carboxyvinyltransferase	 (ARO1	 or	 PSCVTi	 in	 model),	 NADP+	

phosphatase	(NADPPPS)	and	glycerol	dehydrogenase	(GCY1	or	GLYCDy	in	model)	(in	

grey)	appeared	in	all	four	cases,	their	control	sign	changed	between	the	case	pairs	of	

consideration	or	not	of	apparent	inhibition	effects	in	the	kinetic	mechanisms	(Figure	

3.1	 a,	 b	 versus	 c,	 d).	 Especially	 for	 the	 case	 of	 GLYCDy,	 the	 mean	 value	 of	 the	

distribution	varied	dramatically	between	the	two	instances,	while	for	the	other	two	

enzymes	 only	 the	 top	 (or	 bottom)	 quartiles	 of	 their	 distributions	 crossed	 to	 the	

opposite	sign.	Another	difference	between	those	two	case	pairs	was	the	control	of	the	

enzymes	ACC1	 and	DOLP	 (in	 yellow),	which	 appeared	 very	 low	 in	 rank	when	 the	

inhibitory	 effect	 in	 the	 kinetic	 mechanisms	 was	 neglected,	 but	 rose	 to	 very	 high	

control	values	when	it	was	not.	HXK1	(in	green)	appeared	in	a	high	rank	only	for	the	

cases	where	no	apparent	inhibition	effects	were	considered	(Figure	3.1	a,	b).	Some	of	

the	most	striking	results	of	this	study	involve	promiscuous	enzymes,	and	the	effect	

that	the	consideration	of	the	enzymatic	coupling	effect	has	on	their	predicted	control.	

It	 is	 clear	 from	these	results	 that	 that	 this	 inclusion,	with	regard	 to	both	apparent	

inhibition	 terms	 in	 the	 kinetic	 mechanisms	 and	 a	 restructured	 Π	matrix,	 will	 not	

necessarily	 lead	 to	 greater	 (or	 lesser)	 CC	 values	 for	 promiscuous	 enzymes.	 As	we	

observed,	it	may	very	well	enhance	the	combined	enzymatic	control,	like	in	the	case	

of	ISC1	(in	magenta),	AUR1	(in	turquoise)	and	FOX2a/b	(in	orange),	decrease	it,	like	

in	the	case	of	ELO2	(in	blue)	and	OLE1	(in	purple),	or	even	not	affect	it	at	all,	like	in	

the	 case	 of	 PLB3	 (in	 dark	 red).	 More	 specifically,	 ISC1	 was	 not	 found	 to	 exert	

significant	 control	 over	 PIS1	 if	 the	 fact	 that	 it	 catalyzes	 several	 reactions	was	 not	

considered	(Figure	3.1	a,	c),	but	this	changed	dramatically	for	the	cases	it	was	(Figure	

3.1	b,	d).	Apart	from	ISC1,	AUR1	and	PLB3	were	the	only	promiscuous	enzymes	to	
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appear	in	the	top	ranking	only	for	the	cases	of	no	apparent	inhibition	kinetics	(Figure	

3.1	a,	b).	On	the	contrary,	OLE1,	ELO2,	and	FOX2a,	b,	appeared	in	top	ranking	only	for	

the	cases	of	apparent	inhibition	kinetics.	

This	analysis	 investigated	the	effect	 that	accounting	 for	enzymatic	coupling	has	on	

metabolic	 control	 predictions.	 It	 was	 demonstrated	 that	 the	 effect	 of	 enzymatic	

coupling	is	not	negligible.	On	the	contrary,	predictions	varied	significantly	between	

the	 studied	 cases.	 Moreover,	 it	 was	 evident	 that	 by	 considering	 this	 effect	 only	

through	the	restructuring	of	the	parameter	elasticity	matrix	and	not	in	the	kinetic	rate	

expressions	 was	 not	 adequate.	 The	 assignment	 of	 kinetic	 rate	 expressions	 that	

account	for	apparent	inhibition	induces	a	coupling	of	the	competing	metabolites.	This	

coupling	affects	the	dynamic	behavior	throughout	the	metabolic	network	and	needs	

to	be	taken	into	consideration.	Thus,	in	order	to	model	properly	the	properties	and	

consequences	of	enzymatic	promiscuity,	 the	enzymatic	coupling	needs	 to	be	 taken	

into	account	in	both	the	rate	laws	and	the	Π	structure.	

	

3.3.6			Validation	of	the	model’s	predictive	capabilities	

Having	 demonstrated	 the	way	 to	 consistently	 account	 for	 the	 enzymatic	 coupling	

effect,	we	investigated	the	predicted	control	exerted	on	key	reactions	of	the	network,	

using	the	kinetic	parameters	and	CCs	calculated	for	this	case.	

A	 very	 well-known	 example	 of	 internal	 cell	 regulation	 is	 the	 use	 of	 the	 Kennedy	

pathway	for	the	production	of	the	phospholipids	phosphatidylethanolamine	(PE)	and	

phosphatidylcholine	 (PC)	 in	 the	 case	 of	 impaired	 production	 by	 the	 CDP-DAG	

pathway	(Carman	and	Henry	1989,	Carman	and	Henry	1999,	Carman	and	Zeimetz	

1996).	 Mutants	 defective	 on	 these	 enzymes	 depend	 on	 exogenous	 supply	 of	

ethanolamine	 and	 choline	 to	 synthesize	 CDP-ethanolamine	 and	 CDP-choline	 and	

subsequently	 the	 aforementioned	 phospholipids,	 respectively.	 In	 Figure	 3.2	 we	

present	 the	 FCCs	 for	 the	 control	 of	 the	 enzymes	 of	 the	 CDP-DAG	 pathway	 on	 the	

reactions	of	 the	 two	Kennedy	pathways.	We	can	 see	 that	 for	both	branches	of	 the	

pathway,	the	enzyme	phosphatidylserine	synthase	(CHO1)	has	the	strongest	effect	on	

all	reactions,	and	the	values	are	strictly	negative.	CHO1	catalyzes	the	first	step	of	the	

CPD-DAG	pathway	which	is	the	synthesis	of	phosphatidylserine	(PS)	from	CDP-DAG	
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and	serine.	This	result	in	agreement	with	the	physiological	observations	(Carman	and	

Henry	1989,	Carman	and	Henry	1999,	Carman	and	Zeimetz	1996)	since	according	to	

MCA	 definitions	 a	 negative	 CC	 value	 corresponds	 to	 increased	 flux	 through	 the	

reaction	in	the	case	of	decreased	enzyme	activity.	We	also	observe	negative	control	

from	the	enzyme	that	catalyzes	the	synthesis	of	the	main	precursor	CDP-DAG,	namely	

phosphatidate	 cytidylyltransferase	 (CDS1),	 leading	 us	 to	 the	 hypothesis	 that	 the	

suppression	 of	 the	 CDP-DAG	 pathway	 in	 favor	 of	 the	 Kennedy	 pathway	 could	 be	

starting	 one	 step	 before,	 at	 the	 very	 synthesis	 of	 the	 compound.	 The	 enzymes	

catalyzing	 the	next	step	of	 the	pathway	which	 is	 the	 transformation	of	PS	 to	PE	 in	

three	 cellular	 compartments	 (phosphatidylserine	 decarboxylases	 PSD1	 and	 PSD2)	

exhibit	 likewise	 slightly	 negative	 control	 but	 of	 very	 small	 magnitude.	 It	 is	 very	

interesting	 to	 note	 that	 the	 last	 two	 enzymes	 of	 the	 pathway	 catalyzing	 the	 three	

methylation	 reactions	 that	 convert	 PE	 to	 PC	 (phosphatidylethanolamine	

methyltransferase	 CHO2	 and	 methylene-fatty-acyl-phospholipid	 synthase	 OPI3)	

affect	differently	each	of	 the	branches	of	 the	Kennedy	pathway.	Concerning	the	PE	

production	branch,	the	values	of	the	corresponding	CCs	are	strictly	positive,	while	for	

the	PC	production	branch	values	are	virtually	zero,	so	they	do	not	affect	it.	For	the	

first	 case,	 however,	 a	 hypothesis	 can	 be	 made	 that	 in	 the	 event	 of	 increased	

synthesizing	activity	of	PC	from	PE,	the	Kennedy	pathway	will	need	to	be	more	active	

in	order	to	compensate	for	the	increased	demand	of	PE,	since	these	enzymes	are	both	

downstream	of	the	PE	synthesis.	All	of	above	remarks	serve	to	validate	our	model’s	

predictions	against	experimental	observations	and	lead	to	the	formulation	of	novel	

hypotheses	for	the	underlying	mechanisms	of	regulation	in	these	pathways.		
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Figure	3.2.	Flux	Control	Coefficients	corresponding	to	the	reactions	of	the	Kennedy	pathway	for	
the	 biosynthesis	 of	 (a)	 PE	 (in	 purple)	 and	 (b)	 PC	 (in	 green),	 with	 respect	 to	 the	 enzymes	
catalyzing	the	CDP-DAG	biosynthetic	pathway	(in	red).	The	bars	and	error	bars	denote	the	mean	
value	and	the	lower	and	upper	quartiles	of	the	distribution	respectively.	(c)	The	CDP-DAG	and	
Kennedy	biosynthetic	pathways,	with	corresponding	colors.	
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Another	point	of	interest	is	the	concentration	levels	of	cardiolipin	(CL)	in	the	system.	

CL	is	a	major	component	of	mitochondrial	membranes	and	mitochondrial	functions,	

and	abnormalities	in	its	structure	or	production	have	been	associated	with	numerous	

diseases	 such	 as	 Barth	 syndrome,	 ischemia	 and	 cardiomyopathy	 (Baile,	 Lu	 and	

Claypool	2014,	Schlame	and	Greenberg	2017).	Barth	syndrome	has	been	associated	

with	 the	human	 tafazzin	 gene	G4.5,	which	 is	 highly	homologous	 to	 the	 yeast	 gene	

TAZ1	(lyso-phosphatidylcholine	acyltransferase).	Tafazzin	is	reportedly	responsible	

for	 CL	 remodeling,	 which	 consists	 of	 the	 diacylation	 of	 newly	 synthesized	 CL	 to	

monolyso-CL	(MLCL),	which	then	undergoes	condensation	with	an	acyl-CoA	to	form	

mature	CL.	This	process	is	essential	in	maintaining	the	unique	CL	acyl	composition	for	

optimal	performance	of	the	mitochondrial	associated	functions.	Mutants	defective	in	

tafazzin	have	been	reported	to	accumulate	large	quantities	of	MLCL	and	present	with	

lower	 levels	of	 remodeled	CL,	along	with	other	phospholipid	 imbalances	 (Gu	et	al.	

2004).	 In	 Figure	 3.3	we	 can	 see	 the	 control	 of	 TAZ1	 on	 the	 network’s	metabolite	

concentration	levels,	in	descending	order.		

	

	

	

	

	
Figure	 3.3.	 (a)	 Top	 7	 ranked	 Concentration	 Control	 Coefficients	 (top)	 corresponding	 to	 the	
enzyme	activity	TAZ1	along	with	the	lower	ranked	MLCL	and	CL	species	(bottom),	and	(b)	zoom	
in	on	the	bar	corresponding	to	CL.	The	bars	and	error	bars	denote	the	mean	value	and	the	lower	
and	upper	quartiles	of	the	distribution	respectively.	
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We	observed	that	the	most	affected	concentrations	are	the	ones	of	PC	and	monolyso-

PC	(MLPC)	in	mitochondria,	along	with	a	number	of	free	fatty	acids	in	the	ER.	These	

results	 are	 in	 agreement	 with	 experimental	 observations	 concerning	 altered	

phospholipid	 composition	 of	 TAZ1	mutants	 (Gu	 et	 al.	 2004).	 Interestingly,	 the	 CL	

species	in	tafazzin	mutants	include	mostly	species	with	increased	C18:1,	C18:0	and	

16:0	acyl	chains,	which	are	exactly	the	ones	predicted	to	increase	in	concentration	in	

our	 calculations.	 Additionally,	 we	 present	 the	 effect	 that	 altered	 TAZ1	 expression	

would	 have	 in	 CL	 and	 MLCL	 levels,	 which	 is	 negative	 and	 minorly	 positive,	

respectively.	The	signs	and	magnitudes	of	the	CCs	express	that	in	the	case	of	reduced	

TAZ1	activity,	accumulation	of	MLCL	and	lesser	depletion	of	CL	will	occur	in	the	cell,	

which	is	in	agreement	with	the	observations	of	Gu	et	al.	(2004).	

This	 and	 the	 above	 analysis	 show	 that	 our	 model’s	 predictions	 are	 in	 very	 good	

agreement	 with	 physiological	 data.	 This	 validation	 procedure	 is	 essential	 in	 the	

construction	 of	 kinetic	 models	 in	 order	 to	 prune	 the	 generated	 sets	 of	 kinetic	

parameters	if	necessary.	Having	thus	demonstrated	that	the	kinetic	version	of	redLips	

can	 accurately	 capture	 experimental	 observations,	 novel	 interactions	 within	 the	

metabolic	network	can	be	identified	and	evaluated.		

	

	

3.4			Conclusions	

In	conclusion,	we	demonstrated	the	consistent	construction	of	a	kinetic	version	of	the	

redLips	 model,	 by	 taking	 into	 account	 the	 network	 complexities	 and	 limitations	

thereof.	The	kinetic	redLips	model	is	the	most	detailed	kinetic	representation	of	lipids	

to	date,	 and	one	of	 the	 largest	kinetic	models	available.	Lipid	 related	enzymes	are	

multifunctional	and	promiscuous,	and	special	care	needs	to	be	taken	when	developing	

and	assigning	kinetic	rate	expressions.	The	notion	of	apparent	inhibitors	was	used	to	

allow	the	definition	of	appropriate	enzymatic	mechanisms	and	the	discrepancies	this	

consideration	 induces	 in	 the	 results	 was	 investigated.	 The	 thermodynamically	

feasible	flux	directionality	profiles	of	the	network	were	assessed	and	a	representative	

steady	state	was	chosen.	Experimental	lipidomics	were	used	to	curate	the	model	in	
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terms	 of	 biosynthetic	 fluxes	 and	 concentrations,	 by	 taking	 into	 account	 the	

compartmentalization	 of	 species	 and	 the	 relative	 volume	 of	 each	 cellular	

compartment,	 and	 conserved	 moieties	 were	 identified.	 Populations	 of	 kinetic	

parameter	 sets	 were	 generated	 using	 the	 ORACLE	 framework	 through	 extensive	

sampling,	and	the	corresponding	MCA-based	control	coefficients	were	calculated	and	

statistically	 analyzed.	 The	 importance	 of	 accounting	 correctly	 for	 the	 enzymatic	

coupling	effect	was	demonstrated,	and	enzymatic	control	over	key	reaction	rates	and	

metabolite	 concentrations	 was	 examined.	 We	 validated	 the	 model	 against	

experimental	 observations	 and	 showed	 that	 its	 predictions	 were	 in	 very	 good	

agreement	with	reported	biological	responses.	Within	these	studies,	novel	regulatory	

interactions	were	identified.	We	believe	that	the	systematic	workflow	presented	can	

be	 used	 as	 a	 guideline	 to	 building	 consistent	 kinetic	models	 of	metabolism,	while	

allowing	 for	 the	 inclusion	 of	 complex	 phenomena	 such	 as	 enzymatic	 promiscuity.	

Furthermore,	 the	 constructed	 model	 can	 be	 used	 to	 study	 dynamic	 responses	 in	

response	to	perturbations	in	the	lipid	metabolic	pathways,	and	could	be	a	useful	tool	

in	the	elucidation	of	the	mechanisms	that	control	membrane	homeostasis.
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Chapter	4	–	Response	Balance	
Analysis:	investigating	metabolic	
control	in	a	constraint-based	
formulation	for	the	design	of	strain	
engineering	strategies	

 
 
 

4.1			Introduction		

Bioprocess	 optimization	 has	 been	 a	 very	 prominent	 area	 of	 study	 over	 the	 past	

decades.	Several	factors	contribute	to	the	improvement	of	how	an	organism	handles	

several	metabolic	tasks,	from	growth	to	yield	of	products.	Evolution	itself	is	a	prime	

example	of	how	an	organism	can	efficiently	adapt	and	perform	in	various	conditions,	

ranging	 from	environmental	and	media	related	conditions,	 to	gene	expression	and	

intracellular	flux	and	concentration	redistributions.	

Genome	 editing	 techniques	 have	 significantly	 improved	 over	 the	 years	 and	 are	

enabling	 the	 metabolic	 engineering	 of	 organisms	 that	 can	 achieve	 a	 targeted	

physiological	 state.	 Two	 general	 approaches	 exist	 for	 reaching	 this	 desired	 state;	

cutting	off	existing	control	loops	that	will	result	in	the	modification	the	endogenous	

regulatory	architecture	or,	heterologous	pathways	can	be	integrated	to	disruptively	

overcome	native	control	patterns	(Bailey	1991).	The	latter	method	requires	testing	if	

the	 integration	 of	 DNA	 fragments	 into	 the	 original	 genome	 sequence	 successfully	

perturbs	cellular	regulation	in	a	desired	fashion,	and	can	be	relatively	laborious.	The	

former	 technique	 demands	 knowledge	 about	 cellular	 control	 so	 that	 the	 DNA	

sequence	 can	 be	 modified	 effectively	 and	 without	 unfavored	 side	 effects.	 Widely	
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available	gene-protein-reaction	associations	of	various	organisms	provide	invaluable	

information	about	their	metabolism	and	enable	the	construction	and	elaboration	of	

mathematical	models	that	can	be	studied	computationally	in	order	to	interrogate	and	

analyze	their	cellular	behavior	(Gombert	and	Nielsen	2000).	The	various	emerging	

mathematical	formulations	can	yield	candidate	metabolic	engineering	strategies	for	

consistently	achieving	the	target	physiological	state	via	genome	editing.	Strain	design	

can	be	accommodated	by	 the	 identification	of	pathways	 that	 enable	production	of	

desired	compounds	using	known	native	and/or	known	non-native	reactions,	as	well	

as	de	novo	reactions	that	have	not	been	observed	to	biologically	occur.	Additionally,	

strategies	can	 include	gene	deletions	and/or	up-	and	down-regulation	of	enzymes.	

For	an	extensive	review	of	the	most	prominent	computational	tools	and	workflows,	

the	interested	reader	may	refer	to	the	following	reviews	(Costa,	Hartmann	and	Vinga	

2016,	Long,	Ong	and	Reed	2015,	Wang	et	al.	2017).	

Kinetic	models	of	metabolism	are	mathematical	descriptions	of	cellular	dynamics	and	

provide	 useful	 information	 about	 the	 regulatory	 architecture	 of	 an	 organism.	 The	

construction	 of	 kinetic	 models	 involves	 numerous	 sources	 of	 uncertainty	 as	

highlighted	 in	 previous	 studies	 (Andreozzi,	 Miskovic	 and	 Hatzimanikatis	 2016,	

Chakrabarti	et	al.	2013,	Hameri	et	al.	2019)	and	reviews	(Miskovic	et	al.	2015,	Saa	and	

Nielsen	2017).	This	uncertainty	can	stem	from	a	large	allowable	solution	space	native	

to	 stoichiometric	 mechanistic	 models,	 deviation	 errors	 in	 experimental	

measurements,	or	lack	of	information	about	the	network	in	both	a	structural	and	a	

parametrization	 level.	 Consequently,	 sampling-based	 workflows	 that	 generate	

populations	 of	 models	 in	 an	 effort	 to	 statistically	 quantify	 and	 overcome	 the	

introduced	uncertainty	have	been	developed	(Chakrabarti	et	al.	2013,	Khodayari	and	

Maranas	2016,	Tran,	Rizk	and	Liao	2008,	Wang,	Birol	and	Hatzimanikatis	2004).	One	

of	these	workflows	is	the	Optimization	and	Risk	Analysis	of	Complex	Living	Entities	

(ORACLE)	 (Miskovic	 and	Hatzimanikatis	 2010),	which,	 given	 a	 representative	 cell	

physiology,	systematically	generates	sets	of	kinetic	parameters	through	sampling.	

Metabolic	control	analysis	(MCA)	(Kacser,	Burns	and	Fell	1995)	has	been	established	

as	an	efficient	method	for	studying	control	in	biological	systems,	as	it	does	not	require	

mathematical	 integration	 of	 complex	 systems	 of	 ordinary	 differential	 equations.	

Furthermore,	Hatzimanikatis,	Floudas	and	Bailey	(1996a),	(1996b)	have	shown	that	
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MCA-based		flux	and	concentration	control	coefficients	(FCCs	and	CCCs,	respectively)	

can	be	used	to	devise	a	Mixed	Integer	Linear	Programming	(MILP)	formulation	for	

querying	 cellular	 responses	 upon	 enzymatic	 perturbations.	 Their	 study	 highlights	

that	 to	 achieve	 a	 given	perturbed	 state	 for	 a	 simple	 pathway,	multiple	 alternative	

metabolic	engineering	strategies	can	be	suggested.	On	the	scale	of	simple	linear	and	

branched	pathways,	and	serving	as	proof	of	concept,	 control	coefficients	emerging	

from	 kinetic	 modeling	 were	 used	 successfully	 to	 propose	 metabolic	 engineering	

strategies.	The	advantage	of	this	method	is	that	physiologically	relevant	bounds	and	

constraints	can	be	imposed	to	the	system,	as	opposed	to	the	classical	MCA.	However,	

to	our	knowledge,	their	proposed	MILP	formulation	has	not	been	applied	to	 larger	

scale	nonlinear	kinetic	models.	

We	 hereby	 present	 Response	 Balance	 Analysis	 (RBA),	 a	 workflow	 that	 utilizes	

populations	 of	 kinetic	 parameter	 sets	 and	 their	 corresponding	 control	 coefficients	

(CCs)	in	order	to	consistently	derive	metabolic	engineering	strategies.	We	used	an	E.	

coli	metabolic	model	(Hameri,	Fengos	and	Hatzimanikatis	2019)	which	describes	the	

central	 carbon	 pathways	 in	 aerobic	 growth	 conditions	 and	 was	 curated	 with	

thermodynamic	 feasibility	 constraints	 and	 experimental	 data	where	 available.	We	

used	the	ORACLE	framework	in	order	to	generate	multiple	sets	of	kinetic	parameters	

along	with	their	corresponding	flux	and	control	coefficients.	We	then	demonstrated	

how	through	RBA	these	data	can	be	formulated	in	a	MILP	problem	and	how	it	can	be	

used	to	efficiently	analyze,	enumerate,	and	propose	alternative	metabolic	engineering	

strategies.	RBA	can	be	a	powerful	tool	for	the	design	of	sophisticated	approaches,	and	

it	 can	 accommodate	 the	 incorporation	 of	 physiological	 data	 in	 reaction	 rate,	

concentration	and	enzyme	expression	levels.	

	
	
	

4.2			Materials	and	Methods		

4.2.1			Metabolic	Control	Analysis	notions	

In	MCA,	the	concentration	control	coefficients,	!"# ,	and	the	flux	control	coefficients,	
!"$,	are	defined	as	the	fractional	change	of	metabolite	concentrations	x	and	metabolic	
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fluxes	 v,	 respectively,	 in	 response	 to	 a	 fractional	 change	 of	 system	 parameters	 p	

(Kacser	 and	 Burns	 1973a).	 These	 CCs	 serve	 as	 measurable	 outputs	 that	 provide	

information	about	the	levels	of	control	that	system	parameters	have	on	the	studied	

biological	 system	and	physiology.	 From	 the	 log(linear)	 formalism	 (Hatzimanikatis,	

Floudas	 and	 Bailey	 1996a,	 Reder	 1988a),	!"# 	and	!"$ 	can	 be	 derived	 through	 the	
following	expressions:	

	

!"# = −()*+)-.)*/	

!"$ = +!"# + /	

	

where	N	is	the	stoichiometric	matrix,	V	is	the	diagonal	matrix	whose	elements	are	the	

steady-state	fluxes,	E	is	the	elasticity	matrix	with	respect	to	metabolites	and	/	is	the	
matrix	of	elasticities	with	respect	to	parameters.	

	

Hence,	flux	and	concentration	control	coefficients	are	computed	for	each	reaction	flux	

i	and	metabolite	concentration	j	with	respect	to	the	system	parameters	k	as:	

	

!"1
$2 = 3	5678

3	569: =
9:	378
78	39: 	

!"1
#; = 3	56<=

3	569: =
9:	3<=
<=	39: 	

	

4.2.2			Kinetic	model	description	

In	this	study,	we	used	a	kinetic	model	that	describes	the	aerobically	grown	physiology	

of	 E.	 coli	 (Hameri,	 Fengos	 and	 Hatzimanikatis	 2019)	 for	 demonstrating	 the	 RBA	

workflow.	This	model	was	systematically	reduced	from	the	E.	coli	iJO1366	genome-

scale	model	(Orth	et	al.	2011a)	around	the	originally	defined	reaction	subsystems	of	

glycolysis,	 pentose	 phosphate	 pathway	 (PPP),	 tricarboxylic	 acid	 (TCA)	 cycle,	

glyoxylate	cycle,	pyruvate	metabolism	and	the	electron	 transport	chain	(ETC).	The	
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reduction	was	performed	through	the	redGEM	and	the	lumpGEM	algorithms	(Ataman	

et	al.	2017,	Ataman	and	Hatzimanikatis	2017),	thus	ensuring	the	preservation	of	as	

much	information	as	possible	as	well	as	that	thermodynamic	feasibility	constraints	

are	 respected.	 This	 model	 constitutes	 of	 337	 metabolites	 participating	 in	 647	

reactions,	which	are	in	turn	associated	with	271	enzymes	that	serve	as	parameters	in	

the	 RBA	 formulation.	 The	 model	 was	 curated	 with	 thermodynamic	 feasibility	

constraints	using	TFA	(Salvy	et	al.	2019)	and	relevant	fluxomics	data	(McCloskey	et	

al.	2014).	The	representative	steady	state	profiles	of	the	metabolite	concentrations	

and	 metabolic	 fluxes	 were	 chosen	 with	 Principal	 Component	 Analysis	 (PCA)	 as	

detailed	 in	 the	 relevant	 publication,	 and	 the	 kinetic	 model	 with	 associated	

populations	of	kinetic	parameters	was	built	using	the	ORACLE	workflow	(Miskovic	

and	Hatzimanikatis	2010).	

	
	
	
	

4.3			Results	and	Discussion	

4.3.1			Response	Balance	Analysis	formulation	

The	MCA	control	coefficients	can	be	used	to	compute	how	a	given	metabolic	flux	or	

metabolite	concentration	would	respond	to	parameter	perturbations	of	the	system.	

These	deviations	can	be	calculated	as	follows:	

	

>8 = ? !"1
$2

#	AB	"

:C.
× +: 	

E= = ? !"1
#;

#	AB	"

:C.
× +: 	

where	

>8 = ln	(78/78,I)	

E= = ln	(<=/<=,I)	
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+: = ln	(9:/9:,I)	

	

and	F,	M	and	E	are	the	logarithmic	deviations	in	flux,	metabolite	concentration	and	

parameter	with	 respect	 to	 their	 respective	 reference	 steady	 states	vi,0.,	 xi,0	 and	pi,0	

(Figure	4.1).	

Similar	 to	 mass	 balances	 in	 the	 Flux	 Balance	 Analysis	 (FBA)	 mathematical	

formulation	 (Orth,	 Thiele	 and	 Palsson	 2010),	 these	 equations	 can	 be	 written	 in	

matrix-vector	 form	 	 forming	 a	 constraint-based	 linear	 problem,	 on	which	we	 can	

impose	bounds	on	the	problem’s	variables.	Since	the	enzyme	expression	levels	of	a	

cellular	system	could	either	be	up-	or	down-regulated,	but	not	both	at	the	same	time,	

we	made	use	of	integer	variables	to	model	these	properties	in	our	system.	The	integer	

variables	along	with	their	accompanying	constraints,	in	combination	with	the	above	

linear	equations,	give	rise	to	a	MILP	mathematical	formulation	for	studying	system	

control.	For	the	full	mathematical	derivations	of	the	formulation,	one	may	refer	to	the	

original	 publications	 (Hatzimanikatis,	 Floudas	 and	 Bailey	 1996a,	 Hatzimanikatis,	

Floudas	and	Bailey	1996b).		
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Figure	4.1.	Schematic	representation	of	the	RBA	formulation.	Diagram	providing	information	
about	 the	 various	 steps	 necessary	 for	 constructing	 an	 RBA	 model	 from	 kinetic	 models	 for	
studying	system	response	to	perturbations.	

	

	

4.3.2			Navigating	the	degrees	of	freedom	

One	of	the	biggest	advantages	of	the	MILP	problem	formulation,	is	that	it	allows	us	to	

set	 bounds	 for	 all	 the	 aforementioned	 logarithmic	 deviations	 (fluxes,	 metabolite	

concentrations	and	parameters),	as	well	as	introduce	additional	relevant	constraints	

to	the	system.	The	variable	bounds	can	be	inferred	from	physiological	assumptions	or	

experimental	 measurements,	 while	 the	 associated	 constraints	 can	 impose	 design	
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limitations,	such	as	a	maximum	number	of	total	genetic	manipulations.	Still,	there	is	

a	large	amount	of	uncertainty	associated	with	the	many	degrees	of	freedom	of	this	

formulation	 in	 terms	 of	 appropriate	 bound,	 constraint,	 and	 objective	 selection.	

Combined	with	the	selection	of	a	representative	kinetic	parameter	set,	 the	feasible	

solution	 space	 can	 be	 vast	 and	 induce	 complexity	 in	 the	 computation	 and	

interpretation	of	results.	In	the	following	subsections	we	discuss	each	of	these	aspects	

of	the	formulation	and	how	we	endeavored	to	tackle	them.	

	

4.3.2.1			Selecting	a	set	of	kinetic	parameters	

One	of	the	core	points	of	the	RBA	formulation	is	the	appropriate	selection	of	a	kinetic	

parameter	set	from	which	the	CCs	can	be	calculated.	In	the	original	model	publication	

(Hameri,	Fengos	and	Hatzimanikatis	2019),	50’000	sets	of	kinetic	parameters	were	

generated	 for	 the	 given	 kinetic	 model	 using	 the	 ORACLE	 framework.	 As	 a	

representative	set	for	our	analysis,	we	decided	to	use	the	one	that	corresponded	to	

the	 vector	 of	 FCCs	 that	was	 closest	 to	 the	mean	 of	 the	 FCC	distribution	 across	 all	

kinetic	 parameter	 sets,	 with	 respect	 to	 a	 flux	 of	 interest.	We	 chose	 the	 uptake	 of	

glucose	as	 a	 case	 study,	 as	 represented	by	 the	 reaction	GLCptspp	 in	 the	model.	 In	

order	 to	 demonstrate	 the	 result	 variability	 that	 this	 selection	 of	 parameters	 can	

induce,	we	additionally	selected	a	number	of	“extreme”	parameter	sets	through	PCA.	

We	used	9	components	to	describe	the	kinetic	parameter	space	with	respect	to	the	

flux	of	interest,	which	lead	to	a	coverage	of	96.63%	of	the	space	variance.	We	selected	

the	minimum	and	maximum	corresponding	parameter	sets	for	each	component	(2	x	

9),	leading	to	a	total	of	19	sets	that	were	included	in	our	case	study.	Henceforth,	the	

utilized	sets	of	parameters	will	be	referred	to	as	the	reference	set,	and	extreme	sets	

#1-18,	each	pair	of	which	corresponds	to	each	principal	component	in	the	order	of	

sequential	 maximal	 coverage	 of	 the	 space.	 Accordingly,	 the	 models	 constructed	

through	the	RBA	formulation	using	each	of	the	kinetic	parameter	sets	will	be	referred	

to	as	the	reference	model,	and	extreme	models	#1-18.	
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4.3.2.2			Selecting	the	objective	function(s)	

In	 constrained-based	 problem	 formulations,	 optimization	 of	 an	 appropriately	

selected	objective	function	can	lead	to	a	finite	number	of	alternative	solutions,	or	even	

a	 unique	 solution	 in	 some	 cases.	 The	 objective	 function	 for	 this	 problem	 can	 be	

intuitively	 set	 as	 the	maximization	 (or	minimization)	 of	 the	 flux/concentration	 of	

interest,	 subject	 to	 the	 set	 variable	 bounds,	 depending	 on	 the	 desired	 goal	 of	 the	

strategy	design.		Another	rational	objective	function	can	be	formulated	by	taking	into	

consideration	the	notion	that	the	cell	will	always	strive	to	complete	each	task	with	

minimal	energy	consumption,	thus	with	minimal	enzymatic	resource	usage.	In	that	

case,	 the	 objective	 can	 be	 set	 as	 the	 minimization	 of	 the	 number	 of	 parameter	

alterations	in	order	to	achieve	a	given	lower	bound	on	the	logarithmic	change	of	the	

variable	 of	 interest.	 This	 function	 can	 be	 even	 further	 modified	 to	 minimize	 the	

magnitude	of	parameter	logarithmic	changes	instead	or	on	top	of	their	number.	

	

4.3.2.3			Defining	the	bounds	of	variables	

Metabolic	 engineering	 modifications	 of	 pathways	 inescapably	 result	 in	 altered	

reaction	 rates	 as	well	 as	metabolite	 concentration	 levels.	 RBA,	 being	 a	 constraint-

based	methodology,	allows	for	the	setting	of	appropriate	bounds	on	these	quantities.	

Reaction	 fluxes	 through	 the	 network	 cannot	 be	 allowed	 to	 increase	 or	 decrease	

infinitely;	 a	 substantial	 increase	 could	 lead	 to	 undesirable	 effects	 on	 the	 network,	

while	 a	 value	 of	 zero	 is	 considered	 not	 biologically	 realistic.	 Both	 fluxes	 and	

concentrations	need	to	thus	be	constrained	within	physiological	bounds,	conditional	

to	each	case	study.	It	should	also	be	noted	that	the	reactions	are	not	allowed	to	switch	

their	net	directionality	within	this	formulation,	since	the	kinetic	parameters	and	in	

turn	the	CCs	have	been	computed	based	on	the	specific	flux	directionality	profile	of	

the	reference	steady	state.	
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Figure	 4.2.	 Effect	 of	 the	 metabolite	 concentration	 bounds	 on	 the	 achievable	 fold	 change	 in	
glucose	uptake	for	various	numbers	of	genetic	manipulations.	The	flux	bounds	were	maintained	
flexible	at	100-fold	in	order	to	study	the	impact	of	the	concentration	bounds	on	flux	predictions.	
The	maximal	allowed	enzymatic	perturbation	was	2-fold	in	magnitude.	The	whiskers	and	the	
diamonds	indicate	the	interquartile	ranges	and	the	means	of	19	models	considered,	respectively.		

	

	

Regarding	metabolite	 concentrations	 in	 particular,	 they	 should	 first	 and	 foremost	

obey	thermodynamics,	as	calculated	during	the	thermodynamic	feasibility	curation	of	

the	 model.	 Therefore,	 we	 set	 the	 logarithmic	 deviation	 bounds	 according	 to	 the	

minimal	 and	 maximal	 allowable	 concentration	 values	 that	 were	 calculated	 using	

thermodynamic	variability	analysis	(TVA),	in	order	to	allow	reasonable	but	consistent	

flexibility	 in	 the	 metabolite	 concentration	 levels.	 Moreover,	 these	 values	 need	 to	

neither	be	very	high	nor	very	low,	in	order	to	remain	within	physiological	bounds	(i.e.	

not	exceed	toxicity	levels)	and	not	trigger	responses	that	are	unable	to	be	captured	

by	 the	 model	 (Hatzimanikatis,	 Floudas	 and	 Bailey	 1996a).	 For	 that	 reason,	 we	
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additionally	 constrained	 the	 concentration	 deviations	 to	 not	 be	more	 than	 2-fold,	

subject	to	the	thermodynamically	permissible	values.	We	assessed	the	impact	of	the	

tightness	 of	 concentration	 bounds	 on	 the	 formulation	 in	 Figure	 4.2,	 and	note	 that	

thermodynamics	significantly	constrained	the	predicted	achievable	fold	change	of	the	

objective	of	interest.	Looser	bounds	such	a	two,	five	and	ten-fold	deviation	around	the	

reference	metabolite	concentration	state	 led	 to	significantly	 larger	and	most	 likely	

biologically	unrealistic	predictions.	Hence,	it	is	crucial	to	constrain	these	bounds	to	

physiologically	realistic	limits	through	assumptions	or	metabolomics.	

	

4.3.2.4			Defining	the	bounds	of	parameters	

In	 a	 similar	 fashion	 to	 concentration	 bounds,	 severe	 changes	 in	 the	 manipulated	

parameter	 variables	 could	 comparably	 affect	 the	 model’s	 predictions.	 Large	

overexpression	 or	 underexpression	 of	 enzymes	 can	 significantly	 influence	 the	

organism’s	 growth,	 or	 even	 lead	 to	 an	 excess	 of	 toxic	 external	 substrates.	 After	

applying	 the	 physiologically	 relevant	 concentration	 bounds	 to	 the	 RBA	model,	we	

compared	how	 the	 results	were	 affected	 for	 allowable	 enzymatic	 perturbations	 of	

various	 magnitudes.	 As	 the	 amount	 of	 allowable	 change	 in	 enzymatic	 expression	

levels	increased,	we	noticed	that	the	predicted	change	in	the	glucose	uptake	reaction	

rate	 also	 increased	 significantly	 (Figure	 4.3).	 Moreover,	 we	 observed	 again	 the	

positive	effect	that	a	larger	number	of	gene	modifications	had	on	the	flux	of	interest.	

It	 is	 worth	 noting	 that,	 by	 increasing	 the	 number	 of	 gene	 modifications	 or	 the	

allowable	magnitude	of	the	enzymatic	perturbation,	the	predicted	fold	change	of	the	

target	reaction	flux	varied	considerably	more	across	the	extreme	kinetic	parameter	

sets	(Figure	4.3	whiskers).	Thus,	in	the	interest	of	accurate	calculations	it	is	essential	

that	 the	enzyme	perturbation	boundaries	are	 fixed	 to	a	physiologically	 reasonable	

range.	
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Figure	 4.3.	 Effect	 of	 the	 enzymatic	 perturbation	 magnitude	 bounds	 on	 the	 achievable	 fold	
change	in	glucose	uptake	for	various	numbers	of	genetic	manipulations.	The	flux	bounds	were	
maintained	 flexible	 at	 100-fold	 in	 order	 to	 study	 the	 impact	 of	 the	 enzymatic	 perturbation	
magnitude	 bounds	 on	 flux	 predictions.	 The	 concentration	 bounds	 were	 fixed	 to	 the	
thermodynamically	 feasible	 calculated	 values.	 The	 whiskers	 and	 the	 diamonds	 indicate	 the	
interquartile	ranges	and	the	means	of	19	models	considered,	respectively.	

	

	

4.3.2.5			Fixing	the	number	of	parameter	manipulations	

The	 kinetic	 model	 encompasses	 271	 parameters	 that	 are	 possible	 modification	

targets.	In	reality,	some	cases	may	require	up	to	40	or	so	genes	to	be	engineered	in	

order	 to	 achieve	 a	 target	 state.	 Allowing	 a	 larger	 number	 of	manipulations	 in	 the	

model	gives	more	flexibility	to	the	network,	so	better	objective	values	can	be	attained.	

Figures	4.2	and	4.3	both	demonstrated	that	increasing	the	number	of	manipulations	

has	a	larger	impact	on	the	relevant	variable	of	study.	For	our	case	study,	increasing	

the	number	of	manipulations	 increased	the	flux	through	the	uptake	of	glucose	in	a	

1 g
en

es

4 g
en

es

7 g
en

es

10
 gen

es

13
 gen

es

16
 gen

es

19
 gen

es

22
 gen

es

25
 gen

es
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2
G

lu
co

se
 u

pt
ak

e 
fo

ld
 c

ha
ng

e
Effect of enzyme manipulation bounds

10 Fold
5 Fold
2 Fold



 Chapter 4 – Response Balance Analysis: investigating metabolic control in a constraint-based 
formulation for the design of strain engineering strategies 

 
 

 85 

logarithmic	 trend.	However,	 the	number	of	alternative	solution	sets	of	parameters	

given	a	fixed	number	of	total	manipulations	can	be	subject	to	massive	combinatorics.	

To	address	this	complexity	and	to	focus	our	analysis	in	the	most	prominent	parameter	

candidates,	we	 focused	 our	 analysis	 in	 the	 following	 sections	 to	 no	more	 than	 10	

simultaneous	manipulations	at	a	time.	

	

4.3.3			Manipulation-limiting	concentrations	

Having	demonstrated	that	the	bounds	of	concentration	deviations	can	significantly	

affect	the	maximal	fold	increase	of	the	glucose	uptake,	we	were	interested	to	answer	

the	following	question:	Which	metabolite	concentrations	are	the	ones	that	limit	this	

maximal	value?	In	other	words,	we	wanted	to	investigate	how	many,	and	which,	of	

the	concentrations	need	to	“violate”	their	respectively	 imposed	bounds	 in	order	to	

achieve	a	higher	objective	fold	increase.	

Figure	4.4	shows	 the	effect	of	allowing	a	 fixed	number	of	metabolite	deviations	 to	

exceed	their	bounds	has	on	the	maximal	fold	change	of	glucose	uptake.	This	analysis	

was	performed	for	various	numbers	of	parameter	manipulations.	We	observed	that	

in	 the	 cases	 of	 one	 and	 two	manipulations,	 if	 the	 concentration	 bounds	 remained	

enforced	 (zero	 violations),	 the	 flux	 through	glucose	uptake	 could	not	be	modified.	

However,	when	we	allowed	some	concentration	deviations	 to	exceed	their	bounds	

(two	and	one	respectively	for	the	cases	of	one	and	two	manipulations),	this	was	not	

the	case.	For	a	larger	number	of	parameter	manipulations,	some	fold	increase	could	

be	 achieved	 even	 without	 violating	 the	 thermodynamic	 and	 physiological	 bounds	

imposed.	In	all	cases	though,	the	potential	violations	pushed	the	theoretical	maximum	

fold	increase	of	the	glucose	uptake	to	higher	values.	
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Figure	4.4.	Maximal	attainable	fold	increase	for	glucose	uptake	with	respect	to	the	number	of	
metabolite	concentration	violations,	 for	a	various	numbers	of	parameter	manipulations.	The	
flux	bounds	were	maintained	flexible	at	100-fold,	the	non-violated	concentration	bounds	were	
fixed	to	the	thermodynamically	permissible	plus	physiologically	feasible	bounds	(TFA+2-fold),	
and	the	parameter	manipulation	magnitude	bounds	were	set	to	5-fold.	For	all	cases	only	the	
reference	model	was	used.	

	

	

Subsequently,	we	 took	a	 closer	 look	at	 these	 results,	 focusing	on	 the	 case	of	 three	

maximum	violations,	for	one	to	nine	parameter	manipulations	(Table	4.1).	We	noticed	

that	 for	 each	 fixed	 number	 of	 manipulations,	 the	 sets	 of	 three	 metabolite	

concentrations	are	unique,	and	involve	9	total	species	concentrations	that	need	to	be	

more	 deviated	 than	 allowed	 by	 the	 thermodynamically	 implied	 bounds.	

Irrespectively	of	the	number	of	parameter	manipulations,	protons	(both	in	the	cytosol	

and	 peroxisome	 cell	 compartments),	 AMP,	 and	 phenylalanine	 need	 to	 be	 more	

positively	deviated,	while	glucose,	CTP,	dTTP,	glutamine,	and	acetyl	phosphate	need	
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to	be	more	negatively	deviated	in	all	cases.	This	analysis	revealed	that	the	pH	can	be	

a	limiting	factor	to	metabolic	design,	since	the	concentration	of	protons	depends	on	

the	pH	value	of	each	compartment.	We	can	additionally	use	this	analysis	to	focus	on	

each	of	 the	other	 identified	molecules	and	draw	hypothesis	about	 their	role	 in	 the	

system	 limitations,	 and/or	 potentially	 investigate	 these	 interplays	 and	 ways	 to	

overcome	them	in	vitro.	

	

	

	
Table	4.1.	Violating	metabolite	species	for	the	case	of	three	metabolite	concentration	violations,	
for	a	range	of	parameter	manipulations.	Each	set	of	three	species	was	unique	for	each	number	
of	parameter	manipulations.	

	 	 #	of	parameter	manipulations	

	 	 1	 2	 3	 4	 5	 6	 7	 8	 9	

M
et
ab
ol
it
e	
co
n
ce
n
tr
at
io
n
s	

H+	(cytosol)	 ✗	 ✗	 ✗	 ✗	 ✗	 ✗	 ✗	 ✗	 -	

H+	(peroxisome)	 ✗	 ✗	 ✗	 -	 -	 ✗	 -	 -	 -	

Glucose	(cytosol)	 -	 -	 ✗	 ✗	 ✗	 -	 -	 -	 -	

CTP	(cytosol)	 -	 -	 -	 ✗	 ✗	 ✗	 ✗	 ✗	 -	

AMP	(cytosol)	 ✗	 -	 -	 -	 -	 -	 -	 -	 ✗	

dTTP	(cytosol)	 -	 ✗	 -	 -	 -	 -	 -	 -	 -	

Phenylalanine	
(cytosol)	 -	 -	 -	 -	 -	 -	 ✗	 ✗	 -	

Glutamine	(cytosol)	 -	 -	 -	 -	 -	 -	 -	 -	 ✗	
Acetyl	phosphate	
(cytosol)	 -	 -	 -	 -	 -	 -	 -	 -	 ✗	
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4.3.4			Selecting	top	candidate	strategies	

As	it	has	been	similarly	shown	in	previous	MCA	studies	on	this	model	(Hameri,	Fengos	

and	Hatzimanikatis	2019),	we	have	ranked	the	FCCs	based	on	their	control	over	the	

uptake	of	glucose.	For	this	ranking	we	used	the	mean	value	of	the	FCC	distribution	

over	all	the	generated	kinetic	parameter	sets.	The	top	10	enzyme	activities	controlling	

glucose	uptake	in	our	network	and	their	respective	type	of	control	can	be	found	in	

Table	4.2.		This	manner	of	ranking	is	the	most	commonly	used	method	to	get	a	rough	

sense	of	which	parameters	 in	 the	network	affect	most	 the	variable	of	 interest.	We	

were	 thus	 interested	 to	 investigate	 if	 the	 same	parameters	would	 be	 prominently	

selected	as	modification	targets	in	the	RBA	framework.	

	

	
Table	4.2.	Top	ranked	parameters	based	on	their	control	over	glucose	uptake	 flux	GLCptspp.	
Ranking	was	computed	based	on	the	mean	values	of	50’000	sets	of	Control	Coefficients.	

Parameter	Name	 Control	on	GLCptspp	

O2tpp	 positive	

O2tex	 positive	

CO2tpp	 positive	

GLCtex	 positive	

PPC	 negative	

PGI	 positive	

GLCptspp	 positive	

RPI	 negative	

PFK	 positive	

G6PDH2r	 positive	

	

	



 Chapter 4 – Response Balance Analysis: investigating metabolic control in a constraint-based 
formulation for the design of strain engineering strategies 

 
 

 89 

A	big	advantage	of	the	RBA	formulation	over	classical	MCA,	is	the	ability	to	generate	

multiple	alternative	strategies	for	a	given	objective.	As	an	example	case,	we	generated	

all	the	possible	alternative	sets	of	parameter	manipulations,	given	that	the	number	of	

manipulations	was	set	to	five	and	the	concentration	deviation	bounds	were	set	to	the	

thermodynamically	 and	 physiologically	 permissible	 ranges.	 We	 performed	 this	

analysis	across	all	of	the	selected	19	sets	of	kinetic	parameters.	Firstly,	we	computed	

the	maximal	logarithmic	increase	of	the	glucose	uptake	for	each	model,	subject	to	the	

aforementioned	 constraints.	 Secondly,	 we	 imposed	 a	 lower	 bound	 to	 the	 glucose	

uptake	equal	to	95%	of	this	maximal	value.	Using	the	reference	kinetic	parameter	set,	

this	maximal	fold	change	was	5.33%.	This	number	varied	from	4.70%	for	the	worst-

case	 model	 (extreme	 #6)	 to	 7.07%	 for	 the	 best-case	 model	 (extreme	 #14).	 The	

amount	of	alternative	sets	of	five	enzymes	was	found	to	vary	from	one	unique	solution	

set	 (extremes	#4,	14,	17),	 to	a	maximum	of	16	 (extreme	#12).	For	 the	case	of	 the	

reference	model	we	identified	four	alternative	solution	sets.	The	alternative	solutions	

for	each	extreme	model	can	be	found	in	supplementary	Table	S4.1.		

We	could	pinpoint	two	distinct	parameters	that	appeared	in	all	of	the	generated	sets	

across	all	models:	hexokinase	(HEX1)	and	periplasmic	D-glucose	transport	via	proton	

symport	(GLCt2pp).	Both	enzymes	needed	to	be	down-regulated	to	about	50%,	which	

also	happens	to	the	bound	we	imposed	for	this	calculation.	The	other	parameters	that	

seemed	to	be	crucial	for	the	established	objective	were	pyruvate	kinase	(PYK),	which	

appeared	 in	 all	 solution	 sets	 except	 two	 (both	 of	which	 corresponded	 to	 extreme	

#14),	 periplasmic	 D-glucose	 transport	 via	 PEP:Pyr	 phosphotransferase	 system	

(GLCptspp),	 which	 is	 the	 enzyme	 catalyzing	 the	 objective	 reaction,	 and	 glucose	

transport	 via	 diffusion	 from	 the	 extracellular	 domain	 to	 the	 periplasm	 (GLCtex).	

GLCptspp	and	GLCtex	were	interchangeable	in	the	solution	sets;	they	never	appeared	

in	the	same	computed	set	but	one	of	them	was	part	of	every	computed	set	with	the	

exception	 of	 three	 (all	 of	 which	 corresponded	 to	 extreme	 #14).	 The	 computed	

alternative	sets	with	the	respective	parameter	fold	changes	for	the	reference	model	

can	be	found	in	Table	4.3.		

The	question	that	arises	in	the	face	of	multiple	alternative	solutions	is	how	to	properly	

rank	them	and	how	to	select	optimal	strategies	across	this	vast	field.	To	this	end,	we	

propose	 a	 ranking	based	on	 the	biologically	 relevant	 assumption	 that	 the	 cell	will	
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strive	to	utilize	the	least	amount	of	resources	to	perform	metabolic	tasks.	Thus,	we	

can	classify	our	alternatives	based	on	the	sum	of	changes	in	expression	levels	they	

would	introduce,	in	ascending	order.	We	have	defined	this	sum	of	changes	as	the	sum	

of	 the	 absolute	 values	 of	 the	 logarithmic	 deviations	 for	 each	 parameter	 of	 each	

solution	set.	This	manner	of	ranking	can	be	seen	in	practice	in	Table	4.3.	

	

	

	
Table	4.3.	Computed	alternative	strategies	for	the	increase	of	glucose	uptake.	The	number	of	
manipulations	 is	 set	 to	 five,	 the	 manipulation	 magnitude	 bounds	 are	 set	 to	 2-fold,	 the	 flux	
deviation	bounds	are	set	to	100-fold	and	the	concentration	deviation	bounds	are	set	to	TFA+2-
fold.	These	calculations	were	made	using	the	reference	kinetic	parameter	set.	

	 	 Parameter	deviation			JK JK,LM 	 	

	

	 Alternative	1	 Alternative	2	 Alternative	3	 Alternative	4	 	

P
ar
am

et
er
s 	

HEX1	 0.50	 0.50	 0.50	 0.50	

PYK	 0.70	 0.71	 0.71	 0.71	

GLCt2pp	 0.50	 0.50	 0.50	 0.50	

GLCptspp	 1.06	 1.06	 1.06	 -	

G6PP	 1.64	 -	 -	 2	

GLCtex	 -	 -	 -	 1.03	

ATPM	 -	 1.01	 -	 -	

PPK2r	 -	 -	 1.16	 -	

	 	 3	 1	 2	 4	 Ranking	
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Most	of	the	parameters	that	appeared	across	all	of	the	alternative	sets	are	enzymes	

that	catalyze	reactions	directly	linked	to	glycose	uptake	or	glycolysis.	It	is	interesting	

to	note	that	the	top	ranked	parameters	from	classical	MCA	(Table	4.2)	do	not	appear	

in	 any	 of	 the	 alternative	 parameter	 sets.	 Some	 of	 these	 highly	 ranked	 parameters	

exhibit	 very	 large	 control	 over	 multiple	 fluxes	 and	 concentrations	 across	 the	

metabolic	network.	However,	these	responses	are	hindered	by	the	relevant	bounds	

we	impose	on	the	system.	We	can	thus	conclude	that	the	RBA	formulation	will	favor	

parameters	 that	have	 less	control	over	 the	network,	ensuring	 that	cellular	balance	

will	not	be	excessively	perturbed.	Furthermore,	the	ability	to	account	for	these	non-

physiological	–	or	non-permissible	thermodynamically	–	responses	also	presents	as	

one	of	the	main	reasons	we	propose	this	formulation	as	superior	to	the	classical	MCA.	

	

	

4.4			Conclusions	

In	conclusion,	the	RBA	framework	enables	the	consistent	and	sophisticated	design	of	

metabolic	 engineering	 strategies	 using	 MCA-based	 control	 coefficients.	 RBA	 is	

computationally	 faster	 and	 simpler	 than	 other	 approaches	 since	 the	 derivation	 of	

control	coefficients	does	not	require	the	numerical	integration	of	non-linear	kinetic	

models.	To	our	knowledge,	this	type	of	approach	has	never	been	applied	to	large	or	

genome	scale	kinetic	models	of	metabolism.	Using	a	previously	published	large-scale	

kinetic	model	of	E.	coli,	we	demonstrated	that	the	RBA	formulation	can	be	applied	to	

large-scale	 metabolic	 networks.	 We	 used	 the	 PCA	 method	 to	 select	 a	 number	 of	

representative	 sets	 of	 kinetic	 parameters	 among	 their	 population,	 in	 order	 to	

effectively	represent	the	uncertainty	and	flexibility	of	the	kinetic	model	in	respect	to	

parametrization.	One	of	the	main	advantages	of	RBA	is	that,	being	a	constraint-based	

modeling	method,	it	can	accommodate	the	integration	of	biologically	relevant	bounds	

and	constraints,	which	ensure	that	 the	proposed	strategies	are	consistent	with	the	

entire	system	capabilities	and	limitations	thereof.	Since	the	RBA	model	predictions	

can	be	sensitive	to	the	user-defined	bounds	on	the	allowable	reaction	flux,	metabolite	

concentration	 and	 enzymatic	 expression	 deviations,	 the	 importance	 of	 including	

relevant	physiological	constraints	was	discussed	extensively.	Even	though	our	study	
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focused	on	a	simpler	test	case,	viable	metabolic	engineering	strategies	were	shown	to	

be	readily	derived	using	this	formulation.	Alternative	solutions	can	also	be	generated	

and	evaluated	on	their	efficiency	and	potential	 in	vitro	 implementation.	We	believe	

that	 this	 formulation	 will	 provide	 a	 refined	 alternative	 to	 computational	 genetic	

design,	due	to	its	simplicity	and	modularity,	and	that	it	will	continue	to	be	enhanced	

through	 the	 introduction	 of	 ever-growing	 omics	 data,	 and	 additional	 specialized	

constraints	and	objectives.	



 

 
  93 

	

	

	

Chapter	5	–	inverse	Response	
Balance	Analysis:	a	reverse	
engineering	formulation	for	the	
mapping	of	enzymes	responsible	for	
diverse	phenotypes	

 
 
 

5.1			Introduction	

5.1.1			Evolutionary	biology	and	regulatory	responses	

All	living	beings	are	a	result	of	a	long	and	complicated	evolutionary	process,	spanning	

through	thousands	or	millions	of	years.	Even	within	a	short	time	frame,	an	organism	

will	adapt	to	environmental	triggers	in	order	to	achieve	self-preservation	and	internal	

regulation	of	its	functions.	The	elucidation	of	the	evolutionary	steps	that	led	to	cells	

as	we	 know	 them	 is	 a	 vast	 field	 of	 study	 that	 has	 occupied	 scientists	 for	 decades	

(Archibald	 2015,	 Jensen	 1976).	 Metabolic	 pathway	 evolution	 can	 be	 induced	 by	

mutations	in	single-copy	gene	sequences,	gene	duplication	and	ensuing	divergence,	

as	well	as	biochemical	noise	(Weng,	Philippe	and	Noel	2012).	These	events,	with	the	

addition	 of	 natural	 selection,	 give	 rise	 to	 enzymatic	 diversity	 through	 specialized	

enzymes	and	consequently	to	increased	metabolic	efficiency.	Promiscuous	enzymes	

have	been	also	implicated	in	the	evolutionary	process.	It	has	been	postulated	that	the	

notion	 of	 a	 “flexible	 genome”	 gives	 the	 cell	 a	 physiological	 advantage	 (Greenspan	

2001).	Additionally,	multifunctional	 and	promiscuous	enzymes	might	 require	very	

few	 mutations	 to	 improve	 their	 potentially	 superfluous	 functions,	 should	 they	

become	 physiologically	 relevant,	 and	 without	 eliminating	 their	 primary,	 native	
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activity	 (Khersonsky	 and	 Tawfik	 2010,	 O'Brien	 and	 Herschlag	 1999).	 Directed	

evolution	 addresses	 these	 points	 and	 aims	 to	 efficiently	 manipulate	 and	 tailor	

biocatalysts	 (Lutz	 2010).	 Along	with	 genome	 editing	 techniques,	 the	 operation	 of	

organisms	 in	 a	 modified	 physiological	 state	 has	 been	 enabled	 through	 metabolic	

engineering.	By	studying	the	internal	mechanisms	that	allow	the	cell	to	adjust	to	each	

new	 state,	 one	 can	 hypothesize	 about	 the	 regulatory	 mechanisms	 that	 lead	 to	

homeostasis	and	evolutionary	traits.	

	

5.1.2			Mutations	in	health	and	disease	

On	the	other	hand,	even	if	some	metabolic	mutations	can	be	beneficial,	quite	often	an	

organism	will	develop	undesirable	mutations	which	 lead	 to	disease.	A	disease	will	

occur	if	the	function	of	an	essential	enzyme	is	compromised,	or	if	a	control	mechanism	

for	 a	 metabolic	 pathway	 is	 disturbed.	 Such	 cases	 can	 be	 mutations	 in	 metabolic	

enzymes	 which	 alter	 or	 inhibit	 their	 catalytic	 action,	 or	 mutations	 involving	 the	

structure	 of	 regulatory	 proteins	 or	 transport	 mechanisms	 of	 metabolites.	

Nevertheless,	a	mutation	in	a	single	enzyme	does	not	necessitate	that	an	individual	

will	suffer	from	a	disease.	Several	different	enzymes	may	be	able	to	catalyze	the	same	

biotransformation,	or	alternative	pathways	may	be	available	to	retrieve	the	same	end	

product	through	a	variety	of	metabolic	intermediates.	For	the	study	of	human	health,	

it	is	crucial	to	identify	and	diagnose	the	pathogenic	mutations	early	and	accurately	in	

order	 to	 provide	 the	 necessary	 treatment.	 Some	 of	 the	 greatest	 threats	 of	 the	

universal	human	health	 in	our	days	are	 caused	by	 the	disruption	of	 the	metabolic	

homeostatic	 mechanisms,	 including	 obesity,	 insulin	 resistance,	 non-alcoholic	 fatty	

liver	disease,	type	2	diabetes	and	cardiovascular	complications	(Hotamisligil	2006).	

Although	these	disorders	have	been	associated	with	genetics	and	have	been	closely	

linked	 to	 oxidative	 stress,	 nutrition	 and	 chronic	 inflammation,	 details	 about	 their	

triggers,	 evolution,	 prevention	 and	 treatment	 still	 remain	unknown	 (Heindel	 et	 al.	

2017,	Rani	et	al.	2016).	
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5.1.3			Formulations	for	the	study	of	metabolic	control	

Mathematical	models	of	metabolism	can	be	of	great	utility	in	the	elucidation	of	the	

cellular	function	of	organisms.	Metabolic	Control	Analysis	(MCA)	is	the	mathematical	

quantification	of	how	changes	in	enzymatic	activities	affect	the	metabolic	network	in	

terms	of	flux	and	concentration	distributions.	For	the	mathematical	formulation	and	

further	 details	 on	 MCA	 and	 Control	 Coefficients	 (CCs),	 the	 reader	 is	 referred	 to	

Chapters	 3	 and	 4.	 Recently,	 a	 method	 based	 on	 MCA	 and	 inspired	 by	 reverse	

engineering	 strategies	 was	 proposed	 (Savoglidis	 et	 al.	 2016).	 This	method,	 called	

Inverse	Metabolic	Control	Analysis	(IMCA),	makes	use	of	the	calculated	CCs	and	aims	

to	 translate	 phenotypic	 changes	 in	 flux	 and/or	 concentration	 levels	 to	 changes	 in	

enzymatic	activities.	However,	similarly	to	the	classical	MCA,	IMCA	fails	to	take	into	

account	physiological	bounds	for	any	changes	in	the	network,	or	present	the	ability	

to	generate	alternative	hypotheses.	

Response	 Balance	 Analysis	 (RBA)	 is	 a	 constraint-based	 method	 that	 allows	 the	

development	of	metabolic	engineering	strategies,	as	presented	in	Chapter	4.	Using	the	

RBA	 formulation	 as	 a	 basis,	 it	 is	 possible	 to	 introduce	 additional	 objectives	 and	

constraints	which	allow	for	the	definition	of	the	reverse	engineering	problem.	Instead	

of	designing	a	genome	editing	strategy	in	order	to	reach	a	target	state	or	profile,	the	

aim	could	be	to	pinpoint	the	inferred	changes	in	the	genome	of	a	mutant,	whether	it	

be	 a	 beneficial	 evolutionary	 step	 or	 a	 diseased	 state,	 given	 each	 individual’s	

phenotype.	

	

5.1.4	Aim	and	scope	

We	hereby	present	inverse	Response	Balance	Analysis	(iRBA),	a	reformulation	of	the	

RBA	 workflow,	 for	 the	 mapping	 of	 enzymes	 that	 are	 responsible	 for	 different	

phenotypes.	 We	 employed	 two	 different	 metabolic	 models	 to	 demonstrate	 the	

different	capabilities	of	iRBA.	For	the	first	case	study	we	used	an	E.	coli	model	that	

was	consistently	reduced	from	the	iJO1366	genome-scale	model	(Orth	et	al.	2011b),	

as	presented	 in	Chapter	4.	We	selected	a	representative	physiological	state	 for	 the	

model	that	exhibited	a	suboptimal	growth	phenotype	and	generated	a	population	of	

kinetic	parameter	sets	along	with	their	corresponding	CCs.	We	then	applied	iRBA	to	
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investigate	 the	 evolutionary	 changes	 in	 the	 organism’s	 enzymatic	 activities	 that	

would	lead	the	cell	to	a	phenotype	of	increased	growth	rate.	For	the	second	case	study	

we	used	redLips,	a	S.	cerevisiae	model	that	focuses	on	the	lipid	metabolic	network,	as	

presented	in	Chapter	2.		We	used	experimental	concentration	measurements	of	wild-

type	 strains	 to	 constrain	 the	 model	 and	 we	 generated	 a	 population	 of	 kinetic	

parameter	 sets	 and	 their	 corresponding	 CCs.	 We	 then	 applied	 iRBA	 using	

experimental	 concentration	 measurements	 of	 mutant	 strains	 to	 validate	 our	

formulation	and	investigate	the	interplay	of	intracellular	enzymatic	changes	the	cell	

employs	in	order	to	salvage	its	phenotype.	

	

	

5.2			Materials	and	Methods	

5.2.1			Response	Balance	Analysis	

RBA	is	a	constraint-based	formulation,	in	which	the	mathematical	problem	is	formed	

through	 the	 calculation	 of	 CCs	 from	 a	 selected	 set	 of	 kinetic	 parameters,	 and	 the	

definition	of	appropriate	physiologically	relevant	bounds,	constraints	and	objectives.	

The	RBA	formulation	and	its	full	derivation	can	be	found	in	detail	in	Chapter	4.		

	

5.2.2			Models	used	in	this	study	

For	the	first	part	of	this	study,	we	used	a	metabolic	model	of	E.	coli	that	operates	in	

aerobic	 conditions	 (Hameri,	 Fengos	 and	 Hatzimanikatis	 2019).	 As	 described	 in	

Chapter	4,	this	model	was	systematically	reduced	from	the	iJO1366	GEM	(Orth	et	al.	

2011a)	 with	 focus	 on	 the	 originally	 defined	 subsystems	 of	 glycolysis,	 pentose	

phosphate	pathway	(PPP),	tricarboxylic	acid	(TCA)	cycle,	glyoxylate	cycle,	pyruvate	

metabolism	 and	 the	 electron	 transport	 chain	 (ETC),	 through	 the	 redGEM	 and	 the	

lumpGEM	algorithms	(Ataman	et	al.	2017b,	Ataman	and	Hatzimanikatis	2017b).	The	

disparity	 is	 that	 in	 this	 case	 the	 representative	 steady	 states	 for	 the	 fluxes	 and	

metabolite	 concentrations	 were	 chosen	 differently;	 we	 first	 defined	 a	 suboptimal	

growth	of	the	cell	as	a	condition	to	the	model,	and	then	we	generated	50’000	samples	

of	flux	and	concentration	profiles	describing	this	state.	We	subsequently	selected	as	
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representative	 states	 the	 profiles	 that	 were	 closest	 to	 the	 mean	 of	 the	 sample	

distributions.	

For	the	second	part	of	the	study,	we	used	redLips,	a	metabolic	model	of	S.	cerevisiae	

that	focuses	on	the	lipid	metabolic	pathways,	as	presented	in	Chapter	2.	The	kinetic	

model	version	of	redLips	consists	of	1275	reactions	and	890	metabolites,	and	was	

constrained	 using	 wild-type	 experimental	 data	 provided	 by	 the	 Riezman	 lab	

(University	of	Geneva).	The	construction	and	curation	of	 this	model	as	well	as	 the	

generation	of	kinetic	parameter	sets	and	their	corresponding	CCs	was	described	in	

Chapter	3.		

Both	of	these	kinetic	models	with	their	associated	populations	of	kinetic	parameters	

were	 built	 using	 the	 ORACLE	 workflow	 (Miskovic	 and	 Hatzimanikatis	 2010).	

Concerning	the	E.	coli	model,	50’000	sets	of	kinetic	parameters	were	generated	as	in	

the	original	publication	to	describe	the	newly	defined	phenotype,	while	for	redLips	

we	generated	9’400	sets,	as	described	in	Chapter	3.	For	both	cases	the	corresponding	

FCCs	and	CCCs	were	additionally	calculated.	

	

5.2.3			Integrating	experimental	data	of	mutant	states	

To	 account	 for	 the	 distribution	 of	 species	 in	 the	multiple	 cell	 compartments	 that	

cannot	be	captured	in	experiments,	we	derived	and	used	sets	of	constraints	that	stem	

from	 the	 cell	 volume	percentage	of	 each	 considered	 compartment,	 as	discussed	 in	

Chapter	3.	However,	these	constraints	were	derived	for	species	concentrations,	while	

the	RBA	and	iRBA	variables	are	defined	as	logarithmic	deviations	of	concentrations.	

Therefore,	 in	 order	 to	 apply	 them	 to	 our	 model,	 we	 had	 to	 reformulate	 the	

mathematical	 expressions	 accordingly.	 The	 reference	 concentration	 vector	

corresponds	to	the	representative	concentration	profile	that	was	used	in	ORACLE	to	

build	the	kinetic	model,	and	satisfies	lipidomics	measurements	of	a	wild-type	state.	

The	target	concentration	vector	corresponds	to	lipidomics	measurements	of	mutant	

(ΔLCB3)	strains.	The	lipidomics	measurements	for	both	cases	were	provided	by	the	

Riezman	lab	(University	of	Geneva).	These	data	can	be	found	in	supplementary	Tables	

S3.1	and	S4.2,	respectively.	

The	transformed	sets	of	constraints	for	the	iRBA	problem	are	the	following:	
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For	 the	 logarithmic	 concentration	 deviation	 E= = ln(<=/<=,I) 	of	 a	 metabolite	 j	
measured	in	the	range	<= 	∈	N	<=	, <=	O	we	have:	

E= ≥?Q8E=8 	

where	 E=8 	is	 the	 logarithmic	 concentration	 deviation	 of	 the	 metabolite	 j	 in	
compartment	 i,	 and	Q8 	is	 the	volume	 fraction	of	compartment	 i	with	respect	 to	 the	
entire	cell.	

	

The	logarithmic	concentration	deviation	E= 	will	be	subject	to	the	bounds:	

E= ≤ E= ≤ 	E= 	

	

where	the	range	values	N	E=	,E=	O	can	be	calculated	from	the	mutant	strain	lipidomics	
with	respect	to	the	concentration	reference	state	as:	

56 S	E=	T = 56 U
	<=
<=,I	V = 56 S	<=	T − 56W<=,IX	

56W	E=		X = 56 U	<=	<=,I	V = 56W<=X − 56W<=,IX	

	

and	the	logarithmic	reference	concentration	can	be	computed	from	the	relation:	

56W<=,IX = 56 U∑Q8<=8∑Q8 V	

	

	

Additionally,	 each	 logarithmic	 concentration	 deviation	E=8 	will	 be	 subject	 to	 the	
bounds:	

E=8 ≤ E=8 ≤ E=8 	
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where	E=8 	and	E=8 	are	calculated	as:	

E=8 = 56 U
	<=8
<=8,I	V	

E=8 	= 56 U 	<=8<=8,I	V	

	

and	<=8 	and	<=8 	are	calculated	according	to	the	original	formulation	as:	

<=8 = ZQ< [	
<= + (Q8 − 1) ∗ ^_

Q8 	 , `_	a	

<=8 	= Zb6 c	<= + (Q8 − 1) ∗ `_Q8 	 , ^_	d	

	

where	LB	and	UB	are	the	physiological	lower	and	upper	bound	on	intracellular	

metabolite	concentrations,	with	values	10-7M	and	10-2M,	respectively.	

	
	
	
	

5.3			Results	and	Discussion	

5.3.1			Part	1	–	Reaching	optimal	growth	states	

5.3.1.1			Definition	of	the	problem:	evolution	for	optimal	growth	

Perhaps	 the	most	 basic	 aspect	 in	 cell	 life	 and	 evolution	 is	 growth.	 Each	 organism	

grows	and	performs	its	cellular	tasks	in	a	specific	rate,	one	that	has	been	the	product	

of	many	 evolutionary	 iterations.	We	were	 thus	 interested	 to	 study	 the	 enzymatic	

changes	that	could	lead	into	an	increased	cell	growth	rate.	To	this	end,	we	used	the	

above	 described	 E.	 coli	 model	 to	 define	 a	 suboptimal	 growth	 physiology,	 and	

generated	 50’000	 sets	 of	 kinetic	 parameters	 using	 the	 ORACLE	 framework.	

Subsequently,	we	selected	as	a	target	physiological	state	for	the	iRBA	formulation	the	
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reference	steady	state	that	was	used	 in	the	original	publication	of	 this	model.	This	

state	described	optimal	growth	and	was	also	used	as	a	reference	state	in	Chapter	4.	

5.3.1.2			Quadratic	objective	problem	formulation	

The	potential	of	the	cell	to	reach	a	certain	physiological	profile	has	been	a	prominent	

area	of	study	as	a	metabolic	engineering	objective.	 In	stoichiometric	modeling,	 the	

Minimization	of	Metabolic	Adjustment	(MOMA)	formulation	calculates	the	network	

flux	 distribution	 that	 is	 closest	 to	 the	 original	wild-type	 solution	 following	 a	 gene	

deletion	(Segre,	Vitkup	and	Church	2002).		Mathematically,	the	optimization	involves	

the	minimization	of	the	distance	between	the	solution	and	the	target	state	vectors.	In	

order	to	formulate	this	concept	for	the	iRBA	problem	definition,	we	first	calculated	

the	logarithmic	deviation	of	the	desired	target	state	>8,Ae= 	from	the	reference	steady	
state	around	which	the	sets	of	kinetic	parameters	and	associated	CCs	were	computed.	

Then,	 we	 defined	 a	 quadratic	 objective	 function	 which	 minimizes	 the	 distance	

between	 the	 solution	 and	 the	 target	 vectors.	 Hence,	 a	 Mixed	 Integer	 Quadratic	

Programming	(MIQP)	problem	formulation	was	constructed	around	the	original	MILP	

formulation	 of	 RBA	 (Hatzimanikatis,	 Floudas	 and	 Bailey	 1996a,	 Hatzimanikatis,	

Floudas	 and	 Bailey	 1996b).	 The	 quadratic	 objective	 function	 can	 be	 written	 as	

follows:	

	

Minimize:	

? U>8 − >8,Ae=>8,Ae= V
f
	

#ghi#jk

8
	

Subject	to:	

l. n = 0	

	

where,	K	is	the	RBA	matrix,	and	u	is	the	vector	of	logarithmic	deviations	composed	of	

F,	M	and	E	as	defined	in	Chapter	4	(Figure	4.1).		
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This	MIQP	problem	can	be	solved	with	the	use	of	the	IBM	CPLEX	solver	by	rewriting	

the	above	minimization	problem	as:	

uqQu + cqu + 1	
	

where	
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Weights	can	also	be	defined	in	the	Q	matrix	 for	each	of	 the	concerned	variables	to	

accommodate	specific	studies.	Although	here	we	are	presenting	these	expressions	in	

terms	of	the	logarithmic	deviations	of	fluxes,	they	can	be	accordingly	derived	for	all	

the	variables	of	the	formulation,	subject	to	the	availability	of	data	and	the	objective	of	

the	study.	

	

5.3.1.3			Choosing	a	kinetic	parameter	set	

As	for	RBA,	an	important	aspect	of	this	formulation	is	the	selection	of	a	set	of	kinetic	

parameters	and	corresponding	CCs.	For	this	study	we	followed	the	same	approach	

that	 was	 presented	 in	 Chapter	 4.	 We	 first	 selected	 as	 a	 representative	 kinetic	

parameter	 set	 the	 one	 that	 was	 closest	 to	 the	mean	 of	 the	 FCC	 distribution	 with	

respect	to	the	flux	of	interest,	which	in	this	case	is	the	growth	rate.	Secondly,	we	used	

Principal	Component	Analysis	(PCA)	to	analyze	and	describe	the	kinetic	parameter	

space,	 which	 led	 to	 the	 selection	 of	 18	 additional	 kinetic	 parameter	 sets,	

corresponding	to	the	minimum	and	maximum	of	each	of	the	9	components	used.	We	

thus	included	in	this	study	19	sets	of	kinetic	parameters	which	corresponds	to	19	RBA	

models	that	can	capture	the	variability	of	the	kinetic	parameter	space.	
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5.3.1.4			Reaching	optimal	growth	–	Number	of	enzymatic	adjustments	

After	 constructing	 the	 RBA	 matrix	 for	 the	 selected	 kinetic	 parameter	 sets	 and	

formulating	the	objective	function,	we	were	interested	to	examine	how	the	model’s	

performance	was	affected	by	the	allowable	number	of	enzymatic	manipulations,	or	in	

this	 case	 enzymatic	 adjustments.	 We	 used	 the	 Euclidean	 distance	 between	 the	

solution	and	target	vectors	as	a	metric	to	test	the	performance	of	our	system.	Knowing	

that	the	target	flux	profile	was	thermodynamically	feasible	in	our	original	network,	

thus	 theoretically	 reachable	 in	 an	 unconstrained	 system,	 we	 were	 also	 able	 to	

evaluate	the	effect	that	the	imposed	variable	bounds	would	have	on	the	solution.	In	

Figure	5.1	the	computed	Euclidean	distance	between	the	two	vectors	is	presented,	as	

calculated	for	all	of	the	19	considered	sets	of	kinetic	parameters	for	various	numbers	

of	enzymatic	adjustments.	We	observed	that	the	distance	between	the	two	vectors	is	

decreasing	 when	 a	 larger	 number	 of	 enzymatic	 adjustments	 is	 considered.	 This	

decrease	 is	 monotonic	 for	 the	 median	 of	 these	 distributions	 (red	 lines).	 We	 also	

noticed	 that	 for	 an	 even	 larger	 number	 of	 enzymatic	 changes	 (not	 depicted),	 the	

minimal	 Euclidean	 distance	 reaches	 a	 plateau,	 most	 probably	 because	 of	 other	

constraints	that	were	imposed	to	the	system.	The	bounds	for	the	flux,	concentration	

and	 enzymatic	 deviations	were	 all	 set	 to	 100-fold,	 a	 very	wide	 range,	 in	 order	 to	

evaluate	clearly	the	impact	of	the	objective	function	to	the	formulation.	These	results	

lead	us	to	the	conclusion	that	in	order	for	the	cell	to	restructure	its	network	enough	

to	 be	 able	 to	 reach	 the	 selected	 target	 physiology,	 a	 large	 number	 of	 genetic	

adjustments	 have	 to	 take	 place.	 Additionally,	 if	 we	 impose	 a	 narrower	 range	 for	

variable	 bounds	 in	 the	 model,	 which	 would	 accurately	 represent	 physiological	

constraints,	instead	of	the	wider	range	we	used	previously,	the	target	state	will	not	be	

reachable	within	“one	step”	of	metabolic	restructuring,	but	it	would	require	multiple	

iterations.	
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Figure	5.1.	Euclidean	distance	from	target	deviation	vector,	for	various	numbers	of	enzymatic	
manipulations	 across	 the	 19	 selected	 sets	 of	 kinetic	 parameters.	 For	 each	 number	 of	
manipulations,	the	red	lines	denote	the	median	solution	value,	the	edges	of	the	blue	boxes	the	
upper	 and	 lower	 quantiles,	 the	 black	 whiskers	 extend	 to	 the	 full	 range	 of	 solution	 values	
excluding	outliers	and	the	red	crosses	denote	the	outliers.	The	bounds	for	flux,	concentration	and	
enzymatic	activity	deviations	are	all	maintained	flexible	at	100-fold.	

	

 
	
	

5.3.1.5			Reaching	optimal	growth	–	Metabolic	and	genetic	restructuring	

Following	 the	 evaluation	 of	 the	 objective	 function,	 we	 imposed	 physiologically	

relevant	bounds	and	constraints	to	the	model.	As	discussed	in	Chapter	4,	we	set	the	

bounds	 for	 concentration	 deviations	 to	 the	 maximal	 allowed	 thermodynamically	

permissible	 ones	 as	 calculated	 from	 Thermodynamics-based	 Flux	 Analysis	 (TFA),	

subject	to	a	maximum	of	a	two-fold	change	for	each	species	(referred	to	as	TFA&2-

fold	bounds).	Flux	deviations	were	lightly	constrained	at	100-fold	and	the	enzymatic	
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activity	deviation	was	set	to	5-fold	with	a	set	number	of	25	maximal	adjustments.	As	

a	 reminder,	 the	 target	 profile	 of	 the	 quadratic	 optimization	 was	 a	 flux	 profile	 of	

increased	cell	growth,	which	corresponds	to	the	optimal	cell	growth	predicted	by	the	

original	model.	Using	 the	representative	set	of	kinetic	parameters	 to	construct	 the	

RBA	matrix,	the	resulting	optimal	solution	can	be	seen	graphically	in	Figure	5.2.	The	

achieved	 state	was	 overall	 close	 to	 the	 targeted	 optimal	 growth	 state	 in	 terms	 of	

Euclidean	 distance.	 The	 targeted	 growth	 rate	 was	 achieved	 with	 less	 than	 1%	

difference	from	the	targeted	deviation	(not	depicted).	The	mean	Euclidean	distance	

across	 all	 reactions	 from	 the	 objective	 was	 0.77,	 a	 number	 that	 shows	 that	 the	

majority	of	the	network’s	reactions	were	successfully	pushed	to	the	objective	state.	

The	targeted	main	carbon	flow	through	glycolysis,	PPP,	and	the	TCA	cycle	was	very	

well	reached,	while	the	oxidative	phosphorylation	and	alternate	carbon	metabolism	

pathways	were	not	as	well	reached.	In	particular,	the	flux	deviation	furthest	from	the	

associated	 objective	 was	 NADH9,	 one	 of	 the	 network’s	 NADH	 dehydrogenase	

reactions.	A	hypothesis	for	this	inability	is	that	NADH9	is	a	highly	coupled	reaction	

within	the	model,	performing	the	same	function	as	multiple	other	reactions	with	a	

specific	set	of	electron	carriers	(demethylmenaquinone-8	versus	menaquinone-8	or	

ubiquinone-8).	 This	 reaction	 has	 also	 been	 reported	 to	 be	 part	 of	 a	 splitting	 flux	

reaction	 pair	 in	 a	 previously	 published	E.	 coli	 GEM	 (Feist	 et	 al.	 2007).	 Thus,	 it	 is	

possible	that	the	network	cannot	fine-tune	all	of	these	codependent	reactions	to	the	

desired	value	simultaneously	and	in	order	to	achieve	the	minimum	distance	for	most	

of	them,	one	of	them	needs	to	be	further	away	from	the	target.	The	other	reaction	that	

was	 similarly	 far	 from	 the	 target	 state	 is	ALDD2y	 (aldehyde	dehydrogenase).	This	

function	 is	also	performed	by	ALDD2x	with	a	different	 cofactor	pair	 (NAD+/NADH	

versus	 NADP+/NADPH).	 Additionally,	 it	 is	 highly	 likely	 that	 the	 physiological	

constraints	we	impose	on	the	network	inhibit	a	perfect	achievement	of	the	objective.	

We	observed	that	limiting	the	number	of	enzymatic	activity	adjustments	leads	to	an	

increased	 Euclidean	 distance	 from	 the	 target	 state	 (Figure	 5.1).	 Moreover,	 the	

thermodynamic	 feasibility	 bounds	 on	 the	 concentration	 deviations	 and	

physiologically	relevant	bounds	on	enzymatic	activity	deviations	inflict	limitations	to	

the	metabolic	adjustment	capabilities	of	the	cell	as	extensively	discussed	in	Chapter	

4.		
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Figure	5.2.	Euclidean	distance	from	the	target	deviation	(optimal	growth)	for	each	reaction.	The	
bounds	for	flux,	concentration	and	enzymatic	activity	deviations	are	set	to	100-fold,	TFA&2-fold	
and	5-fold,	respectively.	

	

	

	

Concerning	 the	precise	enzymatic	adjustments	computed	 for	 the	attainment	of	 the	

target	state,	most	of	the	predicted	enzymes	catalyze	reactions	belonging	to	the	central	

carbon	metabolism,	such	as	glycolysis,	TCA	cycle,	and	Pentose	Phosphate	Pathway.	

Additionally,	some	inner	membrane	transporters	were	predicted,	and	the	overall	fold	
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changes	of	the	enzymatic	activities	ranged	from	0.15-fold	to	1.5-fold,	a	much	lower	

value	 that	 the	 5-fold	 bound	 that	 we	 imposed.	 This	 led	 us	 to	 believe	 	 that	 the	

concentration	 deviation	 bounds	 are	 the	 ones	 that	 limit	 the	 optimization,	which	 is	

consistent	 with	 the	 statements	 of	 the	 original	 formulation	 publications	

(Hatzimanikatis,	 Floudas	 and	 Bailey	 1996a,	 Hatzimanikatis,	 Floudas	 and	 Bailey	

1996b).	 	 It	 should	 also	 be	 noted	 that	 the	 majority	 of	 adjustments	 were	

downregulations,	 but	 no	 correlation	 with	 assigned	 reaction	 subsystems	 could	 be	

discerned.	

We	also	constructed	 the	RBA	matrix	using	each	of	 the	18	selected	extreme	sets	of	

kinetic	 parameters	 and	 performed	 the	 same	 analysis.	 Remarkably,	 the	 network	

reactions’	 Euclidean	 distances	 from	 the	 targeted	 state	 for	 all	 of	 these	 models	

compared	 to	 the	ones	 from	 the	 representative	model	were	 almost	 identical.	 Some	

minor	 variations	 were	 observed	 among	 some	 of	 the	 reactions	 belonging	 to	 the	

oxidative	phosphorylation	pathway	and	to	an	even	 lesser	extent	on	 the	rest	of	 the	

network.		

By	examining	 the	predicted	enzymatic	adjustments	across	 these	models,	we	saw	a	

similar	 trend	 as	 for	 the	 representative	 one,	 meaning	 that	 the	 majority	 of	 the	

enzymatic	 adjustments	 involved	 enzymes	 that	 catalyze	 reactions	 from	 the	 central	

carbon	metabolism,	as	well	as	a	large	number	of	enzymes	catalyzing	reactions	from	

oxidative	phosphorylation,	 and	 inner	 and	outer	membrane	 transporters.	 The	 total	

number	of	distinct	enzymes	appearing	across	all	the	19	models	studied	was	116	out	

of	the	271	that	are	included	in	the	network,	and	only	four	out	of	them	were	predicted	

to	both	increase	and	decrease	their	activities	between	models.	These	enzymes	along	

with	the	associated	statistics	are	shown	in	Table	5.1.	

We	can	thus	discern	that	the	selection	of	a	kinetic	parameter	set	does	not	contribute	

to	the	predicted	genetic	and	metabolic	restructuring	of	the	network	in	a	large	degree.	

It	 is	however	possible	that	more	differences	could	become	evident	between	the	19	

examined	models’	 predictions	 if	we	 constrained	 further	 the	 number	 of	 enzymatic	

adjustments.	 We	 should	 also	 note	 that	 alternative	 solutions	 that	 yield	 the	 same	

optimal	minimum	distance	from	the	objective	are	possible	for	all	of	the	RBA	models,	

though	not	explored	in	this	study.	
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Table	 5.1.	 Computed	 enzymatic	 adjustment	 statistics	 for	 the	 19	 selected	models:	 Number	 of	
models	for	which	each	enzyme	is	predicted	to	have	altered	activity,	and	the	type	of	enzymatic	
activity	 regulation.	 The	 names	 of	 the	 enzymes	 are	 reported	 in	 terms	 of	 the	 reactions	 they	
catalyze.		Boldface	denotes	enzymes	that	are	part	of	the	predictions	of	the	representative	model.

Enzyme # of 
models 

Regulation 
Type 

CRNt8pp 18 up 
TALA 16 down 
PGI 15 down 

GLXCL 14 up 
PPC 13 up 

NADH18pp 11 / 1 up / down 
GLYCLTt2rpp 11 up 

LDH_D 11 down 
EDD 10 down 

MG2t3_2pp 10 down 
PYK 10 up 

THRt2pp 9 up 
ACtex 8 down 

GLBRAN2 8 down 
GLCDpp 8 up 

MOX 8 down 
POX 8 down 
PPS 8 up 

TRSARr 8 up 
ASPO3 7 down 
CITt3pp 7 down 
GLYCtpp 7 up 
PFK_3 7 up 
ACKr 6 down 

CITtex 6 up 
FE3tex 6 up 
SUCDi 6 up 
Zn2tex 6 up 
ASPTA 5 down 
DHAPT 5 up 

DHORD2 1 / 4 up / down 
FBA 5 down 

FLDR2 5 up 
G6PP 5 down 

MDH3 5 down 
O2tpp 5 down 

PFL 5 down 
SO4tex 5 down 
CU2tex 4 up 

CYTBO3_4pp 4 up 
GLYCLTDx 4 down 

HIStex 4 up 
NADH16pp 4 down 

NADPHQR2 4 up 
RPI 4 down 

SUCCt2_3pp 4 down 
THD2pp 1 / 3 up / down 
THRt4pp 4 up 
ASNtex 3 down 

ASPt2rpp 3 up 
CA2tex 3 up 
CLtex 3 up 

CO2tpp 3 down 
CYTBDpp 3 down 
FDH5pp 3 up 

FUM 3 down 
GLCptspp 3 down 
GLYCLTtex 3 up 

MALtex 3 up 
MDH2 3 up 
ME2 3 down 

TYRtex 3 down 
VALtex 3 down 
AKGDH 2 down 

COBALT2tex 2 up 
DHORD5 2 up 

DHORDfum 2 up 
EDA 2 down 
F6PA 2 up 

FDH4pp 2 down 
FORtppi 2 down 
G3PD7 2 down 
GLCtex 2 down 
GLUDy 2 down 

GLUt2rpp 2 down 
LEUt2rpp 2 up 

MALS 2 down 
MDH 2 down 

NADPHQR4 2 up 
NADTRHD 2 down 

NI2tex 2 up 
O2tex 2 down 
PGK 1 / 1 up / down 
TKT1 2 down 
TKT2 2 up 
TPI 2 up 

AKGt2rpp 1 up 
AKGtex 1 up 
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ALDD2y 1 up 
ASPO5 1 down 

DHAtpp 1 down 
FBP 1 up 

FE2tpp 1 up 
FORtex 1 down 
G3PD2 1 up 
G3PD5 1 down 
G3PT 1 down 
GAPD 1 down 

GLCNtex 1 up 
GLCt2pp 1 down 
GLYCK 1 up 

GLYt2rpp 1 up 

GND 1 up 
Htex 1 up 

ILEtex 1 up 
ME1 1 up 

MNt2pp 1 down 
NADH10 1 down 

NADK 1 down 
PDH 1 down 
PGM 1 down 
POR5 1 down 

PPPGO3 1 down 
PROt2rpp 1 up 
SUCOAS 1 up 
ZN2tpp 1 down 

	

	

5.3.1.6			Reaching	other	phenotypes	

Another	 interesting	 aspect	 of	 physiology,	 and	 one	 that	 we	 have	 the	 ability	 to	

investigate	 through	the	 iRBA	formulation,	 is	 the	capability	of	 the	cell	 to	operate	 in	

various	 different	 physiological	 states,	 and	 the	 underlying	 regulatory	 mechanisms	

leading	to	each	of	them.	A	prime	example	of	these	states	and	their	importance	was	

discussed	in	Chapter	3	regarding	the	construction	of	kinetic	models.	In	a	metabolic	

model,	the	capabilities	of	the	organism	to	operate	in	various	physiological	states	can	

be	captured	by	 the	extensive	 sampling	of	 the	 flux	and	concentration	distributions,	

preceding	the	selection	of	the	representative	steady	state	profiles.	Even	within	one	

Flux	Directionality	Profile	 (FDP),	very	different	 flux	profiles	 can	be	attained	 in	 the	

sampled	solution	space.	For	this	study,	we	generated	50’000	flux	profile	samples,	as	

described	in	the	Materials	and	Methods	section.	PCA	was	used	as	a	tool	to	navigate	

this	sample	population	and	select	some	“extreme”	physiological	states	amongst	them.	

The	first	component	used	to	decompose	the	sample	space	resulted	in	a	coverage	of	

70.27%	of	the	total	space	variance.	Across	this	component,	the	fluxes	that	contributed	

most	 of	 the	 space	 variance	 were	 found	 to	 be	 mostly	 related	 to	 intermembrane	

transports	between	the	periplasm	and	cytosol,	such	as	L-	or	D-carnitine	and	formate,	

and	 to	 oxidative	 phosphorylation.	 We	 subsequently	 selected	 the	 minimum	 and	

maximum	corresponding	samples	for	this	component,	leading	to	the	selection	of	two	
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“extreme”	steady	state	flux	profiles	for	which	we	could	perform	our	analysis.	For	this	

analysis	 we	 used	 only	 the	 reference	 RBA	 model.	 The	 bounds	 for	 the	 flux,	

concentration,	and	enzymatic	activity	deviations	were	set	to	10-,	TFA&2-,	and	5-fold,	

respectively,	and	the	number	of	enzymatic	adjustments	was	set	to	25.	

For	 both	 cases	 of	 extreme	 target	 states,	 the	 reactions	 that	 exhibited	 the	 largest	

Euclidean	 distance	 between	 their	 achieved	 and	 objective	 deviation	 were	 almost	

identical.	More	specifically,	11	out	of	the	15	reactions	that	had	the	largest	distance	for	

each	of	the	two	cases	were	common.	Most	of	these	reactions	belong	to	the	oxidative	

phosphorylation	 pathway	 or	 are	 transports	 of	 species	 across	 the	 inner	 or	 outer	

membranes	of	the	cell.	Interestingly,	the	reactions	that	contributed	most	to	the	space	

variance	as	calculated	by	PCA,	could	not	be	well-reached	in	either	of	the	two	cases.		

Concerning	 the	 calculated	enzymatic	 adjustments,	 six	out	of	 the	25	enzymes	were	

common	for	the	two	cases,	with	similar	values	of	deviation	predicted.	These	results	

can	be	found	in	supplementary	Table	S5.1.	

We	observed	that	the	flux	deviations	that	were	not	well-reached	for	both	the	cases	of	

targeted	optimal	growth	state	and	targeted	extreme	states	were	in	the	same	parts	of	

the	metabolic	network.	This	 led	us	 to	 the	hypothesis	 that	 the	network	parameters	

cannot	 exert	 much	 control	 over	 these	 reactions.	 By	 looking	 at	 the	 computed	 CCs	

corresponding	to	these	fluxes,	this	hypothesis	was	confirmed	for	the	majority	of	them.	

Another	explanation	for	these	results	could	be	that	the	imposed	variable	bounds	are	

too	tight,	and	the	target	deviation	for	these	reactions	cannot	be	reached	due	to	these	

constraints.	However,	these	bounds	were	defined	based	on	physiologically	relevant	

assumptions,	 thus	 the	 previously	 stated	 hypothesis	 that	 the	 target	 state	 is	 only	

reachable	through	multiple	iterations	of	genetic	and	metabolic	restructuring	in	the	

network	is	strengthened.	
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5.3.2			Part	2	–	Mutant	identification	and	mapping	

5.3.2.1			Definition	of	the	problem:	identification	of	mutants	

In	in	vitro	studies,	the	flux	and	concentration	distributions	within	the	cell	cannot	be	

fully	 measured.	 It	 is	 quite	 common,	 especially	 in	 health-related	 disciplines,	 that	

conclusions	 regarding	undesirable	mutations	need	 to	be	drawn	 from	 limited	data.	

iRBA	 can	be	used	 effectively	 to	 identify	 underlying	 changes	 in	 enzyme	 expression	

levels,	given	experimental	measurements	of	flux	and/or	concentration	discrepancies	

between	 the	 diseased	 and	 healthy	 states	 of	 an	 organism.	 When	 omics	 data	 are	

available,	there	is	an	associated	variability	for	each	reported	value,	stemming	from	

the	multiplicity	of	 individuals	and/or	measurements,	experimental	conditions,	and	

instrument	inaccuracy.	There	are	two	possible	options	to	account	for	this	variability	

in	the	 iRBA	formulation.	The	first	option	 is	 to	consider	only	the	mean	(or	median)	

value	 of	 the	 measurements,	 and	 proceed	 with	 the	 quadratic	 formulation	 as	

demonstrated	 in	 the	 above	 sections.	 The	 second	 option	 is	 to	 define	 additional	

constraints	that	capture	the	data	variability,	as	well	as	another	appropriate	objective	

function.	In	the	interest	of	demonstrating	the	method	and	its	advantages,	we	chose	to	

proceed	this	study	using	the	second	option.	

	

5.3.2.2			Experimental	data	for	Δlcb3	mutant	strains	

The	data	that	we	used	in	this	study	were	lipidomics	measurements	from	both	wild-

type	 and	mutant	 yeast	 cells,	 provided	 by	 the	 Riezman	 lab	 (University	 of	 Geneva).	

These	concentrations	corresponded	to	28	lipid	species,	and	the	wild-type	data	were	

already	used	to	curate	and	precondition	 the	redLips	network	prior	 to	building	 the	

kinetic	model,	 as	 described	 in	 Chapter	 3.	 The	mutant	 data	 originate	 from	 a	 Δlcb3	

mutant	strain.	LCB3,	a	long-chain	base-1-phosphate	phosphatase,	has	been	known	to	

play	a	part	in	the	regulation	of	ceramides	and	long-chain	base	phosphates.	Our	goal	

was	to	use	these	data	in	the	iRBA	formulation	in	order	to	shed	light	to	the	underlying	

enzymatic	perturbations	that	are	associated	with	this	mutation.	We	thus	incorporated	

the	lipidomics	to	the	network,	using	the	sets	of	constraints	that	were	defined	in	the	

Materials	and	Methods	section.		

	



 Chapter 5 – inverse Response Balance Analysis: a reverse engineering formulation for the mapping of 
enzymes responsible for diverse phenotypes 

 
 

 111 

5.3.2.3			Selection	of	variable	bounds	and	objective	function	

The	 variable	 bounds	 that	 were	 chosen	 for	 this	 study	 were	 100-fold	 for	 the	 flux	

deviations	 and	 TFA&2-fold	 for	 the	 concentration	 deviations.	 Concerning	 the	

enzymatic	 activity	 deviations	 in	 this	 study,	 we	 imposed	 non-symmetrical	 bounds.	

Since	we	were	examining	a	case	involving	gene	knockouts,	a	large	downregulation	of	

the	enzymes	needed	to	be	permitted,	but	not	the	corresponding	upregulation.	Thus,	

the	lower	and	upper	bounds	were	set	to	1000-fold	and	two-fold,	respectively.	

Additional	 to	 the	 metabolomic	 constraints,	 we	 needed	 to	 define	 an	 appropriate	

objective	function	for	the	optimization	problem.	Since	we	were	interested	to	study	

the	 intracellular	 responses	 to	 stress	 factors	 such	 as	 gene	 deletions,	 we	made	 the	

physiologically	 relevant	 assumption	 that	 the	 cell	will	 strive	 to	 compensate	 for	 the	

induced	 perturbation	 by	 introducing	 the	 least	 possible	 regulatory	 expression	

changes.	To	this	end,	we	selected	the	minimization	of	the	number	of	manipulations	

over	the	network	as	the	optimization	objective.	

	

5.3.2.4			Mapping	the	mutant	phenotype	to	enzymatic	changes	

Using	 the	 reference	 kinetic	 parameter	 set,	 the	 solution	 of	 the	 above	defined	MILP	

formulation	 results	 in	 the	 identification	 of	 171	 enzymatic	 activity	 changes	 as	 the	

optimal	minimum	number	of	adjustments	needed	to	satisfy	the	imposed	bounds	and	

constraints.	The	enzymatic	activity	of	LCB3	is	indeed	predicted	to	be	downregulated,	

serving	 as	 validation	 of	 the	 constructed	 network.	 However,	 we	 identified	 few	

alternative	solutions	where	the	activity	of	LCB3	remained	unchanged.	This	stemmed	

from	the	associated	uncertainty	that	comes	with	models	of	this	size	and	complexity,	

and	shows	that	in	order	to	produce	accurate	hypotheses	even	more	data	would	need	

to	be	incorporated	in	the	model	as	constraints.	Nevertheless,	we	chose	to	analyze	a	

case	where	LCB3	was	downregulated	at	the	maximal	computed	value,	and	investigate	

the	effect	that	it	had	over	the	rest	of	the	network.	To	this	end,	we	constrained	LCB3	to	

the	value	mentioned	above,	and	performed	a	variability	analysis	over	all	the	enzyme	

activity	deviations	of	the	network.	We	observed	that	the	vast	majority	of	the	enzyme	

deviations	could	be	both	up-	and	down-regulated,	leading	to	a	very	large	number	of	

combinations	and	alternative	solutions,	and	further	strengthening	the	argument	that	
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more	constraints	might	need	to	be	 introduced	to	the	model.	However,	 there	was	a	

number	 of	 enzymes	 that	 had	 to	 be	 deregulated	 in	 a	 certain	 direction.	 More	

specifically,	 there	 were	 nine	 enzymes	 that	 were	 predicted	 to	 be	 always	

downregulated,	additional	to	LCB3.	These	enzymes	were	the	following:	

§ sphingoid	 long-chain	 base	 kinase	 (LCB4),	 which	 synthesizes	 sphingolipid	

backbone	long-chain	base	phosphates,	

§ dihydrosphingosine	 phosphate	 lyase	 (DPL1),	 which	 degrades	 sphingolipid	

long-chain	base	phosphates,	

§ fatty	 aldehyde	 dehydrogenase	 (HFD1),	which	 converts	 fatty	 acid	 aldehydes	

into	fatty	acids,	

§ fatty	acid	elongase	(ELO3),	which	synthesizes	very	long	chain	fatty	acids	from	

acyl-CoA	primers,	

§ peroxisomal	 ABC	 transporter	 (PXA1),	 which	 imports	 long-chain	 fatty	 acids	

into	peroxisomes,	

§ phospholipid	methyltransferase	(OPI3),	which	catalyzes	the	last	two	steps	in	

PC	biosynthesis,	

§ lysophospholipid	acyltransferase	(ALE1),	which	attaches	fatty	acyl	chains	to	

monolysophospholipid	species,	

§ serine	hydroxymethyltransferase	(SHM1	or	GHMT2r),	which	converts	serine	

and	 tetrahydrofolate	 to	glycine	and	methylenetetrahydrofolate	respectively,	

and	

§ trehalase	(ATH1/NTH1	or	TREH),	which	degrades	trehalose	to	form	two	units	

of	glucose.	

Some	 of	 these	 enzymes	 are	 directly	 related	 to	 the	 biosynthesis	 or	 degradation	 of	

sphingolipids,	such	as	LCB4	and	DPL1.	LCB4	is	in	essence	the	reverse	counterpart	of	

LCB3;	 the	 former	 phosphorylates	 the	 sphingolipid	 backbones	 using	 ATP	 as	 a	

phosphate	donor,	while	the	latter	dephosphorylates	them	through	hydrolysis.	Since	

in	the	RBA	and	iRBA	formulations	the	reactions	are	not	allowed	to	change	their	net	

directionality,	 it	 is	 logical	 that	 if	 one	 part	 of	 the	 phosphorylation	 cycle	 would	 be	

impaired,	the	other	half	would	be	as	well.	DPL1	performs	the	degradation	of	the	long-

chain	base	phosphate	species	 into	ethanolamine	phosphate	and	 fatty	aldehydes	or	

fatty	acids.	Since	the	synthesis	and	degradation	of	the	phosphorylated	species	would	
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be	 damaged	 in	 the	 mutant	 strain,	 the	 function	 of	 DPL1	 would	 also	 be	 reduced.	

Accordingly,	 HFD1,	 an	 enzyme	 that	 utilizes	 fatty	 aldehydes	 as	 substrate,	was	 also	

predicted	 to	 have	 a	 lower	 activity	 in	 the	 network.	 Seeing	 as	 the	 regulation	 of	 the	

production	of	sphingolipid	backbones	would	be	heavily	compromised,	the	regulation	

of	other	sphingolipid	building	blocks	would	be	equally	 impaired,	as	proven	by	 the	

ELO3	reduction	of	activity.	ELO3	is	the	enzyme	responsible	for	the	synthesis	of	very	

long	chain	fatty	acids	(C24:0	and	C26:0),	which	are	the	ones	used	for	the	synthesis	of	

complex	sphingolipids.	The	activity	of	the	PXA1	transporter	of	these	species	to	the	

peroxisomes	was	 also	 predicted	 to	 be	 impaired.	 Furthermore,	 the	 lipidomics	 that	

were	 used	 to	 construct	 the	 mutant	 concentration	 deviation	 constraints	 clearly	

showed	a	deregulation	of	phospholipid	concentration	levels	and	ratios.	Two	enzymes	

that	 are	 part	 of	 the	 phospholipid	 biosynthetic	 pathways	 were	 identified	 in	 the	

solution:	 OPI3,	 responsible	 for	 the	 synthesis	 of	 PC	 from	 PE	 through	 the	 de	 novo	

biosynthetic	 pathway,	 and	 ALE1,	 a	 key	 component	 of	 membrane	 phospholipid	

remodeling.	Finally,	 the	conversion	of	serine	to	glycine	through	SHM1	(GHMT2r	in	

model)	and	the	degradation	of	trehalose	to	glucose	through	ATH1/NTH1	(TREH	in	

the	model),	were	also	predicted	to	be	compromised.	Serine	is	a	major	building	block	

in	the	synthesis	of	long	chain	bases,	participating	in	the	first	committed	step	of	the	

sphingolipid	biosynthetic	pathway,	which	is	the	condensation	of	serine	with	a	long	

chain	acyl-CoA	to	form	3-ketosphinganine	catalyzed	by	LCB1.		

This	study	revealed	some	of	the	underlying	enzymatic	adjustments	that	would	occur	

in	a	state	of	mutation.	Using	mutant	lipidomics,	the	iRBA	formulation	could	predict	

correctly	 the	 downregulation	 of	 the	 enzyme	 corresponding	 to	 the	 deleted	 gene	 in	

these	mutants,	validating	its	predictive	capabilities.	Using	this	method	of	analysis,	the	

computed	genetic	and	metabolic	restructuring	of	the	cell	could	be	mapped	to	specific	

mutations	and	provide	potential	biomarkers	for	disease	diagnosis.		
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5.4			Conclusions	

In	conclusion,	the	iRBA	reformulation	of	the	RBA	framework	is	a	powerful	tool	in	the	

mapping	and	identification	of	underlying	enzymatic	adjustments	in	an	evolutionary,	

survival	and	mutant	 context.	 iRBA	uses	a	quadratic	objective	 function	 instead	of	a	

linear	approximation,	and	to	our	knowledge,	 this	 type	of	approach	has	never	been	

applied	 in	 reverse	 engineering	 studies	 of	 metabolism	 of	 this	 scale.	 We	 used	 a	

previously	 published	 large-scale	 kinetic	model	 of	E.	 coli	 to	 identify	 the	 enzymatic	

restructuring	of	the	cell	between	states	of	suboptimal	and	optimal	growth	rates.	We	

selected	 a	 number	 of	 kinetic	 parameter	 sets	 among	 the	 generated	 population	 by	

utilizing	the	PCA	method,	in	order	to	efficiently	represent	and	quantify	the	associated	

uncertainty	 and	 flexibility	 of	 the	 kinetic	model.	We	 identified	 specific	 parts	 of	 the	

metabolic	network	which	could	not	be	efficiently	restructured	to	achieve	the	target	

state,	given	the	physiological	bounds	and	constraints	that	were	imposed	to	the	model.	

Additionally,	we	 examined	 the	 adjustments	 that	would	 lead	 to	 some	 extreme	 flux	

profile	states,	which	were	identified	through	the	use	of	extensive	sampling	of	the	flux	

solution	space	of	the	original	model	and	PCA.	Finally,	we	used	a	 large-scale	kinetic	

model	of	S.	cerevisiae	that	focuses	on	the	lipid	metabolism	to	define	a	workflow	for	

the	 identification	 of	 cell	 mutations.	 We	 integrated	 a	 number	 of	 mutant	 lipidomic	

measurements	 to	 the	 model,	 along	 with	 the	 biologically	 relevant	 bounds	 and	

constraints	which	were	defined	in	the	original	RBA	formulation.	We	showed	that	the	

model	 could	predict	 correctly	 the	 gene	deletion	 responsible	 for	 the	mutation,	 and	

explored	 the	 underlying	 genetic	 and	metabolic	 restructuring.	We	 believe	 that	 this	

formulation	 will	 provide	 a	 useful	 means	 toward	 the	 elucidation	 of	 evolutionary	

mechanisms	that	lead	to	desirable	traits,	as	well	as	advance	the	mapping	of	altered	

metabolomes	to	enzymatic	perturbations,	which	could	be	applied	in	disease	diagnosis	

and	personalized	medicine.
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Chapter	6	–	Conclusions	and	Future	
Perspectives	

 
 
 

In	Chapter	1	we	examined	the	current	state	of	the	metabolic	engineering	and	systems	

biology	fields.	We	identified	key	 issues	that	hinder	the	study	of	cellular	regulation,	

with	particular	emphasis	on	the	lipid	metabolism.	Genome-scale	metabolic	models,	

although	being	the	most	accurate	organism	representations	available,	possess	a	high	

degree	of	complexity	and	introduce	large	uncertainty	in	studies	that	focus	on	specific	

parts	of	the	metabolic	network.	GEM	reductions	are	usually	done	in	an	ad	hoc	manner	

to	produce	context-specific	models,	and	cannot	serve	multiple	studies	since	they	are	

limited	 to	 specific	 datasets.	 We	 additionally	 discussed	 the	 importance	 of	 kinetic	

models	 in	 the	 elucidation	 of	 regulatory	 mechanisms	 and	 cellular	 responses	 to	

perturbations.	 The	 mentioned	 complexity	 of	 GEMs	 combined	 with	 the	 lack	 of	

information	about	detailed	enzymatic	mechanisms	and	kinetic	parameters	turn	the	

construction	 of	 consistent	 large-scale	 kinetic	 models	 into	 a	 challenging	 task.	

Furthermore,	 we	 assessed	 the	 present-day	 methodologies	 concerning	 metabolic	

design.	 Although	 cell	 factories	 are	 widely	 used	 in	 industrial	 manufacturing,	 most	

computational	tools	fail	to	account	for	physiological	and	technical	limitations	when	

proposing	metabolic	 engineering	 strategies.	 Concerning	 the	 field	 of	 medicine,	 the	

discovery	of	potential	biomarkers	and	the	mapping	of	various	phenotypes	to	genetic	

mutations	are	significant	steps	in	treatment	and	diagnosis.	Mutations	are	also	a	vital	

part	 of	 evolution.	 Directed	 evolution	 aims	 to	 selectively	 preserve	 desirable	 traits	

through	multiple	 cell	 generations,	mimicking	 natural	 selection.	 However,	 state-of-

the-art	 computational	methodologies	 fail	 to	 examine	 the	 enzymatic	 and	metabolic	

restructuring	that	occurs	at	the	onset	and	progression	of	mutation.	
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In	Chapter	2	we	presented	the	construction	of	redLips,	a	novel	metabolic	model	that	

focuses	 on	 the	 lipid	 metabolism.	 This	 model	 captures	 the	 complexity	 of	 lipid	

metabolism	by	consistently	assembling	the	known	lipid	pathways	while	avoiding	the	

pitfall	 of	 excessive	 size	 and	 detail	 that	 GEMs	 possess.	 We	 first	 gathered	 all	 the	

available	knowledge	on	lipid	metabolic	pathways,	and	integrated	them	into	a	well-

known	GEM	of	S.	cerevisiae.	We	subsequently	reduced	the	integrated	model	around	

the	lipid-related	network	subsystems	using	the	redGEM	and	lumpGEM	frameworks.	

redLips	was	 curated	with	 thermodynamic	 feasibility	 constraints	 and	 is	 consistent	

with	the	organism	biochemistry.	Additionally,	it	can	accommodate	the	integration	of	

lipidomics	measurements,	applied	both	as	flux	and	concentration	bounds.	We	believe	

that	 in	 the	 future	 redLips	 could	 be	 modified	 and	 used	 as	 a	 concise	 platform	 for	

studying	lipid	metabolism	across	different	species,	and	a	valuable	tool	for	health	or	

industry	 related	 research.	 Yeast	 has	 a	 very	 high	 homology	 with	 the	 mammalian	

genome,	and	could	prove	advantageous	for	the	testing	of	hypotheses	and	treatments.	

Yeast	is	inexpensive	to	cultivate	and	modify,	and	scientifically	and	ethically	easier	to	

use	 for	 this	 type	 of	 studies.	 We	 also	 trust	 that	 this	 model	 will	 continue	 to	

accommodate	 future	 discoveries	 through	 the	 incorporation	 of	 new	 reactions	 and	

species.	Additionally,	redLips	provides	a	coherent	base	in	order	to	link	cell	signaling	

routes	to	the	lipid	pathways.	Signaling	cascades	have	a	big	part	in	the	cell’s	regulatory	

mechanisms.	Membrane	homeostasis	has	been	closely	linked	to	phosphatidylinositol	

phosphate	species,	which	are	already	part	of	the	redLips	network.		

In	Chapter	3	we	used	redLips	as	a	basis	to	construct	a	large-scale	kinetic	model	of	the	

lipid	metabolism.	This	model	is	to	our	knowledge	the	largest	and	most	detailed	kinetic	

representation	of	 the	 lipid	network	to	date.	The	enzymes	which	are	 linked	to	 lipid	

pathways	are	usually	multifunctional	and	promiscuous,	which	gives	rise	to	enzymatic	

coupling.	 The	 notion	 of	 apparent	 inhibitors	 was	 used	 to	 allow	 the	 definition	 and	

assignment	of	appropriate	enzymatic	mechanisms.	We	used	lipidomics	data	to	curate	

the	 model,	 by	 taking	 into	 account	 the	 compartmentalization	 of	 species	 and	 the	

relative	volume	of	each	cellular	compartment.	We	generated	populations	of	kinetic	

parameter	sets	using	the	ORACLE	framework,	and	calculated	the	corresponding	MCA-

based	 control	 coefficients.	 We	 demonstrated	 the	 importance	 of	 the	 enzymatic	

coupling	 consideration	 in	 the	model’s	predictions,	 compared	 to	 the	 corresponding	
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predictions	 when	 using	 simpler	 mechanisms.	 Finally,	 we	 validated	 the	 model’s	

predictions	 against	 experimental	 observations,	 and	discussed	emerging	 regulatory	

interactions.	We	believe	that	the	systematic	workflow	presented	in	this	chapter	can	

be	used	as	a	guideline	in	the	construction	of	consistent	kinetic	models	of	metabolism.	

In	the	future,	even	more	complex	kinetic	mechanisms	can	be	utilized	in	this	model,	

such	 as	 the	 action	 of	 inhibitors	 and	 activators	 in	 multiple	 reactions.	 Kinetic	

parameters	 such	 as	 Michaelis	 constants	 are	 slowly	 becoming	 available,	 and	 their	

incorporation	 in	 the	 models	 could	 lead	 to	 a	 significantly	 reduced	 uncertainty.	

Furthermore,	 given	 the	 already	 generated	 parameter	 sets,	 the	 resulting	 system	 of	

ordinary	differential	equations	can	be	built	and	integrated	over	time	in	order	to	study	

transient	system	behaviors.	

In	 Chapter	 4	 we	 presented	 Response	 Balance	 Analysis	 (RBA),	 a	 constraint-based	

framework	 that	 uses	 Metabolic	 Control	 Analysis	 (MCA)	 notions	 and	 control	

coefficients	 (CCs)	 to	 facilitate	 the	 consistent	and	sophisticated	design	of	metabolic	

engineering	 strategies.	 To	 our	 knowledge,	 this	 type	 of	 approach	 has	 never	 been	

applied	to	large-scale	kinetic	models	of	metabolism.	We	discussed	and	highlighted	the	

integration	 of	 biologically	 relevant	 bounds	 and	 constraints,	which	 ensure	 that	 the	

proposed	 strategies	 are	 consistent	 with	 the	 network	 capabilities	 and	 limitations	

thereof.	We	additionally	showed	that	multiple	viable	metabolic	engineering	strategies	

can	 be	 readily	 derived	 for	 large-scale	 metabolic	 networks.	 We	 believe	 that	 this	

formulation	is	a	concise	and	refined	tool	for	computational	metabolic	design,	due	to	

its	 simplicity	 and	 modularity.	 RBA	 incorporates	 constraints	 regarding	 not	 only	

physiology,	but	also	genetic	engineering	limitations,	which	could	greatly	benefit	the	

design	of	cell	factories.	In	the	future,	RBA	can	continuously	be	enhanced	through	the	

introduction	of	ever-growing	omics	data.	Additionally,	as	the	community’s	knowledge	

grows,	new	metabolic	models	will	emerge	and	specialized	constraints	and	objectives	

will	become	relevant.	As	new	methods	for	kinetic	modeling	are	constantly	developed	

and	 kinetic	 parameters	 are	measured	 and	 reported,	 the	 dynamic	 predictions	 and	

corresponding	CCs	will	be	able	to	capture	even	more	accurately	the	interactions	of	

cellular	components.	

In	Chapter	5	we	reformulated	the	RBA	framework	that	was	developed	in	chapter	4.	

This	 method,	 called	 inverse	 RBA	 (iRBA),	 aims	 to	 facilitate	 the	 mapping	 and	
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identification	of	underlying	enzymatic	adjustments	in	an	evolutionary,	survival	and	

mutant	 context.	 We	 examined	 and	 discussed	 the	 enzymatic	 and	 metabolic	

restructuring	of	an	E.	coli	cell	between	different	states	of	growth.	Furthermore,	we	

used	the	large-scale	kinetic	model	of	lipid	metabolism	that	was	developed	in	Chapter	

3	 to	 define	 a	workflow	 for	 the	 identification	 of	 underlying	 cell	mutations	 and	 the	

mapping	of	phenotypes.	We	integrated	lipidomic	measurements	to	the	model,	along	

with	 the	 biologically	 relevant	 bounds	 and	 constraints	 which	 were	 defined	 in	 the	

original	RBA	formulation.	We	believe	that	this	formulation	can	provide	useful	insights	

for	reverse	engineering	problems,	as	well	as	a	step	forward	in	the	mapping	of	altered	

metabolomes	to	enzymatic	perturbations.	In	the	future,	genetic	mapping	could	prove	

essential	in	biomedicine.	The	scientific	interest	in	the	identification	of	biomarkers	is	

rapidly	 growing,	 with	 multiple	 applications	 in	 early	 diagnosis	 and	 treatment.	

Personalized	medicine	could	also	benefit	from	a	tool	like	iRBA;	each	day	millions	of	

people	 take	 medication	 that	 will	 not	 benefit	 them	 (Schork	 2015).	 Genetic	 and	

environmental	factors	can	vary	quite	a	lot	across	the	human	population	and	lead	to	

different	metabolic	patterns	and	phenotypes,	including	reactions	to	drugs.	iRBA	can	

take	 into	 account	 the	 individuality	 of	 each	 patient	 by	 tracing	 these	 phenotypes	 to	

genetic	 causalities.	 The	 mapping	 of	 these	 individualities	 combined	 with	

computational	 design	 and	 simulation	 of	 potential	 treatments	 could	 shape	 future	

advancements	and	perspectives	in	the	field.	

Overall,	 this	 thesis	 has	 contributed	 to	 the	 study	 of	 lipid	 metabolism	 through	 the	

construction	and	validation	of	consistent	stoichiometric	and	kinetic	models.	Although	

these	models	describe	the	metabolism	of	S.	cerevisiae,	they	can	accommodate	studies	

in	other	organisms	due	to	the	high	homology	of	eukaryotic	genomes	concerning	the	

lipid	pathways.	Moreover,	a	framework	was	established	for	the	consistent	design	of	

metabolic	 engineering	 strategies	 in	 sustainability	 and	 health,	 considering	 user-

defined	limitations	on	both	the	biological	and	engineering	aspects	of	the	design.	Each	

of	 these	tools	can	 incorporate	various	types	of	omics	data,	strengthening	the	bond	

between	computations	and	experiments,	as	is	the	interdisciplinary	nature	of	systems	

biology.
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Appendix	A	-	Kinetic	mechanism	
expressions	

 
 
 

In	 all	 of	 the	 following	 expressions	 S	 and	 P	 denote	 substrates	 and	 products	

respectively,	Cs	and	Cp	denote	small	molecules	acting	as	compensating	substrates	and	

products,	 respectively,	without	 binding	 to	 the	 active	 site	 of	 the	 enzyme,	 I	 denotes	

apparent	inhibitors,	Vmax	denotes	the	maximum	rate	of	the	reaction	in	the	respective	

direction	 (f	 signifies	 forward	 and	 b	 signifies	 backward),	 Km	 and	 Ki	 denote	 the	

Michaelis	constants	for	the	reactants	and	inhibitors	respectively,	and	k	denotes	the	

rate	constant	in	the	respective	direction.	

	

A.1			Michaelis-Menten	kinetics	

	

A.1.1			Uni-Uni	

For	a	reaction	in	the	form:	

Ç ⇄ Ñ	
The	rate	expression	reads:	

7ÖjÜ = 	
*áà#â 	

[Ç]
lá,å − *áà#~ 	

[Ñ]
lá,ç

1 + [Ç]
lá,å +

[Ñ]
lá,ç

	

	



A.2   Generalized Reversible Hill kinetics with Hill coefficient h = 1 
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A.1.2			Irreversible	(Michaelis-Menten	like	kinetics)	

For	a	reaction	with	nS	substrates	and	nP	products	in	the	form:	

é.Ç. + éfÇf + éèÇè + ⋯ ⇄ ë.Ñ. + ëfÑf + ëèÑè + ⋯	
The	rate	expression	reads:	

7ÖjÜ = 	*áà#â 	íì
	 [Ç8]lá,å2

1 +	 [Ç8]lá,å2
î

Öå

8C.
	

	

	

A.2			Generalized	Reversible	Hill	kinetics	with	Hill	coefficient	h	

=	1	

	

A.2.1			Bi-Bi	

For	a	reaction	in	the	form:	

Ç. + Çf ⇄ Ñ. + Ñf	
The	rate	expression	reads:	

7ÖjÜ = 	
*áà#â 	

[Ç.]lá,å| 	
[Çf]lá,å� − *áà#~ 	

[Ñ.]lá,ç| 	
[Ñf]lá,ç�

ï1 + [Ç.]lá,å| +
[Ñ.]lá,ç|ñ ï1 +

[Çf]lá,å� +
[Ñf]lá,ç�ñ

	

	

A.2.2			Uni-Bi	

For	a	reaction	in	the	form:	

Ç ⇄ Ñ. + Ñf	
The	rate	expression	reads:	
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7ÖjÜ = 	
*áà#â 	

[Ç]
lá,å − *áà#~ 	

[Ñ.]lá,ç| 	
[Ñf]lá,ç�

[Ç]
lá,å + ï1 +

[Ñ.]lá,ç|ñ ï1 +	
[Ñf]lá,ç�ñ

	

	

A.2.3			Bi-Uni	

For	a	reaction	in	the	form:	

Ç. + Çf ⇄ Ñ	
The	rate	expression	reads:	

7ÖjÜ = 	
*áà#â 	

[Ç.]lá,å| 	
[Çf]lá,å� − *áà#~ 	

[Ñ]
lá,ç

[Ñ]
lá,ç + ï1 +

[Ç.]lá,å|ñ ï1 +	
[Çf]lá,å�ñ

	

	

A.3			Generalized	Reversible	Hill	kinetics	with	Hill	coefficient	h	

=	4	

	

A.3.1			PFK	specific	mechanism	

For	the	reaction:	

>6Ñ + òôÑ ⇄ >öÑ + òõÑ	
where	AMP	acts	as	an	allosteric	inhibitor	and	ADP	as	an	allosteric	activator,	

The	rate	expression	reads:	

7ÖjÜ = 	
*áà#â 	

[>6Ñ]
lá,gúç 	

[òôÑ]
lá,ùûç ï

[>6Ñ]
lá,gúç +

[>öÑ]
lá,geçñ

è
ï [òôÑ]lá,ùûç +

[òõÑ]
lá,ùüçñ

è

õ

−
*áà#~ 	

[>öÑ]
lá,geç 	

[òõÑ]
lá,ùüç ï

[>6Ñ]
lá,gúç +

[>öÑ]
lá,geçñ

è
ï [òôÑ]lá,ùûç +

[òõÑ]
lá,ùüçñ

è

õ 	

where	



A.4   Convenience kinetics 
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õ

= U[>6Ñ]lá,gúç +
[>öÑ]
lá,geçV

†
U[òôÑ]lá,ùûç +

[òõÑ]
lá,ùüçV

†

+
°1 + ï[òEÑ]lá,ù¢çñ

†
£ °1 + ï [òôÑ]lá,ùûçñ

†
£

°1 + 10† ï[òEÑ]lá,ù¢çñ
†
£ °1 + 10-† ï [òôÑ]lá,ùûçñ

†
£

+
°1 + 10f ï[òEÑ]lá,ù¢çñ

†
£ °1 + 10-f ï [òôÑ]lá,ùûçñ

†
£ °ï [>6Ñ]lá,gúç +

[>öÑ]
lá,geçñ

†
+ ï [òôÑ]lá,ùûç +

[òõÑ]
lá,ùüçñ

†
£

°1 + 10† ï[òEÑ]lá,ù¢çñ
†
£ °1 + 10-† ï [òôÑ]lá,ùûçñ

†
£

	

	

A.4			Convenience	kinetics	

	

A.4.1			Bi-Ter	

For	a	reaction	in	the	form:	

Ç. + Çf ⇄ Ñ. + Ñf + Ñè	
The	rate	expression	reads:	

7ÖjÜ = 	
*áà#â 	

[Ç.]lá,å| 	
[Çf]lá,å� − *áà#~ 	

[Ñ.]lá,ç| 	
[Ñf]lá,ç�

[Ñè]lá,ç§
ï1 + [Ç.]lá,å|ñ ï1 +

[Çf]lá,å�ñ + ï1 +
[Ñ.]lá,ç|ñ ï1 +

[Ñf]lá,ç�ñ ï1 +
[Ñè]lá,ç§ñ − 1

	

	

A.4.2			Ter-Bi	

For	a	reaction	in	the	form:	

Ç. + Çf + Çè ⇄ Ñ. + Ñf	
The	rate	expression	reads:	
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7ÖjÜ = 	
*áà#â 	

[Ç.]lá,å| 	
[Çf]lá,å�

[Çè]lá,å§ − *áà#~ 	
[Ñ.]lá,ç| 	

[Ñf]lá,ç�
ï1 + [Ç.]lá,å|ñ ï1 +

[Çf]lá,å�ñ ï1 +
[Çè]lá,å§ñ + ï1 +

[Ñ.]lá,ç|ñ ï1 +
[Ñf]lá,ç�ñ − 1

	

	

A.4.3			Stoichiometric	coefficient	larger	than	unity	

For	a	reaction	with	nS	substrates	and	nP	products	in	the	form:	

é.Ç. + éfÇf + éèÇè + ⋯ ⇄ ë.Ñ. + ëfÑf + ëèÑè + ⋯	
The	rate	expression	reads:	

7ÖjÜ = 	
*áà#â 	∏ ï [Ç8]lá,å2ñ

¶2Öå
8C. − *áà#~ 	∏ U ßÑ=®lá,ç;V

©;
Öç
=C.

∏ ™∑ ï [Ç8]lá,å2ñ
Ö¶2

ÖCI ´Öå
8C. + ∏ °∑ U ßÑ=®lá,ç;V

á
©;
áCI £Öç

=C. − 1
	

	

A.4.4			Containing	apparent	inhibition	terms	

For	a	reaction	with	nS	substrates,	nP	products	and	nI	apparent	inhibitors	in	the	

form:	

é.Ç. + éfÇf + éèÇè + ⋯ ⇄ ë.Ñ. + ëfÑf + ëèÑè + ⋯	
The	rate	expression	reads:	

7ÖjÜ = 	
*áà#â 	∏ ï [Ç8]lá,å2ñ

¶2Öå
8C. − *áà#~ 	∏ U ßÑ=®lá,ç;V

©;
Öç
=C.

∏ ™∑ ï [Ç8]lá,å2ñ
Ö¶2

ÖCI ´Öå
8C. + ∏ °∑ U ßÑ=®lá,ç;V

á
©;
áCI £Öç

=C. − 1 + ∑ [¨:]l8,≠1
Ö≠
:C.

	

	

	

A.5			Mass-action	kinetics	

	



Note: Case of participating compensating small molecules 
 
 
 

 124 

A.5.1			Diffusion	of	species	or	chemical	reaction	

For	a	reaction	with	nS	small	molecule	substrates	and	nP	small	molecule	products	in	

the	form:	

é.Ç. + éfÇf + éèÇè + ⋯ ⇄ ë.Ñ. + ëfÑf + ëèÑè + ⋯	
The	rate	expression	reads:	

7ÖjÜ = 	ÆBí[Ç8]¶2
Öå

8C.
− ÆeíßÑ=®©;

Öç

=C.
	

	

	

Note:	Case	of	participating	compensating	small	molecules	

If	 in	 any	 of	 the	 above	 cases	 there	 are	 nCS	 compensating	 substrates	 and	 nCP	

compensating	 products,	 the	 backward	 rate	 part	 of	 the	 numerator	 needs	 to	 be	

multiplied	by	the	term:	

∏ ß!Ñ"®ÖØç"C.
∏ ß!Ç∞®ÖØå
∞C.

	

In	example,	for	a	reaction	in	the	form:	

Ç + !Ç. + !Çf ⇄ Ñ + !Ñ.	
The	uni-uni	Michaelis-Menten	rate	expression	will	read:	

7ÖjÜ = 	
*áà#â 	

[Ç]
lá,å − *áà#~ 	

[Ñ]
lá,ç 	

[!Ñ.][!Ç.][!Çf]
1 + [Ç]

lá,å +
[Ñ]
lá,ç
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