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Abstract
Clean and energy-efficient turbomachinery are playing an increasingly important role
in the decarbonization of heating systems, waste heat recovery and transportation, as
the use of small-scale heat pumping and fuel cells spreads. Such machines typically
employ aerodynamic bearings because of their oilfreeness and very large lifespan. In
particular, grooved bearings enjoy a high stiffness and repeatable performance under
similar manufacturing conditions and are particularly well suited for small-scale rotors.
However, such gas bearings are usually modeled under the assumption that the lubricant
follows the ideal gas law, which may not be valid in conditions met in heat pumping (high
pressure condensable gases) and ambient air compression (condensation of moisture).
In addition, a strict separation between grooved and compliant bearings exist without
justification and optimization methods used for the design of such elements ignore the
concept of robustness. This thesis explores these shortcomings.
First, the classical modeling theory for grooved bearings, the Narrow-Groove Theory
(NGT), is experimentally validated in dynamic conditions. A test rig is built, consisting
of a 16 mm rotor rotating at 100 krpm on two herringbone grooved journal bearings
(HGJBs) driven by an impulse turbine. The bearing bushings are excited in two orthogonal
directions using piezo-electric shakers, allowing the deduction of the frequency-dependent
force coefficients. The measurements are in good qualitative agreement with the theory,
although stiffness and damping coefficients were observed 23 and 29% lower than the
predicted values, respectively.
The influence of real-gas effects and humid air on the static and dynamic performance
of plain bearings and HGJBs is theoretically and numerically investigated on a wide
range of operating conditions. Real-gas effects were found to negatively affect the load
capacity and either have a positive or negative influence on the stability depending on
the operating conditions. Humid air effects have a negligible yet negative influence on
the static performance and can decrease the critical mass of HGJBs by 25%. The effects
of pure-fluid condensation are theoretically assessed using a 1D slider bearing. Further,
an experimental setup consisting of a 20 mm three-pad Rayleigh step journal bearing
operating at 30 krpm in pressurized R245fa is built to experimentally validate the proposed
model by measuring and comparing the pressure in the thin gas film. Theoretically-
predicted characteristic features of a condensing gas film are observed experimentally,
suggesting sustained operation of a gas lubricated bearing with local condensation.
The path toward hybrid foil and grooved bearings is explored, as a tentative to combine
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Abstract

the best of the two worlds. A model based on the simple foundation approach is pro-
posed and the improvement potential of spiral grooves applied on foil thrust bearings is
numerically assessed using multi-objective optimization of the grooved pattern. Results
suggest that the load capacity can be improved while reducing the drag torque. However,
the ultimate load capacity does not systematically benefit from the presence of spiral
grooves. Finally, a novel design procedure maximizing the robustness of aerodynamic
bearings against manufacturing deviation is proposed and applied to HGJBs. Based on
an unique pre-computed look-up table of critical mass, the hyperspace is dimensionalized
for a case-specific rotor and is scanned to find the largest admissible deviation on the
groove depth and radial clearance simultaneously. It yields a Pareto front of the best
possible allocation of manufacturing tolerances on the two design parameters.

Keywords: Energy, Aerodynamic bearing, Real gas, Modeling, System identification,
Experiment, Design, Optimization
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Résumé
Les turbomachines efficientes et sans huile jouent un rôle de plus an plus important dans
la décarbonisation les installations énergétiques pour le chauffage et le transport, à mesure
que l’usage de piles à combustibles et des de pompes à chaleur s’accroît. De telles machines
utilisent typiquement des paliers aérodynamiques pour leurs qualités non-contaminantes et
de très longue durée de vie. En particuliers, les paliers aérodynamique rainurés bénéficient
d’une grande rigidité, d’un comportement répétable lorsque les conditions de fabrications
sont similaires et sont bien adaptés aux machines tournantes de petites dimensions.
Cependant, de tels paliers aérodynamiques sont en général modelisés sous l’hypothèse
que le lubrifiant suit la loi des gaz parfaits, ce qui n’est pas forcément valide dans des
environnement rencontrés dans les pompes à chaleur (gaz condensable à haute pression)
et dans la compression d’air ambiant (condensation de l’eau atmosphérique). De plus, les
paliers à feuillets et les paliers rainurés demeurent deux familles strictement séparées et les
méthodes d’optimisation habituellement appliquées pour la conception de telles machines
ne tiennent pas en compte de la robustesse. Cette thèse explore ces manquements.

Premièrement, la théorie classique de modélisation des paliers à rainures, la Narrow
Groove Theory (NGT), est validée expérimentalement en conditions dynamiques. Un
banc d’essai est construit, consistant en un arbre de 16 mm tournant à 100’000 tours par
minute sur deux paliers radiaux arodynamiques à chevrons (HGJBs) mû par une turbine
à impulsion. The douilles des paliers sont excitées par des vibreurs piezo-éléctriques dans
deux directions orthogonales, ce qui permet de déduire les impédances dynamiques des
paliers. Les mesures sont en bon accord qualitatif avec la théorie, bien que les paramètres
de raideur et d’amortissement des paliers sont mesurés 23 et 29% plus faibles que prédits,
respectivement.

L’influence de l’air humide et des effets gaz réels sur les paliers lisses et des HGJBs est
étudié théoriquement et numériquement dans un large domaines de conditions d’utilisation.
Les effets gaz réels révèlent avoir un effet négatif la capacité de charge et peuvent avoir un
effet soit positif soit négatif sur la stabilité, dépendamment des conditions. L’air humide
a un effet négligeable sur la capacité de charge tandis que la stabilité des HGJBs peut
être diminuée de 25%. Les effets de la condenation d’un fluid pur sont évalués sur un
palier linéaire monodimensionel. Un setup expérimental, consistant en un palier radial
de Rayleigh de 20 mm tournant à 30’000 tours par minute dans du réfrigérant R245fa
pressurisé, est construit pour valider expérimentalement le modèle proposé en mesurant
la pression à l’intérieur du film de gaz. Les charactéristiques théoriques d’un film de gaz
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Résumé

en état de condensation sont observées expérimentalement, ce qui suggère l’appartition
de condensation dans les paliers aerodynamiques.
L’hybridation de paliers à feuillets avec les paliers rainurés est explorée, motivée par
la volonté de combiner le meilleur des deux mondes. Un modèle, basé sur l’approche
des fondations simples, est porposé et le potentiel d’amélioration de rainures spirales
appliquées sur un palier axial à feuillets est évalué numériquement en utilisant une op-
timisation multi-objectifs sur la géométrie des rainures. Les résultats suggèrent que la
capacité de charge peut être améliorée tout en réduisant les pertes visqueuses. Cepen-
dant, la capacité de charge ultime ne bénéficie pas systématiquement de la présence des
rainures. Finalement, une nouvelle procédure de conception maximisant la robustesse
de paliers aérodynamiques face aux erreurs de fabrications est proposées et appliquées
aux HGJBs. Basée sur un unique tableau pré-calculé de mass critique adimensionelle, cet
hyper espace est dimensionalisé pour un rotor spécifique et est scanné pour determiner les
zones permettant la plus grande déviations de la profondeur des rainures et du jeu radial
simulatanément. La procédure aboutit à un front de Pareto des meilleures tolérances de
fabrication attribuables à chacun des paramètres.

Mots clés : Energie, Palier aérodynamique, Gaz Réels, Modelisation, Identification
de Système, Experimentation, Conception, Optimisation
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Zusammenfassung
Eziente und ölfreie Turbomaschinen werden voraussichtlich eine wichtige Rolle bei der
Transition von Energieanlagen von fossilen zu erneuerbaren Energieträgern spielen, da der
Einsatz von Brennstozellen und Wärmepumpen zunimmt. Solche Maschinen verwenden ty-
pischerweise aerodynamische Lager aufgrund ihrer kontaminationsfreien Eigenschaften und
ihrer sehr hohen Lebensdauer. Insbesondere aerodynamische Lager mit Nuten profitieren
von einer hohen Steifigkeit und einem reproduzierbaren Verhalten unter Einhlatung von
ähnlichen Fertigungsbedingungen, weswegen sich diese gut für kleine rotierende Maschinen
eignen. Solche aerodynamischen Lager werden jedoch meistens unter der Annahme eines
idealen Gases modelliert, welche nicht immer zulässig ist; zum Beispiel in Wärmepumpen
(kondensierbares Gas bei hohem Druck) und in der feuchten Umgebungsluft (atmosphä-
rische Wasserkondensation). Darüber hinaus bleiben Folien- und Spiralrillenlager zwei
streng getrennte Familien. Die üblicherweise bei der Konstruktion solcher Maschinen
angewandten Optimierungsmethoden berücksichtigen die Robustheit nicht. Diese Arbeit
untersucht diese Probleme. Die klassische Theorie der aerodynamischen Lager basierend
auf Nuten, die Narrow Groove Theory, wird experimentell unter dynamischen Bedin-
gungen validiert. Hierzu dient ein Versuchsaufbau, bestehend aus einer Impulsturbine,
welche eine bis zu 100 000 U/min rotierenden 16 mm Welle auf zwei aerodynamischen
Radiallagern mit pfeilförmigen Nuten (HGJBs) antreibt. Die Lagerhülsen werden von
piezoelektrischen Vibratoren in zwei orthogonalen Richtungen angeregt, wodurch die
dynamischen Impedanzen der Lager abgeleitet werden können. Die Messungen sind in
guter qualitativer Übereinstimmung mit der Theorie, obwohl die berechneten Steifigkeits-
und Dämpfungsparameter der Lager 23%, und 29% niedriger als die Messwerte sind. Der
Einfluss von feuchter Luft und realer Gaseigenschaften auf zylindrischen Luftlagern und
HGJBs wird theoretisch und numerisch unter variablen Betriebsbedingungen untersucht.
Die Realgaseekte zeigen einen negativen Einfluss auf die Tragfähigkeit und können je nach
Bedingungen einen positiven oder negativen Einfluss auf die Stabilität haben. Feuchte
Luft hat einen vernachlässigbaren Einfluss auf die Tragfähigkeit, während die Stabilität
von HGJBs um bis zu 25% reduziert werden kann. Die Auswirkungen der Kondensation
eines reinen Fluids werden an einem eindimensionalen Linearlager bewertet. Ein Ver-
suchsaufbau, bestehend aus einem radialen Rayleigh-Lager mit 20 mm Durchmesser, das
sich mit bis zu 30 000 U/min in druckbeaufschlagtem R245fa-Kältemittel dreht, erlaubt
es, dass vorgeschlagene Modell experimentell zu validieren, indem der Druck innerhalb des
Gasfilms gemessen wird. Die theoretischen Eigenschaften eines Gasfilms im verdichteten
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Zusammenfassung

Zustand werden experimentell beschrieben.
Die Hybridisierung von Folienlagern mit aerodynamischen Axiallagern mit sprialförmigen
Nuten wird untersucht, um die besten Eigenschaften beider Technologien zu kombinieren.
Ein Modell, das auf der simple foundation Methode basiert, erlaubt es die Nutgeometrie
dieser Hybridlager nach mehrerern Kirterien zu optimieren. Die Ergebnisse deuten darauf
hin, dass die Tragfähigkeit verbessert und gleichzeitig die viskosen Verluste reduziert wer-
den können. Die Tragfähigkeit profitiert jedoch nicht immer von den zusätzlichen Rillen.
Letzendlich wird ein neues Konstruktionsverfahren vorgeschlagen, das die Robustheit
der aerodynamischen Lager gegenüber Herstellungsfehlern maximiert und auf HGJBs
angewendet wird. Basierend auf einer berechneten Tabelle mit dimensionsloser kritischer
Masse wird dieser Hyperraum für einen bestimmten Rotor dimensioniert und gescannt.
Dies ermöglicht die Bestimmung der Bereiche, welche die grössten Abweichungen, sowohl
in der Nuttiefe, als auch im im Radialspiel, zulassen. Das Verfahren führt zu einer Pareto-
front der besten Fertigungstoleranzen, basierend auf den optimierten Lagerparameter.

Schlagworte: Energie, Aerodynamisches Lager, Reales Gas, Modellierung, Systemi-
dentifikation, Experiment, Design, Optimierung
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1 Introduction

1.1 Motivation

The Paris agreement [1] is seen as the response of most nations to the threat of climate
change, enforcing a decarbonization of all activity sectors, with an objective for the
European Union (EU) to reach net 0 carbon dioxide emissions in the second half of the
21st century. In 2016, 20% of EU’s CO2 emissions resulted from road transport [2], while
the residential sector contributed to half as much [3], mostly for heating purposes. In both
sectors, the pathway for decarbonization consist in a major shift toward electrification
[4], switching from direct use of fossil fuel to the EU’s electricity mix, which is called to
switch massively from fossil to renewable sources. The generalized use of heat pumps for
households heating has a great potential of lower net CO2 emissions only if the coefficient
of performance (COP) compensates for the overall conversion/transport efficiency of
fossil fuel fired thermal power plants, a condition that is not always met. An efficient
and compact compressor technology is paramount to achieve both high COP while being
economically advantageous [5]. In the transportation sector, fuel cells (FC) and batteries
are both being extensively investigated by the automotive industry as mean of embedded
energy storage. Efficiency and compactness are key characteristics to achieve mass
penetration. Typically, the Proton Exchange Membrane (PEM) is the leading technology
for fuel cells in the automotive industry because of its high power density, which can be
further increased together with the electrical efficiency if pressurized air is forced into the
stack [6], typically by the mean of a centrifugal compressor. Figure 3.75 illustrates these
two applications, heap pumping and PEM-FC pressurization, employing a centrifugal
compressor.

Both heat pump cycles and PEM fuel cells are sensitive to pollutants: lubricant oil
transported from the compressor in the refrigerant loop lowers the heat transfer coefficient
in heat pumps [7]. In PEM, oil-polluted air fatally poisons the stack. Oil-free turbocom-
pressors can fulfill all the requirements of cleanliness, high power density and efficiency. A
dynamic compression allows a wide operating range in both pressure ratio and mass flow
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Figure 1.1 – Schematic principle of an heat pump cycle and a pressurized fuel cell

rate, as well as a potential for high isentropic efficiency. The use of aerodynamic bearings
enables high speed rotors (and therefore reduced dimensions) thanks to very low friction
coefficients, cleanliness by the absence of secondary lubricant and a high lifespan compared
to other bearing technologies due to absence of physical contact between mechanical
parts.

The use of the ideal gas law for the modelling of bearings have been the state of the art
for decades, since most applications have been actually operating in low-pressure, high-
temperature conditions with a low risk of phase transition. Because aerodynamic bearing
typically operate with a near-isothermal behavior, a local increase in gas film pressure
can lead to the saturation of the lubricant and subsequent phase change, a problem which
can occur not only in pure condensable fluids (refrigerants), but also in humid air, as
the water content can condensate if the dew pressure is reached. In case of refrigerant-
lubricated bearings operating close to the critical point, the compressibility of the gas
increases and deviates from the ideal gas law. The path leading to the two phenomenon
is represented in en temperature-entropy diagram in Figure 1.2. The further development
of gas bearing in (inverse) organic Rankine cycles and PEM-FC pressurization is limited
by the understanding of gas lubrication in conditions of high pressure gases subject to
real gas and two-phase flow effects. These effects have been insufficiently explored in
the literature, both experimentally and theoretically. The available literature is at best
extremely case-specific, making no use of non-dimensional numbers and provide a poor
understanding of the mechanism playing a role in the relevant phenomenon, as it will
later developed in dedicated sections.
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Figure 1.2 – Saturation curve in a temperature-entropy diagram, schematically showing the
path of two isothermal compressions occurring in gas bearings: a compression subjected to
a phase change of the lubricant, and a compression subjected to real-gas effects triggered
by the proximity of the critical point

1.2 The grooved gas bearings

The gas bearing technology has been a research topic for the last six decades and
accompanied the rapid development of aerospace and nuclear industry in the mid-20th

century [8]. During the past two decades, gas bearing made their way to small-scale
centrifugal compressors of vapor compression (heat pump) cycles and as multi-purpose
gas compressors, including the fuel cell pressurization for embedded applications. Among
the gas bearing technologies applied to turbomachinery, compliant foil bearings (Figure
1.5) and spiral groove bearings (Figure 1.4) are notorious, with former occupying the
larger scale (typically above a rotor diameter of 30 mm) and latter the smaller scale.
Aerodynamic bearings are prone to sub-synchronous whirl because of the compressible
nature of the lubricant, which induces a frequency-dependency of the bearing impedance
on top of high cross-coupled stiffnesses and low damping coefficients. First described as a
"half-speed whirl" because it appears, for simple plain cylindrical bearings, in the form of
a growing orbit whirling at approximately half the synchronous frequency, as illustrated in
Figure 1.3). This instability has been the major issue in the development of this technology
in the early 1960’s [8]. Grooved bearings mitigate this stability issue with the pumping
effect of the grooves in order to reduce the cross-coupled stiffness while improving the
damping of the gas film. In order to guarantee a stable operation, a very tight clearance
is required as illustrated in Figure 1.6, which has very stringent manufacturing tolerances
typically ranging in 10% of the clearance. This tight range of feasibility is a bottleneck for
cost-effective mass production of high-speed rotors with HGJBs and motivate a significant
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research effort for means of improving the stability threshold of gas lubricated bearings,
which would result in a relaxation of the manufacturing constraints and thus lead to
reduced costs. Such methods include the use of flexibly supported bushings [9], external
magnetic dampers [10] or enhanced bearing geometries [11]. However, typical design
strategy aim at maximizing the nominal stability of a rotor-bearing system with little
attention paid to the actual sensitivity of the stability against manufacturing deviations
on critical parameters such as the bearing clearance. When accordingly designed, grooved
bearings generally enjoy a large stiffness and stability, but they do not tolerate any
touch-down at high speed and have a limited load capacity at high eccentricity. Foil
bearings deal with the sub-synchronous instability problem with a compliant surface,
which provides a taylorable clearance distribution and additional damping thanks to the
rubbing between layers of foils. This also allows a tolerance against a rupture of lubricant
film at high speed (leading to a direct mechanical contact between moving parts) and
can comply with thermal and centrifugal growth of the rotor. However, this technology
suffers from a high sensitivity on geometrical properties of the compliant structure for
both their static and dynamic properties [12], which cannot always be repeated. Finally,
they typically provide a lower stiffness because of the compliant structure added in series
with the gas film. The two families of gas bearings have remained surprisingly segregated
during the past decades, with very limited attempts to combine grooved and foil bearing
in a quest to combine the best of the two worlds.

Ω

f

t

A

Subsynchronous
Instability

Ωc

!c

Figure 1.3 – Illustration of a spectrum waterfall plot (frequency-time-amplitude) of an
accelerating airborne rotor (of synchronous frequency Ω) experiencing a sudden sub-
synchronous instability emerging at the rotor frequency Ωc with a whirl frequency ωc

The further development and improvement of aerodynamic bearing in the scope of
high-speed turbomachinery for the mentioned applications follows three key pathways:
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Grooved journal
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a) Herringbone grooved journal bearing

Inward-pumping spiral grooves
Smooth seal region

b) Inward-pumping spiral groove thrust bearing

Figure 1.4 – Journal and axial thrust spiral groove bearings

1) An in-depth understanding of phenomena likely to appear in actual gas lubricant, due
to the proximity to the critical point (real gas effects), to a phase change of the lubricant
(condensation) or to the dew point of moist air (humid air effects). These effects on gas
lubrication and on bearing performance are, at best, barely investigated in the literature,
although applications of aerodynamic bearing are prone to meet conditions where such
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Figure 1.5 – Journal and axial thrust foil bearings

effect may have a significant influence.

2) The identification of the relevant optimization procedure for the design issue of gas
bearing, especially regarding the constraint on stability and the tight manufacturing
tolerances. The quest for cost-effective and mass-oriented manufacturing would benefit
from new optimization approaches.

3) A exploration of new gas bearing layouts at the interface between foil and grooved gas
bearing families, in an attempt to combine the best of the two worlds in the form of foil
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Figure 1.6 – Comparison of a typical gas bearing clearance with other small-scale corpora

bearings enhanced with spiral grooves.

1.3 Goal and objectives

The goal of the thesis is to explore the three mentioned approaches to improve the
understanding of non-ideal gas effects occurring on aerodynamic bearings, improve the
design methodology of such mechanical systems and propose new layouts. In order to
reach this goal, the objectives are listed as follows:

1. Implementation of a numerical model of rigid gas journal bearing based on the
theory of lubrication able to accommodate diverse non-ideal gas effects

2. Validation of the model by the mean of a novel test rig able to experimentally
measure the dynamic impedance of HGJBs in ambient air

3. Theoretical and numerical assessment of the effects of real gas, humid air and
condensation on various geometries of aerodynamic bearings

4. Validation of the model in saturation condition by the mean of a dedicated test rig
operating in refrigerant

5. Development of new optimization techniques suitable of the maximization of ro-
bustness in aerodynamic bearings

6. Assessment of the potential of foil gas bearings enhanced with spiral grooves

7
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1.4 Thesis outline

The thesis is articulated around three chapters.

Chapter 2 introduces the theory and numerical tools for the modelling of aerodynamic
bearings. The Narrow Groove Theory (NGT) is derived. The perturbation method
and the procedure for the estimation of linear dynamic force coefficients (stiffness and
damping) are presented. The output of the numerical tool is compared to published
numerical results for sanity check. A test rig for the experimental evaluation of dynamic
force coefficients of 16 mm air-lubricated HGJBs is presented. Results at different rotor
speed, excitation frequency and static eccentricities are presented and compared to the
numerical predictions, with good agreement. This chapter led to one published journal
paper.

Chapter 3 investigates different aspects of non-ideal gas lubrication on aerodynamic
bearings, with a focus on grooved bearings. The real-gas effects are investigated with
non-dimensional numbers on three different bearing types with the load capacity and
stability (critical mass) as comparison metrics. The effects of humid air are also studied,
with the development of a modified Reynolds equation and the NGT able to account for
partial condensation of moisture in the lubricant. The model is employed to address these
effects on load capacity and stability. Finally, the theory for the modelling of bearings
with a saturated gas lubricant prone to condensation is proposed. The numerical model
is applied on three linear bearing geometries and general effects on the pressure field
are investigated. A test rig, consisting of a short rotor on a Rayleigh step bearing, is
presented. The apparatus, that is able to measure the pressure of the bearing gas film in
several locations, is ran in refrigerant and experimentally validates the numerical model
and the underlying theory. This chapter led to three published journal papers, one for
each section.

Chapter 4 explores new possibilities in bearing layouts and design procedure. A new
design of axial thrust gas bearing is proposed, which consists of a compliant foil bearing
enhanced with spiral grooves manufactured on its top foil. A numerical model is developed
and implemented, associating the NGT with a compliant bearing structure. Multi-
objective optimization of the groove pattern allows to find Pareto-optimum geometries
with the load capacity and the drag losses as objectives. It is found that the spiral grooves
can improve the load capacity and/or the drag losses of such thrust bearings. Finally,
a new optimization method for grooved journal bearing is proposed, allowing to design
gas bearings maximizing the robustness against manufacturing errors rather than sole
stability metric. The method is applied on a case study to appreciate the dominant
parameters allowing a large manufacturing tolerance of grooved bearings. This chapter
led to two published journal papers, one for each section.
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1.5 Aspects of novelty

The presented thesis contains several aspects of novelty, which are summarized below:

1. Experimental validation of the modelling theory of grooved bearing by the mea-
surement of dynamic force coefficients of herringbone-grooved journal bearings in
air

2. Non-dimensional investigation of real-gas effects on lubrication and gas bearing
performance (load capacity and stability of plain and herringbone-grooved journal
bearing)

3. Adaptation of the Reynolds equation to account for partial condensation in humid
air lubricated bearings. Non-dimensional investigation of humid air effects on
lubrication and gas bearing performance (load capacity and stability of plain and
herringbone-grooved journal bearing).

4. Formulation of a physically consistent model to predict pressure fields of saturated
gas bearing experimentally validated on a refrigerant-lubricated Rayleigh-step
journal bearing

5. Theoretical investigation of axial thrust foil bearings enhanced with spiral grooves
improving the load capacity and/or reducing the drag torque

6. New optimization strategy and tolerancing technique allowing a cost-oriented
design of herringbone-grooved journal bearings maximizing the robustness against
manufacturing errors
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2 Theory

The modelling of fluid bearings began with the classic article of Reynolds in the 19th

century. Starting from the Navier-Stokes equations and making a number of assumptions
regarding the dominant forces in the fluid film, a comprehensive differential equation,
the Reynolds equation, is obtained. Under the assumption of thin viscous Newtonian
fluid, it is valid for both compressible and incompressible lubricants. This theory has
long proven its reliability as a design and investigation tool in a very broad range of
bearing layout and operating conditions. Analytic solutions to the Reynolds equation
were first developed for simplistic conditions such as infinitely long, centered plain
bearings. With the advancement of computational resources, numerical methods such as
the Finite Difference Method (FDM) emerged to approach solutions of less restrictive
cases, including bearing of finite length, eccentric and with a more complex geometry than
smooth coaxial cylinders. However, the use of textured bearings was too demanding in
term of computational resources, as discretization needs to resolve the texturing pattern
to approach a solution. In particular, the use of spiral grooves to pump the lubricant
toward the center of the bearing was beyond the grasp of direct numerical methods.

Whipple [1] introduced a generalization of the Reynolds equation able to account for
the effect of infinitesimal spiral grooves manufactured on the bearing, without having to
resolve the individual grooves one by one. This tool, the Narrow Groove Theory (NGT),
add the assumption of infinitely narrow grooves. A consequence of this assumption is that
the pressure follows a linear profile between each groove-ridge pair, and therefore the fluid
can be considered locally incompressible, regardless of its macroscopic compressibility.
The groove-ridge pressure fluctuations become insignificant at macroscopic scale, yielding
a smooth pressure field. Practically, the NGT is a Reynolds equation with additional
terms accounting for the presence of grooves.

The NGT being a modified Reynolds equation, any numerical method suited for the
Reynolds equation should fit the NGT. Historically, it was first solved using a perturbation
method around the centered position [2], leading to a static pressure field (generating the
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Chapter 2. Theory

static load capacity) and a perturbed pressure field (generating the dynamic impedance).
The NGT can be simplified to the point where the static field of a radial bearing can be
analytically integrated. The perturbed pressure field, result of the solution of a linear
differential equation, therefore leads to a solution valid only in the vicinity of the bearing
center. This initial approach propagated a misconception over the years on the validity
domain of the NGT, with authors such as Bonneau and Absi [3] and Zirckelback and
San Andres [4] comparing the centered NGT against their own eccentric Finite-Element
simulations of grooved journal bearing, unfairly concluding that NGT is not valid at high
eccentricity. However, the NGT remains valid in eccentric solution, as shown by Castelli
and Vohr [5], who validated the eccentric NGT with experimental data. They used a
Finite Difference scheme to solve the static pressure field of a HGJB. Authors have used
this method to either solve the NGT in a time-wise integration [6] or after performing
a perturbation method [2], which holds the advantage of directly providing the linear
frequency-dependent force coefficients (stiffness and damping coefficients). No reference
used a Finite Element and Finite Volume methods to solve it, although nothing prevents
it a priori.

With the increasing computational power of the late 20th century, authors have solved
the Reynolds equation on bearing with grooves of finite length, either with the Finite
Element Method (FEM) (Bonneau and Absi [3], Zirckelback and San André [4], Faria and
San Andrés [7]), FDM (Constantinescu and Castelli [8]) or Finite Volume Method (FVM)
(Yu et al. [9]). An overview of the different modeling approaches is summarized in Figure
2.1. However, a bearing with a finite number of rotating grooves is excessively difficult
to analyze, since the pressure field never reaches a steady state, making the Reynolds
much more difficult to treat numerically. Additionally, the necessity to discretize the fluid
domain in such a way that it resolves well the individual grooves and ridges leads to a
very large number of discretization points, and therefore a large computational cost.

Overall, its computational simplicity makes the NGT a good candidate not only as design
tool, but also as a bearing analysis framework since it can inexpensively capture the
overall effect of rotating grooves, while methods resolving the Reynolds equation struggle
to obtain a solution and extract useful information out of it. Therefore, the NGT is
chosen as the modelling tool for grooved gas bearings, using the perturbation method to
distinguish between static and dynamic pressure fields. The Reynolds equation is used to
model the other type of gas bearings investigated in this work. The FDM is selected to
solve the constitutive equations, as it is a versatile method, robust against modifications
that might be brought to the Reynolds equation to capture non-ideal gas lubrication.

The present chapter presents the development of basic lubrication equations as well as the
adopted numerical method to solve them and extract bearing properties. This theory is
common to all chapters, however, each chapter will provide its complementary theoretical
background, specific to each problem.
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Figure 2.1 – Approaches for the modelling of grooved gas bearings

2.1 Narrow Groove Theory

The NGT aims to describe the overall effect of grooves manufactured on either the rotating
or the static side of a gas bearing, without resolving the individual effect of a groove. It
is based on the same hypothesis as the Reynolds equation (developed in Appendix A):

• The lubricant is a Newtonian fluid

• The film thickness is much smaller than the two other orthogonal directions

• The fluid characteristics (viscosity, pressure, density) are constant across the film
thickness

• Viscous forces dominate the inertia and the flow is laminar
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On top of the classic assumptions of lubrication, the NGT assumes that the grooves
are of infinitesimal width, which would be approached by a bearing having a infinite
number of grooves, as pictured in Figure 2.2. The result is a global modified Reynolds
equation, which can be solved conveniently without the use of fine meshes to resolve each
groove. The theory was pioneered by Whipple and Vohr and Pan for arbitrary geometries.
Vohr and Chow applied the theory on journal bearing and to investigate the performance
of Herringbone Grooved Journal Bearings (HGJBs), and Malanoski used it to evaluate
the performance of Spiral Groove Thrust Bearings (SGTBs). Hsing derived the theory
adding correction terms accounting for rarefied gas and turbulence, by modification of
the viscosity term. Following the work of Vohr and Chow [2] and Hsing [10], the classical
NGT is derived here.

Consider the control volume described in Figure 2.3. The grooved and smooth members
move at a linear velocity ua and ub respectively. The same four assumptions as for the
Reynolds equation are made for the following development.

x

p

N grooves

2N grooves

Smooth pressure

Figure 2.2 – Pressure fields for a large yet finite number of grooves N and an infinite
number of grooves, resulting in the smooth profile

hg hr

ua

ub

∆x

δ
∆z

α∆x (1− α)∆x

~x

~y
~z

β̂

Figure 2.3 – Control volume employed for the derivation of the smoothed pressure field
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The continuity equation requires that:

∆z
∂

∂z
(∆ψz) + ∆x

∂

∂x
(∆ψx) +

∂

∂t
[αhg + (1− α)hr] ρ∆θ∆z = 0 2.1

The general mass fluxes in directions x and z are expressed as follows:

ψx = −ρh
3

12µ

(
∂p

∂x

)
+
ua + ub

2
ρh 2.2

ψz = −ρh
3

12µ

(
∂p

∂z

)
2.3

The general mass flux orthogonal to the direction of the groove is :

ψn = ψx sin β̂ − ψz cos β̂ = − ρh3

12µθ

(
∂p

∂x

)
sin β̂

+
ua + ub

2
ρh sin β̂ +

ρh3

12µ0

∂p

∂z
cos β̂

2.4

The mass flow continuity across the step requires that:

ψng = ψnr + uaρδ sin β̂ 2.5

Combining equations 2.5 and 2.4 leads to the following expression:

h3
g

µ

(
∂p

∂z

)
g

1

tan β̂
−
h3
g

µ

(
∂p

∂x

)
− h3

r

µ

(
∂p

∂z

)
r

1

tan β̂
+
h3
r

µ

(
∂p

∂x

)
r

= −6µ (ub − ua) δ 2.6

A smoothed pressure P is defined:

P (z + ∆z, θ)− P (z, θ) =

∫ z+∆z

z

∂p

∂z
dz 2.7

P (z, x+ ∆x)− P (z, x) =

∫ x+∆x

x

∂p

∂x
dx 2.8

Assuming an infinite number of grooves, the terms ∆z and ∆x tend to 0, resulting in the
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following expressions:

∂P

∂z
= α

(
∂p

∂z

)
g

+ (1− α)

(
∂p

∂z

)
r

2.9

∂P

∂x
= α

(
1

r

∂p

∂x

)
0

+ (1− α)

(
∂p

∂x

)
2.10

The continuity of the local pressure gradient in the groove direction imposes:

(
∂p

∂z

)
g

+

(
∂p

∂x

)
g

1

tan β̂
−
(
∂p

∂z

)
r

−
(
∂p

∂x

)
r

1

tan β̂
= 0 2.11

From Eq. 2.6, 2.9, 2.10 and 2.11, a system of 4 equations with 4 unknown is built and
solved to obtains expressions for the local pressure gradients in function of the smooth
pressure gradient in x and z directions. The mass flows result from an integration of the
mass fluxes over the ridge and the groove:

∆ψz =

∫ α∆x

0
ψzgdx+

∫ ∆x

α∆x
ψzrdx 2.12

∆ψx =

∫ α∆z

0
ψxgdz +

∫ ∆z

α∆z
ψxrdz 2.13

Taking the limits ∆x→ 0 and ∆z → 0, the mass fluxes ψij (i = z, x ; j = r, g) can be
considered constant within the integrated domain. Therefore:

∆ψz = ψzgα∆x+ ψzr(1− α)∆x

∆ψx = ψxgα∆z + ψxr(1− α)∆z
2.14

The mass flows are expressed as follows:

∆ψz = − ρ∆x

12µ
[
(1− α)h3

g + αh3
r

]
 −α(1− α)6µ(ub − ua)δ

(
h3
g − h3

r

)
sin β̂ cos β̂

+
[
α(1− α)

(
h3
g − h3

r

)2
sin2 β̂ + h3

gh
3
r

]
∂zP

+
(
h3
g − h3

r

)
α(1− α) sin β̂ cos β̂∂xP

 2.15
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∆ψx = − ρ∆z

12µ
[
(1− α)h3

g + αh3
r

]


6µ(ub − ua)[α(1− α)(h3
g − h3

r) sin2 β̂δ]

−6µ(ub + ua)
[
(1− α)h3

g + αh3
r

]
(αhg + (1− α)hr)

+α(1− α)(h3
g − h3

r)
2 sin β̂ cos β̂∂zP

+
[
α(1− α)(h3

g − h3
r)

2 cos2 β̂ + h3
gh

3
r

]
∂xP


2.16

Applying the continuity (Eq. 2.1) and non-dimensionalization, the following expression is
obtained in cylindrical coordinates, suited for journal bearings, as illustrated in Figure
2.4:

∂θ

[
ρ̄

µ̄

(
f1∂θP̄ + f2∂z̄P̄ + cs sin β̂f4

)]

+∂z̄

[
ρ̄

µ̄

(
f2∂θP̄ + f3∂z̄P̄ − cs cos β̂f4

)]

= Λ∂θ (ρ̄f5) + σ∂t (ρ̄f5)

2.17

e0x

θ

x

y

e0y

z
N

Ω1

R

h0

Ω2

Figure 2.4 – Schematic representation of a journal bearing

With ∂• =
∂

∂•
and following the nomenclature developed in Eq. 2.18 and 2.19.
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θ =x/R

z̄ =z/R

P̄ =P/Pa

ρ̄ =ρ/ρa

µ̄ =µ µa

Λ =
6µ(Ω1 + Ω2)R2

Pah2
0

σ =2
ωex

Ω1 + Ω2
Λ

t̄ =tωex

Ω1 =ua/R

Ω2 =ub/R

2.18

h̄r =
hr
h0

h̄g =
hg
h0

δ =
δ

h0

g1 =h̄3
gh̄

3
r

g2 =(h̄3
g − h̄3

r)
2α(1− α)

g3 =(1− α)h̄3
g + αh̄3

r

cs =
6µ(Ω2 − Ω1)R2

Pah2
0

α(1− α)δ̄ sin β̂

f1 =
g1 + g2 sin2 β̂

g3

f2 =
g2 sin β̂ cos β̂

g3

f3 =
g1 + g2 cos2 β̂

g3

f4 =
h̄3
g − h̄3

r

g3

f5 =αh̄g + (1− α)h̄r

2.19
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If the groove parameters α, β̂, δ are constant, the equation takes the following form:

∂θ

[
ρ̄

µ̄

(
f1∂θP̄ + f2∂z̄P̄

)]
+ ∂z̄

[
ρ̄

µ̄

(
f2∂θP̄ + f3∂z̄P̄

)]
+

cs

[
sin β̂∂θ

(
ρ̄

µ̄
f4

)
− cos β̂∂z̄

(
ρ̄

µ̄
f4

)]
=

Λ∂θ (ρ̄f5) + σ∂t̄ (ρ̄f5)

2.20

The NGT requires only one additional assumption on top of the Reynolds equation: that
the grooves are on infinitesimal width. The pressure profile between a groove and a ridge
is therefore linear in a first-order Taylor development. The consequence of this assumption
is that the fluid is considered locally incompressible. Unmodelled effects might appear
with an actual gas bearing having a finite number of grooves:

• Local compressibility effect: as the groove width is finite, groove-ridge pressure
profiles deviate from linearity. As a consequence, the prediction of the overall
smooth pressure is not physically justified. The local compressibility arises with a
low number of grooves, groove angle close to π/2 and high compressibility numbers
[8].

• Edge effect: close to the edges of the bearing in contact with the ambient, the
saw-toothed pressure profile is of non-infinitesimal amplitude and cannot meet the
boundary condition imposing the ambient pressure. This is generally mentioned
as end leakage, because it provokes an increased axial mass flow at the edges. The
phenomenon becomes significant for bearing of short axial length with a low number
of grooves [10].

If the grooves vanish (hg = hr = h), the NGT boils down to the classical Reynolds
equation:

f1 = f3 =h̄3 2.21

f2 = f4 = cs =0 2.22

f5 =h̄ 2.23
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2.2 Perturbation

The following section, which deals with the mathematical and numerical manipulation, is
based on the NGT but remains otherwise valid for the Reynolds equation.

The NGT expressed in Eq. 2.20 contains both pressure and density terms. In the vast
majority of the gas bearing literature, the two terms are linked together using the ideal
gas law and the assumption of isothermal compression, justified by the aspect ratio of the
gas film, which has large heat exchange areas compared to its bulk [11]. Following these
two assumptions, density terms can be substituted by pressure terms directly, easing
the treatment of the equation. However, another change of variable is chosen, in order
to maintain some versatility in the assumptions under which a particular bearing may
operate (such as non-ideal gas behavior). This change of variable, under the isothermal
assumption, is as follows:

∂P

∂Y
=

(
∂P

∂ρ

)
T

· ∂ρ
∂Y

2.24

Where Y denotes indifferently θ or z̄. Moreover, the bulk modulus, β, is introduced
following the equation:

ρ

(
∂P

∂ρ

)
T

= β 2.25

Under the common ideal gas assumption, the expression of
(
∂P
∂ρ

)
T
is simplified as follows:

(
∂P

∂ρ

)
T

= rT 2.26

The bulk modulus is non-dimensionalized by the ambient pressure to obtain β̄. Fur-
thermore, if the fluid is assumed to be isoviscous (as viscosity mostly depends on the
temperature), the resulting form of the NGT is:

∂θ
[
β̄ (f1∂θρ̄+ f2∂z̄ρ̄)

]
+ ∂z̄

[
β̄ (f2∂θρ̄+ f3∂z̄ρ̄)

]
+cs

(
sin β̂∂θ (f4ρ̄)− cos β̂∂z̄ (f4ρ̄)

)
−Λ∂θ (f5ρ̄)− σ∂t̄ (f5ρ̄) = 0

2.27

This expression contains only density and bulk modulus terms.

In order to solve the NGT equation, a perturbation method, introduced by Lund for gas
bearings [12], is applied around a particular static eccentricity, resulting in the linearization
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of the equation to approximate its solution around its position. The method allows to
compute the linear dynamic properties (stiffness and damping) of a gas bearing while
keeping the numerical and computational cost low. The drawback is that the obtained
solution are strictly valid only for infinitesimal amplitudes of motion around the static
position. The center of the shaft, with constant eccentricity ratios ε0,x and ε0,y in the
two directions perpendicular to the angular speed vector, is perturbed by an harmonic
motion around the equilibrium position, of amplitude ε1,x and ε1,y and frequency ωex .
The resulting clearance, illustrated in Figure 2.5, follows:

h̄ = h̄0 − ε1x cos θeit̄ − ε1y sin θeit̄ 2.28

= 1− ε0x cos θ − ε0y sin θ − ε1x cos θeit̄ − ε1y sin θeit̄ 2.29

e0x

θ

x

y

e0y

z
N

e1x

e1y

Figure 2.5 – Schematic representation of perturbed bearing

The density and bulk modulus follow the form of the perturbed clearance:

fi = f0,j + ε1,xf1x,je
it̄ + ε1,yf1y,je

it̄ , j ∈ {1, 2, 3, 4, 5} 2.30

ρ̄ = ρ̄0 + ε1xρ̄1xe
it̄ + ε1yρ̄1ye

it̄ 2.31

β̄ = β̄0 + ε1x

(
∂β̄

∂ρ̄

)
0

ρ̄1xe
it̄ + ε1y

(
∂β̄

∂ρ̄

)
0

ρ̄1ye
it̄ 2.32

Eq. 2.30 to 2.32 are injected in Eq. 2.27. Zeroth and first order terms (O(ε1,x) and
O(ε1,y)) are grouped while neglecting higher order terms. It outputs three equation: a
steady-state, non-linear partial differential equation at the equilibrium position (Eq. 2.33)
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and two linear Partial Differential Equations (PDEs), representing the pressure field when
perturbed in two orthogonal directions, represented for one arbitrary direction in Eq.
2.34.

∂θθρ̄0 · [β̄0 · f1,0]

+∂θρ̄0 · [β̄0 · ∂z̄f2,0 − Λ · f5,0 + f2,0 · ∂z̄β̄0 + β̄0 · ∂θf1,0

f1,0 · ∂θβ̄0 + cs · sin β̂ · f4,0]

+∂z̄z̄ρ̄0 · [β̄0 · f3,0]

+∂z̄ρ̄0 · [β̄0 · ∂θf2,0 + f2,0 · ∂θβ̄0 + β̄0 · ∂z̄f3,0 2.33

+f3,0 · ∂z̄β̄0 − cs · cos β̂ · f4,0]

+∂θz̄ρ̄0 · [2 · β̄0 · f2,0]

+ρ̄0 · [−Λ · ∂θf5,0 − cs · (cos β̂ · ∂z̄f4,0 − sin β̂ · ∂θf4,0)]

= 0

∂θθρ̄1 · [β̄0 · f1,0]

+∂θρ̄1 · [β̄0 · ∂z̄f2,0 − Λ · f5,0 + f2,0 · ∂z̄β̄0 + β̄0 · ∂θf1,0 + f1,0 · ∂θβ̄0

+∂ρ̄β̄0 · (f2,0 · ∂z̄ρ̄0 + f1,0 · ∂θρ̄0) + cs · sin β̂ · f4,0]

+∂z̄z̄ρ̄1 · [β̄0 · f3,0]

+∂z̄ρ̄1 · [β̄0 · ∂θf2,0 + f2,0 · ∂θβ̄0 + β̄0 · ∂z̄f3,0 + f3,0 · ∂z̄β̄0

+∂ρ̄β̄0 · (f2,0 · ∂θρ̄0 + f3,0 · ∂z̄ρ̄0)− cs · cos β̂ · f4,0]

+∂θz̄ρ̄1 · [2 · β̄0 · f2,0]

+ρ̄1 · [∂θ(∂ρ̄β̄0) · (f2,0 · ∂z̄ρ̄0 + f1,0 · ∂θρ̄0)− cs · (cos β̂ · ∂z̄f4,0 −
sin β̂ · ∂θf4,0)− Λ · ∂θf5,0 + ∂z̄(∂ρ̄β̄0 · (f2,0 · ∂θρ̄0 + f3,0 · ∂z̄ρ̄0) 2.34

+∂ρ̄β̄0 · (2 · f2,0 · ∂θz̄ρ̄0 + f1,0 · ∂θθρ̄0 + ∂θf2,0 · ∂z̄ρ̄0 + ∂θf1,0 · ∂θρ̄0

+f3,0 · ∂z̄z̄ρ̄0 + ∂z̄f2,0 · ∂θρ̄0 + ∂z̄f3,0 · ∂z̄ρ̄0)− iσf5,0]

+ ∂θβ̄0 · (f2,1 · ∂z̄ρ̄0 + f1,1 · ∂θρ̄0)− cs · (cos β̂ · (f4,1 · ∂z̄ρ̄0 + ρ̄0 · ∂z̄f4,1)

− sin β̂ · (f4,1 · ∂θρ̄0 + ρ̄0 · ∂θf4,1))− Λ · (f5,1 · ∂θρ̄0 + ρ̄0 · ∂θf5,1)

+∂z̄β̄0 · (f2,1 · ∂θρ̄0 + f3,1 · ∂z̄ρ̄0)

+β̄0 · (2 · f2,1 · ∂θz̄ρ̄0 + f1,1 · ∂θθρ̄0 + ∂θf2,1 · ∂z̄ρ̄0 + ∂θf1,1 · ∂θρ̄0

+f3,1 · ∂z̄z̄ρ̄0 + ∂z̄f2,1 · ∂θρ̄0 + ∂z̄f3,1 · ∂z̄ρ̄0)− σρ̄0∂t̄f5,1]

= 0

The boundary conditions usually applied are as follows for full journal bearings:

24



2.2. Perturbation

• Ambient pressure is imposed on the axial ends of the bearing

P̄ (θ,±Lz/D) = 1 2.35

• The pressure field is periodic in the circumferential direction

P̄ (θ, z̄) = P̄ (θ + 2π, z̄) 2.36

Plus, an axial mass flow continuity is imposed at the boundary between dissimilar
grooved zones, typically between the grooved and land region at z̄ = ±Lland/D:

ṁz,	 = ṁz,⊕ 2.37

There 	 and ⊕ denotes the limit before and after the boundary, respectively. For the
case there a grooved zone ends to begin a smooth zone (land), the equation translates
into the following equality:[

csf4ρ̄ cos β̂ − f2β̄∂θρ̄− f3β̄∂zρ̄
]
groove

=
[
−h̄3β̄∂zρ̄

]
land 2.38

Similarly, the continuity of axial mass flow is imposed at z̄ = 0. Imposing a axial
mass flow of zero at this position would correspond to a bearing operating in symmetric
conditions in terms of bearing geometry, displacement (purely radial) ambient conditions.
The gain would be to decrease the simulation domain to a half of bearing, reducing
the computation cost. However, preferring a mass flow continuity allows a broader field
of applications, at the cost of a larger computational effort. The perturbation of the
continuity equations leads to the following zeroth equation:

[cs · cos β̂ · f4,0 · ρ̄0 − β̄0 · f3,0 · ∂z̄ρ̄0 − β̄0 · f2,0 · ∂θρ̄0]groove = [h̄3
0 · β̄ · ∂z̄ρ̄0]land 2.39

And the first order equation:

[cs · cos β̂ · f4,0 · ρ̄1 − β̄0 · f2,1 · ∂θρ̄0 − β̄0 · f3,0 · ∂z̄ρ̄1 − β̄0 · f3,1 · ∂z̄ρ̄0

−∂ρ̄β̄0 · f2,0 · ρ̄1 · ∂θρ̄0 − ∂ρ̄β̄0 · f3,0 · ρ̄1 · ∂z̄ρ̄0

−β̄0 · f2,0 · ∂θρ̄1 + cs · cos β̂ · f4,1 · ρ̄0]groove

=[
3h̄2

0 · h̄1 · β̄0 · ∂z̄ρ̄0 + h̄3
0 · ∂ρ̄β̄0 · ρ̄1 · ∂z̄ρ̄0 + h̄3

0 · β̄0 · ∂z̄ρ̄1

]
land

2.40

The continuity of the pressure across the boundary between the dissimilar groove zones is
also imposed. The system of equations is solved with a finite-difference method, as it will
be developed later. The obtained static and perturbed densities are converted back to
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Chapter 2. Theory

pressure using the compressibility factor Z (P = ZρrT ), computed with an equation of
state relevant to fluid:

General Ideal gas

P̄0 = Z(ρ0,T )
Z(ρa,T ) ρ̄0 P̄0 = ρ̄0

P̄1 =
(
∂P̄
∂ρ̄

)
T,0

ρ̄1 P̄1 = ρ̄1

2.41

Parameters Z and
(
∂P̄
∂ρ̄

)
T
as well as viscosity are obtained using a fluid database [13].

The integration of the zeroth order pressure field results in the static load capacity of the
bearing:

Wx = −R2Pa

∫ L2/D

−Lz/D

∫ 2π

0
P̄0 cos θdθdz̄ 2.42

Wy = −R2Pa

∫ L2/D

−Lz/D

∫ 2π

0
P̄0 sin θdθdz̄ 2.43

W =
√
W 2
x +W 2

y 2.44

The load capacity is typically non-dimensionalized as follows:

W =
W

εPaLD
2.45

The two perturbed pressure field corresponding to an excitation frequency ωex are
integrated as follows to obtain the force coefficients corresponding to this particular
frequency, in terms of impedances:[

Zxx Zxy
Zyx Zyy

]
=

[
Kxx Kxy

Kyx Kyy

]
+ iωex

[
Cxx Cxy
Cyx Cyy

]
2.46

= −R
2Pa
h0

∫ Lz/D

−Lz/D

∫ 2π

0

[
P̄1x cos θ P̄1x sin θ

P̄1y cos θ P̄1y sin θ

]
dθdz̄ 2.47

The concept of critical mass describes the threshold rotor mass above which the bearing
exhibits a self-excited instability in the form of a whirl of growing orbit. The method
to compute this threshold is based on the frequency-dependent impedances of the gas
bearing. An equivalent impedance Z is first defined as follows [12]:
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2.2. Perturbation

Zeq =
1

2
(Zxx + Zyy)±

√
1

4
(Zxx − Zyy)2 + ZxyZyx 2.48

The critical frequency ωc is the frequency of the whirl motion becoming unstable. It is
found by finding the excitation frequency canceling the imaginary part of the equivalent
impedance :

Im(Zeq(ωc)) = 0 2.49

For the equivalent spring mass system constituted of the equivalent impedance and a
mass m, the critical mass mc is the value of m corresponding to an eigenfrequency equal
to ωc, as illustrated in Figure 2.6:

mcω
2
c = Zeq(ωc) 2.50

!c

mc

Zeq, m

0

Im(Zeq)

m = Re(Zeq)=!
2

0

!0; !ex

u
n
s
t
a
b
le

s
t
a
b
le

Figure 2.6 – Illustration of the evolution of the imaginary part of the equivalent impedance
and the equivalent mass as a function the excitation frequency ωex and the eigenfrequency
ω0 respectively

Furthermore, the critical mass is usually used in non-dimensional form as follows:

Mc = mc
Pa

2µ2L

(
h0

R

)5

2.51
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Chapter 2. Theory

2.3 Numerical implementation

2.3.1 Discretization and resolution scheme

In order to numerically solve Eq. 2.33 and 2.34, a finite difference scheme is applied.
Terms in Eq. 2.33 and 2.34 are approximated following a central difference scheme:(

∂Ψ

∂θ

)
i,j

=
Ψi+1,j −Ψi−1,j

2∆θ
+O(∆θ2) 2.52(

∂2Ψ

∂θ2

)
i,j

=
Ψi+1,j − 2Ψi,j + Ψi−1,j

∆θ2
+O(∆θ2) 2.53(

∂Ψ

∂z̄

)
i,j

=
Ψi+1,j −Ψi−1,j

2∆z̄
+O(∆z̄2) 2.54(

∂2Ψ

∂z̄2

)
i,j

=
Ψi+1,j − 2Ψi,j + Ψi−1,j

∆z̄2
+O(∆z̄2) 2.55(

∂2Ψ

∂θ∂z̄

)
i,j

=
Ψi+1,j+1 −Ψi−1,j −Ψi,j−1 + Ψi−1,j−1

4∆θ∆z̄
+O(∆z̄∆θ) 2.56

Where Ψ denotes equally ρ̄, β̄, fj(j ∈ {1, 2, 3, 4, 5}), either in static of perturbed form.
The considered grid is homogeneous, with constant values for ∆θ and ∆z̄. The grid has
Nθ and Nz̄ points in the θ and z̄ directions respectively (Figure 2.7).

j − 1 j j + 1

i− 1

i

i+ 1

1

Nθ

1 Nz

∆θ

∆z̄

z̄

θ

Figure 2.7 – Schematic representation of the discretization grid

Equations 2.39 and 2.40, which equalize the axial mass flows on the two sides of a
boundary, need a forward and backward difference scheme in the z̄ direction, depending
on the considered side of the boundary:
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2.3. Numerical implementation

(
∂Ψ

∂z̄

)
i,j,	

=
−Ψi,j−2 + 4Ψi,j−1 − 3Ψi,j

2∆z̄
+O(∆z̄2) 2.57(

∂Ψ

∂z̄

)
i,j,⊕

=
Ψi,j − 4Ψi,j+1 + Ψi,j+2

2∆z̄
+O(∆z̄2) 2.58

The discretized equations are written in the following matrix form, where bold characters
are vectors:

A0(ρ0) · ρ0 = b0 2.59

A1x · ρ1x = b1x 2.60

A1y · ρ1y = b1y 2.61

Figure 2.9 shows the general aspect of the matrices A in the case of a 5× 5 grid (Figure
2.8) corresponding to a HGJB with no land region (γ = 1). In the case of the discretized
zeroth order equation, the system is non-linear and the solution must be approached
iteratively. The matrix A0 contains terms which rely implicitly on the density the bulk
modulus β. Following [14], a guess density field is used to initialize the following process:

ρ
(n+1)
0 = (1− κ)ρ

(n)
0 + κ · (A−1

0 (ρ
(n)
0 ) · b0) 2.62

where κ ∈ [0, 1]. At each iteration, the density-dependent terms are updated with
the previously computed density vector and the system and the new density vector is
computed. Convergence is considered when the following criterion ε, typically set at 10−4,
is met: ∣∣∣∣∣ρ

(n)
k − ρ

(n−1)
k

ρ
(n−1)
k

∣∣∣∣∣ < ε ∀k ∈ {1 . . . Nθ ·Nz̄} 2.63

Once the density vector converged, it is converted back to pressure as follows:

P = ZρrT 2.64

where Z denotes here the compressibility factor evaluated at ρ and T from a fluid
database. The global process is summarized in Figure 2.10.

2.3.2 Output and comparison

A test geometry, whose parameters referring to Figure 2.11 are listed in Table 2.1,
is simulated with the implemented model. Examples of computed pressure fields are
presented in Figure 2.12 for a symmetric bearing running at Λ = 40 and two different
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Figure 2.8 – 5×5 grid of a bearing domain. P: Periodicity boundary condition, A: ambient
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Figure 2.9 – Disposition of the terms in the matrices A for a 5× 5 grid, in case of a HGJB
with γ = 1. P: Periodicity boundary condition, A: ambient boundary condition, C: mass
continuity condition

relative eccentricities. The sensitivity of the static pressure field against grid size is
investigated for Λ = 40 and εx = 0.8, with the total load capacity as a performance
metric. The results are shown in Figure 2.13. The presented values are the relative error
between each load capacity and the reference value evaluated at (Nθ = Nz̄ = 150). The
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Figure 2.10 – Process of iteratively solving the static pressure field to then compute the
perturbed pressure field for each considered excitation frequency ωex

results show to be less sensitive on the size along θ than z̄, while a good grid convergence
is reached with Nθ = 100 and Nz̄ = 80, which is applied for the rest of the investigation.

Table 2.1 – HGJB parameters employed for the examples of pressure fields

Parameter Value

α 0.5
β̂ 155◦

γ 1
h̄g 2
L/D 1

Λ 40

The static performance in eccentric position is compared to the simulation results of
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Figure 2.11 – Nomenclature of a HGJB

Bonneau and Absi [3], who implemented an Upwind Finite-Element scheme to resolve the
ridge-groove pattern without the assumptions of the NGT. Their objective was to assess
the validity domain of the NGT. The geometry of their investigated bearing is implemented
in the present model and the normalized reaction force parallel to the displacement is
computed for different relative eccentricites εx and compressibility numbers Λ. The results
are shown in Figure 2.14. The two predictions are in good agreement for every considered
relative eccentricity. The slight discrepancy visible between the two models can be
explained, at least partially, by the fact that the reference uses only 12 ridge-groove pairs
in its model, which is considered as low. At Λ = 40, the relative deviation at ε = 0.0001,
0.6 and 0.8 is 9.0%, 8.4% and 4.6%, respectively. It has to be noted that in their article,
the authors compare the eccentric FEM model with the concentric NGT and claim that
the NGT is therefore unsuited to eccentric operation. The present implementation and
results contradict this claim, suggesting that the NGT is as valid at large eccentricities as
it is in concentric position.

The prediction of frequency-dependent force coefficients is indirectly compared with
numerical results published in the literature. The reference data consist of the evaluation
of minimal critical mass of HGJBs performed by Fleming and Hamrock [15]. They
implemented Vohr and Chow’s 1D version of the NGT with perturbation around the
concentric position to optimize the geometry of HGJB, maximizing the minimum critical
mass at different compressibility numbers Λ. This performance metric is defined as
follows:

Mc,min(Λ) = min
Λ?∈[0,Λ]

Mc(Λ
?) 2.65

Mc,min is of practical interest since an accelerating rotor must remain stable at all
compressibility numbers between 0 and the target value Λ. 6 HGJB geometries, corre-
sponding to the optimum maximizing Mc,min 6 different values of Λ, are listed in Table
2.2. The present implementation of the NGT with the perturbation method is employed
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Figure 2.12 – Computed pressure fields for the test bearing at two different relative
eccentricities

to simulates these geometries and retrieve their minimum critical mass, by scanning the
range [0,Λ] in 10 steps. The simulation assumes the lubricant to be an isothermal ideal
gas. The results, displayed in Figure 2.15, are in very good agreement with the reference,
within 2% relative error at Λ = 40.
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Figure 2.13 – Relative error made on the total load capacity at different grid sizes. The
error is computed with the value evaluated at (Nθ = Nz̄ = 150) as reference
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Figure 2.14 – Comparison of the computed reaction force in the radial direction with the
output of the FEM model of Bonneau and Absi with 12 grooves. The original figure,
assumed to have its vertical coordinate reported wrong, was rescaled using Fig. 3 of the
reference, which corresponds well to Vohr and Chow [2]

Table 2.2 – HGJB geometries corresponding to the maximization of Mc,min according to
[15], for rotating grooves and Lz/D = 1

Λ 1 2 5 10 20 40

α 0.6 0.6 0.6 0.6 0.6 0.6
β̂ 143.8◦ 144.4◦ 145.9◦ 145.9◦ 158◦ 158.2◦

γ 1 1 1 1 1 1
δ̄ 1.25 1.37 1.54 1.54 2.10 2.06
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2.4 Experimental validation

Parts of the material presented in this section has been published in the following
journal article:

Guenat, E., Schiffmann, J., 2020. Dynamic force coefficients identifica-
tion of air-lubricated Herringbone Grooved Journal Bearing. Mechanical Systems
and Signal Processing 136, 106498. doi:10.1016/j.ymssp.2019.106498

While the development of foil gas bearings was accompanied by a significant amount
of experimental campaigns to validate the numerical models and get a deeper insight
into the physics governing the bearings, the literature on experimental investigation of
herringbone-grooved bearings is meager. Malanoski [16] studied the viability of the critical
mass criteria for the prediction of stability on a 38.1 mm journal supported on partially-
grooved HGJB. In accordance with the predicted critical mass, the shaft achieved stable
operation at nominal speed (60 krpm). The bearing static stiffness was also measured at
low eccentricity and was in good agreement with the theoretical prediction from the NGT,
as most points fell within ±10% of the predicted value. Cunningham et al. [17] studied
the stability of a similar layout, with 38.1 mm diameter shafts supported on two HGJBs
by achieving a stable operation up to 60 krpm. Both fully and partially grooved bearings
were investigated. The experimental campaign found a reasonable agreement between
the stability predicted following the NGT and the critical mass criteria and the observed
onset speeds of instability (Figure 2.16), with critical masses over-predicted by a factor 1.5
to 3 compared to experimental data. Later the same authors studied the static stiffness
and load-carrying capacity of these rotors up to 50 krpm and eccentricity ratios of 0.8
[18]. They concluded that the load capacity was well predicted by the linearized NGT at
low eccentricity, but followed a non-linear trend at high eccentricity ratios. Tananaka
and Muraki [19] investigated the performance of an asymmetric HGJB supporting a
16 mm diameter rotor up to 40 krpm, where grooving is much longer on one of the two
sides of the bearing in order to induce an axial flow alongside the rotor and generate
axial thrust. 100 rotors were tested up to 20.000 start-up cycles each, without noticeable
loss of performance. Yoshimoto and Takahashi [20] successfully investigated the ability
of a 14 mm diameter asymmetric HGJB to act as viscous vacuum pump to lower the
windage losses of the supported rotor. Fleming employed the NGT to study and design
externally-pressurized partially grooved HGJBs, later implemented by Stanev et al. [21] in
the form of 25.4 mm bearing, tested up to 120 krpm in non-loaded conditions and 40 krpm
with an external load. No sign of instability was observed, in accordance with the stability
analysis based on the NGT. Yoshimoto et al. [22] tested a 6 mm diameter rotor driven by
an impulse turbine up to 600 krpm with the bushings mounted on bump foils in order to
add damping to the system, thus increasing the onset speed of instability. Schiffmann [23]
designed a high-speed refrigerant turbocompressor supported on NGT-designed 10 mm
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HGJBs up to 210 krpm, with no sign of instability with both air and pressurized R134a as
lubricants. For applications in precision machine tools, Ognjanovic [24] operated a 60 mm

HGJB supported on rolling elements bearings with a floating bushing on which a radial
load is applied. He concluded that the NGT tends to overestimate the load capacity of
HGJB. Demierre et al. [25] used the NGT to design and operate a turbocompressor with
refrigerant-lubricated 10 mm HGJBs for heat pumping and organic Rankine cycles with
rotor speeds up to 200 krpm, with no sign of instability. Wagner [26] successfully used
the NGT to design overheated steam-lubricated 8 mm HGJB supporting a fuel cell gas
recirculator up to 180 krpm, which successfully achieved stable operation.
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Figure 2.16 – Predicted critical mass against non-dimensional mass or rotors at their
onset on instability, with the data of Cunningham [17]

Literature contains experimental data of load capacity and stability in terms of critical
mass for HGJBs, scattered over several decades, as summarized in Table 2.3. However,
the measurement of dynamic coefficients (frequency-dependent stiffness and damping)
is missing from the HGJB literature. Their measurement is of high value since the
synchronous performance (i.e. imbalance response) of a rotor as well as the stability
analysis rely on them. It would serve to further assess the predictive performance of the
NGT and, if it proves to be necessary, orient the research effort toward a more reliable
design tool for spiral grooved bearings.

Different methods have been employed over the last decades to indirectly measure the force
coefficients of gas lubricated bearings, mostly of foil and aerostatic bearings. They usually
involve a rigidly supported rotating shaft equipped with a floating bearing on which
a known dynamic force, typically generated by a impact hammer or a electromagnetic
shaker and measured through a force gauge, is applied (Figure 2.17). The response of the
bearing is recorded with an accelerometer or a displacement probe. This layout allows
a convenient flexibility regarding the test bearing to be tested, since it does not play a
significant role in the support of the rotating shaft. Disadvantages of such systems include
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a large size and an increased complexity, as the shaft bearings must be significantly stiffer
than the floating test bearing in order to minimize the parasitic motion of the rotating
shaft, which usually implies the management of a secondary lubricant for these bearings
(water, oil, grease). Moreover, the excitation of the floating bushing by a known force
requires an accurate knowledge of the inertia set in motion in order to deduce the test
bearing reaction force, which can be difficult depending on the way the floating bearing
is attached to the shakers and the frame. An alternative layout involves a rotor entirely
supported on two test bearings, with an excitation applied either on the bearing bushings
of the shaft itself (unbalance, impact hammer). Measuring the force applied on the
bushings as well as the response of the shaft allows to deduce the force coefficients of the
two bearings. Figure 2.18 provides an schematic example of this configuration.

Shaker

Motor

Secondary bearings

Test bearing

Force sensor

Accelerometer

Figure 2.17 – Schematic of typical test rig for force coefficients identification, with the
test bearing floating on a rigidly-mounted shaft, with shaker-induced excitations on the
bushing, similarly to the rig of San Andres and Chirathadam [27]

Test bearing

Turbine nozzle

Impact hammer

Air nozzle

Displacement probes

Rotor

Figure 2.18 – Schematic of typical test rig for force coefficients identification, with the test
bearing fixed, supporting a floating rotor, with an impact hammer exciting the journal,
as investigated by Le Rouzic and Arghir [28]

The experimental identification of gas journal bearing force coefficients was pioneered by
Fleming et al. [29] who built a test rig consisting of a floating rotor supported by two
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Chapter 2. Theory

hybrid bearings and driven by an impulse turbine. A known unbalance was applied on
the rotor and the 4 degrees of freedom of the shaft were recorded with capacitive sensors
to recover the synchronous damping and stiffness of the bearings using the equations of
motion of the system. Heshmat and Ku [30] investigated the force coefficients of a floating
non-rotating bump foil bearing using electromagnetic shakers in orthogonal directions
imposing a sine wave of constant frequency. Similar methods were applied by several
research groups (Colon [31; 32], Etras [33], Matta [34], Rudolf [35; 36], San Andres and
Chirathadam [27; 37; 38]) on hybrid, bump foil and metal-mesh foil bearings in rotation,
applying either successive, sweeping or superposed sine waves on the shakers. A setup
similar to Heshmat’s was investigated by Howard and Dellacorte [39], this time with a
rotating shaft and using an impact hammer to excite the bearing bushing on a board
frequency spectrum, also applied later by San Andres and Chirathadam [37], Wang and
Kim [40], and Rudolf et al. [35]. Magnetic bearings were employed by Bellabarba et
al. [41] to support and excite a journal with a multiple-frequency signal on which a test
hybrid bearing was mounted, allowing to determine the force coefficients at different
excitation frequencies. Moore et al. [42] used an asynchronous rotor rotating inside the
air-born test rotor to impose an excitation of controlled frequency. Larsen et al. [43]
imposed an excitation in a non-rotating inner part of their floating test rotor, connected
with ball bearings, to retrieve the force coefficients of bump foil bearings. Le Rouzic and
Arghir [28] used an impact hammer to excite a rotor on aerostatic bearings and driven by
an impulse turbine. The list of published experimental force coefficients identification of
gas journal bearing is summarized in Table 2.4.

2.4.1 Test rig selection

Considering the scope of this thesis, which considers air as well as other fluids as lubricant,
the design of the test rig to measure the dynamic coefficients of HGJBs is constrained by
the following general specifications:

1. Cleanliness : No lubricant contamination with other substances such as grease, oil,
or polluting fluid to ensure compatibility with other lubricant than air in confined
environment

2. Complexity: Minimum reliance on auxiliaries to ease the design and maximize the
compatibility with a confined configuration.

3. Compactness : Minimum bounding box volume and characteristic length, in order
to keep a future pressure chamber as small as possible

4. Losses: Minimum power losses at high speed to relieve the heat management of the
system in close-loop confined configuration

5. Versatility: Possibility to test different bearing geometries
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Chapter 2. Theory

As a floating rotor configuration requires no other bearing than the test aerodynamic
bearings, no secondary lubricant is needed for the secondary bearings (water, oil), which
ensures i) a high lifetime at high speed, ii) moderate losses at high speed and iii)
compactness, as only two bearings are necessary instead of three (one test bearing, two
secondary bearings). The floating bearing configuration generally offers an increased
versatility, as the test bearing can be easily changed with little influence on the system
rotordynamic stability and reduced dependency on a fine balancing. However, if the
grooves have to be manufactured on the rotor, a new rotor has to be manufactured
for each testes geometry. Table 2.5 summarizes the comparison between the two test
rig layouts. Since the floating bearing configuration requires secondary bearings that
are stiffer than the test bearing, respecting specification 1 would require either oil-free
rolling element bearings or aerostatic bearings, which respectively have poor high-speed
capabilities and require auxiliaries. The floating rotor layout is therefore selected.

Table 2.5 – Qualitative comparison between the floating rotor and floating bearing
configurations for the test rig

:Advantageous, :Average, : Disadvantageous

Floating rotor Floating bearing

Cleanliness
Complexity
Compactness
Losses
Versatility

A comparison of means of excitation existing in the literature is presented in Table 2.6.
Unbalance excitation is by far the most straightforward implementation, however it does
not allow to recover much information from the bearings, as only synchronous properties
can be identified. Impact hammer offers only one type of excitation and is complex
to implement on a rotating shaft with limited access. Asynchronous co-rotating rotors
and magnetic bearings suffer from a high complexity. The latter however offers a very
large panel of excitation types. Shakers are preferred to other excitation sources because
they allow a a broad excitation type, an accurate control of the input energy, as well
as the possibility to apply a periodic excitation. Since the shaker cannot act on the
rotor directly, they have to be mounted on the bearing bushings, which will then act
on the rotor via the bearing to be characterized. Four floating piezo-electric shakers
are used, two per bushing, with a relative angle of 90◦ in order to be able to excite in
both directions to obtain linearly independent excitation sets (developed in detail in next
subsection). To bypass the necessity to know the flexibly supported bushings inertias,
displacement measurements are preferred over force measurements for the bushings. The
measurement of all 8 degrees of freedom (2 positions of each bushing, 4 positions of the
rotor) is accomplished via proximity probes (Figure 2.24). This reduces the necessary
knowledge of inertias to the mass, and moments of inertias of the rotor.
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2.4. Experimental validation

Table 2.6 – Qualitative comparison between the excitation methods

:Advantageous, :Average, : Disadvantageous

M
agnetic

bearing

Im
pact

ham
m
er

Shaker

A
synchronous

rotor

U
nbalance

Excitation versatility
Complexity

2.4.2 Theoretical force coefficients identification

The present subsection introduces the theoretical aspect of the impedance identification
of the rigid shaft supported on two HGJBs. The nomenclature and coordinates of a
rigid shaft running on two flexibly supported bearings are presented in Figure 2.19. The
following hypothesis are made to develop the equations of motion:

• The shaft is considered rigid and can therefore be defined in space with 4 degrees
of freedom

• The tilting reaction forces of the HGJBs have a negligible effect on the system
dynamics compared to the influence of radial reaction forces

• The system can be described as linear around its equilibrium position

The second hypothesis is justified when a relatively long distance separates the two journal
bearings, as it will be discussed later.

The 4 equations of motions of the shaft can be written as follows:
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Zxx;A
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Zyx;B

Zyy;B

Zxx;B

Figure 2.19 – Nomenclature and coordinates of the rotating shaft supported on two gas
bearings



mRẍ+ Kxx,A (x+ LAα− xA) +Kxx,B (x− LBα− xB) +Kxy,A (y − LAβ − yA) +

Kxy,B (x+ LBβ − yB) + Cxx,A (ẋ+ LAα̇− ẋA) + Cxx,B (ẋ− LBα̇− ẋB) +

Cxy,A

(
ẏ − LAβ̇ − ẏA

)
+ Cxy,B

(
ẋ+ LBβ̇ − ẏB

)
= 0

mRÿ+ Kyy,A (y − LAβ − yA) +Kyy,B (y + LBβ − yB) +KyxA (x+ LAα− xA) +

KyxB (x− LBα− xB) + Cyy,A

(
ẏ − LAβ̇ − ẏA

)
+ Cyy,B

(
ẏ + LBβ̇ − ẏB

)
+

CyxA (ẋ+ LAα̇− xA) + CyxB (ẋ− LBα̇− ẋB) = 0

IT α̈− IP β̇Ω +Kxx,ALA (x+ LAα− xA)−Kxx,BLB (x− LBα− xB) +

Kxy,ALA (y − LAβ − yA)−Kxy,BLB (y + LBβ − yB) +

Cxx,ALA (ẋ+ LAα̇− ẋA)− Cxx,BLB (ẋ− LBα̇− ẋB) +

Cxy,ALA

(
ẏ − LAβ̇ − ẏA

)
− Cxy,BLB

(
ẏ + LBβ̇ − ẏB

)
= 0

IT β̈+ Ipα̇Ω−Kyy,ALA (y − LAβ − yA) +Kyy,BLB (y + LBβ − yB)−
Kyx,ALA (x+ LAα− xA) +Kyx,BLB (x− LBα− xB)−
Cyy,ALA

(
ẏ − LAβ̇ − ẏA

)
+ Cyy,BLB

(
ẏ + LBβ̇ − ẏB

)
−

Cyx,ALA (ẋ+ LAα̇− ẋA) + Cyx,BLB (ẋ− LBα̇− ẋB) = 0
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2.4. Experimental validation

A harmonic nature of the motion is assumed for a particular excitation frequency ω,
allowing to express the displacements, velocities and accelerations as follows:

a = âeiωt

ȧ = iωâeiωt

ä = −ω2âeiωt

where a designates alternatively one of the 8 coordinates of Figure 2.19. â is a complex
number containing information on both amplitude and phase shift. Stiffness and damping
coefficients are grouped in complex impedances Z :

Z = K + iωC 2.66

The 4 equations of motion reduce to the following expressions:

−mRω
2x̂ +Zxx,A (x̂+ LAα̂− x̂A) + Zxx,B (x̂− LBα̂− x̂B) + Zxy,A

(
ŷ − LAβ̂ − ŷA

)
+

Zxy,B

(
x̂+ LBβ̂ − ŷB

)
= 0

−mRω
2ŷ +Zyy,A

(
ŷ − LAβ̂ − ŷA

)
+ Zyy,B

(
ŷ + LBβ̂ − ŷB

)
+ ZyxA (x̂+ LAα̂− x̂A) +

ZyxB (x̂− LBα̂− x̂B) = 0

−ITω2α̂ −IP iωβ̂Ω + Zxx,ALA (x̂+ LAα̂− x̂A)− Zxx,BLB (x̂− LBα̂− x̂B) +

Zxy,ALA

(
ŷ − LAβ̂ − ŷA

)
− Zxy,BLB

(
ŷ + LBβ̂ − ŷB

)
= 0

−ITω2β̂ +Ipiωα̂Ω− Zyy,ALA
(
ŷ − LAβ̂ − ŷA

)
+ Zyy,BLB

(
ŷ + LBβ̂ − ŷB

)
−

Zyx,ALA (x̂+ LAα̂− x̂A) + Zyx,BLB (x̂− LBα̂− x̂B) = 0

The system of equations can be rewritten while grouping the impedance terms together
in the following form:

Az = b 2.67
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With

A =


a1 a2 0 0 a3 a4 0 0

0 0 a5 a6 0 0 a7 a8

a9 a10 0 0 a11 a12 0 0

0 0 a13 a14 0 0 a15 a16

 2.68

z =
[
Zxx,A Zxy,A Zyy,A Zyx,A Zxx,B Zxy,B Zyy,B Zyx,B

]T
2.69

b =
[
ω2mRx̂ ω2mRŷ ω2IT α̂+ IP iωβ̂Ω ω2IT β̂ − Ipiωα̂Ω

]T
2.70

The terms ai composing A are developed in the Appendix B.

The system is not square, since only 4 equations are provided for 8 unknown variables.
A additional set of equations, linearly independent from the first one, is necessary to
obtain a unique solution for z. Therefore, 4 more equations, obtained from a excitation
performed in the orthogonal direction, are added to the system:

[
A1

A2

]
z =

[
b1

b2

]
2.71

where indices 1 and 2 denote the components from the first and second test run respectively,
which have to be linearly independent to ensure that the matrix [A1,A2]T is invertible.
This is ensured by the orthogonality of the excitation directions.

In practice, the system is excited with an isolated sine on two parallel shakers simulta-
neously for a couple of seconds. Compared to impact and pseudo-random excitation, a
sinusoidal excitation holds the following advantages:

• Accurate control of the excitation spectrum

• Limitation of non-linear effects by limiting the total displacement of the rotor

• Accurate control of the excitation amplitude at each frequency

The 8 displacements channels are filtered with a band-pass filter and a sine is fitted on
each signal in time-domain with a a minimization of the quadratic error, obtaining the
frequency, phase shift and amplitude of each displacement. Considering the harmonic
behavior of the system, velocities and acceleration are retrieved from the displacement
and used as input for the solution of 2.71.
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2.4.3 Test rig description

To suit the scale of the current research interest in HGJB for small-scale turbomachinery,
a rotor diameter of 16 mm is selected. The rotor is 176 mm in length and the space
between the center of the two journal bearings is 72 mm (Figure 2.20). In order to
investigate DN numbers above 1.5 · 106, a nominal rotational speed of 100 krpm is desired.
To drive the rotor in ambient air, an impulse turbine located at the axial mid-span of
the shaft is chosen for tests in atmospheric conditions. These turbines have been widely
used in previous test rigs investigating HGJBs [17; 18; 22; 44] and other gas bearings
[28; 31; 37]. They are straightforward to manufacture, implement and control if no
excessive resisting torque is applied on the rotating shaft. They require compressed air
to operate, which is not a problem as long as air is considered as lubricant. Stainless
steel 1.4112 (X90CrMoV18) with a Diamond-Like Coating (DLC) are selected for the
journal materials. Figure 2.21 shows the manufactured rotor with the two HGJBs and the
impulse turbine. Using a 1D finite element code previously developed by the author using
Timoshenko beam elements, the first bending mode of the free rotor at rest is evaluated
(Figure 2.22). This estimation is confirmed experimentally by suspending the rotor on
two soft strings with an accelerometer on one the extremities of the body. The rotor is
hit with a soft hammer and the spectrum of the free response is computed. Results are
visible in Figure 2.23 and show a first resonance frequency at 2280 Hz, within 2% relative
discrepancy with the predicted value.

16 1672

176

�16

Figure 2.20 – Principal lengths of the considered test rotor

The HGJBs were designed applying a multi-objective optimization of the bearing-rotor
system to simultaneously maximize stability and nominal clearance. The design variables
are the nominal clearance h0, the groove depth δ, the groove angle β, the groove length
γ, the bearing aspect ratio L/D and the relative groove width α. The resulting Pareto
front, showing the optimal design points, is shown in Figure 2.25. The point with the
maximum logarithmic decrement is chosen as a basis to further explore the design space
by freezing the parameters listed in Table 2.7.

A sensitivity analysis is performed to assess the robustness of the selected solution.
Parameters h0 and δ are varied in the vicinity of the nominal values (h0 =7.6 µm and
δ =18.1 µm) to explore the stable domain of the bearing and to deduce manufacturing
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Figure 2.21 – Picture of the investigated rotor, with the two HGJBs and the impulse
turbine visible

First bending mode : 2234 Hz

Figure 2.22 – Evaluation of the first bending mode at rest and without journal bearings
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Figure 2.23 – Spectrum of the rotor free response (acceleration) after impulse from a soft
hammer
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Table 2.7 – HGJB geometrical parameters

α β̂ γ L/D

0.65 160◦ 1 1

tolerances. Once the stable domain is identified, a maximum window is drawn in it
representing the acceptable manufacturing tolerances in both h0 and δ. Results are shown
in Figure 2.26. The resulting values for the nominal clearance and the groove depth are:

h0 = 7+1
−2µm 2.72

δ = 17+3
−5µm 2.73

Bushing

Piezo-shaker

Capacitve probes

Shaft

Turbine

Figure 2.24 – Representation of the excitation-measurement setup in one plane. The
same setup is repeated in the orthogonal plane.
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h
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Figure 2.25 – Pareto front resulting from the two-objective optimization, showing the
nominal clearance against the minimum logarithmic decrement Γ.

This design procedure was performed while neglecting the damping coefficient of the
flexible supports. Therefore, the resulting manufacturing tolerances are conservative,
since added damping coming brings a stabilizing effect on the system [45].
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Figure 2.26 – Stable domain of the bearing and chosen manufacturing tolerances around
a nominal point

As made necessary by the second theoretical hypothesis presented in 2.4.2, the geometry
of the rotor enables the negligence of tilting stiffness in the system rotordynamics.
Considering a simplified rotor model tilted by an angle θ around its geometrical center,
supported on two bearings with translational stiffness Ky and tilting stiffness Kθ (Figure
2.27), the restoring torques Ty and Tθ are, respectively:

Ty =
θL2Ky

2
2.74

Tθ = 2θKθ 2.75

with the ratio:

Tr =
Tθ
Ty

=
4

L2

Kθ

Ky
2.76

The designed HGJB are expected to provide a direct translational and tilting stiffness
in the order of 2 MN m−1 and 400 N m rad−1 respectively. Applying these numbers in
Equation 2.76 in the range of bearing center distance considered for the rotor yields the
results shown in Figure 2.28. The actual bearing center distance is 88 mm, resulting
in Tr = 0.051, which is considered sufficiently small to discard the influence of tilting
stiffness in the rotordynamics.

As the NGT assumes an infinite number of groove-ridge pairs, a high number of grooves
ensures a minimum discrepancy between the theory and the actual performance. A
trade-off exists between the number of grooves and their minimum width limited by
manufacturing, thus determining the maximal feasible number of grooves. The groove
circumferential width was selected to be 1 mm in order to have 30 groove-ridge pairs
on each bearing (Figure 2.29). The bushings consist of a tungsten carbide ring press-
fitted onto the compliant supports to allow for a radial displacement. The supports
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Ky;Kθ

Ky;Kθ

θ
θL

2

θL

2

L

~ex

~ey

Figure 2.27 – Simplified rotor model assessing the relative influence of tilting stiffness on
restoring torque
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Figure 2.28 – Ratio of tilting stiffness over translational stiffness in the shaft restoring
torque

are monolithic stainless steel bodies (Figures 2.30 and 2.31) with four flexible blades
of 0.5 mm thickness with an axial span of 30 mm. The outer surface of the parts is
conical for positioning purpose. The flexible blades were designed to provide a radial
stiffness of approximately 2 MN m−1, in the same order of magnitude as the expected
total radial stiffness of the investigated HGJBs. Figure 2.33 presents the assembly of the
rotor mounted in the flexible supports equipped with piezo-shakers and the 8 capacitive
sensors, model CSH05-CAm1,4 of MicroEspilon and their nomenclature. The floating
shakers, model HP1-1000-20-VS of Piezosystem Jena, are mounted directly on the moving
part of the flexible supports, which also include a PT100 temperature probe (Kritex
model W05-2, class B) in their bulk, as represented in Figure 2.32. This assembly fits into
a solid steel frame accommodating the different parts and measurement probes, shown
is Figure 2.35. On top of the mentioned PT100 and capacitive sensors, two infra-red
thermometer (MircroEpsilon CT-SF02-C3) recording the journal temperature and an
optical trigger (contrast sensor of Keyence, not presented in Fig. 2.35) equip the test rig.
A cut view of the assembly, including the turbine stator, is shown in Figure 2.34. The
turbine air distributor is presented in an orthogonal cut-view in Figure 2.36. Compressed
air enters an annular volume two inlets and expanded through 9 circumferential nozzles
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onto the 8 rotating pockets.

Figure 2.29 – View of one of HGJB and its bushing

Figure 2.30 – Front view of a monolithic flexible bushing support

After manufacturing, the actual bearing clearances are determined by a specialized
workshop by measuring the journal and bushing diameter at three angular positions and 5
different axial positions at a stabilized temperature of 21 ◦C. The results are presented in
Figure 2.37 and summarized in Table 2.8. The measurements suggest that the clearance is
not constant in axial and circumferential direction, as each plane suffers from a significant
circularity error. In Table 2.8, the mean maximum and minimum represent respectively
the average value of each of the maximum and minimum clearance measured at each
plane of the bearing. Bearing B has a slightly smaller mean clearance than bearing A.
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Figure 2.31 – Projected views of the flexible bearing support

The groove depth was measured in several location using a rugosimeter as described in
Appendix C. The depth was measured between 15 and 17 µm, as illustrated in Figure
2.38.

Table 2.8 – Summary of the average, mean minimum, mean maximum and extreme values
of measured clearances

Bearing A Bearing B

Mean clearance 8.3 µm 7.8 µm
Mean minimum 7.3 µm 7.4 µm
Mean maximum 9.2 µm 8.3 µm
Absolute minimum 6.8 µm 6.7 µm
Absolute maximum 9.9 µm 9.0 µm

The centrifugal growth of the rotor is computed with the following equation:
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Figure 2.32 – Cut view of the flexible bearing support showing the location of the PT100
probe

Figure 2.33 – Partial assembly showing the rotor mounted in the flexible supports equipped
with piezo-shakers and the 8 capacitive sensors, denoted W1 to W8

∆h =
ρR3(1− ν)

4E
Ω2 2.77

The computed growth for the actual rotor (E=200 GPa, ρ=7700 kg m−3, ν=0.2) is pre-
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Figure 2.34 – Cut-view of the experimental apparatus showing the main components :
capacitive sensors, piezo-shakers, rotor, turbine. The axial bearings are not represented
on this view

Figure 2.35 – Near-complete assembly, with the steel frame accommodating the different
organs. The turbine distributor around the impulse turbine is missing for presentation
purpose

sented in Figure 2.39. The radial growth at maximum speed reaches 0.7 µm.

The apparatus is first positioned vertically in order to relief the journal bearing from any
static radial load, where the weight is entirely supported on one of the axial aerostatic
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Figure 2.36 – Cut-view of the turbine distributor. Compressed air enters via two inlets, is
equalized in an annular volume and expanded in 9 circumferential nozzles
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0.8µm

Figure 2.37 – Clearances of the two HGJBs measured on three angular location at each
of 6 axial locations. Upper and lower values indicate the maximum and minimum values
measures. The bold value indicate the mean of the three measures

bearings with a absolute supply pressure of 240 kPa. The axial bearing consist of a
16 mm-diameter tube with a 5 mm restrictor covered by an O-ring glued on its surface,
as represented in Figure 2.40 . The O-ring provides a compliant surface to accommodate
misalignment between the bearing and the shaft lateral surface, allowing for a lubricating
film to effectively form between the O-ring and the shaft. Plus, it provides substantial
axial damping in case of unexpected pneumatic hammer, as well as a soft sacrificial
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Figure 2.38 – Example of groove-ridge profile used to determine the groove depth
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Figure 2.39 – Radial centrifugal growth against rotor speed

surface in case of direct contact with the rotating shaft. Figure 2.41 shows a picture of
the experimental setup ready for start-up.
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Figure 2.40 – Schematic cut-view representation of the aerostatic axial bearing
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Figure 2.41 – Experimental apparatus in vertical position

Uncertainties

The sources of uncertainty regarding the measurements have several sources :

• Uncertainty of the measurement chain (linearity, target roundness, resolution,
random error)

• Filtering and fitting errors

• Errors on rotor parameters (rotor mass, bearing distance, position of center of mass)
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The first and second group of uncertainties affect the 8 displacement channels both in
phase and amplitude. However, the first group of uncertainties is not significant compared
to the second group, the filtering and fitting errors, when the sine wave of each channel
corresponding to the excitation frequency is isolated from the raw time-domain signal.
They affect both amplitude and phase of the identified sine waves and are treated in the
Appendix D.5.4. The third group affect all non-displacement parameters involved in the
equations of motion 2.66. They are estimated in Appendix D.1-D.4, with the output
shown in Table 2.9.

Table 2.9 – Fixed and variable rotordynamic model parameters nominal value and
associated uncertainties as estimated in Appendix D

Symbol Name Value Uncertainty

mR Rotor mass 0.267 176 kg 3 mg
IP Axial inertia 8.83 · 10−6 kg m2 2.50 · 10−7 kg m2

IT Transverse inertia 7.01 · 10−4 kg m2 1.12 · 10−5 kg m2

LW (W2,4,6,8) - C.M distance 73 mm 0.25 mm
LA,B Bearing - C.M distance 44 mm 0.25 mm

Symbol Name Relative uncertainty

Ω Rotational speed 1%
ω Excitation frequency 0.1%

These sources of error affect the uncertainty σi of each ith variable involved in the com-
putation of the impedance terms. Once these uncertainties are identified and quantified,
their propagation on the output is computed as follows:

σj =

√√√√ N∑
i=1

(
∂Zj
∂xi

σi

)2

2.78

where Zj designates any component of the impedance vector z of Equation 2.69 and xi
any of the system parameters (such as listed in Table 2.9) or of the measured variables
(displacement, rotational speed, etc). Equation 2.78 is solved numerically by applying a
central finite difference scheme to evaluate the partial derivatives of Z:

∂Zj
∂xi
≈ Zj(xi + ∆xi)− Zj(xi −∆xi)

2∆xi
2.79

2.4.4 Results

For each rotational speed, the following procedure is applied:
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1. PID-controlled acceleration up to nominal speed, within 100 rpm of the nominal
speed

2. Excitation of shakers in one plane for 4 seconds at a particular frequency f1

3. Non-excited operation of the rotor for 30 seconds

4. Excitation of shakers in the orthogonal plane for 4 seconds at a particular frequency
f1

5. Non-excited operation of the rotor for 30 seconds

6. Repetition of points 2 to 5 with the next excitation frequency f2, until the last
frequency fn is excited

7. Interruption of the turbine air supply and coast down

The evolution of the rotational speed in time is shown in Figure 2.42 for a measurement
campaign at 100 krpm. The 3 phases of a test, namely the acceleration, the steady state
and the coast down are visible. The evolution of the bushing and rotor temperatures
are shown in Figure 2.43. Both bearings experience a rise in temperature after the
acceleration phase up to 26 ◦C and 28 ◦C for bearings A and B respectively, reaching a
maximum at approximately t= 200 s and slowly decreasing afterwards. At the moment
the turbine is cut to initiate the coast down, the bushings experience a short rise in
temperature, highlighting the cooling effect of the air turbine on the system. The waterfall
plot presenting the spectrum of the channel W3, measuring the position of the bushing
A in the direction ~ex, is shown in Figure 2.44. The synchronous vibration of the shaft
running at 100 krpm is visible as well as the pairs of excitation peaks. The excitation
frequencies range from 400 Hz to 1700 Hz, with a step of 100 Hz. On top of these expected
signatures, a sub-synchronous frequency content is visible at f ≈250 Hz, generated by
the turbine. As soon as the turbine is cut to initialize the coast down, these vibrations
vanish. After each signal of the two excitation sets has been band-filtered and fitted with
a sine to identify its amplitude and phase, these informations are injected in Equation
2.67 to obtain the force coefficients. Figure 2.45 shows the amplitude of each signal at
each excitation frequency for the considered run. The maximum amplitude recorded for
this run is 1.3 µm, while the total amplitude of the orbit without the influence of the
shakers, shown in Figure 2.46, is in the order 1 µm in radius at nominal speed.

The identified force coefficient of the bearings A and B at 100 krpm are presented in Figures
2.51 and 2.52, respectively. The results are presented against the excitation frequency
normalized by the rotational frequency. On top of the experimental results, the predictions
from the NGT with perturbation around a concentric position, based on the measured
clearance and groove depth measurements, are displayed. The nominal case corresponds
to the mean measured clearance of the bearing and the nominal groove depth (16 µm).
The dotted lines correspond to the absolute upper and lower bounds of the predictions
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Figure 2.42 – Speed over time for a test run at 100 krpm
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Figure 2.43 – Bushings and rotor temperature during the run at 100 krpm

based on the measured maximum clearance, minimum clearance, and uncertainty on
the groove depth. Dashed lines show the predictions based on the mean minimum and
maximum clearance, with the nominal groove depth. The effect of differential thermal
growth, due to the difference in thermal expansion coefficients as well as in temperature
between rotor and bushing, are shown in Figures 2.47 and 2.48 and are taken into account
for the prediction of impedances with the NGT-based model. In general, the prediction
are in good qualitative agreement with the data, but quantitatively overestimates the
force coefficients. The rising trend of direct stiffness toward higher excitation frequencies
is captured, as well as the non-monotonic behavior of the cross-coupled stiffness. The
trend of the direct damping is qualitatively captured, with a near stagnation followed by
a slow decrease. In general, both bearing show an very isotropic behavior for all force
coefficients. Measurement uncertainties tend to increase with the excitation frequency,
mostly because the rotor motion under excitation decreases with frequency, as is can
be expected from a dynamic system supercritical regime. Therefore, the signal-to-noise

61



Chapter 2. Theory

Figure 2.44 – Waterfall plot of the test run spectrum, with excitation signatures, syn-
chronous vibration and turbine sub-synchronous noise visible

Figure 2.45 – Amplitude of identified signals on the 8 proximity probes at different
excitation frequencies, for the two orthogonal excitation runs

ratio becomes less favorable and leads to relatively larger uncertainties. The influence
of each model parameter uncertainty is displayed in Figures 2.49 and 2.50 for stiffness
and damping coefficients respectively, evaluated at 700 Hz. The asymmetric sensitivity of
the two bearings on the common system parameters (Ω, ω, mR, IP , IT , LA/B, LW ) is
explained by the dependency of the sensitivity on the phase and amplitude of Wi, i = 1..8,
which is different between the two bearings.
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Figure 2.47 – Isovalue lines for the change in radial clearance (in µm) due to the change
of temperature of the rotor and bushing from the reference temperature Tref =21 ◦C

The results for the rotational speeds 50, 60, 70, 80 and 90 krpm are presented in the
Appendix E. The model predictions are generally in good accordance with experimental
data, although the case corresponding to the largest clearance provides the closest
predictions to the data. Interestingly, the prediction seems to be quantitatively better
for bearing A and high excitation frequencies, where it first follows the trend of the low
clearance predictions at lower frequencies and slightly diverge toward the nominal case
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Figure 2.48 – Change of radial clearance due to thermal expansion as a function of time
for the test run at 100krpm, computed from Fig.2.47 the temperature profile of Fig.2.43
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Figure 2.49 – Parametric contribution of uncertainties on Kxx and Kxy for 100 krpm at
an excitation frequency of 700 Hz

predictions as the frequency increases. Overall, the Narrow-Groove Theory coupled with
the perturbation method provides good predictions of the bearing force coefficients.
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Figure 2.50 – Parametric contribution of uncertainties on Cxx and Cxy for 100 krpm at
an excitation frequency of 700 Hz

2.4.4.1 Effect of excitation amplitude

As the predictive tool employs the perturbation method, only the linear force coefficients
can be predicted. However, any non-infinitesimal excitation might also trigger a non-
linear response from the system, not accounted for in the rotordynamic model, but which
would affect the value of the estimated linear coefficients. To address this point, a test
run at constant rotational speed and excitation speed is performed at 70 krpm and
two excitation frequencies (fex/frot = 0.60 and 0.77), respectively, otherwise following
the same procedure as presented before, with the difference that the voltage amplitude
imposed on the shakers is progressively increased. The results are presented in Figure
2.53 for Kxx, Kxy, Cxx and Cxy for bearing A. Increasing the voltage applied on the
shakers tends to increase the excitation amplitude and decrease the uncertainty on the
estimated linear parameters, thanks to a improved signal-to-noise ratio. Among the
coefficients shown here, only Cxx exhibits a significant evolution with the excitation
amplitude, probably explained by the increasing influence of non-linear damping in the
motion of the rotor-bushings system. The positive trend observed at higher perturbations

65



Chapter 2. Theory

indicate positive higher-order damping coefficients. To a lesser extend, the non-linearity
is also observed in Kxy, whose decrease indicate negative higher-order behavior. The
frequency-dependent results of Figures 2.51 and 2.52 for 100 krpm, as well as in the
Appendix E, are excited with an relative amplitude of the rotor in the bushings of the
order of 1 µm, which is a good trade-off between uncertainty of the prediction and influence
of the non-linear terms.

2.4.4.2 Effect of gravity

In an attempt to highlight the effect of static eccentricity on the identified force parameters,
the orientation of the test rig is changed and the test repeated. The test rig is placed
horizontally, such that the ey vector is now co-linear with the gravity vector. The tests
are repeated at 50 krpm. The static load per bearing is 1.3 N. The center of the rotor
shifted by 1.5 µm compared to the vertical unloaded position, which, assuming the vertical
position as the center of the bearing, corresponds to an eccentricity ratio between 15.1
and 22.0 % (with the clearance reported in Fig.2.37). Results for 50 krpm are shown in
Figure 2.55. There is no significant effect of gravity on the investigated force coefficients
that can be resolved within the uncertainty of the measures. A shift toward higher values
is visible for the coefficient Kyy, however in modest proportions.
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2.5 Chapter conclusion

The perturbed NGT was implemented using a 2-D FDM scheme in order to compute
the load capacity and the dynamic impedance of HGJBs at different static eccentricities.
The numerical outputs were compared to published numerical results, either obtained
by the NGT of by solving the Reynolds equation over the grooved bearings. A very
good agreement between the implementation the references was found, including the
predictions at high at high eccentricity ratios, against the widespread belief that the NGT
is limited to the concentric position. In order to validate the NGT and the perturbation
method in their ability to predict the linear force coefficient of Herringbone-Groove
Journal Bearings, a test rig was designed and built to measure the frequency-dependent
force coefficients of HGJBs for the first time in the published literature. The rig consists
of an air-driven rotor supported on two HGJBs, whose bushings are flexibly supported
and actively excited radially in both directions by piezoelectric shakers. Solid body
motions of shaft and bushings are recorded to deduce the bearing impedances without
the need of force measurements, which is commonly used in the literature. Measurements
where performed at speeds between 50 and 100 krpm and excitation frequencies between
400 Hz and 1700 Hz. Predicted direct and cross-coupled stiffness and damping coefficients
were found to be in good qualitative agreement with the experimental data. However,
the predictions tend to quantitatively overestimate the measured stiffness and damping
coefficients. The circularity error in the manufacturing of the journal bearings, both on
rotor and stator side, render the accurate assessment of the data-model deviation difficult
to resolve. The present section yields the following concluding remarks :

• A force coefficient estimation without force measurements, relying only on displace-
ment measurements, is feasible and demonstrated

• The prediction of force coefficients based on the perturbed NGT is in good qualitative
agreement with the experimental data

• The perturbed NGT tends to overestimate quantitatively the force coefficients

• The largest measured clearance seems to be the relevant metric in the performance
prediction of a particular bearing

• The linearity of force coefficient is observed up to large dynamic eccentricity ratio
(≈ 30%). Only the direct damping and the cross-coupled stiffness exhibit a non-
linearity within the investigated perturbations

The reliability of the bearing modeling strategy suggest that the implemented tools can
be expanded further to include advanced gas lubrication such as real-gas lubrication,
humid air condensation and be applied to advanced grooved bearing designs.
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Figure 2.51 – Results of identified force coefficient of bearing A for 100krpm in ambient
air
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Figure 2.52 – Results of identified force coefficient of bearing B for 100krpm in ambient
air
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Figure 2.53 – Results of identified force coefficient of bearing A for 70 krpm in ambient
air at two relative excitation frequencies and different excitation amplitude
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Figure 2.54 – Effect of orientation on the measured performance at 100 krpm
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Figure 2.55 – Effect of orientation on the measured performance at 50 krpm
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3 Non-ideal gas lubrication

Historically, the modelling of aerodynamic bearings has relied extensively on the ideal
gas assumption, which simplifies considerably the solution to the non-linear differential
equation. As rigid aerodynamic bearings have been often applied to atmospheric air or
noble gases for applications in gyroscopes and turbomachinery, the modelling of more
complex gas behavior was not crucial for reliable operation of airborne machines. However,
with the recent development of process-gas lubricated machines, for example with CO2

and synthetic refrigerants for energy applications, as well as of blowers and compressors
for fuel cells in the automotive industry, subject to numerous cold starts in a wide range
of ambient conditions, the validity of the ideal gas assumption can be questioned. In
particular, new applications might face the following issues:

• Refrigerant-lubricated turbomachinery:

– Real-gas effects leading to an increased compressibility of the fluid as the
molecules in gas phase start to interact, as illustrated in Figure 3.1a . This
effect is triggered by the proximity of the critical point in high-pressure
conditions.

– Gas condensation due to near-isothermal compression. Since the compression
in a gas bearing happens nearly isothermally, the saturation point (dew point)
can be reached if the system operates in near-saturated conditions. It can lead
to a partial or total condensation of the lubricant, as represented in Figure
3.1c.

• Automotive fuel cell blower/compressor:

– Humid air effects, where the dew point of the gas mixture (N2-O2-H2O)
is reached within the aerodynamic bearing because of the near-isothermal
compression. The water vapor contained in the mixture reached the saturation
partial pressure and starts to condensate (Figure 3.1b, leading an increase of
overall gas compressibility.
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a) b) c)

Figure 3.1 – Illustration of the three situations studied in this Chapter: the real-gas
effects leading to an increases gas compressibility (a), the humid air effect resulting from
the partial condensation of water contained in air (b) and the partial condensation of a
pure fluid (c)

The goal of this chapter is to investigate qualitatively and quantitatively such effects
resulting from non-ideal gas lubrication on the static and dynamic performance of rigid
aerodynamic bearings. The chapter, composed of three sections, explores these effects
on Plain Journal Bearings (PJBs) and Herringbone Groove Journal Bearing (HGJBs)
using the Reynolds equation and the Narrow Groove Theory (NGT) in a design-oriented
approach. First, the real-gas effects on the performance of slider and journal bearings
are assessed. The load capacity as well as the stability of the bearings are investigated
in non-dimensional numbers. A model accounting for the partial condensation of water
contained in humid air is presented and studied on journal bearings. Finally, a Reynolds
equation suitable for condensing pure fluid is presented, numerically implemented and
experimentally validated using an original test rig. Each section led to a publication in a
peer-reviewed journal stated at the beginning of each section.
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3.1 Real gas effects

Parts of the material presented in this section has been published in the following
journal article:

Guenat, E., Schiffmann, J., 2018. Real-gas effects on aerodynamic bear-
ings. Tribology International 120, 358–368. DOI:10.1016/j.triboint.2018.01.008

3.1.1 Introduction

Gas bearing equipping closed-loop turbomachinery for heat pump or ORC cycles are
typically lubricated with synthetic working fluids having a relatively low critical point,
with the high-pressure side of the loop being at a significant fraction of the critical point.
Because the compression occurring in the thin gas film of a bearing is usually assumed
isothermal, the pressure in the fluid film can get, in some situation, very close to the
critical point (Figure 3.2), triggering real-gas effects acting on the behavior of the lubricant
film.

Pa

PmaxT

Ta

critical point

s

lubricant

compression

Figure 3.2 – Schematic representation in a temperature-entropy diagram of an isothermal
compression starting from ambient pressure Pa to the saturation pressure Pmax, close to
the critical point

Historically, aerodynamic bearings were designed by solving the Reynolds equation under
the assumption of an ideal gas lubricant [1]. Recent works have implemented real-gas
effects in the Reynolds equation in order to complete their bearing models, however, with
a limited investigation of the qualitative or quantitative differences between the ideal-
and real-gas lubrication. Schiffmann and Favrat[2] investigated the real-gas effects on
the properties of HGJBs using the NGT and addressed the consequences on the optimal
design of such bearings. They observed that the real-gas effects can have a negative
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influence on the stability and change the optimal geometry. Conboy [3] simulated a foil
thrust gas bearing lubricated with CO2 with the Reynolds equation including real-gas
effects, however without investigating the effects of this consideration on the performance
of the final design. Xu and Kim [4] developed a thermo-elastic model applied on a foil
thrust bearing lubricated with CO2 and R245fa, including real-gas effects. They showed
that the real-gas consideration reduces the peak-pressure in the fluid film, however in
moderated proportions due to the high temperature of the fluid film in the investigated
cases. Fairuz and Jahn [5] investigated the real-gas effects on dry seals using a bulk-flow
model and found that the real-gas effects were beneficial for the sealing properties thanks
to the increased density. In general, prior work lacks of generalization regarding the role
of both the lubricant and the operating conditions. In addition, an in-depth description
of the effects of real gas on the bearing performance, and their consequences on bearing
design are missing.

This present section aims to (1) address the real-gas effects on different aerodynamic
bearing geometries both for static and dynamic performance on a wide range of operating
conditions, (2) investigate these effects with multiple working fluids in a large domain of
reduced temperature and pressure and (3) express the results in terms of non-dimensional
numbers in order to ensure a high level of generality.

The Reynolds equation is adapted to express the density field in aerodynamic bearings,
with the bulk modulus as a parameter accounting for the real-gas effect. The perturbation
method is applied to obtain the dynamic properties of the fluid film. The ratios of critical
mass and load capacity with regards to the ideal-gas lubrication serves as metrics for
the characterization of the real-gas effects on a Rayleigh step slider bearing, a PJB and
a HGJB. 10 fluids of different chemical nature (HCFC, HFC, HC and natural working
fluids) are investigated on a wide range of operating conditions with the use of reduced
temperature and pressure, compressibility number and ambient Reynolds number as
non-dimensional parameters.

3.1.2 Theory

The pressure distribution in an aerodynamic bearing is modeled by using the Reynolds
equation under the assumption of a thin fluid film (properties are lumped across the
film thickness), isoviscosity, negligible inertia effects and Newtonian fluids. Since real-gas
effects are associated with high-density fluids, the Reynolds number in the bearing can
reach a level where turbulence has to be included in the constitutive lubrication equation.
In order to account for the laminar-turbulent transition, correction terms are added to
the Reynolds equation according to prior work suggesting expressions for these terms
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[6–8]. The Reynolds equation with the turbulence correction terms is given as follows:

∂X

(
ρGxh

3

12µ
∂XP

)
+ ∂z

(
ρGzh

3

12µ
∂zP

)
=
U

2
∂X(ρh) + ∂t(ρh) 3.1

Gz and Gx are the turbulence correction terms perpendicular and parallel to the direction
of motion, respectively. Correlations suggested by Constantinescu [6] are used in this
work since they are valid for both smooth and discontinuous surfaces:

Gx = (1 + 0.001133Re0.9)−1 3.2

Gz = (1 + 0.000358Re0.96)−1 3.3

where Re = Uρh/µ. This correlation is valid for 103 < Re < 3 · 104. For laminar flows,
G‖ = G⊥ = 1. The ambient Reynolds number is introduced in order to compare different
bearings operating in similar conditions:

Rea =
Uρah0

µ
3.4

where ρa corresponds to the density at ambient conditions, U the surface velocity and h0

the nominal clearance.

Due to the presence of turbulence correction factors, the harmonic clearance perturbation
applied on the non-dimensional Reynolds equation in polar coordinates (Eq. 2.27) in
order to recover static and linearized dynamic performance of the bearing results in a
perturbation different from the one derived in the previous chapter:

ρ̄ = ρ̄0 + ε1xρ̄1xe
it̄ + ε1yρ̄1ye

it̄ 3.5

β̄ = β̄0 + ε1x

(
∂β̄

∂ρ̄

)
0

ρ̄1xe
it̄ + ε1y

(
∂β̄

∂ρ̄

)
0

ρ̄1ye
it̄ 3.6

G = G0 + ε1x

((
∂G

∂ρ̄

)
0

ρ̄1xe
it̄ +

(
∂G

∂h̄

)
0

cos θeit̄
)

3.7

+ε1y

((
∂G

∂ρ̄

)
0

ρ̄1ye
it̄ +

(
∂G

∂h̄

)
0

sin θeit̄
)

The correction factors G depend on both the density and the clearance, which leads to
two dynamic terms when perturbed. However, it does not affect the numerical method
followed to retrieve both static performance and dynamic force coefficients described
previously.

Similarly, the NGT can be adapted to adopt turbulence correction factors. Hsing [9]
derived the NGT applied to HGJB including correction terms in order to account for
the turbulence in the lubrication film. The equations are equivalent to the laminar form
of the theory when G terms accounting for turbulence are set to 1 [10]. The resulting
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differential equation is recalled here:

∂θ
[
β̄ (f1∂θρ̄+ f2∂z̄ρ̄)

]
+ ∂z̄

[
β̄
(
f2∂θP̄ + f3∂z̄P̄

)]
+cs

(
sin β̂∂θ(f4ρ̄)− cos β̂∂z̄(f6ρ̄)

)
−Λ∂θ(f5ρ̄)− σ∂t̄(f5ρ̄) = 0

3.8

The present parameters fi are defined differently from the laminar case developed in
Chapter 2:

f1 =
g1θ + g2 sin2 β̂

g3
3.9

f2 =
g2 sin β̂ cos β̂

g3
3.10

f3 =
g1z + g2 cos2 β̂

g3
3.11

f4 =
h̄3
gGθg − h̄3

rGθr

g3
3.12

f5 =αh̄g + (1− α)h̄r 3.13

f6 =
h̄3
gGzg − h̄3

rGzr

g3
3.14

With

g1θ =h̄3
gh̄

3
r [(1− α)(cos2 β̂Gzg + sin2 β̂Gθg)Gθr+ 3.15

α(cos2 β̂Gzr + sin2 β̂Gθr)Gθg]

g2 =(h̄3
gGzg − h̄3

rGzr)(h̄
3
gGθg − h̄3

rGθr)α(1− α) 3.16

g3 =(1− α)h̄3
g(cos2 β̂Gzg + sin2 β̂Gθg)+ 3.17

αh̄3
r(cos2 β̂Gzr + sin2 β̂Gθr)

Correction factors Gir and Gig, i = θ, z, are evaluated at the Reynolds number corre-
sponding to h = hr and h = hg, respectively. Note that β̂ denotes the groove angle while
β and β̄ denote the dimensional and non-dimensional bulk modulus, respectively.

3.1.3 Results and discussion

The model developed above is applied for different geometries of aerodynamic bearings
in order highlight the real-gas effects on the lubrication performance in terms of load
capacity and stability.
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3.1.3.1 Infinitely wide step slider bearing

The steady-state form of Equation 3.8 is solved for an infinitely wide step slider bearing
(neglecting the variation of pressure in the z direction) operating at Λ = 3 and 10,
assuming a laminar regime in the thin film. In the case of slider bearings (Figure 3.3), Λ

is defined as follows:
Λ =

6µULx
Pah2

0

3.18

The boundary conditions are ρ̄ = 1 at x̄ = 0 and x̄ = 1, where x̄ = X/Lx. The lubricant
is R134a (a typical heat pump working fluid) at reduced ambient conditions corresponding
to Tr = Ta/Tc = 1 and Pr = Pa/Pc = 0.5. The pressure distributions for ideal gas and
real gas are compared in Figure 3.4. The real gas consideration leads to a redistribution
of the pressure, with a lowered peak pressure compared to the pressure when the ideal-gas
law is assumed. For Λ = 3, the pressure of the real gas reaches a slightly higher value
than the ideal one for x̄ ∈ [0.5, 1], leading to an overall load capacity increased by 1%.
The load capacity in its non-dimensional form is defined by Equation 3.19.

W =

∫ 1

0
(P̄ − 1)dx̄ 3.19

At Λ = 10, this increased pressure zone (as a result of real-gas effects) is confined to
x̄ ∈ [0.8, 1] and is negatively compensated by a lowered pressure in the remaining domain,
resulting in a load capacity 8.5% lower than the ideal gas case.

Lx=2

x̄
10

h0

2h0

U

Lx=2

Figure 3.3 – Geometry of the studied step bearing

Figure 3.5 shows the evolution of the non-dimensional load capacity with the compress-
ibility number for the considered slider bearing lubricated with R134a and highlights
the compressibility effects associated with real gas consideration. The temperature is
fixed to the critical value while the relative pressure is varied. The ideal-gas case shows
that the load capacity evolves linearly for small compressibility numbers before deviating
to reach a limit value corresponding to the solution for Λ → ∞. The linear domain
is due to the quasi-incompressiblity of the lubricant at low speed. This linear range is
affected by the real gas effects. The points A, B and C in Figure 3.5 indicate the location
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Figure 3.4 – Comparison of pressure distribution in a step slider bearing for two com-
pressibility numbers, with R134a at Tr = 1, Pr = 0.5

where a 10%-difference between the actual load capacity and the one predicted by the
incompressible solution occurs. As the pressure is increased toward the critical value, the
real-gas effects get amplified and the 10%-difference location is shifted toward smaller
compressibility numbers. The real-gas effects in the sub-critical domain increase the
compressibility of the fluid, since the parameter (∂ρP )T decreases as the critical point
is approached. This has the effect to shift the appearance of compressibility effects to
lower compressibility numbers compared to the ideal-gas behavior, thus narrowing the
validity of the quasi-incompressible behavior. The value of Λ(10%) corresponding to the
10%-deviation point can be estimated within a 2%-error interval using Equation 3.20.

Λ(10%)
rg = Λ

(10%)
ig · (∂ρ̄P̄ )T,a 3.20

Thus, this equation can help to estimate the validity domain of the incompressible solution
in real-gas lubrication based on the ideal-gas case.

This bearing configuration is simulated for a wide range of ambient conditions with the
following parameter serving as a metric to compare the real- and ideal-gas load capacity:

Wr =
Wrg

Wig
3.21

Figures 3.6 and 3.7 represent the iso-Wr lines for R134a at Λ = 1 and Λ = 10 respectively.
The cases close to the saturation line achieving saturation conditions inside the gas film
are discarded, thus leaving an empty space between the saturation line and the isolines.
At constant pressure, a reduction of the temperature increases the influence of the real
gas consideration, so does an increase in pressure at constant temperature. The deviation
from the ideal-gas lubrication increases with the compressibility number, which has the
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effect of shifting the isolines to lower pressure levels. Note that at Λ = 1 real-gas effects
tend to increase the load capacity, whereas at Λ = 10 it is decreases significantly.
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Figure 3.6 – Isolines of Wr for a step slider bearing at Λ = 1 with R134a

Figure 3.8 shows the difference between the maximum and the minimum value of Wr for
a given ambient condition among 10 working fluids of different chemical nature, including
both synthetic and natural fluids (R123, R134a, R170, R22, R245fa, R290, R600a, R717,
R718, R744) at Λ = 10. The term composite saturation curve indicates the saturation
curve bounding the phase change of the 10 considered working fluids. The maximum
deviation in load capacity within the considered domain is below 4% in this case and below
1% for Λ = 1, which allows to conclude that the load capacity of a step slider bearing is
nearly independent of the nature of the fluid if the reduced ambient conditions are known.
Further, a representation in the reduced pressure and reduced temperature domain is
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Figure 3.7 – Isolines of Wr for a step slider bearing at Λ = 10 with R134a

suggested to be sufficient to adequately map the real-gas effects in a gas-lubricated slider
bearings.

0.0
1

0.01

0.
03

0.03

C
om

po
si

te
 s

at
ur

at
io

n 
lin

e

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1

T
r
 [-]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
r [

-]

Figure 3.8 – Isolines of maximum deviation of Wr between 10 different fluids for a step
slider bearing at Λ = 10 as a function of reduced pressure and temperature

The dependency of the results on the reduced pressure and temperature alone can be
mostly explained by the compressibility factor Z (Z = P

ρrT ) and the parameter (∂ρP )T .
Figures 3.9 and 3.10 respectively show the isolines of Z and (∂ρP )T in the Tr − Pr space.
The trend appears to be very similar to the isolines of load capacity ratio shown in Figures
3.6 and 3.7.

When following isolines of Z in the single-phase gas domain and computing the load
capacity ratio, the obtained values fall in a very narrow range, as represented in Figure
3.11 for Λ = 10. For values of Z close to 1 (i.e. following the ideal gas law), the maximum
deviation of Wr in the investigated domain is very small. In general, getting closer to the
saturation point while keeping a constant ambient compressibility factor tend to increase
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the real-gas effects, translated here in a decrease of load capacity. This deviation grows
as the ambient compressibility factor decreases, indicating that this metric alone becomes
less effective as a mean to describe the real-gas effects occurring in the gas film.

The compressibility number, having an influence of the maximum pressure reached in
the gas film, also plays a role in this relationship. Figure 3.12 presents the load capacity
ratio Wr along a isolines of compressibility factor Z for different compressibility numbers
Λ. Increasing Λ leads to higher deviations of Wr along the isoline.

Figure 3.13 shows the maximum deviation over the 10 different working fluids over
different isolines of Z. In general, a higher reduced temperature tends to decrease the
discrepancy among the fluids and this reduction is stronger for lower compressibility
factors. The small reported discrepancies indicate that the ambient compressibility factor
is an effective metric to quantify the real-gas effects occurring for a given geometry
and a given compressibility number, independently of the fluid. However, using the
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compressibility factor is not practical, as is a non-trivial parameter which cannot be
measured directly, while temperature and pressure are, usually, readily available together
with their respective critical values, thus justifying the use of the ambient reduced
temperature and pressure.

3.1.3.2 Plain Journal Bearing

The same approach in the Pr − Tr domain is applied to a PJB operating at an eccentric
position with a length over diameter ratio Lz/D of 1. Simulations considering real- and
ideal-gas lubrication in laminar regime are compared using the ratio of load capacity Wr

(Equation 3.19) and the ratio of critical mass Mr as performance metrics, where Mr is
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defined such as:
Mr =

Mc,rg

Mc,ig
3.22

Results for the load capacity ratio are presented in Figures 3.14 and 3.15 for compressibility
number 1 and 10 respectively, simulating a bearing at an eccentricity ratio ε = e/h0 of 20%

and lubricated with R134a. As observed with the slider bearing at high compressibility
number, real-gas effects negatively affect the load capacity and become more significant
as the compressibility number Λ increases. The evolution of Wr with the compressibility
number for three different ambient conditions is shown in Figure 3.16, which emphasizes
this observation. The load capacity ratio diverges quickly from unity before reaching a
limit value for high Λ, corresponding to the limit solution for Λ→∞. The limit value
depends on the distance of the ambient conditions from the critical point, the point
of highest Pr being the most affected by the real-gas effects. Figure 3.17 presents the
pressure profile at the mid-span of the PJB at an eccentricity ratio of 0.6 along the
x-axis, lubricated with R134a at Pr = 0.75, Tr = 1 and Λ = 1. The unperturbed pressure
distribution is affected both in amplitude and distribution, leading to load components
unequally affected by the real-gas consideration: the radial component drops by 8.5%
and the tangential one by 45 %, resulting in a reduction of total load capacity of 28
% compared to the ideal-gas case. As a consequence of this unequal change in load
distribution, the attitude angle is affected and brought to lower absolute values, as shown
in Figure 3.18. The reduction of the attitude angle is an indication of an increased
stability as a result of the real-gas effects.

Figures 3.19 and 3.20 depict the evolution of the critical mass ratio Mr for Λ = 1 and
10 respectively. Interestingly, real-gas effects appear to have a positive influence at low
compressibility numbers that vanishes, however, at high compressibility numbers. The
evolution of the critical mass ratio for three ambient conditions against the compressibility
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Figure 3.14 – Isolines of Wr for a PJB (εx=0.2, εy = 0, R134a) at Λ = 1
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Figure 3.15 – Isolines of Wr for a PJB (εx=0.2, εy=0, R134a) at Λ = 10
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Figure 3.17 – Mid-span pressure profiles of a PJB (εx=0.6, εy=0) at Λ = 1 with R134a at
Pr = 0.75 and Tr = 1
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Figure 3.18 – Static locus of a PJB lubricated with R134a at Λ = 1 and Tr = 1 with a
force acting along the x-axis. The angle φ designates the tilt angle of an arbitrary point

number Λ is presented in Figure 3.21 and shows a monotonically decreasing trend starting
from values well above unity. At Λ ≈ 2 the critical mass ratio reaches approximately 1
for the three operating conditions, the unity threshold being postponed to slightly higher
compressibility numbers as the distance from critical point increases.

The similarity between working fluids in the Pr − Tr domain remains verified with PJBs,
for both considerations of stability and load capacity, as presented in Figures 3.22 and
3.23, where the maximum deviation between fluids is reported for each ambient condition
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Figure 3.19 – Isolines of Mr for a PJB (εx=0.2, εy = 0, R134a) at Λ = 1
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Figure 3.20 – Isolines of Mr for a PJB (εx=0.2, εy = 0, R134a) at Λ = 10

at Λ = 10 and εx = 0.2. The maximum deviation observed between the same 10 fluids as
previously cited remains below 4% for both metrics. Increasing the eccentricity ratio to
0.5 does not change the value of the maximum observed deviation.

As for the slider bearing, characterizing the real-gas effects on the bearing performance
using the ambient compressibility factor Z is valid here for both Wr and Mr. Figure 3.24
shows the value of Wr for a PJB along different isolines of Z in the Tr − Pr space. The
deviation of the value over the considered domain is small. At constant compressibility
factor, the proximity of the saturation enhances further the real gas effects, since Wr

presents the largest deviation from unity. At low ambient compressibility factor, the
knowledge of this variable alone is not sufficient to satisfactorily characterize the real-gas
effects on the load capacity, as a variation of nearly 19% is observed from the saturation
point up to Tr = 1.1, which ranges in reduced pressure from Pr = 0.45 to Pr = 1.1.
Although it does not reach the same quality level as for the prediction of Wr, the
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Figure 3.21 – Evolution of the critical mass ratio with the compressibility number for a
PJB (R134a, εx=0.2, εy = 0)
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Figure 3.22 – Isolines of maximum deviation of Wr between 10 fluids for a PJB (εx=0.2,
εy=0) at Λ = 10

consistency of the prediction of Mr along an isoline of z is good at high values of Z but
fails as the ambient compressibility factor decreases, as shown in Figure 3.25. In this
Figure, showing results for Λ = 10, the variation of Mr along the lines Z = 0.8 Z = 0.7

(which corresponds to a minimum reduced pressure of Pr = 0.25) reaches 12 and 38%
respectively. Reducing the compressibility number Λ from 10 to 1 reduces the variation
of Mr considerably, while doubling to Λ = 20, not represented here, has a very small
influence on the predicted values because of the limit solution for Λ→∞.

3.1.3.3 Herringbone-Grooved Journal Bearings

A fully grooved HGJB (γ = 1) with the grooved member rotating is analyzed following the
same strategy as for the PJB. The geometry is inspired from the optimal design computed
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Figure 3.23 – Isolines of maximum deviation of Mr between 10 fluids for a PJB (εx=0.2,
εy=0) at Λ = 10
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Figure 3.24 – Value of Wr along three different isolines of Z in the Tr − Pr domain, for a
PJB operated at εx = 0.5 in R134a

by Flemming and Hamrock [11] for Λ = 1. The groove depth over clearance ratio hg/hr
at a concentric position is 2, the groove angle β̂ is 150◦, the groove aspect ratio α is
0.5 and the length over diameter ratio Lz/D is 1. The flow regime is laminar. Figure
3.26 shows the ratio of critical mass for the considered bearing at concentric position
and Λ = 1, using R134a. Qualitatively, the trend is comparable to the PJB. However,
the trend changes radically as Λ increases, as presented in 3.27 for Pr = 0.5 and R134a.
At constant pressure and increasing temperature, Mr is first below unity, then reaches
the point of maximum stability and finally decays asymptotically to unity at very high
temperatures. This behavior is visible in Figure 3.28 for different ambient conditions at
fixed Λ. Note the relatively large range of ambient conditions where real-gas effects yield
to an increased stability compared to the ideal-gas lubrication case. A line of very high
stability is suggested to appear above a certain value of compressibility number, where
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Figure 3.25 – Value of Mr along three different isolines of Z in the Tr − Pr domain, for a
PJB operated at εx = 0.5 in R134a

the critical mass computed under the real-gas consideration tends to infinity. In such
cases, the condition of Equation 2.49 is satisfied for a whirl frequency ω of very small
values, while the amplitude of the equivalent impedance is not significantly affected. As
a result, a very high critical mass is obtained (Equation 2.50). The position of these
lines is presented in Figure 3.29. The lines are shifted toward higher Tr and lower Pr as
the compressibility number increases. For low values of Λ, the line interferes with the
saturation line and is no longer observable.

1.01

1.01

1.0
3

1.0
5

Mr , Λ = 1

Satu
ra

tio
n li

ne

1.
07

T
r
 [-]

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1

P
r [

-]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 3.26 – Isolines of Mr for a HGJB (ε=0, R134a) at Λ = 1

The same behavior is observed for the 10 working fluids mentioned previously. Figure
3.30 represents the positions of the maximum stability for each fluid at Λ = 10, with R170
and R245fa which bound the other fluids. All the lines are confined in a domain whose
width grows with reduced pressure, which suggests that the similarity between fluids loses
its validity when the HGJB operating conditions approach the critical pressure. In this
zone, the quantitatively small deviation between fluids observed previously is not verified
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Figure 3.28 – Different domains of value of Mr for a HGJB (ε=0, R134a) at Λ = 10
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Figure 3.29 – Position of the lines of maximum stability for a HGJB (ε=0, R134a)
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for HGJB because of the strong slopes observed in Figure 3.27, where a small deviation
in the position along Tr results in a very significant deviation in Mr.
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Figure 3.30 – Position of the lines of maximum Mr for HGJB lubricated with 10 different
fluids at Λ = 10

As for the slider bearing and the PJB, the compressibility factor Z evaluated at ambient
conditions appears to be a relevant variable when characterizing the real-gas effects on
the load capacity ratio Wr. Figure 3.31 shows the evolution of this metric along three
isolines of Z when varying the reduced temperature. The relative deviation along the
considered domain is slightly larger than for the PJB at similar compressibility factors,
explained at least partially by the larger maximum pressure reached in this case (P = 2.0

against P = 1.3, both at Λ = 10). For the stability, however, the singularity observed in
the evolution of the ratio of critical speed Mr causes this variable to vary considerably
along isolines of Z, as shown in Figure 3.32. For Z = 0.9, the singular point of infinite
stability is reached, which yield to enormous relative variation in the vicinity of this point.
Although the singularity is not reached on the two other isolines considered, the relative
variation on Mr is large. As visible in Figure 3.33, the line Z = 0.9 is in the vicinity of
the line of maximum stability for the studied case (ε = 0, Λ = 10). The two lines are
very close one from another and eventually cross, which cause the particularly strong
variation of Mr in this region. Therefore, the ambient compressibility factor alone is not
sufficient to reliably characterize the real-gas effects on the stability of a HGJB.

From a design perspective, the minimum value of the critical mass between the targeted
value of compressibility number Λ and 0 bears a particular importance, since it indicates
the stability threshold of a bearing accelerating from rest to nominal speed.

Figure 3.34 shows the evolution of this metric for three real gas cases and the ideal gas
reference. The two plateaus, experienced by the ideal gas case between Λ = 5 and 17
and at Λ > 30, are shifted toward higher values of minimum critical mass as the reduced
pressure increases. The first plateau is shortened by its end as the real gas effects are
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enhanced.

The ratio of minimum critical mass is defined to compare the minimum value of the
critical mass in this range:

Mr,min =

min
Λ∗∈[0,Λ]

Mc,rg

min
Λ∗∈[0,Λ]

Mc,ig
3.23

Figure 3.35 shows the ratio of minimum critical mass with the ideal gas case as reference.
Four zones can be distinguished along the Λ = 0:

• First zone: Negligible influence of real gas effect on the minimum critical mass, up
to Λ ≈ 3− 5
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• Second zone: Constant moderated positive influence, up to Λ = 13− 17

• Third zone: localized negative influence with a significant drop in minimum critical
mass, up to Λ ≈ 21− 25

• fourth zone: increasingly positive influence on the minimum critical mass as Λ

increases

The real-gas effects have a net negative influence on the critical mass only if the nominal
compressibility number is lower than a threshold of Λ ≈ 20, where a particular attention
should be paid to ensure the stability of bearing design under the ideal-gas assumption
operating in a real-gas environment.
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Figure 3.34 – Evolution of the minimum critical mass with the compressibility number
for different ambient reduced pressures (R134a)

Regarding the real-gas effects on the load capacity of HGJB, the trend is linear against Λ
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beyond a certain value, as shown in Figure 3.36. The convergence toward a limiting solution
as seen with the PJB in Figure 3.16 is not present here, because of the hypothesis behind
the NGT. The NGT relies on the assumption of a constant pressure gradient between
each groove-ridge pair, strictly valid for an incompressible lubricant only. Constantinescu
showed that this assumption is valid even at relatively large values of Λ in the case of
HGJB. However, due to the enhanced compressibility induced by the real-gas effects,
the validity domain of the NGT is narrowed, which is supported by Figure 3.5 for a
step bearing. Therefore, results from the NGT around the critical point should be
treated with caution, even at moderated values of Λ. Constantinescu introduced the local
compressibility number Λl, defined as follows:

Λl = h̄−2
g α

a+ b

L
Λ sin2 β̂ 3.24

He suggested Λl = 0.1− 0.15 as threshold values of compressibility effects. Employing the
observation made for the slider bearing in Equation 3.20, the threshold can be adapted
for real-gas lubrication with the use of Equation 3.20:

Λl,rg = h̄−2
g α

a+ b

L

Λ

(∂ρ̄P̄ )T,a
sin2 β̂ < 0.1− 0.15 3.25

The threshold of Λl,rg = 0.1− 0.15 can be assumed to estimate the limit of validity of
quasi-incompressible NGT in real-gas lubrication.

3.1.3.4 Real-gas effects with turbulence

Effects of turbulence are implemented by using Constantinescu’s correction terms. Figure
3.37 presents the evolution ofWr for an eccentric PJB as a function of Λ for three different
values of ambient Reynolds numbers Rea. The drop in load capacity ratio due to the
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real-gas effects observed in laminar regime (Figure 3.16) occurs more sharply and at lower
compressibility numbers with increasing ambient Reynolds numbers. Qualitatively, the
real-gas effects are not significantly affected compared to the laminar lubrication. In
substance, turbulence tends to enhance the real-gas effects. A similar observation is valid
for the critical mass ratio shown in Figure 3.38, although the trend in turbulent regime
differs after the initial drop since Mr recovers linearly after the extremum, thus achieving
improved values of Mr past a particular value of Λ. It has to be noted that the critical
mass and load capacity ratios are defined for equal ambient Reynolds numbers.
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Figure 3.37 – Evolution of Wr for PJB at εx = 0.2 with turbulent flow (Pr = 0.5, Tr = 1,
R134a)

The region of very high critical mass ratio observed for HGJB still exists in the turbulent
regime. The behavior of Mr on both sides of this region is not qualitatively affected,
however the position of the line in the Pr − Tr domain depends on the ambient Reynolds
number. Figure 3.39 shows the evolution of Mr with the reduced temperature at constant
reduced pressure and compressibility number. For the particular operating condition
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(Λ, Pr), the point of local peak stability is not visible in the laminar regime but appears
as the ambient Reynolds numbers increases, thus shifting the position of the extremum
toward higher reduced temperature, such as symbolically illustrated in Figure 3.40. Thus,
compared to the laminar flow regime, the domain where Mr < 1 is expanded. As a result
of turbulence, a safe bearing design is more difficult to achieve.

The use of another correlation for the turbulence correction terms is not expected to
influence the results significantly, since they systematically lead to a reduced Poiseuille
flow and, as a results, an increased overall density in the fluid film domain which amplifies
the real-gas effects.
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Λ = 5, R134a)
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3.1.4 Conclusion

The Reynolds equation was expressed in terms of density instead of pressure, with the
appearance a thermodynamic parameter addressing real-gas effects, the bulk modulus.
Static and dynamic resolutions of this equation were performed on different bearing
geometries and led to the following observations:

1. Real-gas effects strongly depend on the value of the reduced pressure Pr and
temperature Tr, showing that the proximity of the critical point amplifies real-gas
effects in bearings. The ambient compressibility factor Z is an effective variable
to characterize the real-gas effects on the load-carrying capacity of aerodynamic
bearings. However, it is not sufficient to assess the stability of a grooved bearing,
which displays a considerable variation for the same ambient value of Z

2. In general, real-gas effects negatively affect the load capacity of journal bearings
(PJB and HGJB), although a 6%-increase was computed for a step slider bearing
at a low value of Λ

3. Depending on the operating and ambient conditions, the critical bearing mass is
either positively or negatively affected by the real-gas effects. At moderated values
of Λ, the effect is positive on PJB, but becomes negative beyond a threshold value
of Λ ≈ 2. For HGJB, the critical mass ratio can reach very high values along a line
in the Pr − Tr domain. Its position depends on the value of Λ.

4. Deviation from the ideal-gas behavior evaluated for a particular fluid is valid for
other fluids of diverse chemical nature with a moderated error for PJB and step
slider bearing. This is observed as long as the similitude of geometry, compressibility
number and reduced temperature and pressure is verified. This agreement between
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different fluids is also observed for HGJB, where lines of high stability appear in
the same region of the Pr −Tr domain, although the absolute value of the deviation
is large near these high-stability regions.

5. The validity of the incompressible solution to the Reynolds equation is limited to
lower values of Λ due to the rising effect of real gas. The threshold of validity
can be estimated from the ambient value of the parameter accounting for real-gas
effects and the ideal-gas threshold. By extension, a modified threshold of validity
for the quasi-incompressible NGT based on [12] is suggested for real-gas lubrication
of HGJB.

6. The presence of turbulence enhances the real-gas effects on both the load capacity
and the stability. The drop in load capacity ratio is more pronounced at low
compressibility numbers and the regions of high stability observed for HGJB are
shifted to higher reduced temperature and lower reduced pressure.

Considering these observations, the position of the operation point in the Pr − Tr domain
is suggested to be the most relevant design variable when designing a gas bearing-rotor
system. Because of the high pressure build-up in HGJB, particular care should be taken
in the design of such bearings in order to take advantage of the real-gas effects and avoid
their possible negative influence. The real-gas effects tend to phase out at high reduced
temperature and low reduced pressure.
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Chapter 3. Non-ideal gas lubrication

3.2 Humid air effects

Parts of the material presented in this section has been published in the following
journal article:

Guenat, E., Schiffmann, J., 2018. Effects of humid air on aerodynamic journal
bearings. Tribology International 127, 333–340. DOI:10.1016/j.triboint.2018.06.002

3.2.1 Introduction

The use of aerodynamic bearings expands progressively to domains where the ambient
conditions cannot be satisfactorily conditioned, either due to economical or to technical
reasons. In particular, gas bearing-supported pressurizers of Proton-Exchange Membrane
(PEM) fuel cells [1–3] for automotive applications are subject to a large range of ambient
temperatures and relative humidities. Thus, the knowledge of the effect of ambient
humidity on the performance of an aerodynamic bearing is necessary to ensure the
viability of a given design.

Water vapor contained in humid air (HA) is subject to condensation if the saturation
pressure is reached within the fluid film of gas-lubricated bearings, especially because the
gas compression in the lubricant film is usually considered isothermal (Figure 3.41). The
resulting effects might influence the bearing behavior. Several works [4; 5] theoretically
and experimentally investigated the influence of HA on the static pressure field of hard
disk drive heads, showing that vapor condensation can occur, which reduces the pressure
in the bearing, leading to a reduction of the head’s flying height. For the same application,
Hua et al. [6] performed transient simulations investigating the settling time of the flying
head and showed that HA effects affect the final state of the bearing. In the previously
mentioned works, the simulation method to model HA effects consists in applying a
correction on the pressure field obtained from the ideal-gas form of the Reynolds equation.
Kirpekar et al. [7] introduced a modification of the Reynolds equation to obtain a more
rigorous approach. Ma et Liu [8; 9] investigated the dynamic phase equilibrium in the
mixture to conclude to the quasi-immediacy of the thermodynamic equilibrium in the
gas film. Aoki et al. [10] experimentally highlighted the influence of the water film
thickness on the behavior of the bearing in ultra-thin film lubrication. More recently, the
same phenomenon was further studied by Choi et al. [11]. Tani et al.[12] measured the
clearance loss in a slider bearing lubricated with with water-nitrogen and ethanol-nitrogen
mixtures and further confirmed the clearance reduction in humid conditions. Ma et al.
[13] theoretically studied the influence of the adsorbed water film on the heat transfer
in a slider bearing, highlighting an increase of the heat transfer coefficient. Matthes
et al. [14; 15] experimentally investigated the influence of relative humidity on the
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touch-down power (energy dissipated during a contact between mobile and static parts)
of an aerodynamic slider bearing. They reported a reduction of touch-down energy loss
with increasing humidity ratios. The literature on the HA-lubricated bearings is still
limited to slider geometries with ultra-thin film lubrication applied to data storage, with
no application to journal bearings, despite the growing interest for aerodynamic bearings
employed in humid environments.
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Figure 3.41 – Dew lines in a Pressure-Temperature diagram, with the black dot as reference
point. Starting from the point and following the dashed isothermal line, condensation
can be reached at higher pressure depending on the ambient relative humidity (φa), when
the corresponding dew line is crossed

The present work investigates the HA effects on the performance of PJBs and of HGJBs.
The objectives are to: (1) develop an expression of the Reynolds equation for HA-
lubricated journal bearings, (2) evaluate the deviation of HA-lubricated journal bearing
from ideal-gas lubrication in terms of load capacity and whirl stability in a large range of
ambient temperatures, relative humidities and operating conditions and (3) devise design
guidelines for robust design considering HA effects.

The Reynolds equation for compressible fluids is adapted to express the local density,
exhibiting the bulk modulus whose expression depends on whether the saturation con-
ditions are locally met or not. The expression of the bulk modulus is derived from the
classical humid air theory and accounts for the drying effect of condensing vapor. The
perturbation method is applied on the Reynolds equation and a finite difference scheme
is used to solve the equations. Static and dynamic bearing properties are obtained by
integration of the pressure fields. The concept of critical mass is used as a stability metric
regarding the whirl instability. The deviation of HA lubrication from the ideal-gas case is
investigated for both PJB and HGJB in terms of load capacity and critical mass. The
selected HGJB geometry maximizes the stability at moderated compressibility number
(Λ = 1). The considered operating conditions vary in temperature from 275 to 370 K,
in relative humidity from 0 to 1 with different eccentricity ratios and compressibility
numbers up to 30. Based on the generated results, a set of design guidelines is suggested
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for the design of HA-lubricated journal bearings based on the ideal-gas Reynolds equation.

3.2.2 Theory

HA lubrication implies a condensable gas mixture of water (condensable) and air, con-
sidered as non-condensable. The main working hypotheses in the following development
are as follows: (1) the gas film is isothermal, (2) the thermodynamic equilibrium is
instantaneous as suggested by Ma et Liu [8], (3) only the gas phase is considered. The
hypothesis (1) is justified by the large contact area of the gas film with the rotor and
bushings. These areas are heterogeneous nucleation sites justifying (2) and the very small
volume of condensed water regarding the gas phase justifies (3).

Since the practical problem targeted in the present work involves an atmospheric pressure,
both gases (air and water vapor) are considered as ideal. However, for an isothermal gas,
the saturation partial pressure of water can be reached within the fluid film as a mixture
pressure increases. At this point (dew point), water vapor starts condensing and limits
its contribution to the mixture pressure build-up on which the bearing relies to serve its
purpose. At this point, the behavior of the mixture deviates from an ideal gas, namely:

P = ρraT 3.26

where ra is the specific gas constant of the ambient HA. In order to account for the
condensation effects, Equation 3.26 is not used to substitute the density with the pressure
in Reynolds equation. Instead, the changes of variable of equation 2.24 to 2.25 are applied:

∂P

∂X
=

(
∂P

∂ρ

)
T

· ∂ρ
∂X

,
∂P

∂z
=

(
∂P

∂ρ

)
T

· ∂ρ
∂z

3.27

Where (∂ρP )T is associated to the bulk modulus β of the lubricant gas:

ρ

(
∂P

∂ρ

)
T

= β 3.28

Further, the Reynolds equation changes from what has been developed previously in
this work by the presence of a non-constant viscosity, subject to changes because of HA
effects:

∂θ

(
β̄h̄3

µ̄
∂θρ̄

)
+ ∂z̄

(
β̄h̄3

µ̄
∂z̄ρ̄

)
= Λ∂θ

(
ρ̄h̄
)

+ σ∂t̄
(
ρ̄h̄
)

3.29
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With µ̄ = µ/µa.

The perturbation method, developed in chapter 2.2, is applied to retrieve static and
dynamic performance of the bearing. The presence of the normalized viscosity in the
Reynolds equation is novel to the HA analysis, since it now considered as a function of
the density and is also affected by the perturbation:

1

µ̄
=

1

µ̄0
+ ε1x

(
−1

µ̄2

∂µ̄

∂ρ̄

)
0

ρ̄1xe
it̄ + ε1y

(
−1

µ̄2

∂µ̄

∂ρ̄

)
0

ρ̄1ye
it̄ 3.30

The method developed in chapter 2.2 is applied to segregate static and dynamic terms, to
solve the differential equations and to compute the performance of the bearing. Similarly,
the NGT is adapted to accommodate to non-constant viscosity:

∂θ

[
β̄

µ̄
(f1∂θρ̄+ f2∂z̄ρ̄)

]
+ ∂z̄

[
β̄

µ̄
(f2∂θρ̄+ f3∂z̄ρ̄)

]
+cs

(
sin β̂∂θ(f4ρ̄)− cos β̂∂z̄(f4ρ̄)

)
−Λ∂θ(f5ρ̄)− σ∂t̄(f5ρ̄) = 0

3.31

where parameters fi are identical to those presented in chapter 2.1.

The problem of HA lubrication consists in the expression of (∂ρ̄P̄ )T . As long as the
saturation partial pressure of water vapor is not locally reached, the mixture is assumed
to be an ideal gas. Thus, the term (∂ρ̄P̄ )T , encapsulated in the bulk modulus, is equal to
unity:

(∂ρ̄P̄ )T =
ρa
Pa

(∂ρP )T =
ρaraT

Pa
= 1 3.32

Only when the saturation pressure is met, condensing water will stop building up pressure,
leading to (∂ρ̄P̄ )T < 1, thus, departing from the ideal-gas behavior.

The ideal-gas equation for the gas mixture is:

P = ρrT 3.33

The value of (∂ρP )T is simply:

(∂ρP )T = rT + ρT∂ρr 3.34

where r is the mixture specific gas constant

r =
rair + wrvap

1 + w
3.35
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and w is the humidity ratio defined as the ratio of mass water vapor per unit mass of dry
air:

w =
Mvap

Mair
3.36

The value of w of the gas phase is defined locally depending on whether the saturation
conditions are met or not:

w = min(wa, w
∗(Ta, P )) 3.37

w∗ is the saturation humidity ratio, which is a function of the ambient temperature and
local pressure as follows:

w∗ =
m̃vap

m̃air

P ∗vap(Ta)

P − P ∗vap(Ta)
3.38

where P ∗vap is the saturation pressure of water that depends on the temperature only,
computed using a fluid database [16]. Since Equation 3.29 deals with density rather than
pressure, it is convenient to have an expression of w∗ as a function of density. For that
purpose Equation 3.33 is inserted in Equation 3.38 and w∗ is isolated:

w∗ =
−c2 +

√
c2

2 − 4c1c3

2c1
3.39

with

c1 = (ρrvapT − P ∗vap) 3.40

c2 = rairρT − P ∗vap(1 + m̃vap/m̃air) 3.41

c3 = P ∗vapm̃vap/m̃air 3.42

If saturation is reached and the water content in the gas phase decreases, the mixture
viscosity evolves accordingly. It is expressed from [17] as follows:

µ =
(1− c̃vap)− µair

1− c̃vap + c̃vapΦav
+

c̃vapµvap
c̃vap + (1− c̃vap)Φva

3.43

where

Φav =

√
2

4

(
1 +

m̃air

m̃vap

)−0.5
(

1 +

(
µair
µvap

)0.5(m̃vap

m̃air

)0.25
)2

3.44

Φva =

√
2

4

(
1 +

m̃vap

m̃air

)−0.5
(

1 +

(
µvap
µair

)0.5( m̃air

m̃vap

)0.25
)2

3.45

c̃vap is the molar concentration of water vapor in the gas phase, related to the humidity
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ratio as follows:
c̃vap =

1

1 +
m̃vap

wm̃air

3.46

The deviation from the ideal-gas law and the change of viscosity provide the necessary
tools for the modeling of HA-lubricated journal bearings.

3.2.3 Numerical computations and results

Journal bearings lubricated with condensable humid air are compared to equivalent non-
condensable (ideal gas) cases using two performance metrics, namely the load capacity
ratio Wr and the critical mass ratio Mr, defined as follows:

Wr =
Wcond

Wnon−cond
3.47

Mr =
Mc,cond

Mc,non−cond
3.48

3.49

Both the investigated geometries have a L/D ratio of 1. Moreover, the HGJB geometry
is based on the design obtained in [18] maximizing the minimum critical mass for the
range Λ ∈ [0, 5] (Equation 2.65) when the grooved member rotates:

α = 0.6 3.50

β̂ = 145.8◦ 3.51

δ̄ = 1.25 3.52

Unless specified differently, the presented simulations are performed at an ambient
temperature of 308 K, which is assumed to represent a pessimistic temperature for humid
environments. A first simulation of the PJB running at Λ = 30, and εx = 0.5 allows to
understand the consequences of humid air lubrication. Figure 3.42 presents the pressure
relative to the ambient at the mid-span of the considered bearing and the relative deviation
of the pressure compared to the non-condensable case with an ambient relative humidity
of 0.8. The relative humidity φ is defined as follows:

φ =
Pvap
P ∗vap

3.53
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The pressure is not only affected in the zone where it exceeds the dew point, exhibiting a
reduction larger than 0.8% , but also outside this zone, although the deviation is even
more modest. The pressure field is globally affected because of the elliptical characteristic
of the Reynolds equation. The pressure value at one particular point affects the entire
fluid film domain. This kind of observation is impossible with HA effects considered a
posteriori, on top of the pressure field computed with non-condensable gas lubrication, as
usually seen in the literature [4–6].
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Figure 3.42 – Relative pressure and deviation along the circumference of a PJB at z̄ = 0,
εx = 0.5, φa = 0.8 and Λ = 30. The pressure profile under condensable conditions is not
represented, as it is indistinguishable from the non-condensable case

Figure 3.43 presents the isolines of the load capacity ratio Wr for the PJB at εx = 0.5

as a function of the ambient relative humidity φa and the compressibility number Λ.
Load capacity drops when the saturation pressure is reached inside the bearing and the
condensation onset is reached at lower values of φa as Λ increases, until it converges
toward a limit value. This is due to the well-known limiting solution for PJB with
Λ→∞, at which a limit pressure field is reached. With a maximum relative deviation of
approximately 1.5% at this ambient temperature, the loss of load capacity remains low at
all values of compressibility number, even at high ambient relative humidity. Deviation
of this order of magnitude can be considered as negligible from a practical point of view.

Figure 3.44 depicts the evolution of Mr with φa and Λ. Once the saturation pressure is
reached within the gas film, the condensation effects have a small yet negative influence
on Mr. Such a modest evolution of the critical mass remains without consequences on
the practical design and performance of a PJB.

Figures 3.45 and 3.46 present the same approach with the HGJB for Wr and Mr re-
spectively, at εx = 0.05. The load capacity is negatively affected by the condensation,
with a maximum deviation of less than 1%. Regarding the stability in the saturated
domain, Mr is above unity on the left side of the line Λ ≈ 9 and below unity on its right
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side. The largest low- and high-deviation values are reached at the line itself, with a very
abrupt change of trend. The underlying phenomenon is the point of very high stability
observed for HGJB for particular values of Λ. Under the condition of saturated humid
air lubrication, the position of this stability peak is shifted to slightly lower values of Λ

(Figure 3.47), explaining the abrupt variation of Mr in this zone. The divergence of the
25%-deviation lines along the φa axis translates a rise in the amplitude of this variation
with the ambient humidity ratio. However, Mr gets close to 1 as soon as the operating
conditions deviate from this particular zone.

Following the definition of Eq. 3.23 adapted to a comparison between condensable and
non-condensable lubrication, Figure 3.48 depicts the evolution of Mr and Mr,min with Λ∗

for the saturated ambient condition (φa = 1). The improvement of critical mass observed
for the condensable lubrication on the left-hand side of the turn-over point at Λ∗ ≈ 9

is translated into a moderately improved value of the minimum critical mass (≈ 3%).
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Past this point, Mr,min coincides with the line of Mr, resulting in a depreciation of the
minimum critical mass reaching 25%, which is not negligible from a design perspective.
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The knowledge of the HA-effects on the synchronous stiffness and damping presents a
practical interest to predict the imbalance response of a rotor. The total stiffness and
damping ratio in the x direction are defined as follows:

Kx,r =

(√
K2
xx +K2

yx

)
cond(√

K2
xx +K2

yx

)
non−cond

3.54

Cx,r =

(√
C2
xx + C2

yx

)
cond(√

C2
xx + C2

yx

)
non−cond

3.55
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Figure 3.49 presents the synchronous value of these two parameters for the PJB and
HGJB as a function of Λ. The stiffness ratio is slightly above 1 for small values of Λ,
however without practical significance. The PJB case exhibits a constantly decreasing
trend at higher compressibility numbers, converging around a loss lower than 1.5%. The
HGJB shows a modest loss of stiffness at intermediate values of Λ and an equally modest
gain at low and high values of Λ. However, the deviation remains lower than ±0.5% in all
investigated cases, which can be regarded as negligible. Qualitatively, the damping ratio
behaves similarly to the stiffness ratio for the PJB, with a rapid decrease and a nearly
constant plateau at approximately −2.5% for high values of Λ. The damping ratio of the
HGJB exhibits a different trend, as a local minimum at Λ ≈ 6 is visible with a reduction
of nearly 3%. At higher compressibility numbers, this parameter increases and exceeds
unity with a gain lower than 0.5%. In a practical perspective, the synchronous dynamic
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coefficients of both bearings can be considered as independent of HA effects.
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308 K, φa = 1) as a function of Λ

The effects of the eccentricity ratio on the considered bearings are presented in Figure
3.50, at Λ = 10 and φa = 0.9. The evolution ofWr shows no clear trend for the HGJB and
diminishes for the PJB as soon as the saturation point is reached, yet in an insignificant
order of magnitude. The value of Mr for the HGJB increases slightly because of the
further shift in the critical mass curve. The Mr of the PJB shows a local minimum at
εx ≈ 0.17, however at levels without practical implications. Both metrics for HGJB are
affected by humid-air effects already at a concentric position because of the inherent
pressure build-up due to the grooved pattern, while saturation is reached only above
εx ≈ 0.1 for the PJB.
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Figure 3.50 – Evolution of Wr and Mr for HGJB and PJB with the eccentricity ratio
(Ta= 308 K. Λ=5, φa=0.9)

Figure 3.51 presents the evolution of the minimum value of Mr,min for Λ∗ = 50 with the
eccentricity ratio, in saturated ambient conditions. This metric shows a minimum at
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concentric position and relaxes as the eccentricity ratio increases.
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Figure 3.51 – Evolution of the minimum value of Mr,min for Λ∗ = 50 with the eccentricity
ratio for HGJB (Ta= 308 K, φa=1)

The effects of the ambient temperature are presented in Figure 3.52 for both PJB and
HGJB at φa = 0.9. The concentration of water in the gas mixture increases with
temperature at equal value of relative humidity, thus enhancing the effects of humid-air
lubrication at high ambient temperature. All metrics are affected in significant proportions
at temperatures approaching 100 ◦C. The strong enhancement of Mr for the HGJB is
due to the fact that the stability peak is shifted to lower values of Λ as the temperature
increases with constant φa. For both bearings, the load capacity is reduced by 2% at a
temperature of 330 K. In the same Figure, the minimum value of Mr,min of a HJGB for
Λ∗ = 50 in saturated ambient conditions is shown in order to represent the worst case
scenario. The temperature has a significant influence, since this indicator approaches
0 near 100 ◦C. The humid air effects are still significant on this indicator at lower
temperatures, since the 10%-reduction threshold is located at 290 K.

The influence of liquid water droplets formed in the bearing clearance due to condensation
can be questioned, since the formation of a liquid phase in the lubrication film can
threaten the viability of the bearing. However, because of its significant difference of
density at near-normal conditions (three orders of magnitude), the liquid phase, which
was neglected in the previous computations, might occupy an insignificant volume in the
mixture. In order to analyze this, the void fraction, defined as the volume of gas phase
over the total two-phase volume, is used:

δ =
vgas

vliquid + vgas
3.56

Figure 3.53 shows the "1-void fraction" of the mixture for different ambient temperature
and φa = 1 in the situation where all the water from the saturated solution condenses,
which is an overestimation of reality. Under this assumption, the void fraction gets the
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following expression:

δ =
1

1 + waρair/ρw
3.57

The minimum value barely reaches 99% for T just below 100 ◦C, which is suggested to
be sufficiently large to discard any risk linked to the formation of a local liquid film in
the bearing clearance.
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Figure 3.53 – Void fraction as a function of temperature in the limit case where all the
water content condenses (φa=1)

3.2.4 Conclusions

A modified form of the Reynolds equation suited for humid-air lubrication was developed
and applied to grooved and plain journal bearings on a wide range of operating conditions
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(compressibility number, eccentricity ratio, ambient temperature and relative humidity).
Cases accounting for vapor condensation in the lubrication film were compared to non-
condensable cases (ideal gas) in terms of load capacity and stability (critical mass). The
investigations lead to the following observations:

• Humid air (HA) lubrication affects the pressure distribution in a lubrication gas
film even at locations where the pressure does not exceed the dew pressure

• Consequences of HA lubrication are in general more significant at high compress-
ibility numbers Λ, ambient humidity ratios and eccentricity ratios. High levels
of ambient temperature increase the sensitivity of load capacity and stability to
humid-air effects, as the mass concentration of water in air increases

• Herringbone-grooved journal bearings (HGJB) are more sensitive to HA effects than
plain journal bearings (PJB), notably because of their inherent pressure build-up
even at concentric position, whereas PJBs require a higher eccentricity to develop
HA effects.

• Vapor condensation negatively affects the load capacity of journal bearings, however
without practical significance at temperature levels met in atmospheric conditions
(Ta < 310 K). The critical mass of PJBs is affected in negligible proportions, while
HGJBs can experience a significantly reduced critical mass at particular compress-
ibility numbers, with a reported reduction up to 25% in realistic atmospheric
temperatures. In consequence, an equivalent margin is suggested on the critical
mass to ensure a safe operation of HGJBs designed from the non-condensable
Reynolds equation.

• In realistic situations, the presence of liquid droplets in the bearing clearance is
unlikely to be a threat to the integrity of the system due to the very small void
fraction calculated in worst-case scenarii.
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3.3 Thin film gas condensation in gas bearings

Parts of the material presented in this section has been published in the following
journal article:

Guenat, E., Schiffmann, J., 2019. Isothermal gas condensation in thin
film lubrication, Journal of Tribology 141 (11), . DOI:10.1115/1.4044447

3.3.1 Introduction

Process gas-lubricated bearings for energy applications (mostly for heat pumping [1] and
waste heat recovery application [2; 3]), typically involve high pressure lubricants. On
top of the real-gas effects associated with high pressure (and therefore dense) gases, a
phase change can theoretically occur inside a lubricating gas film, as the compression in
a gas bearing happens nearly isothermally. If the ambient conditions around the bearing
are already in the vicinity of the saturation curve, the gas film may locally reach the
saturation conditions, as schematically represented in Figure 3.54. Schiffmann [4] operated
a HGJB-supported turbocompressor in R134a at an ambient pressure of 550 kPa and
34 ◦C in vicinity of the bearings, resulting on a margin factor of only 1.56 on the pressure.
Moreover, the efficiency of heat pumps is generally improved when the superheat at the
compressor inlet is minimized, therefore advocating for gas bearings operating very close
to the saturation curve already at ambient conditions.

Pa

Psat

T

TaTa

critical point

s

lubricant

compression

Figure 3.54 – Schematic representation in a temperature-entropy diagram of an isother-
mal compression starting from ambient pressure Pa to the saturation pressure Psat
corresponding to the ambient temperature Ta

Experimental hints of such condensation were reported at the dawn of the gas bearing
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"golden age" [5–7] in externally-pressurized steam bearings. Elwell [5] observed traces of
liquid droplet in an aerodynamic journal bearing lubricated with humid air and suggested
they are the result of moisture condensation due to the isothermal condensation in the
gas film. Siegler and Zwick [8], in the context of metal vapor lubricated thrust bearings,
discussed that the saturation pressure of lubricant might limit the maximum pressure
in the gas film. Orcutt investigated the effect of pressure and temperature of aerostatic
steam-lubricated thrust [6] and journal [7] bearings, concluding that feeding the bearing
with saturated steam was affecting negatively both the static (load capacity) and dynamic
(pneumatic hammer stability) of the bearings. Unterberg and Ausman [9] developed a
model for saturated vapor lubrication based on the Reynolds equation with condensation.
They realized that the Poiseuille flow term must vanish under the condition of isothermal
compression when condensation occurs and solved the Reynolds equation for an infinitely
long journal bearing. The introduced mathematical treatment of the Couette flow term
alone in the saturated zone is, however, not physically justified, as the authors neglected
the transition of the Reynolds equation from an elliptical to a hyperbolic form but
assumed an elliptic nature of the equation. In the mean time, the similar problem in
liquid-lubricated bearings, cavitation, benefited from an significant development handling
effectively the transition between the single-phase (elliptical) and two-phase (hyperbolic)
domain of a fluid film. The treatment of the boundary conditions between the two
domain received a particular attention. The Jakobson-Floberg-Olsson (JFO) theory
[10; 11] established a Reynolds-equation based model respecting the continuity across the
boundaries of the two-phase domain. It is, however, not convenient to solve numerically,
since the two zones are treated separately and the two-phase zone is a priori unknown.
Elrod [12] developed an algorithm based on finite difference able to to treat as one equation
both the single and two phase zones, predicting the onset and reformation of the cavitation
zone successfully. Vijayaraghavan [13; 14] further improved the numerical treatment of
Elrod’s algorithm and studied the analogy of the two-phase isothermal Reynolds equation
with non-viscous trans-sonic flows [15]. Despite the developments in cavitation modelling,
this significant progress were not transposed to the issue of condensation in gas bearings.
Zuber and Dougherty [16] proposed a form of Reynolds equation for non-equilibrium
condensing vapors, with source and sink terms in the lubricant film to account for the
difference of density between the two phases. The equation requires nucleation models for
these non-equilibrium terms, which were not investigated by the authors. Recent works
have investigated two-phase flows in seal [Arauz and San Andres], but the applications,
involving strong axial flows in journal bearing, turbulence, liquid-dominated flows and
very large clearances, depart form the cases of high-speed gas bearings, which usually
deal with gas-dominated, laminar flows in fluid films a couple of micrometers thick, where
no simple physical model is available in the literature.

The present section aims to 1) introduce an version of Elrod’s algorithm with Vija-
yaraghavan’s numerical treatment adapted to condensing gas bearings under isothermal
conditions, 2) theoretically study the condensation effects on one-dimensional gas slider
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bearing layouts and 3) validate the model predictions with data from an original test
apparatus.

Elrod’s [12] and Vijayaraghavan’s [13] work is adapted for thin gas film lubrication
in saturation conditions in 1D. A finite difference method is employed to numerically
solve the modified Reynolds equation for three 1D slider bearings layouts. Effects of
condensation on the pressure and density fields of these gas bearings are studied in a large
range of saturation density ratios and compressibility numbers. Investigation also covers
the effects of condensation on the static performance of the gas bearing geometries in term
of load capacity. A test apparatus is introduced for the measurement of the pressure in
the lubricant film in a Rayleigh step journal bearing, lubricated with a synthetic working
fluid: R245fa. The predictions of the gas condensation model are confronted to the in-situ
pressure measurements.

3.3.2 Theory

The implementation of thin film gas condensation begins with the steady-state, non-
dimensional form of the Reynolds equation in 1D, neglecting the Poiseuille term in the
direction perpendicular to the bearing motion, under the isothermal assumption:

−∂x̄
(
β̄h̄3∂x̄ρ̄

)
+ Λ∂x̄

(
ρ̄h̄
)

= 0 3.58

with the non-dimensionalization as follows:

ρ̄ = ρ/ρa β̄ = β/Pa = ρ∂ρP/Pa x̄ = x/L h̄ = h/h0 Λ =
6µUL

Pah2
0

3.59

where β relates to the bulk modulus defined as β = ρ∂ρP . A switch function g, introduced
by Elrod to ease numerical treatment [12], is used to express in the Poiseuille flow term
such that:

g =

{
1, ρ̄ < ρ̄sat
0, ρ̄ ≥ ρ̄sat

3.60

−∂x̄
(
gβ̄h̄3∂x̄ρ̄

)
+ Λ∂x̄

(
ρ̄h̄
)

= 0 3.61

Formally and under the isothermal assumption, β reduces to 0 under saturation conditions,
since P is limited to its temperature related saturation value. The assumption of
instantaneous thermodynamic equilibrium is supported a study of the nucleation rate
presented in Appendix F. However, numerical convenience pushes to keep β non-zero
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holding the ideal gas assumption and to update the local value of g to zero. Under the
ideal-gas assumption, β̄ and P respectively become:

β̄ =
ρ∂ρP

Pa
=
ρrTa
Pa

= P 3.62

P =

{
ρ̄, ρ̄ < ρ̄sat
ρ̄sat, ρ̄ ≥ ρ̄sat

3.63

In the two-phase domain, the Poiseuille flow terms vanish to leave only the Couette flow
term of Eq. 3.58:

∂x̄(ρ̄h̄) = 0 Therefore ρ̄h̄ = cst 3.64

The effect of condensation on the Poiseuille term switches the form Reynolds equation
from elliptic to hyperbolic [15]. In consequence, transmission of information in the two-
phase film is strictly downstream, in analogy to trans-sonic flows, until the film exits the
two-phase domain. This change of form is numerically represented in the Couette term
using the switch function g. Following the method of Vijayaraghavan [13], the Couette
term is discretized in such a way that it exhibits an upwind finite difference scheme in
the two-phase domain and a central finite difference scheme in the single phase domain:

∂x̄(ρ̄h̄) ≈ aρ̄i+1h̄i+1 + bρ̄ih̄i + cρ̄i−1h̄i−1

2∆x̄
3.65

With
a =

gi+1 + gi
2

b = 2− gi+1 + 2gi + gi−1

2
c = −

(
2− gi − gi−1

2

)
3.66

In the case where a point and both its neighbours (i− 1,i,i+ 1) are non-saturated, then
a = 1, b = 0 and c = −1, leading to a central difference scheme. In the opposite case
where the three points are in saturated conditions, then a = 0, b = 2 and c = −2, resulting
to an upwind difference scheme for the Couette term.

Following Vijayaraghavan [13], the Poiseuille term can be rewritten as follows for numerical
convenience:

g
∂ρ̄

∂x̄
=
∂[g(ρ̄− ρsat/ρa)]

∂x̄
− (ρ̄− ρsat/ρa)

∂g

∂x̄
=
∂[g(ρ̄− ρsat/ρa)]

∂x̄
3.67

This treatment is possible because the spatial derivative of g is equal to zero everywhere,
except on the boundary of the two-phase domain, where ρ = ρsat.

Therefore, the Poiseuille term can be numerically approximated as follows:
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−∂x̄
(
β̄h̄3g∂x̄ρ̄

)
=− ∂x̄

(
β̄h̄3∂x̄ (g(ρ̄− ρsat/ρa))

)
3.68

=
−1

∆x̄

(
β̄i+1/2h̄

3
i+1/2gi+1(ρ̄i+1 − ρsat/ρa)

−(β̄i+1/2h̄
3
i+1/2 + β̄i−1/2h̄

3
i−1/2)gi(ρ̄i − ρsat/ρa)

+β̄i−1/2h̄
3
i−1/2gi−1(ρ̄i−1 − ρsat/ρa)

)
The system of equation resulting from the discretization of Eq.3.61 is expressed in the
matricial form and solved according to equations 2.59 to 2.63.

3.3.3 Numerical computations and results

The numerical model is employed to simulate different geometries of infinitely wide slider
bearings as shown in Fig 3.55: A parabolic bearing (Case A), a Rayleigh-step bearing
(Case B) and a wedge bearing (Case C). For all three configurations, the ratio of largest
and smallest film height is 2. The boundary conditions of Eq. 3.61 are :

ρ̄ = 1 at x̄ = 0 and x̄ = 1 3.69

The film height for the three bearing configurations is expressed as follows:

h̄ =4x̄2 − 4x̄+ 2 Case A 3.70

h̄ =

{
2, x̄ < 0.5

1, x̄ ≥ 0.5
Case B 3.71

h̄ =2− x̄ Case C 3.72

The lubrication model for a condensable lubricant is applied for a given saturation density
ρ̄sat and for different compressibility numbers Λ in order to investigate the effects of
condensation on the density and pressure fields. First, the saturation density ρ̄sat is varied
while keeping a constant compressibility number Λ = 20 (Fig 3.56, 3.58 and 3.60). Λ is
then varied at constant saturation density ρ̄sat (Fig 3.57, 3.59 and 3.61). The bearing
domain is discretized in 330 points, which achieves excellent grid convergence.

In all investigated cases, the density and pressure lines merge in the single phase domain
because of the ideal gas assumption (P = ρ̄). However, they diverge in the two-phase
domain, where the density is governed by the equation ∂x̄(ρ̄h̄) = 0 and the pressure is
limited to the saturation pressure associated with the ambient temperature. The density
increases by forming liquid in the fluid film, therefore lowering its vapor quality. A sharp
density drop suddenly occurs in the second half bearing domain down to the saturation
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Figure 3.55 – Description of the three evaluated 1D bearing geometries: Parabolic,
Rayleigh step and wedge
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Figure 3.56 – Pressure and density profiles in Case A for different saturation densities at
Λ = 20

level, ending the two-phase zone.

In cases A and C, the Poiseuille flow must vanish in the single phase zone just prior to
reaching saturation in order to respect the mass continuity. As a result, the condition
∂x̄ρ = 0 is met upstream of the condensing zone. Interestingly, the saturation conditions
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Figure 3.57 – Density profiles in Case A for different compressibility numbers and ρ̄sat = 1.3
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Figure 3.58 – Pressure and density profiles in Case B for different saturation densities
and Λ = 20
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Figure 3.59 – Density profiles in Case B for different compressibility numbers and ρ̄sat = 1.3

are always met at the position of the step in case B, independently of the compressibility
number Λ and the saturation density ρ̄sat, as long as it is met in the density field. The
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Figure 3.60 – Density profiles in Case C for different saturation densities and Λ = 20
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Figure 3.61 – Density profiles in Case C for different compressibility numbers and ρ̄sat = 1.3

pressure derivative is non-zero at the onset of two-phase flow because of the discontinuity
in the clearance. However, compressibility number and saturation density influence the
density in the two-phase zone and the point where the flow re-enters the single phase
regime. A larger compressibility number as well as a smaller saturation density translate
into a higher two-phase density and a postponed two-phase domain exit point.

The effect of decreasing P sat on the pressure and density field of Case A is represented
in Fig. 3.56. As the saturation pressure decreases, the effect of condensation of the
upstream single-phase flow increases, locally reducing the slope in the profiles. The onset
of condensation occurs closer to the leading edge, while the maximum density in the
two-phase zone is larger when the saturation pressure is lower. The sharp decrease of
density, happening in the second half of the bearing, is postponed toward the trailing edge
as ρsat decreases. However, following Eq. 3.64, the location of the maximum density is
independent of the saturation pressure and corresponds to the point of minimum clearance
within the condensing zone. As far as Case A is concerned, an increase of compressibility
number is qualitatively similar to a decrease of saturation pressure, as shown in Fig. 3.57.
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Increasing Λ leads to a spatially extended two-phase domain as well as a higher maximum
density at the point of smallest clearance. The amplitude of the density drop at the end
of the two-phase domain is not significantly affected by the variation of compressibility
number. Figure 3.58, representing the density and pressure fields of Case B for different
saturation pressures, displays a different behavior. The saturation conditions are always
met at the position of the step, independently of the saturation density P sat, as long
as condensation is met in the density field. The discontinuity in the clearance allows
the pressure derivative just upstream of the condensation onset to be non-zero, while
respecting the mass flow conservation across the step. The density remains at a constant
value in the two-phase domain, in accordance with Eq. 3.64. As the saturation pressure
decreases, the density increases and the end of the saturated domain is shifted toward
the trailing edge. The effect of compressibility number on the density field, shown in
Fig. 3.59, are small upstream of the condensation onset, but significant downstream of it.
Both the density plateau in saturation, the location of the density drop and the second
single-phase domain depend significantly on the compressibility number. A higher value
is associated with a larger density level in saturation and a postponed re-entry point in
the single-phase regime, mechanically leading to a larger pressure between this point and
the trailing edge of the bearing.

Since the maximum achievable pressure in the gas film is limited by the saturation
pressure due to the local occurrence of condensation can affect significantly the load
carrying capacity of the bearing can be affected significantly. It is calculated as follows:

W =

∫ 1

0
P − 1dx̄ 3.73

In order to quantitatively assess the condensation effect on the load capacity, the following
metric is defined:

Wr =
W cond

Wnon−cond
3.74

The load capacity ratio Wr is shown for different saturation densities against the com-
pressibility number Λ in Figures 3.62 to 3.64 for cases A, B and C respectively. The
load capacity can be reduced down to 10% of its single-phase value for the Rayleigh step
bearing (case B) at a relative saturation density of 1.1 and Λ > 40. As the effects of
condensation on load capacity are generally negative, the load capacity can be slightly
increased at low relative saturation densities and low compressibility numbers and for cases
A and B, with a maximum computed value 6% higher than the single phase performance.
This is induced by a local increase in pressure downstream of the onset of condensation
in the bearing, as represented in Figure 3.65 for case B at Λ = 2.
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Figure 3.62 – Load capacity ratio in Case A for different saturation densities
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Figure 3.63 – Load capacity ratio in Case B for different saturation densities
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Figure 3.64 – Load capacity ratio in Case C for different saturation densities

3.3.4 Experimental validation

3.3.4.1 Experimental setup

A possibility to assess the theory developped above is to measure the pressure inside a
gas bearing and highlight signatures of condensation in the measurements, such as the
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Figure 3.65 – Local increase in the pressure profile leading to a net gain in load capacity.
Case B, Λ = 2

anomaly of pressure evolution when condensation occurs. A journal bearing with one or
several axial grooves establishing ambient pressure is suitable to simulate the behavior of
slider bearings since each segment of the bearing is independent of the others. Any of the
three investigated geometries can be implemented in a journal bearing by repeating the
slider bearing circumferentially.

A pressure chamber offering a volume of ID300x700 is used to contain the test bearing in
a condensable atmosphere. Because of the uncertainty regarding the pressure capabilities
of the chamber, a gas with an evaporation point close to 300 K is necessary, keeping the
inner pressure close to 1 bar, yet with a positive pressure difference with the atmospheric
conditions to prevent pollution of the chamber in case of leakage. The working fluid
R245fa meets these requirements while being readily available on the market. At 300 K,
its saturation pressure is 160 kPa, as shown in Figure 3.66.
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Figure 3.66 – Saturation pressure of R245fa

Because it can be manufactured easily and provides a large pressure build-up in the gas
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film, the Rayleigh step journal bearing is selected to equip the journal bearing. A number
of three independent steps over the circumference is a good trade-off between stability
and angular span of a pocket, which must allow a in-situ pressure measurement of several
locations. In order to keep the manufacturing costs low, the rotor-bearing system must
be kept as compact and simple as possible. The design converges therefore toward a very
short steel rotor whose entire circumferential surface is gas lubricated, meaning that the
gas bearing is of the same length as the rotor itself. This design is directly inspired from
Kingbury’s experiment [17], who first investigated a gas lubricated bearing in 1897 in the
form of a �152 mm 22.9 kg plain bearing driven by hand or by a hand drill (Figure 3.67).
5 pressure taps disposed axially allowed to measure the pressure inside the gas film. In
the present experiment, a high speed DC motor drives the rotor via a coupling made
of a flexible hose and a o-ring, inserted inside a bore in the rotor centre. A diameter of
20 mm is chosen, together with a length-diameter ratio of 1, in order to keep the losses
low while ensuring a sufficient tilt stiffness to the bearing. The diameter allows to have 5
measurement taps distributed along one of the three steps in the circumferential direction.

154

�
1
5
4

Pressure taps

Rotor Stator

Handle

Figure 3.67 – Cut-view of Kingburry’s gas bearing apparatus presented in 1897

Unlike the 1D bearing studied previously, the change in clearance is not placed at the
mid-span of the pocket but at 26% of the active length in order to increase the pressure
build-up in the gas film and allow to position multiple pressure taps in the region after
the step, where the pressure anomalies are expected to occur. The electric motor is
chosen to be robust against special atmosphere, to allow high speeds an to provide a
sufficient torque. The Maxon Motors EXC SPEED 13M, rated at 74 krpm and suited for
high-temperature steam sterilization, is chosen to drive the system. It provides a torque
of 3.34 mNm at nominal speed. Nominal bearing clearance h0 and step depth δ, defined
on Figure 3.68 are determined studying simultaneously three metrics: 1) the maximum
pressure, which has to be large in order to ease the apparition of saturation conditions, 2)
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the critical mass of the bearing, which has to be significantly above the mass of the rotor
and 3) the viscous drag torque, which must lay below the capabilities of the drive. Using
the same simulation procedure and perturbation method as described in Chapter 2, the
static and dynamic performances of the Rayleigh step bearing are simulated. An example
of computed static pressure field is presented in Figure 3.69, for 70 krpm, h0 =6 µm and
δ =10 µm. Figure 3.70 shows the maps of critical mass, maximum pressure ratio and drag
torque for a speed of 70 krpm in R245fa. The mass of the rotor, made of steel, is estimated
to be 0.050 kg. Because the rotor will be commissioned in atmospheric conditions, it has
to run correctly in air as well, leading to the results in Figure 3.71. A clearance h0 of
6 µm and a step depth δ of 10 µm allow a 10-fold margin on the critical mass and a large
pressure ratio in refrigerant within the torque capabilities of the motor. However, because
of the higher viscosity of air inducing a higher viscous torque, the maximum speed of the
motor will not be reachable in atmospheric conditions.

h0

δ

Ω

30◦

85◦
Stator

Rotor

Figure 3.68 – Illustration of the geometry numerically simulated, with only one pocket
represented

The bearing and the rotor are manufactured using lapping for the low-clearance zone
and EDM-wiring for the steps. Nominal clearance and step depth are realized with an
uncertainty of 0.3 µm and 1 µm respectively. A rough hole is first bored in the bearing
center, together with the radial hole for the capillary tubes. Tungsten carbide capillaries
are press-fitted before the inner diameter of the bearing is lapped to achieve the desired
dimensions as well as a smooth interface between the capillaries and the bearing. A point
of glue ensures the the air tightness of the assembly (Figure 3.72). Finally, the steps
are manufactured on the inner surface with a 30 µm EDM-wiring process. Because the
wire is significantly larger that the height of the desired step, the resulting shape is a
truncated circle (Figure 3.73). However, this deviation should have little influence on
the performance of the bearing, since the change of clearance occurs on a very short
distance compared to the circumferential length of the pocket. The feed grooves, 1 mm

deep and 5◦ wide, separate the pads by establishing P = 1 between them. As displayed
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Figure 3.69 – Computed static pressure field of the Rayleigh step bearing for 70krpm,
h0 =6 µm and δ =10 µm, in air (1 bar, 305 K).
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Figure 3.70 – Critical mass, maximum relative pressure and drag torque in R245fa (1.4 bar,
305 K) for different step depths and clearances. The dots indicate the selected nominal
values of h0 and δ

in Figure 3.75a, the taps are located at 17◦, 37◦, 57◦, 77◦ and 97◦ following the same
circumferential reference as Figure 3.75a. In order to capture the point of maximum
pressure in the gas film, only 2◦ separate the location of the clearance restriction and the
center of the second tap (Figure 3.74).

The inner diameter of the capillaries results from a trade-off between the diameter of
the orifice and the settling time of the pressure in the volume between the capillary
and the pressure transducer. To address this trade-off, the settling time is predicted
using a simplified model of the situation. A dead cavity, of volume V and pressure P , is
connected to the environment by a capillary of length L and diameter d (Figure 3.77).
Following [18] and assuming that the pressure profile along the capillary is linear and
that the conditions are isothermal, the differential equation establishing the pressure at
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Figure 3.71 – Critical mass, maximum relative pressure and drag torque in air (1 bar,
305 K) for different step depths and clearances. The dots indicate the selected nominal
values of h0 and δ

Figure 3.72 – Close-view on one of the pressure taps on the external surface of the bearing

the right end of the capillary is:

(
∂P

∂t

)
z=1

= −πd
2L

8V

(
∂P 2

∂z

)
z=1

3.75

where d and L are the capillary diameter and length, respectively, and V is the cavity
volume. Equation 3.75 is solved assuming 1 m of hose length, 2 mm inner diameter, with
the following initial condition:
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�30µm

10µm

Bushing

Figure 3.73 – Shape of the step resulting from the EDM process wire real-size wire
diameter

Figure 3.74 – Interface between the second pressure tap and the inner diameter of the
bearing. The straight line is the delimitation of the step manufactured with EDM

P0(t = 0) = 2PV (t = 0) 3.76

Figure 3.78 shows the settling time (PV = 0.99 · P0) of the cavity pressure against the
capillary diameter. A hole diameter of 200 µm achieves a settling time of 0.23 s, equivalent
to a cut-off frequency of approximately 5 Hz, which allows to have an effective low-pass
filter while having a sufficient reactivity for practical uses. In reality, the environment is
not an infinite reservoir of gas, but the gas thin film, which will itself provide a limitation
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Figure 3.75 – Geometry of the Rayleigh step journal bearing in the circumferential
direction (a) and Cut of the motor-rotor-bearing system perpendicular to the rotor axis
(b)

Figure 3.76 – Axial cut of the motor-rotor-bearing system: 1) Motor 2) Bearing 3) Rotor
4) Coupling 5) Pressure tap

on the supply in fluid to feed the capillary, resulting to a longer effective settling time
than the one computed here.

The rotor is dynamically balanced on two planes with a residual imbalance less than
5 mg mm. The assembled rotor and bearing are shown in Figure 3.79. Drill marks
resulting from the balancing process are visible on the axial surface of the rotor. The 5
pressure taps connected to the measurement tube are visible on the top of the bearing.

In order to suppress the effect of weight, a vertical position is chosen for the motor-rotor-
bearing system (MRBS). A closed-loop cooling circuit circulates water in the bearing
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Figure 3.78 – Pressure settling time in the taps against capillary diameter. Dashed lines
indicated the selected diameter and the corresponding settling time

axial cooling channels at a nearly constant mass flow rate. A 0.28 mm-diameter K-type
thermocouple with a measurement uncertainty of ± 0.5 K is placed and glued in the feed
groove before the instrumented pocket (Figure 3.82).

The temperature of the cooling reservoir is monitored using a high-precision reference
PT100 thermometer with an uncertainty of ±0.01 K. The angular velocity is assessed
using the back-electromotive force sensed by the motor controller. At the considered
pressure levels, the pressure scanner has an uncertainty of ±0.002 bar on the 5 pressure
taps and the pressure in the pressure chamber, measured via a sixth tube. Direct current
fed coils heat the pressure measurement pipes in the chamber in order to prevent undesired
condensation in the measurement pipes. A scheme and a picture of complete the test
apparatus are shown in Figures 3.80 and 3.81 respectively.
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Figure 3.79 – Rotor-Bearing assembly, with marks of balancing visible
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Figure 3.80 – Test apparatus: 1.MRBS 2.Cooling circuit 3.Circulation pump 4.Water
reservoir 5.High-precision thermometer probe 6.Thermometer reader 7.Thermocouples
8.Thermocouple reader 9.Pressure scanner 10.Pressure pipe heater 11.DC source 12.Vessel
13.Motor drive

3.3.4.2 Test runs in air

The MRBS is assembled and tested in atmospheric conditions (air, Pa = 0.965± 0.01bar)
up to 40 krpm in successive steps. Figure 3.83 presents the measurement of gauge pressure
at the 5 pressure taps. Between the velocity steps, an acceleration of 2 krpm/s imposed
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Figure 3.81 – The pressure chamber (red, right) and the pressure scanner (left) of the
test apparatus. The cooling water reservoir is visible behind the tank
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Figure 3.82 – Location of the bearing thermocouple

to the motor and a elapsed time of 100 s or more is waited for the pressure in the taps to
reach their steady-state value before the next acceleration is started. The temperature in
the bearing is recorded at the end of each step.

For validation purpose, the output of the simulation code used for the design of the
MRBS is compared to the pressure measurements at different speeds (Figure 3.84). The
predictions include the measurements uncertainty on the step depth and the nominal
clearance of the bearing. The simulation code is in good agreement with the experimental
data, as all measurement points fall in the predicted domain. As the speed increases, the
contribution of the Couette term in the Reynolds equation becomes increasingly dominant
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over the Poiseuille terms. This allow the lubrication model with isothermal condensation,
implemented in 1D (neglecting the Poiseuille term perpendicular to the velocity vector),
to be used to predict effectively the pressure field, as visible in Figure 3.85. Although the
trend in the predicted pressure field past the bearing step differs sensibly between the 1D
and 2D models, all measurement points fall within the prediction of both tools. This can
be considered as a validation of the code, as far as ideal non-condensable gas lubrication
is concerned.
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Figure 3.83 – Measured gauge pressure in time for different steps in speed toward 40 krpm

3.3.4.3 Test runs in R245fa

The next step consists in testing the MRBS in an atmosphere of R245fa far from the
saturation conditions, such that the event of local condensation in the gas film can be
neglected. The system is installed in the pressure chamber before sealing and vacuuming
it down to a residual pressure of 80 Pa. Refrigerant is then released in the chamber up to
a pressure of 96 kPa. The MRBS is accelerated up to 3.6 krpm and steadily kept at this
speed for a few seconds before ramping up to 30 krpm, with an acceleration of 2 krpm/s.
This regime is held a certain time before coasting down to rest. The active cooling of
the bearing permits a low temperature increase over the run. The measured pressures at
t=100 s are compared to the 1D model predictions in Figure 3.87, taking into account the
uncertainty on the bearing clearance and step depth. The bearing temperature at this
moment is 23.4 ◦C, which corresponds to a saturation pressure of 140 kPa, or a relative
pressure of 1.46, which is here not reached in the gas film. As for air in nearly normal
conditions, the predicted pressure values fall within the predicted domain.

In order to trigger condensation inside the bearing gas film, the following procedure
is followed. The pressure of R245fa in the chamber is increased up to 118 kPa, which
corresponds to a saturation temperature of 18.9 ◦C and the cooling circuit is started with
an initial water tank temperature of 17 ◦C. The losses in the feed pump and natural
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Figure 3.84 – Predicted and measured pressure fields in air at three different speeds.
Bearing temperatures are 31.0, 34.2 and 42.1 ◦C respectively
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Figure 3.86 – Measured pressures against time in R245fa, Tbearing = 23.4◦C Pa = 96.0
kPa, accelerating from 3.6 to 30 krpm

convection between the pipes and the ambient air slowly increase the temperature of the
cooling circuit over time. As the temperature at the pump intake reaches 21 ◦C, which
allows a margin to condensation of 2.1 K, an acceleration scheme identical to the one
previously applied is followed: acceleration to 3.6 krpm followed by a constant ramp
up to 30 krpm. The cruise speed is held for several minutes while the temperature in
the bearing and at the pump intake, as well as the pressures, are recorded. Figure 3.88
presents the measured relative pressure in the gas film, as well as the relative saturation
pressure corresponding to the temperatures measured in the bearing and at the pump
intake. An uncertainty of ±0.1 K, larger than the actual uncertainty, is applied on the
cooling water temperature measurement in order to appreciate the effect of temperature
on the saturation pressure.
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Figure 3.87 – Comparison model-measurements in ambient air in non-saturated R245fa
at 30 krpm, corresponding to t = 100s in Fig. 3.86. Measurements uncertainty bounds
are smaller that the diameter of the dots

After the acceleration at 30 krpm, the pressures P2 to P5 behave nearly as one until
t =300 s, with a trend very similar to the temperature of the bearing measured close to
the measurement point P1, in the feed groove. This limit pressure followed by P2 to P5

increases as the bearing temperature rises, with an equivalent saturation temperature equal
to 0.5 K above the nominal value of the measured temperature, within the uncertainty.
Qualitatively, this is very different from the data recorded away from the saturation
point (Figure 3.86) and this can be seen as a first hint of the occurrence of isothermal
condensation in the gas film.

However, having in mind the temperature level of the cooling water circuit, the temperature
of the capillaries walls must lay between the warm bearing surface and the cold channels
transporting the coolant in the bearing. As a consequence, pressure taps P2 to P5 might be
in saturated conditions and one cannot exclude the occurrence of droplets formation in the
measurement capillaries, which can have an influence on the pressure value measurement
performed at the other end of the pipes.

The measurement of channel P1 provides a more robust argument supporting the hy-
pothesis of the condensing gas film. The pressure evolves with time beyond the settling
time previously observed in non-saturated conditions (Figure 3.86, t ≈ 12 s), although the
pressure is low enough to discard the saturation everywhere in the measurement chain
between the gas film and the pressure transducer. The change in pressure at this location
indicates varying pressure elsewhere downstream in the gas film, in particular between
100 and 400 s. This allows to suppose that the pressure profile is influenced by both
the temperature and the film pressure downstream of P1, since the observed change of
pressure is more significant than the increase of viscosity (which increases by 1.4% over
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between 0 and 1000 s due to the rise in temperature).

Because of the potential condensation happening at their other end, capillaries 2 to 4
might act as mass sinks and perturb the pressure in the gas film, thus perturbing the
pressure measured in P1. To assess this effect, a test run in similar conditions to the one
shown in Figure 3.86 is performed. However, a manifold joining together the pressure
taps 2 to 5 to the ambient pressure of the chamber is let open as the rotor is builds up
speed from 3.6 to 30 krpm. The manifold is closed after a couple of seconds, isolating the
pressure taps from the ambient. Taps 2 to 5 start to build-up pressure until equilibrium
is reach with the gas film and the gas sinks end. Figure 3.89 shows the pressure measured
at P1, with the manifold closed at t=35 s. The pressure variation is P = 0.01, which
is significantly smaller than the pressure variation of P1 in Figure 3.88 despite the fact
that the manifold manipulation represent a pessimistic scenario due to the very large
pressure difference it creates across the capillaries. It can therefore be concluded that the
evolution of pressure of P1 is due to a condensation pocket downstream of P1.
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Figure 3.88 – Measured pressures and computed saturation pressures against time

The condensation model is used to predict the pressure at the location of the pressure
taps for a varying value of ρ̄sat and compared to the measurements based on the measured
bearing temperature. Since the saturation pressure based on the upper error band of
the measured bearing temperature captures well the recorded pressure increases after
the start, this value is used to calculate ρ̄sat in the model. Comparisons are shown in
Figures 3.90 and 3.91. Two interesting aspects are highlighted: first, the rising trend in
P1 experimentally observed appears in the simulations, although the predicted values
are lower than the measured ones. Second, the sudden decrease of P5 occurring around
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Figure 3.89 – Influence of the opening and closing of the taps 2 to 5 on the pressure P 1

t =600 s is predicted by the model. The sudden drop in pressure corresponds to the
switch from the two-phase hyperbolic form of the Reynolds equation to the single phase,
elliptical form, which is a consequence of the slowly rising temperature. The model also
predicts a similar yet much smaller transition in P4, which is not experimentally observed.
The oscillations in the measurements of P 4 and P 5 between t =300 s and t =600 s, are
not captured by the model. They might be due successive condensation and evaporation
of liquid droplets in the pressure taps. Similarly, the sudden peak after t =600 s in P 3

is not captured by the model and can also be explained by the sudden evaporation of a
metastable liquid droplet in the tap.

In a summary, the experimental campaign together with the the theoretical model clearly
suggests the occurrence of condensation in a fluid film of a gas lubricated bearing operated
close to the saturation line. The condensation is very sensitive to the local bearing
temperature and the measurements seem to imply that condensing zones might appear
and disappear, thus suggesting a dynamic behavior.

3.3.4.4 Vibrations analysis

The acceleration of the rotor very close to saturation conditions led to several touch-downs
at moderated speeds between 20 and 40 krpm. An accelerometer was installed on the
surface of the MRBS in order to capture radial vibrations and test at low temperature
were conducted to find a possible spectral signature of the condensation. A typical
waterfall plot is shown in Figure 3.92, for an ambient pressure of 116 kPa and an bearing
temperature of 20.3 ◦C. The rotor is accelerated steadily until touch-down occurs at
approximately 40 krpm. Although parasitic peaks are visible at 50 and 150 Hz, there
is no sign of typical sub-synchronous whirl vibration before the crash at t = 35s. This
result suggests that the touch-down was not induced by typical whirl instability. Possible
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explanations could be a reduction of the total synchronous stiffness of the bearing, leading
to an excessive unbalance response form the rotor, or to a condensation pocket large
enough to locally affect the load capacity, leading thus to an internal parasitic load.

3.3.5 Conclusions

Starting from the reference Jakobson-Floberg-Olsson theory and Elrod’s algorithm for
cavitation in liquid-lubricated bearings, a physically consistent method was proposed
to model isothermal condensation in gas-lubricated bearings and applied on three 1D
geometries in a wide range of compressibility numbers and relative saturation pressures. A
test rig was developed to validate the model, consisting of a short rotor supported on one
3-pocket Rayleigh step bearing with one of the pocket instrumented with 5 pressure taps
for in-situ pressure measurements of the gas film. The test apparatus was enclosed in a
R245fa-pressurized chamber. Experimental and numerical results are in good aggrement.
The concluding remarks are as follows:

• Isothermal condensation limits the achievable pressure level in the lubricating film
to the saturation pressure associated to the bearing temperature

• The pressure in the two-phase domain can locally be higher than the level reached
in similar yet non-saturated conditions

• Although the load capacity generally decreases in presence of condensation in the
gas film, some conditions allow an improvement on the load capacity of 6% at low
compressibility numbers because of the effect mentioned in the previous point

• The developed model and numerical solving scheme are in good qualitative and
quantitative agreement with the collected experimental data
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• Condensation-induced crashes were experienced, with no particular spectral signa-
ture in the subsynchronous or supersynchronous domain
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Figure 3.92 – Spectrum between start and touch-down of the rotor in R245fa, Pa =
117 kPa

Additional developments are necessary to further assess the effects of condensation on
the dynamic properties (stability, force coefficients) of bearings of finite length (2D).
Furthermore, a considerable yet necessary work would involve modelling of condensation
in HGJBs, with or without a modified NGT. Because of the local incompressibility
assumption of the NGT, it fails to capture the isothermal condensation, since this state
corresponds to a infinite compressibility of the fluid. Therefore, condensation in a grooved
bearing can only be captured by a disrectization of the Reynolds equation resolving the
individual grooves, which increases considerably the complexity the problem.
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3.4 Chapter conclusion

This chapter aimed at investing the effects arising from non-ideal gas lubrication on
the performance of aerodynamic bearings, either caused by an increased compressibility
(single-phase real gas effects), by a partial condensation in a gas mixture (humid air
effects) or by the condensation of a pure fluid as lubricant. The Reynolds equation was
adapted to address each of the problem and numerically solved for different bearing
geometries and operating conditions. Unlike the meager literature existing in these topics,
the investigated cases were all described in non-dimensional numbers in order to keep a
high level of generalization.

Although local exceptions exist, these effects tend to reduce the performance of aero-
dynamic bearings compared to the lubrication under the ideal gas assumption. Only
the stability of a journal bearing experiencing real-gas effects, expressed as critical mass,
showed a significant potential improvement. Single-phase real-gas effects and pure fluid
condensation in general have a strong negative influence on the load capacity, while the
partial condensation of water in humid air have can significantly reduce the stability of a
HGJB without any significant effect on its load capacity.

The numerical implementation of the Reynolds equation adapted for pure fluid condensa-
tion was experimentally validated with a dedicated test rig operating in air and R245fa,
providing for the first time in situ pressure measurements of a Rayleigh step journal
bearing both in air and synthetic working fluid. It further supports the assumption of
isothermal gas in aerodynamic bearings and sets a bridge between the cavitation occurring
in liquid-lubricated bearings and condensation in aerodynamic bearings.

Future work should focus on a two-dimensional implementation of the Reynolds equation
for condensable fluids able to assess of the stability of condensing aerodynamic bearings.
Because of the highly non-linear behavior of a condensing thin gas film, the perturbation
method might not be valid to extract the impedances and evaluate the stability of a
journal bearing. Therefore, time-domain integration of the bearing’s equations of motion
should be investigated, which would require a significant research effort. Because the
Narrow-Groove Theory used to described the pressure field on a grooved bearing in
incompatible with the infinite compressibility of a condensing isothermal gas, the effect
of condensation on Herringbone Grooved Journal Bearings should be investigated by
numerically solving the Reynolds equation on a domain resolving each groove-ridge pair,
which is a very challenging and demanding exercise.

151



Chapter 3. Non-ideal gas lubrication

Bibliography

[1] A. Javed, C. Arpagaus, S. Bertsch, J. Schiffmann, Small-scale turbocompressors for
wide-range operation with large tip-clearances for a two-stage heat pump concept,
International Journal of Refrigeration 69 (2016) 285–302. doi:10.1016/j.ijrefrig.
2016.06.015.

[2] K. Rosset, V. Mounier, E. Guenat, J. Schiffmann, Multi-objective optimization of
turbo-ORC systems for waste heat recovery on passenger car engines, Energy 159
(2018) 751–765. doi:10.1016/j.energy.2018.06.193.

[3] V. Mounier, L. C. Mendoza, J. Schiffmann, Thermo-economic optimization of an
ORC driven heat pump based on small scale turbomachinery and comparison with
absorption heat pumps, International Journal of Refrigeration 81 (2017) 96–110.
doi:10.1016/j.ijrefrig.2017.05.021.

[4] J. Schiffmann, Integrated design, optimization and experimental investigation of a
direct driven turbocompressor for domestic heat pumps, Ph.D. thesis, École Polytech-
nique Fédérale de Lausanne, Lausanne (2008). doi:10.5075/epfl-thesis-4126.

[5] R. Elwell, Observations on the performance of self- acting gas journal bearings. part
II : Moisture condensation in self-acting gas bearings, Tech. rep., General Electric
Laboratory, Contract Nonr-2844(00) (1961).

[6] F. K. Orcutt, Experimental investigation of two-phase flow in thrust bearings, Tech.
rep., Mechanical Engineering Incorporated, MTI-62TR40 (1963).

[7] F. K. Orcutt, D. E. Dougherty, S. B. Malanoski, C. H. T. Pan, Investigation of
externally pressurized steam-lubricated journal bearing, Journal of Lubrication
Technology 90 (4) (1968) 723–730. doi:10.1115/1.3601708.

[8] R. S. Siegler, E. Zwick, Alkali Metal Vapor Lubricated Bearings on Space Vehicle
Closed Cycle Power Conversion System, Tech. rep., SAE International, n.610064,
Warrendale, PA (1961). doi:10.4271/610064.

[9] W. Unterberg, J. S. Ausman, Condensing vapor lubrication of self-acting long journal
bearings, Journal of Basic Engineering 88 (1966) 236–245. doi:10.1115/1.3645813.

[10] B. Jakobsson, L. Floberg, The finite journal bearing considering vaporization, Journal
of Wear 190 (1957) 1–116. doi:10.1016/0043-1648(58)90453-8.

[11] K. O. Olsson, Cavitation in dynamically loaded bearings, Tech. rep., Chalmers
University of Technology (1965).

[12] H. G. Elrod, A cavitation algorithm, Journal of Lubrication Technology 103 (1974)
350—-354. doi:10.1115/1.3251669.

152

http://dx.doi.org/10.1016/j.ijrefrig.2016.06.015
http://dx.doi.org/10.1016/j.ijrefrig.2016.06.015
http://dx.doi.org/10.1016/j.energy.2018.06.193
http://dx.doi.org/10.1016/j.ijrefrig.2017.05.021
http://dx.doi.org/10.5075/epfl-thesis-4126
http://dx.doi.org/10.1115/1.3601708
http://dx.doi.org/10.4271/610064
http://dx.doi.org/10.1115/1.3645813
http://dx.doi.org/10.1016/0043-1648(58)90453-8
http://dx.doi.org/10.1115/1.3251669


Bibliography

[13] D. Vijayaraghavan, T. G. Keith, Development and evaluation of a cavita-
tion algorithm, Tribology Transactions 32 (2) (1989) 225–233. doi:10.1080/
10402008908981882.

[14] D. Vijayaraghavan, T. G. Keith, Grid transformation and adaption techniques applied
in the analysis of cavitated journal bearings, Journal of Tribology 112 (1) (1990)
52–59. doi:10.1115/1.2920230.

[15] D. Vijayaraghavan, T. G. Keith, D. E. Brewe, Extension of transonic flow computa-
tional concepts in the analysis of cavitated bearings, Journal of Tribology 113 (1991)
539. doi:10.1115/1.2920657.

[16] N. Zuber, D. E. Dougherty, The field equations for two-phase reynolds film flow
with a change of phase, ASLE Transactions 25 (1982) 108–116. doi:10.1080/
05698198208983072.

[17] A. Kingsbury, Experiments With An Air-Lubricated Journal, Journal of the American
Society of Naval Engineers, inc 9 (2) (1897) 267–292. doi:10.1111/j.1559-3584.
1897.tb05692.x.

[18] J. Sato, Settling Times of Pressure Measurements through Capillary Tubes, AIAA
Journal 17 (10) (1979) 1061–1067. doi:10.2514/3.61278.

153

http://dx.doi.org/10.1080/10402008908981882
http://dx.doi.org/10.1080/10402008908981882
http://dx.doi.org/10.1115/1.2920230
http://dx.doi.org/10.1115/1.2920657
http://dx.doi.org/10.1080/05698198208983072
http://dx.doi.org/10.1080/05698198208983072
http://dx.doi.org/10.1111/j.1559-3584.1897.tb05692.x
http://dx.doi.org/10.1111/j.1559-3584.1897.tb05692.x
http://dx.doi.org/10.2514/3.61278




4 Advanced bearing design

Although the Narrow Groove Theory has been developed decades ago and represented
a breakthrough in the development of stable aerodynamic bearings, the recent gain of
interest of Herringbone Groove Journal Bearings (HGJBs) and Spiral Groove Thrust
Bearings (SGTBs) for industrial applications are facing some limitations of the current
technology. The first problem arises from manufacturing. The stability of a bearing-rotor
system is very dependent on the bearing clearance and results in very tight manufacturing
tolerances. The production is therefore costly as it demands a high accuracy to keep the
reject rate at acceptable levels. This is a cost bottleneck for the mass industrialization of
gas bearings. The current approach in integrated design of airborne machinery consist in
maximizing the dynamic stability (expressed as a critical mass or a logarithmic decrement).
However, maximizing the stability does not necessarily maximize the robustness of the
solution against manufacturing deviations, which is actually the sought objective. An
efficient and reliable optimization techniques suited for robust design is needed to improve
the reliability and therefore the marketability of aerodynamic bearings.

The second aspect regards the development of oil-free turbomachinery applications, which
impose a large axial load on the thrust bearing, in particular with single-wheel compressors
where the net axial thrust force cannot be internally compensated among the wheels.
In medium size oil-free turbomachinery, the axial load is typically supported on Gas
Foil Thrust Bearings (GFTBs) because of their robustness against impurities, thermal
deformations and large displacements. However, their limited load capacity compared
to liquid-lubricated bearings is a bottleneck to the implementation of large machinery
supported on aerodynamic bearings. A possible mean of improved performances is to
improve the pressurization capabilities of the foil bearing by the addition of texturing
similar to grooved bearings. While compliant foil bearings and grooved rigid bearings
have coexisted for decades, there had been surprisingly almost no attempt to hybridize
the two families in a search for better performances enabling the implementation of this
technology on large turbomachinery. An exploration of this pathway is needed to assess
the potential of such hybrid gas bearings.

155



Chapter 4. Advanced bearing design

This chapter intends to fill these two gaps by 1) proposing a design optimization strategy
for aerodynamic bearings in order to maximize the robustness against manufacturing
deviation and by 2) exploring the possibility to improve the compliant foil bearing design
with the addition of spiral grooves. The chapter is composed of two sections, each
covering one of the two presented issues. The first section proposes a new multi-objective
optimization approach maximizing the robustness of HGJBs against manufacturing
deviations on its critical design parameters. The second part investigates a novel thrust
gas bearing design, consisting in a foil thrust bearing enhanced with spiral grooves, with
the objective to improve its load carrying capacity and decreasing its drag torque. Each
part was published in the form of a journal article cited in the beginning of each section.
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4.1 Gas Foil Spiral Groove Thrust Bearing

Part of the material composing this section has been published in the journal article:

Guenat, E., Schiffmann, J., 2019. Performance potential of gas foil thrust
bearings enhanced with spiral grooves. Tribology International 131, 438–445. DOI:
10.1016/j.triboint.2018.11.003

4.1.1 Introduction

GFTBs are widely used in oil-free airborne applications such as microturbomachinery.
While the first applications of this technology were small-scale with modest loads, global
research efforts are being made toward the application of the compliant gas bearing
technology to upscaled systems, with larger loads, in order to broader the scope of
application of GFTBs and oil-free bearings in general.

Heshmat [1] proposed a model of GFTB considering the compliant bump foil as a simple
elastic foundation and performed a parametric study to identify the geometry maximizing
the load capacity. A considerable effort was spent by the community on the refinement of
this model, implementing more complex foundation models or refining the method for
the computation of the compliance coefficient. The layout of GFTB studied by Heshmat
is a widely used design in oil-free turbomachinery applications such as supercritical CO2

compressors [2] or turbochargers [3]. Moreover, the model developed decades ago by
Heshmat is still of use in the recent literature, showing a reasonable agreement with
experimental data [2–4]. The upscaling trend in size of rotors supported on foil bearings
is limited by their load capacity and drag losses, which may lead to a delicate thermal
management [5]. Scaling laws do not play in favor of larger applications, as showed by
Prasad [6] and Dellacorte [7]. To overcome this intrinsic limitation, researchers have
investigated numerous possibilities to further increase the load capacity of GFTBs. The
clearance distribution was optimized by Lehn [8] to maximize the load capacity using a
gradient-based optimization. A hybrid foil thrust bearings was investigated by Lee et
Kim [9], where compressed air is supplied to the bearing fluid film in order to sustain a
thin lubricating gas film even at high load. Magnetic bearings can also be a solution to
relieve the aerodynamic bearing, as suggested by Heshmat et al. [10]. Both alternatives
imply the use of auxiliaries, which is costly in terms of space, investment and power and
reduces the reliability.

In the meantime, the development of rigid SGTBs followed a parallel path, starting
with Malanoski and Pan [11] who applied the Narrow Groove Theory (NGT) to model
grooved thrust bearings. However, this technology is limited to very small-scale machines
because of the tight manufacturing tolerances required. The recent literature brought a
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promising improvement potential in terms of static stiffness and dynamic stability for
grooved bearings with non-constant groove parameters, with the work of Hashimoto et al.
[12] and Schiffmann [13].

Despite the progress accomplished, the two technologies remain isolated one from another.
An early attempt to combine the SGTB with a compliant structure was realized by
Licht in 1981 [14] with a full bearing based on Malanoski’s rigid design. The compliant
structure was designed such that the top foil remains parallel to the runner under load
in order to preserve the validity of Malanoski’s performance predictions. Unfortunately,
no model was proposed and the improvement potential was not assessed. Based on this
work it is hypothesized that the addition of spiral grooves on a GFTB’s top foil can be of
practical interest in the quest of enhanced load capacities and eased thermal management.
Moreover, the manufacturing of grooves is inexpensive and could even be retrofitted on
existing GFTBs.

The present work investigates the use of spiral grooves manufactured on the GFTB’s
top foil to improve the load capacity and/or to reduce the drag losses. The objective
are to: (1) develop a model for Gas Foil Spiral Groove Thrust Bearings (GFSGTB), (2)
investigate the static performance of such bearings in comparison to their ungrooved
equivalent in terms of load capacity and losses and (3) devise design guidelines.

The GFTB model of Heshmat, including a simple foundation model for the compliant
structure, is combined with the modified Reynolds equation of the NGT to model the
pumping action of logarithmic grooves manufactured on the top foil of the bearing.
Multi-objective optimizations are performed for various geometries (ramp depth) and
operating conditions in order to identify trade-offs in terms of load capacity and losses.
Compressibility numbers up to 1000 are evaluated. The potential of the new bearing
geometry is highlighted, as well as its limitations. Based on these results, a set of design
guidelines is suggested to take advantage of the new layout.

4.1.2 Theory

The layout under investigation consists in an inward-pumping spiral groove thrust bearing,
where grooves are located on the outer diameter (Fig.4.2). Initially, the subsection covering
the angle θR, referred as ramp, is converging (Fig. 4.1) with a depth hR and a nominal
clearance h0. The Narrow Groove Theory is employed to predict the overall pressure
in the grooved region of the bearing, assuming a infinite number of groove-ridge pairs,
hence the pressure variation over a groove-ridge pair vanishes globally, while varying
linearly between a groove and the following ridge locally. This hypothesis is equivalent to
a local incompressibility of the lubricant. It allows an efficient and effective modelling
of groove patterns without the need of fine grid size to capture the grooves individually.
The first use of this theory to analyze a SGTB was done by Malanoski and Pan [11]. The
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analysis was later supported by Zirkelback and San Andres [15] with the finite element
method. Only the resulting differential equation, as developed in [16] for an isothermal
and isoviscous ideal gas is displayed here in the steady state form:

∂θ

[
P̄

(
1

r̄
f1∂θP̄ + f2∂z̄P̄

)]
+ ∂r̄

[
P̄
(
f2∂θP̄ + f3r̄∂r̄P̄

)]
+cs

(
r̄ sinβ∂θ(f4P̄ )− cosβ∂r̄(r̄

2f4P̄ )
)

= Λr̄∂θ(f5P̄ )

4.1

where the geometry is presented in Figures 4.1 and 4.2 and functions fi are developed in
Eq. 2.19. This equations applies to the entire bearing domain, reducing to the normal
Reynolds equation in the land region, where h̄g = h̄r = h̄.

The modeling of the soft support is based on the work by Heshmat [1] using a simple
foundation model for the compliant structure. The non-dimensionalization of the governing
equation is performed as follows:

P̄ = P/Pa r̄ = r/Ro h̄r/g = hr/g/h0 Λ =
6µΩR2

o

Pah2
0

4.2

Ωr

hg

hr

b a

Ωr

h0

hR

θR
θB

a)

b)

Figure 4.1 – Geometry and nomenclature of GFSGTB

The non-dimensional ridge and groove clearances are expressed as a function of the
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θR
θB Rg

Ri

Ro

β

~θ

~r

Figure 4.2 – Geometry and nomenclature of inward-pumping GFSGTB

position and local pressure :

h̄r = 1− ε+ g(θ) + αF (P̄ − 1)

h̄g = h̄r + δ̄
4.3

where the compliance αF is expressed as follows:

αF =
Pas

Kfh0
4.4

g(θ) expresses the change in clearance in the converging sector of the fluid film domain:

g(θ) = max
[
h̄R (1− θ/θR) , 0

]
4.5

The term ε is the eccentricity ratio, defined as ε = e/h0, with e being the axial displacement
of the rotating smooth disk from its nominal position. The boundary conditions of Eq.
4.1 are ambient pressure at r̄ = Ri/Ro, r̄ = 1, θ = 0, θ = θB . On the line r̄ = Rg/Ro, the
continuity of the pressure is imposed, as well as the continuity of the radial mass flow
rate across the land and grooved region:

ṁr,groove = ṁr,land (r̄ = Rg/Ro) 4.6

which leads to the following expression:

(csf4r̄ cosβ − f2
1

r̄
∂θP̄ − f3∂r̄P̄ )groove = (−h̄3∂r̄P̄ )land 4.7
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The non-linear modified Reynolds equation is discretized using a finite difference scheme
following section 2.3. The field of local clearance is updated based on the previously
computed pressure.

Because it limits the wider application of the technology, the static performance is of
primary importance in the design of gas thrust bearings. It appears more relevant than
the dynamic behavior in a first study. Therefore, the performance metrics compare the
investigated grooved and smooth layouts are the non-dimensional load capacity W and
the non-dimensional drag torque T :

W =

∫ 1

ri

∫ θB

0
(P̄ − 1)r̄dθdr̄ 4.8

T =

∫ 1

ri

∫ θB

0

(
αh̄g + (1− α)h̄r

2
r̄∂θP̄ +

Λ

6
r̄3

(
α

h̄g
+

1− α
h̄r

))
dθdr̄ 4.9

They are linked to their dimensional counterparts as follows:

W = PaR
2
oW 4.10

T = Pah0R
2
oT 4.11

It is useful to define the load capacity and drag torque of the grooved design normalized
by the plain GFTB:

Wr =
W grooved

W plain

4.12

Tr =
T grooved

T plain
4.13

The outputs of the implemented model are compared to the results of Heshmat [1] as a
sanity check for h̄R = 1, α = 1, θB = 45◦ and θR/θB = 0.5, Ro/Ri = 2, suggesting a good
agreement with the experimentally validated model (Figure 4.3). The largest relative
deviation between the two models occurs at Λ = 40 and reaches 1.9%.

4.1.3 Numerical computations and results

The main geometrical parameters of the studied bearings follow the conclusion of Heshmat
who identified the layout maximizing the load capacity for GFTB as being Ro/Ri = 2,
θB = 45◦ and θR/θB = 0.5. The relative ramp height h̄R is varied from low values
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Figure 4.3 – Comparison of the present model with reference [1]

(h̄R = 1) to values in the range recommended by Heshmat for maximum load capacity
(h̄R > 10). Unless specified differently, the compliance is set to αF = 1 and the eccentricity
ratio ε to 0.

4.1.3.1 Effect of logarithmic grooves on the bearing performance

In order to investigate the effect of grooved top foils on the defined performance indicators
and to identify the optimum groove geometries, multi-objective optimizations were per-
formed for different bearing geometries (h̄R) and operating conditions (Λ) simultaneously
maximizing the load capacity and minimizing the drag torque. The decision variables are
the 4 geometrical parameters describing the grooved region, namely:

h̄g ∈ [1, 4] 4.14

α =
a

a+ b
∈ [0.3, 0.7] 4.15

β ∈ [0, π] 4.16

γ =
Rg −Ri
Ro −Ri

∈ [0.1, 0.9] 4.17

The optimizations were performed using a genetic algorithm [17] with 104 evaluations
to obtain a satisfying convergence. The outputs of the optimization are Pareto fronts
representing the optimal trade-offs between load capacity and drag torque. An example
is given in Figure 4.4, for the case Λ = 0.1 and four different values of h̄R. The results
clearly suggest the existence of regions with a positive effect of the spiral grooves on
the drag torque and on the load capacity compared to plain GFTB. Depending on the
constraints of a particular design problem, designers may either choose a solution favoring
a high load capacity ratio or a low drag torque ratio. The Pareto fronts obtained for large
ranges of hR and Λ are processed to highlight two metrics of practical interest: (1) the
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Figure 4.4 – Pareto fronts for Λ = 0.1 and different ramp depth ratios.

maximum value of Wr and (2) the value of Tr corresponding to the point where Wr = 1,
which corresponds to (1) maximizing gain in load capacity without considering the drag
and (2) minimizing the drag torque without losing load capacity compared to the plain
GFTB design, respectively.

Figure 5 represents the maximum Wr as a function of the compressibility number for
various ramp depth ratios and a constant compliance αF = 1. There is a strong influence
of the relative ramp depth h̄R on the potential performance gain. Low values exhibit
stronger improvements at high values of Λ, with a relative gain of 70%, and inversely for
large h̄R. This behavior can be explained by the absence of a limiting solution for Λ→∞
for rigid grooved bearings modeled with the NGT [18], which limits the performance of
the smooth thrust bearings [19]. Ultimately, the results suggest that the maximum Wr

for grooved thrust bearings is well above 1 for all values of h̄R. Although not captured by
the NGT, a limiting solution does exist at very high compressibility in the case of grooved
bearings. However, it is shifted to higher compressibility numbers [18], which maintains
the interest of using the NGT even at such high values of Λ. For every investigated value
of h̄R, a minimum in Wr is observed at intermediate values of Λ, where the optimal
grooved case is close to the performance of a smooth design. The location of this minimum
is shifted toward higher compressibility numbers as h̄R increases. This is a consequence
of the limiting solution at high compressibility numbers: a larger value of h̄R leads to
a limiting solution in pressure rise, which becomes more difficult to overcome by the
pumping effect of grooves.

Figure 6 represents the drag loss ratio Tr as a function of the compressibility and for
various ramp depth ratios at Wr = 1. The curves show that at equal load capacity, the
grooved design can reduce the losses significantly depending on the geometry and the
operating conditions. The most promising solutions maximizing the load capacity ratio in
Figure 4.5 are also the most interesting ones regarding the drag reduction in drag torque
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in Figure 4.6. In these cases, the whole Pareto front happens to be partially or totally
shifted in the domain Wr > 1, allowing a significant performance in the two metrics.
Depending on the case, the reduction of drag torque can exceed 40%. In addition, two
optimizations performed at high compressibility numbers (500 and 1000), both with
h̄R = 1, only provide Pareto fronts with Wr > 1. As a consequence, the point of lowest
Wr (and therefore lowest Tr) was displayed and the actual value of the load capacity
ratio indicated.
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Figure 4.5 – Solutions of maximum Wr for a compliance αF = 1
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Figure 4.6 – Values of Tr for solutions with Wr = 1 for a compliance αF = 1

The groove parameters of the solutions for maximum load capacity shown in Figure 4.5
are displayed in Figure 4.7. Increasing the value of the ramp depth h̄R tends to increase
the optimum values of h̄g and α, and decrease β and γ. At very high compressibility
numbers Λ, the grooves tend to be deeper and occupy a larger area (higher α and lower
γ), in particular for the cases h̄R = 1 and 5. It is important to note that for some
cases the optimal design yield h̄g = 1, which corresponds to a plain design, where the
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other parameter have no influence on the bearing performance, thus explaining their
swinging values for these particular cases. The optimal groove geometry does not evolve
significantly for Λ < 10, which is a indicator for good off-design performance, as it will be
shown below.
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Figure 4.7 – Groove parameters corresponding to solutions in Figure 4.5

The points corresponding to Λ = 5 in Figure 4.5 have their pressure field represented in
Figure 4.8. The pressure gradient in the radial direction is much stronger in the grooved
zone for r̄g < r̄ < 1 than in the smooth zone, because of the pumping action of the
grooved pattern. As the relative ramp depth increases, the zone of maximum pressure
shifts from the center of the bearing toward the plateau, with a zone of maximum pressure
bordered by the groove zone. In the ramp zone, the grooves tend to loose their pumping
effect and become locally ineffective at building pressure or acting as a radial seal.

Since the presented results correspond to cases with a compliance αF = 1, the influence
of this choice on the results is investigated. Figure 4.9 shows the influence of the
foil compliance on the maximum load capacity ratio at a high compressibility number,
resulting from an optimization performed at discrete values of αF . Because of the low
pressure build-up in the bearing at low values of Λ, the compliance has little effect on the
performance metric because the resulting deflection of the top foil is not significant. Wr
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Figure 4.8 – Contour of 100 · (P − 1) for the geometries maximizing the load capacity at
Λ = 5 and different ramp depths

exhibits a minimum at αF ≈ 0.35 and increases approximately linearly at high compliance.
However, the relative variation of Wr over the considered domain is low. It is therefore
suggested that the compliance has little influence on the potential of the GFSGTB over
the plain GFTB.

4.1.3.2 Off-design operation

Figure 4.10 represents the off-design performance in terms of compressibility number
of two geometries with h̄R = 20 maximizing Wr at Λ = 0.1 and 50 respectively, for a
compliance αF = 1. Since the optimal groove geometry does not evolve much for the case
Λ = 0.1, the performance remains close to the optimum at low compressibility number,
until Λ ≈ 20. Wr drops below 1 for higher compressibility numbers. The design optimized
for Λ = 50 maintains its performance close to 1 at high values of Λ with an appreciable
gain at low compressibility, although it performs significantly lower than the local optimal
geometry.
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Figure 4.9 – Evolution of the load capacity ratio against the bearing compliance at
Λ = 500 and h̄R = 1
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Figure 4.10 – Off-design performance (h̄R = 20) in terms of Wr of geometries optimized
for Λ = 0.1 and 50

Figures 4.11 and 4.12 extend this analysis with h̄R as a second variable, exploring the
performance of the geometry optimized for Λ = 0.1 and Λ = 50 respectively, with h̄R = 20.
The domain of interest with Wr > 1 is narrowed further in Λ as h̄R departs from the
design value. A local minimum in Wr is visible, however with a reduction of less than 15%
compared to the design value. The performance increases sharply for low operating h̄R at
high compressibility, which corroborates with the results in Figure 4.5. It is important to
note that for a given off-design value of h̄R, the performance passes through a minimum
before increasing again. It supports the mentioned conjecture that an optimal groove
design with Wr > 1 exists at very high values of compressibility number Λ for any value
of ramp depth ratio h̄R, as long as the local incompressibility assumption of the NGT
is verified [18]. A qualitatively similar observation can be made for the performance
along the variable h̄R at constant Λ. In both investigated cases, Wr passes through a
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minimum at h̄R ≈ 2 for Λ < 10. The value of relative ramp height associated with this
minimum increases at higher compressibility numbers. Note that cases close to h̄R = 0

represent two parallel surfaces, which are unable to build-up pressure if grooves are absent.
Therefore, Wr becomes asymptotically large in these cases.
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Figure 4.11 – Off-design performance in terms ofWr of the geometry optimized for Λ = 0.1
and h̄R = 20
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Figure 4.12 – Off-design performance in terms ofWr of the geometry optimized for Λ = 50
and h̄R = 20

The evolution of Wr with the eccentricity ratio ε, defined as the ratio between the actual
minimum clearance over the nominal clearance, is shown in Figure 4.13. It is piratically
equivalent to bearing operating in nominal conditions on which load is progressively
added, having as consequence a decreased minimum clearance. The geometry of the five
represented cases maximizes Wr at ε = 0 and a nominal compliance αF = 1 evaluated
at zero eccentricity. They initially operate at the compressibility number corresponding
indicated in the legend. Note that in order to obtain these results, the stiffness of the
elastic foundation is kept constant, which, according to Eq.4.4, leads to a compliance
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that evolves with eccentricity. All grooved geometries show an improved load capacity in
nominal conditions but four of them exhibit a lower performance than the plain GFTB
design at high eccentricity ratios, with a loss of nearly 25%. These cases correspond to the
optimal geometries at Λ = 1. For them, Wr reaches a local maximum a high values of h̄R,
which is not present for h̄R=1, where it decreases steadily with an increasing eccentricity
ratio. The optimal geometry for hR = 1 and Λ = 100 exhibits a comparatively smaller
sensitivity toward the increase in eccentricity and achieves a ratio of load capacity slightly
above 1 at high eccentricites. Theses results suggest that GFSGTB optimized for low
compressibility numbers do not provide a higher ultimate load capacity compared to the
plain design.
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Figure 4.13 – Off-design performance in terms of Wr of the geometry optimized for Λ = 1
and Λ = 100

4.1.4 Conclusions

Based on Heshmat’s work [1], a model of gas foil thrust bearing enhanced with logarithmic
spiral grooves is developed using the Narrow Groove Theory. The improvement potential
is evaluated in terms of load capacity and drag torque for a large range of compressibility
numbers, relative ramp depth and bearing compliance. A multi-objective optimization for
identifying the optimal groove geometries to maximize the load capacity while minimizing
the drag torque leads to the following observations:

• The improvement potential of a grooved bearing compared to a plain one is the
highest at low compressibility numbers and large relative ramp depth or inversely
at high compressibility numbers and low ramp depths.

• Optimum groove geometries allow to improve the load capacity of a plain gas foil
thrust bearing by nearly 70%.

• Optimum groove geometries allow to decrease the drag torque (losses) of the thrust
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bearing by up to 40% compared to a plain Gas Foil Thrust Bearing, in cases where
the specific load capacity between the two bearing types is the same.

• An assessment on off-design operation suggests that groove geometries optimized for
low compressibility numbers negatively impact the load capacity at higher values
(i.e. higher rotor speed and smaller clearance). However, a design optimized for
high compressibility numbers still present a significant gain at lower compressibility
numbers compared to plain gas foil thrust bearing.

• The presence of grooves optimized for low compressibility numbers negatively
impacts the ultimate load capacity of the thrust bearings compared to the plain
GFTB.

It follows that the addition of spiral grooves on the GFTB’s top foil can be an interesting
solution to improve the load capacity and/or relieve the thermal management of plain gas
foil thrust bearings. Due to the simplicity of the added manufacturing step, the proposed
bearing layout is applicable to both new and commissioned bearings (retrofit).
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4.2 Improvement of manufacturing through optimal toler-
ancing of HGJB

A significant proportion of the material presented in this section has been published
in the following journal article:

Guenat, E., Schiffmann, J., 2019. Multi-Objective Optimization of Grooved
Gas Journal Bearings for Robustness in Manufacturing Tolerances, Tribology
Transactions. DOI:10.1080/10402004.2019.1642547

4.2.1 Introduction

Recent years have seen a strong development of high-speed turbomachinery supported on
gas bearings, for example for heat pumping [1; 2] or fuel cell air supplies or recirculation
devices [3]. Among the gas bearing technologies accompanying this development, HGJBs
have the advantage of being reliably modelled and repeatable regarding manufacturing,
characteristics still missing for compliant foil gas bearings [4]. However, the manufacturing
tolerances necessary to achieve stable operation on rigid bearings represent a serious
economic bottleneck limiting the large-scale marketability of HGJB-supported machines.
Although several authors have investigated the sensitivity of stability in gas bearings to
manufacturing errors [5–7], the literature lacks systematic design strategies to maximize
the stability robustness. The optimization and integrated design of turbomachinery
supported on HGJB is typically adopting a mono or multi-objective strategy comprising
the maximization of the gas bearing stability, either in terms of critical mass [8], or
logarithmic decrement [2]. Following the development of the Narrow-Groove Theory [9],
HGJBs were first optimized to maximize the load capacity [9; 10]. Later, the optimization
of HGJB was oriented toward a maximization of the stability based on the critical mass
criterion [8; 11]. More recent years have seen the emergence of multi-objective, integrated
optimal design of entire rotor-HGJB systems [12], also including the spiral groove thrust
bearing in the optimization. Typical competing objectives are the minimization of losses
and the maximization of a stability criterion. The underlying assumption is that a
high nominal stability of the HGJB supported rotor will also allow a large deviation of
the bearing parameters from their design point, while keeping the system dynamically
stable. However, achieving an accurate bearing clearance through lapping or grinding
is a challenging and expensive task. The manufacturing of the grooves through laser or
chemical etching, grinding or even additive manufacturing [13], generally yields accurate
groove width, length and angle. The groove depth, however, usually exhibits a large
relative uncertainty [14; 15]. Since manufacturing deviation of the bearing clearance
and groove depth can easily achieve ±15%, the effect of this wide dimensional range
can have a significant impact on stability and load capacity. As a consequence, rather
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than simply maximizing the stability, the maximization of tolerances, might lead to
a more manufacturing-oriented design procedure for HGJB, thus improving their cost
effectiveness. Meanwhile, design tools and concepts such as multi-objective optimizations
and Pareto fronts have already proven their suitability in the tolerancing of mechanical
systems [16; 17] and might be of interest for the tolerancing of aerodynamic bearings.

The present work aims to 1) propose a multi-objective optimization procedure for maxi-
mizing the range of selected design parameters while minimizing their effect on selected
performance metrics, 2) apply the methodology to the design of a gas bearing supported
rotor and 3) use the results to devise design guidelines for the maximization of the
manufacturing tolerances for HGJB.

4.2.2 Theory

The strategy to perform an optimization maximizing the manufacturing tolerances on
design variables of HGJB consist in computing a stability criteria within a large non-
dimensional design space, where each dimension of this space is a key variable of the
gas bearing. Typically, the geometry of a classical HGJB (as illustrated in Figure 2.11)
can be described by 6 non-dimensional variables: the groove aspect ratio α, the groove
angle ˆ̂

β, the relative land length γ, the relative groove depth δ̄, the bearing length-
diameter ratio L/D and the compressibility number Λ. The 6-D space is discretized
and and the non-dimensional stability is computed for each node using the critical mass
criteria. This multi-dimensional matrix is the base that serves as a look-up table to
investigate the performance of any HGJB. To study a particular rotor-bearing system
undergoing an acceleration from rest to full speed, the stability is evaluated at discrete
speeds in this range and the minimum stability achieved along this path of a given
bearing geometry is retained. This step requires the dimensionalization of the hyperspace
previously computed, using characteristics of the rotor (radius, mass, clearance, groove
depth), the ambient conditions (pressure, viscosity) and the operating conditions (angular
velocity). This transformation into the dimensional space allows to introduce clearance
distortion effects related to the rotor speed (thermal and centrifugal) and the absolute
manufacturing deviations. For each of the n speed steps along the acceleration path, a
dimensional hyperspace is created from the generic non-dimensional one (Figure 4.14).
The n hyperspaces are combined to retain the minimum critical mass at each node,
leading to one single rotor-specific hyperspace used to express the minimum critical mass.
Two of its design dimensions are kept dimensional: the bearing ridge clearance h0 and
the groove depth δ, since these are the critical variables for the manufacturing process.
The 4 other dimensions are still non-dimensional: α, β̂, γ and L/D.

The next step consists in slicing the specific dimensional hyperspace to extract planes
along the bearing clearance and the groove depth. On each slice (constant α, β̂, γ and
L/D), a Monte Carlo method is used to generate a large number of rectangles aligned
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Figure 4.14 – Case-specific dimensionalization of the universal stability look-up table

on the axis of nominal clearance and groove depth, whose geometrical center is in the
stable domain. Each rectangle is defined by 4 parameters: the position of its center along
the clearance and groove depth (h0,2 and δ2 respectively) and its half length along each
axis (∆h0 and ∆δ). Each rectangle undergoes a verification to ensure it satisfies the
performance criterion (mrotor < mcrit,min), the outliers being discarded. The validation
algorithm checks 12 points on a grid centred on the rectangle and 8 points randomly
scattered in the rectangle (Figure 4.15). Valid rectangles are represented in a 2D space
defined by their length along the two directions, which represents the viable sets of
manufacturing tolerances to obtain a stable operation of the specific rotor-bearing system:

h0 = h0,2 ±∆h0 4.18

δ = δ2 ±∆δ 4.19

The collection of all these feasible tolerance windows in a given dimensional slice allows to
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Figure 4.15 – Location of the rectangle stability check points to verify that the rectangle
covers no unstable points. Check points are either on a grid (black points) or randomly
positioned (grey points).

identify a Pareto front of optimum solutions in terms of maximal dimensional deviation
and its constitutive points are stored. This procedure, depicted in Figure 4.16, is repeated
for each dimensional slice of the discrete hypervolume. Finally, all the particular fronts
are combined to obtain the global Pareto front for the particular system, as illustrated in
Figure 4.17.

The global front represents the best feasible manufacturing tolerances regarding the
nominal clearance and the groove depth for a particular rotor, while ensuring stable
operation (i.e. satisfaction of a minimal performance metric). Depending on the accuracy
of the considered manufacturing techniques, designers can then select a solution along the
Pareto front suiting best their needs and possibilities, depending on the actual context.

The bearing is modeled using the NGT and the theory introduced in section 2.1, under
the following assumptions:

• Ideal gas, isothermal and isoviscous lubricant

• Centered and axially symmetric bearing

The critical mass of HGJB is not necessarily decreasing with the compressibility num-
ber. Therefore, the minimum value of the critical mass between rest and maximum
compressibility number has to be evaluated.

176



4.2. Improvement of manufacturing through optimal tolerancing of HGJB

h0

δ

mc;m
in
= mR

2∆δ

2∆
h
0

∆h0

∆δ

c)

b)

a)

h0;2

δ2

mc;m
in
= mR

Feasible domain

Unfeasible domain

h0

δ

D
is
ca
rd
ed

Figure 4.16 – Simplified representation of a stable domain on a slice (a), random generation
rectangles in the stable domain (b) and determination of the particular Pareto front (c).
The purple rectangle, falling outside of the feasibility domain, is discarded

4.2.3 Numerical computations and results

4.2.3.1 Computation of the non-dimensional design space

The computation of the universal non-dimensional 6D stability matrix is computationally
expensive, since it can easily exceed 1010 evaluation points to obtain a sufficiently tight
grid. In order to reduce this amount, the present analysis excludes the parameters γ and
L/D, which are both set to 1 to maximize the stability of a bearing with the grooved
member rotating [8]. The matrix is constituted of 3.2 · 107 elements in the following
ranges of parameters:
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Figure 4.17 – Particular Pareto fronts projected to obtain the global front

Table 4.1 – Parameters of the studied rotor

Name Symbol Value

Bearing radius R 5 mm
Rotor mass mR 0.075 kg
Maximum speed Nmax 200 krpm
Ambient pressure Pa 105 Pa
Ambient gas viscosity µa 18.5 µPa s

Λ ∈ [0, 200] 450 steps 4.20

α ∈ [0.4, 0.6] 10 steps 4.21

β̂ ∈ [110◦, 170◦] 70 steps 4.22

δ̄ ∈ [0, 8] 100 steps 4.23

4.2.3.2 Case study of the gas bearing supported rotor

A case rotor is defined for the dimensionalization of the pre-computed 4-D stability matrix
and the determination of the optimal manufacturing tolerances. The rotor is taken as
symmetric in order to have half the mass supported by each of the two journal bearings.
Its main characteristics are listed in Table 4.1.

In a first approach, the centrifugal growth of the rotor is neglected. The critical mass
is evaluated for 10 speeds between standstill and the maximum regime, in the following
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range of parameters:

h0 ∈ [4 µm, 13 µm] 80 steps 4.24

δ ∈ [2 µm, 28 µm] 65 steps 4.25

α ∈ [0.4, 0.6] 10 steps 4.26

β̂ ∈ [110◦, 170◦] 70 steps 4.27

The lower bound of the clearance was chosen as a limit beyond which rarefied gas effects
should have been considered. A groove depth of 0 µm was not investigated, since it
corresponds to a plain bearing, which is unstable at concentric position. In each slice
of the final stability matrix, 3 · 105 random tolerance windows are generated, whose
centers are located in the stable domain of the slice, if any. An example of the stability
limit for three values of groove angle is shown in the groove depth-clearance domain in
Figure 4.18, for α = 0.6. The arrows along the curves indicate the orientation towards
the stable domain. It is interesting to note that for angles below 25◦ the stable region
is fully contained between the corresponding contour. However, for an angle of 28◦ the
topology of the feasible region changes. The stable region is a more complex one, since
it is delimited by two concentric contours, yielding an unstable region centered around
the considered range of clearance and groove depth. The advantage of the implemented
methodology is that it can easily handle such changes in topology of the mathematical
response surface.

Figure 4.18 – Examples of stability limits for the considered rotor and α=0.6. The arrows
indicate the orientation of the stable domain.

4.2.3.3 Nominal case

While the computation of the unique non-dimensional matrix demands 6 weeks of
computation for a single-processor computer, the tolerancing algorithm, including the
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dimensionalization of the matrix, yields to the Pareto curve shown in Figure 4.19 within
one minute with the same hardware. The Pareto curve indicates clearly that the two
tolerances are competing: they can not be maximized both simultaneously. The maximum
tolerance on the groove depth is roughly 5 times larger than the tolerance on the bearing
clearance, indicating a lower sensitivity of the stability on this parameter. The extremities
of the front are not particularly interesting from a manufacturing point of view, since
a small concession on the maximized variable allows a large gain on the other. In this
particular case, if one targets a large clearance tolerance, a reduction of 0.25 µm on ∆h0

from its maximum value, allows to increase the tolerance of delta-groove depth from
nearly 0 to 4.5 µm on ∆δ.
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Figure 4.19 – Global Pareto front for the nominal rotor-bearing system

The parameters α and β̂ of the points in the Pareto front are shown in Figure 4.20. A
rising trend for β̂ is visible as the tolerance on the clearance increases, ranging from 22◦ to
27◦. No specific trend is visible for α, as optimal solutions are found over the entire range
of this parameter. This suggests that although important when considering the maximum
stability point, α is not as significant when considering the stability tolerance. The
nominal clearance and groove depth values corresponding to the Pareto front are shown in
Figure 4.21. The trend is rising on both values as the tolerance on the clearance increases.
Past a value for ∆h0 of 0.5 µm, the trend for h0,2 follow a linear trend roughly expressed
as follows: h0,2 = ∆h0+ 4 µm, meaning that the optimal tolerancing window is bounded
by the lower limit for the bearing clearance set for this particular study. Interestingly, for
∆h0 <0.5 µm, this limit is not bounding the rectangles in the h0 direction.

4.2.3.4 Comparison with stability maximization

For comparison purpose, the results of the optimization of the bearing parameters for the
maximization of the stability without considering the effect of tolerancing is performed.
In this case, the bearing nominal clearance is varied from 4 to 10 µm and the set of α,
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Figure 4.20 – Values of α and β̂ resulting in the points shown in the Pareto front of
Figure 4.19.

β̂ and δ maximizing the minimum critical mass along the speed range is found in the
dimensional look-up table. The results are shown in Figure 4.22. The parameters clearly
deviate from the one shown in Figures 4.20 and 4.21. At equal bearing clearance, the
groove angle tend to be higher and the grooves deeper when maximizing the tolerance
windows and not the stability. This highlights the fact that a pure optimization for
the maximization of the critical mass does not yield the same bearing parameters as an
optimization maximizing the tolerances along h0 and δ under the constraint of stable
operation, therefore justifying a dedicated optimization procedure.

4.2.3.5 Sensitivity analysis

Starting from the studied rotor, the influence of the dimensionalization parameters on
the manufacturing tolerances are studied. These parameters are the ambient pressure
and viscosity, the rotor radius, mass and speed. Each parameter is varied of ±20% and
the resulting global Pareto fronts are computed. Results are visible in Figure 4.23 to
4.27. The variations on the maximum achievable tolerances on the bearing clearance
and groove depth are summarized in Figures 4.28 and 4.29 respectively. A variation on
the radius has the largest effect on the tolerance windows with a relative variation on
the maximum tolerances more than twice the radius relative variation. For the other
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Figure 4.21 – Values of h0,2 and δ2 resulting in the points shown in the Pareto front of
Figure 4.19.

parameters have an influence smaller than their own variation. For the specific rotor
studied here, the maximum rotor speed exhibits a negligible effect on the tolerances,
meaning that the stability bottleneck is not located at the maximum speed, but at a
lower rotor speed. Considering that the presented strategy is based on the minimum
critical speed encountered from rest to maximum speed, increasing the target speed can
either have a negative effect or no effect at all, but cannot improve the manufacturing
tolerances.

In relative proportions, the tolerance on the bearing clearance is systematically more
sensitive to parametric variations than the groove depth tolerance, suggesting that the
designers should wisely select the rotor parameters if the goal is to ensure a possibly
large tolerance on the bearing clearance. As design guidelines, the results indicate that
lighter rotors with a larger diameter at bearing locations, operating at lower ambient
pressures and higher temperatures (associated with higher gas viscosities) allow to achieve
a broader manufacturing tolerance.

4.2.3.6 Effect of centrifugal growth

Typical high-speed rotors undergo a centrifugal growth leading to a significant reduction
of the bearing clearance. The centrifugal growth is proportional to Ω2, R3 and to ρ/E.
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Figure 4.22 – Output parameters from the optimization maximizing the critical mass for
different values of h0.
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Figure 4.23 – Effect of the ambient pressure on the global Pareto front

The effect of the centrifugal growth is investigated here by setting the absolute radial
growth of the rotor at maximum speed and to scale it for the different speeds from rest
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Figure 4.24 – Effect of the gas viscosity on the global Pareto front
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Figure 4.25 – Effect of the rotor radius on the global Pareto front
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Figure 4.26 – Effect of the rotor mass on the global Pareto front
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Figure 4.27 – Effect of the rotor maximum speed on the global Pareto front
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Figure 4.28 – Effect of parametric variation on the maximum clearance tolerance
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Figure 4.29 – Effect of parametric variation on the maximum groove depth tolerance

to the target rotor speed as follows [1]:

∆hgrowth = ∆hgrowth,max
Ω2

Ω2
max

4.28
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which is used to compute the actual clearance:

hr = h0 −∆hgrowth 4.29

The maximum expansion is set from 0 to 3 µm with a1 µm interval. Results in form of
Pareto fronts are represented in Figure 4.30. Centrifugal growth has a slight positive
effect of the maximum clearance tolerance. At a radial expansion of 3 µm, the maximum
tolerance field is 10.0% higher than the nominal case without centrifugal growth. Interest-
ingly, the maximum groove depth tolerance remains unaffected. The centrifugal growth
appears to have a stabilizing effect by reducing the effective clearance. However, as the
stability bottleneck happens at a lower speed than the target speed and considering the
quadratic dependency of the expansion with the angular velocity, the overall effect is
modest.
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Figure 4.30 – Effect of the centrifugal rotor radial growth on the tolerance Pareto Front

4.2.4 Conclusions

A generalized method to perform a multi-objective optimization of a mechanical system
for maximizing the manufacturing tolerances was presented. A computationally-intensive
dimensionless look-up table of a feasibility criteria, covering all the design space is
computed only once. This matrix is then converted into a dimensional, system-specific
matrix at a very low computational cost. From this matrix, the Pareto front of competing
manufacturing tolerances is found, allowing the designers to select the appropriate trade-
off depending on the available resources. This data-driven methodology to identify the
robustness limits with regards to dimensional deviation can be applied to any design
problem that can be represented in a non-dimensional form. The method was applied
to the problem of rotors supported on herringbone grooved journal bearings, where the
critical mass is the feasibility criteria, and the clearance and groove depth the design
parameter whose tolerance has to be maximized. A case rotor is investigated, and the
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influence of multiple rotor parameters on the manufacturing tolerances was analyzed.

The conclusive remarks for this particular design problem are:

• The determination of the manufacturing tolerances on the clearance is competing
with the tolerance on the groove depth

• The groove depth tolerance field is significantly larger than the tolerance range on
the bearing clearance

• The classical maximization of critical mass does not yield the bearing parameters
corresponding to an optimal manufacturing tolerances.

• Low ambient pressures, high gas viscosities, large rotor diameters and low rotor
masses allow a larger manufacturing tolerance of the HGJB in both groove depth
and bearing clearance

• The centrifugal growth of the rotor has a slight positive influence on the manufac-
turing tolerance of the bearing clearance but not on the groove depth

The presented method allows to progress toward a cost-oriented design of high-speed gas
bearing supported rotors, improving the marketability of such machines. The proposed
method can also be generalized to any performance criterion other than the critical mass,
not only constrained to stability nor to gas journal bearing. Any design of systems subject
to deviations from design point might benefit from the present approach, as long as it
can be modeled in a non-dimensional formulation.
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4.3 Chapter conclusion

In order to extend the manufacturability and the field of application of aerodynamic
bearings, the chapter explored two pathways. A hybrid foil bearing enhanced with spiral
groove was proposed and investigated as a mean to improve the load capacity and reduce
the drag torque. A multi-objective optimization of the groove parameters identified the
improvement potential of this technology over the classical foil thrust bearing design
for various configurations and compressibility numbers. The grooved pattern allows
an increase of load capacity by 70% or the reduction of the drag torque by 40% while
achieving equal or higher load capacity than the original design. However, the presence of
spiral grooves designed for low speed appears affect negatively the ultimate load capacity
of a foil bearing.

A robust design method maximizing the manufacturing tolerances on multiple bearing
design parameters simultaneously was then introduced. The method is based on a large
non-dimensional database covering a large portion of the design space, dimensional this
space for a specific design case and explores the space for the Pareto-optimal windows
of manufacturing tolerances. It was shown that this method yield different results than
the sole maximization of the stability of a bearing, thus confirming that maximizing
the stability does not maximize the robustness simultaneously. Beyond the scope of
aerodynamic bearings, this method can be generalized to any mechanical system that
can be modelled in a non-dimensional formulation.

The chapter provides a modelling approach for compliant grooved bearings that can
be extended to other bearing types, such as foil journal bearings, which are prompt to
dynamic instabilities and detachment of the top foil when sub-ambient pressures are
reached in the gas film. The inexpensive addition of spiral grooves on the bearing top foil
could be a mean to delay or relief these issues by manipulating the pressure in the gas
film. Further research efforts should therefore investigate grooved foil journal bearings
with additional objective functions suited for this type of bearing. Maximization of the
the critical mass (stability) and minimization of the portion of the bearing encountering
sub-atmospheric pressures could be explored. The presented tolerancing optimization
method represents an attempt of robust design applied to aerodynamic bearings. In order
to extend the practical viability of this method, the stability criterion should be extended
to account for the dynamics of a complex rotor with four -or more- degrees of freedom.
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5 Epilogue

5.1 Summary

The ability of the Narrow Groove Theory (NGT) to predict the dynamic coefficients of
Herringbone Groove Journal Bearing (HGJB) was tested against experimental data. A test
rig was built and employed in air to dynamically excite the bearing bushings of a 16 mm

diameter rotor running at 100 krpm and retrieve the dynamic stiffness and damping
coefficients from the displacement measurements, following a novel technique. The
dynamic force coefficients were evaluated at different rotor speeds, excitation frequencies,
excitation amplitudes and test rig orientation with regard to gravity. The NGT was found
to provide qualitatively valid predictions although it tends to overestimate the bearing
properties. The prediction based on the largest measured bearing clearance fitted best
the experimental data. Of the 8 bearing dynamic coefficients, only the direct damping
exhibited a significant non-linear behavior regarding the excitation amplitude. The rotor
weight had a negligible effect on the identified force coefficients. This work fills a gap in
the literature and further assess the validity of the NGT as a design and simulation tool.

Once experimentally validated, the NGT and the Reynolds equation were adapted to
capture real-gas and humid air effects. Multiple bearing geometries were investigated
(Rayleigh step slider bearing, plain journal bearing and herringbone groove journal
bearing) in a non-dimensional framework in order to keep the observations as scalable
as possible. When expressed in terms of reduced temperature and pressure (normalized
by their respective value at the critical point) real-gas effects were found to be mostly
fluid-independent. The increase of compressibility induced by the real-gas effects have a
negative influence on the load capacity of investigated bearings. The effect on stability
is either positive or negative depending on the reduced ambient condition and the
compressibility number. Since the validity of the NGT depends on the assumption of
incompressibility between each groove-ridge pair, a compressibility number threshold
accounting for the real-gas effects was suggested, beyond which the NGT might deviate
significantly due to local incompressibility. The humid air effects were found to have
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negligible effects on the load capacity of journal bearings. However, in very hot and
humid ambient environments, the partial condensation of water in the air film can lead to
a drop in the minimum critical mass of 25%, which is significant enough to be taken into
account in the design process of a airborne turbomachinery operating in uncontrolled
environments.

A model based on the Reynolds equation was developed and implemented to account for
condensation in pure fluid gas lubricant. This model is based on the development in liquid-
lubricated bearing and was used to study three 1-D slider bearings in near-saturation
conditions. Because it limits the maximum pressure in the film to the saturation pressure
corresponding to the ambient temperature, condensation was found to generally reduce
the load capacity of such bearings. However, small gains in reaction force were predicted
in particular conditions, due to the extension of a high-pressure zone toward the end of
the bearing leading to an overall gain in load capacity. An original test rig was built
to validate the model. The apparatus consists of a short 20 mm three-pocket Rayleigh
step journal bearing driven by a high-speed DC motor via a flexible coupling, inspired by
the very first gas bearing apparatus presented by Kingsbury in 1897. The test rig was
enclosed in a pressure chamber filled with R245fa brought in near-saturation conditions
and running at 30 krpm. Five pressure taps allowed to measure the gas film pressure
along one of the bearing pockets. Both saturated and non-saturated tests were in very
good agreement with the model. Condensation-induced touch-downs were experienced,
however without any sub-synchronous frequency in the radial motion associated with a
typical whirl instability. This indicates that achieving condensation within a thin gas
film is possible but should be avoided for the sake of mechanical integrity. Furthermore,
this work brings an additional evidence supporting the isothermal assumption in the
compression occurring in a gas bearing.

In an attempt to explore the combination of foil and grooved bearings, a layout of Foil
Thrust Bearing enhanced with spiral grooves was proposed and numerically investigated
with a NGT-based model. Multi-objective optimization was performed on the groove
geometry in order to identify promising geometries and assess the potential of the
technology in terms of load capacity and drag torque. Results indicate that the load
capacity can be increased by nearly 70% or a drag torque decreased by 40% compared
to the ungrooved foil thrust bearing. However, the performance of the grooved bearing
in very thin gas height was found to be systematically poorer than the smooth version,
indicating that spiral grooves do not improve the ultimate load capacity of such bearings.

Finally, a novel optimization technique to maximize the robustness of HGJBs on key
design parameters such as the nominal clearance and the groove depth was presented.
The method explores a large normalized design space composed of millions of HGJB
geometries evaluated in term of critical mass. The method employs a Monte-Carlo
method to look for the region of this hyperspace offering an Pareto-optimal trade-off
between the robustness on the key parameters, finally yielding a Pareto curve showing
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all optimal possibilities of robust design for a specific airborne rotor. The designer is
then free to chose an optimal point based on the manufacturing resources available. The
optimally robust designs deviate significantly from the design maximizing the critical
mass alone, highlighting that maximizing the robustness and maximizing the stability are
not equivalent. The method was applied on an example rotor and a sensitivity analysis
could identify the bearing diameter and the lubricant viscosity as the parameters having
the most influence on the robustness. The presented procedure is generalizable to any
multi-variable system subjected to uncertainties.

5.2 Future work

The present work opens new ways in high-pressure gas lubricated bearings and design
procedure for airborne rotating machinery. The suggestions are as follows:

• A research effort should be spent on experimentally validating the real-gas modelling
of herringbone grooved journal bearings. The experimental procedure presented in
Chapter 2.4 should be repeated in high-pressure refrigerant for this purpose, with
the difference that a direct drive should be used instead of the impulse turbine,
unsuited for confined environments.

• The test rig developed in Chapter 3.3 should be used in pressure chambers to
validate the prediction of static pressure fields including 1) real-gas effects, 2)
turbulence and 3) rarefied gas effects. This test rig is sufficiently small and simple
to keep the cost and time requirements of such researches reasonable.

• The gas bearing model including isothermal condensation should be extended to
become a practical design tool. In particular, it should 1) be extended for a bearing
of finite axial length, 2) include the evaluation of dynamic effects, either using the
perturbation method or a time-domain integration, and 3) be applied on HGJBs.
The latter will require to resolve the grooves with the help of the Reynolds equation,
since the assumption of local incompressibility necessary to the NGT is not met
under isothermal condensation (equivalent to an infinite compressibility).

• Effect of condensation on a HGJB-supported rotor should be experimentally observed
with a dedicated test rig to address the influence of saturation on the stability of
the system

• An experimental investigation of the performance of Foil Thrust Bearings enhanced
with spiral grooves should be performed to validate the model introduced in Chapter
4.1. Other layouts of such bearings should be investigated, such as a full 360◦ foil
spiral groove bearing similar to Licht’s bearing.

• The numerical analysis of grooved Foil Journal Bearings should be performed to
assess its potential performance, in terms of load capacity, drag torque an stability.
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More advanced grooving patterns should be investigated, for example with groove
parameters varying along the axial and the circumferential direction.

• The design procedure for robustness maximization should be extended using more
complete stability metrics beyond the critical mass (logarithmic decay of multi-
DOF rotor-bearing systems). Because of the tremendous computation cost of the
presented technique when not using the simple yet scalable critical mass, reduction
methods such as surrogate models should be considered. The integration of enhanced
groove geometries, with non-constant groove parameters evolving along the axial
direction of the bearing, should be explored with this method. A research effort in
this direction could lead to a strong reduction of the sensitivity of HGJBs against
manufacturing errors and reduce strongly the production costs.

• The effect of shape errors such as cylindricity and circularity on the stability of
rotor-bearing systems should be studied both numerically and experimentally. The
NGT-based model presented in Chapter 2 can be used for this purpose, since it can
model a non-circular bushing. It should also be used to study the influence of side
pressurization, where the two axial ends of a journal bearing at not at the same
pressure level, which is often the case in airborne turbomachinery.
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A Reynolds equation

Two surfaces, A and B, are in relative motion in 3 directions within a lubricant fluid,
as illustrated in Figure A.1. Surface B has the velocity (~u,~w,~v) in the directions (~x,~y,~z)
respectively, while A is static. The film thickness h between the two surfaces is very small
compared to the lengths in directions ~x and ~z. The following assumptions are made:

~uB

~wB

~vB

h

~y

~x

~z
A

B

Figure A.1 – Surfaces in motion in a lubricant

• The lubricant is a Newtonian fluid

• The film thickness is much smaller than the two other orthogonal directions

• The fluid characteristics (viscosity, pressure, density) are constant across the film
thickness

• Viscous forces dominate the inertia and the flow is laminar

Under such conditions, the Navier-Stokes equations boil down to the following expressions
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in ~x and ~z:

∂p

∂x
=

∂

∂y

(
µ
∂u

∂y

)
∂p

∂z
=

∂

∂y

(
µ
∂v

∂y

) A.1

These equations are integrated once:

∂u

∂y
=
y

µ

∂p

∂x
+
A

µ

∂v

∂y
=
y

µ

∂p

∂z
+
B

µ

A.2

and twice, to obtain an expression of the velocity in the two directions ~x and ~z

u =
y2

2µ

∂p

∂x
+A

y

µ
+B

v =
y2

2µ

∂p

∂z
+ C

y

µ
+D

A.3

The boundary conditions are applied as follows :

y = 0, u = 0, v = 0

y = h, u = uB, v = vB
A.4

Which allows to express the four integration constants of equation A.3:

u = −y
(
h− y

2µ

)
∂p

∂x
+ uB

y

h

v = −y
(
h− y

2µ

)
∂p

∂z
+ vB

y

h

A.5

The mass flow rate per unit length is expressed by integrating the velocity over the
thickness of the film times the average density across the film:

ψx = ρ

∫ h

0
udy = ρ

(
− h3

12µ

∂p

∂x
+
ub
2
h

)
ψy = ρ

∫ h

0
vdy = ρ

(
− h3

12µ

∂p

∂y
+
vb
2
h

) A.6
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The continuity equation is integrated over the film thickness:∫ h

0

(
∂ρ

∂t
+

∂

∂x
(ρu) +

∂

∂z
(ρv) +

∂

∂y
(ρw)

)
dy = 0 A.7

It is convenient to use the following general integration rule to express the continuity
equation: ∫ h

0

∂

∂γ
[f(γ, y)]dy =

∂

∂γ

(∫ h

0
f(γy)dy

)
− f(γ, h)

∂h

∂γ
A.8

The second term of Eq.A.7 is developed as follows:∫ h

0

∂

∂x
(ρu)dy = −ρub
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+
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(
ρ

∫ h

0
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)
A.9

Similarly, for the third term:∫ h

0

∂

∂z
(ρv)dy = −ρvb

∂h

∂y
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(
ρ

∫ h

0
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)
A.10

The fourth term of the continuity equation is simply integrated:∫ h

0

∂

∂y
(ρw)dy = ρwb A.11

Finally, the continuity equation leads to the following expression, where one can identify
the mass flow rate per unit length ψx and ψz, in ~x and ~z respectively:

∂
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(
ρ

∫ h

0
udy

)
︸ ︷︷ ︸
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∂h

∂z
+ wb

)
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∂h
∂t

= 0 A.12

The last three terms of Equation A.12 can be grouped in ∂h
∂t , following the development

of the material derivative. It is expressed as follows:

Dh

Dt
=
∂h

∂t
+
∂h

∂x

dx

dt
+
∂h

∂z

dz

dt
A.13

The derivative terms can be substituted:

dx

dt
= ub

dy

dt
= vb

Dh

Dt
= wb A.14
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Leading to the partial derivative of h in time:

∂h

∂t
=

(
−ub

∂h

∂x
− vb

∂h

∂z
+ wb

)
A.15

Finally, using Eq.A.6, the Reynolds equation is obtained:
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−ρh
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A.16
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B Matrix coefficient of bearing
impedance identification

A =


a1 a2 0 0 a3 a4 0 0

0 0 a5 a6 0 0 a7 a8

a9 a10 0 0 a11 a12 0 0

0 0 a13 a14 0 0 a15 a16

 B.1

a1 = x+ LAα− xA B.2

a2 = y − LAβ − yA B.3

a3 = x− LBα− xB B.4

a4 = y + LBβ − yB B.5

a5 = y − LAβ − yA B.6

a6 = x+ LAα− xA B.7

a7 = y + LBβ − yB B.8

a8 = x− LBα− xB B.9

a9 = LA(x+ LAα− xA) B.10

a10 = LA(y − LAβ − yA) B.11

a11 = −LB(x− LBα− xB) B.12

a12 = −LB(y + LBβ − yB) B.13

a13 = −LA(y − LAβ − yA) B.14

a14 = −LA(x+ LAα− xA) B.15

a15 = LB(y + LBβ − yB) B.16

a16 = LB(x− LBα− xB) B.17

199





C HGJB groove parameters measure-
ments

The assessment method of the groove parameters for the HGJBs presented in Chapter 2
is presented here.

Groove angle and aspect ratio

The groove angle β̂ and the groove aspect ratio α are controlled optically using a
computer-controlled microscope and numerical measurement tools. Figure C.2 show the
measurement of the groove angle π − β̂, estimated to be 20.041◦±0.05◦, close to the
nominal value of 20◦ (β̂=160◦).

Figure C.1 – Optical measurement of the groove angle using a digital microscope
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The groove aspect ratio is determined by the measurement of the groove width and of the
ridge width, using the same tool as for the groove angle. The results gives an estimation
of α = 0.6509± 0.005, close to the nominal value of 0.65.

Figure C.2 – Optical measurement of the groove aspect ratio using a digital microscope

Groove depth

The groove depth is measured using a rugosimeter TESA Rugosurf 90G measuring the
bearings along the axial direction over a ridge-groove pair. The measurement setup is
shown in Figure C.3 and an example of measured profile is showed in Figure 2.38. The
groove depth was measured between 15 and 17 µm.
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Figure C.3 – Measurement of the groove depth using a rugosimeter
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D Parameters and displacement uncer-
tainties

D.1 Rotor mass

The rotor mass was measured on a precision scale with 10 measurements, leading to an
overall uncertainty of 3 mg.

D.2 Rotor transverse inertia

The nominal value on the rotor transverse inertia IT,0 is given using a 3D model of the
shaft, given its nominal density and geometry. The uncertainty on this value is assumed
to come from the balancing planes, because they lay at the extremities of the shaft, the
furthest from the center of mass. To estimate the effect of balancing on the inertia, a
worst case scenario is investigated, consisting of a annular removal of matter on the axial
faces of the rotor (Figure D.1). A ring of matter has a transverse rotational inertia of
I∆. The nominal case would consist in the rings half-removed, therefore of depth 1 mm.
The uncertainty would then reside on the depth of the rings: ±1 mm, leading to the final
value for the inertia:

IT = IT,0 − I∆ ± IT,∆ D.1

IT,∆ ≈ m∆l
2
∆ D.2

Where m∆ and l∆ are respectively the mass of a ring and its mean distance from the
center of mass. Applying the dimensions of Figure D.1 and ρ =7700 kg m−3, this leads to
:

IT = 7.01 · 10−4 kg m2 ± 1.12 · 10−5 kg m2 D.3
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22

13.75

C.M.
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Figure D.1 – Close view of the annular mass removal scenario for estimation of the
uncertainty on transverse inertia

D.3 Rotor axial inertia

The uncertainty on the polar inertia is estimated following the same approach as for the
transverse inertia. Assuming a ring of removed mass as described in Figure D.1, the
nominal value on the rotor transverse inertia IP,0 is given using a 3D model of the shaft,
given its nominal density and geometry. It is then corrected by the removal of two half
rings, with un uncertainty of two half rings:

IP = IP,0 − I∆ ± IP,∆ D.4

IP,∆ ≈
1

2
m∆(r2

o − r2
i ) D.5

where ro and ri are the outer and inner radius of the ring, respectively. It leads to the
following inertia:

IP = 8.83 · 10−6 kg m2 ± 2.50 · 10−7 kg m2 D.6

D.4 Center of mass position

Following the approach with the two rings of removed mass, the uncertainty on the axial
position of the center of mass ∆xCM is :

∆xCM =
m∆ · L
Mr

= 0.2 mm D.7
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where L is the distance between the geometrical center (corresponding to the center of
mass of the perfect rotor) and the axial center of the ring. This value is taken as the
dominant uncertainty on the the parameters LW and LB of Table 2.9, respectively the
distance of the probes W2,4,6,8 to the center of mass and the distance of the bearing center
to the center of mass. The geometrical uncertainty σgeom affecting these two values are
estimated to be 0.15 mm, corresponding to the manufacturing tolerance ISO 2768f to
these scales of length. Therefore, the uncertainty on these parameters is:

σ =
√

∆x2
CM + σ2

geom = 0.25 mm D.8

D.5 Displacement probes

D.5.1 Random error

The random error from the displacement probes is assessed by capturing 1 s of data at
the nominal sampling rate (50 kHz) at rest, and computing the standard deviation of the
recorded data. Figure D.2 depicts the histogram of the recorded data for channel W1,
exhibiting the normal nature of its distribution.
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Figure D.2 – Distribution of the recorded data from W1 in static conditions around its
mean value

The standard deviation of the 8 channels is shown in Figure D.3. These values are used
to evaluate the uncertainty on the amplitude and phase of the sine function fitted on the
data by the least square method, namely:

σA =
σ√
N
2

D.9

σφ =
σ

A
√

N
2

D.10
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Where N is the number of points in the data, typically 2 · 105 for a 4 second excitation
run, and A the amplitude of the fitted sine. Figure D.4 and D.5 present the resulting
uncertainties for amplitude and phase, applying a guess amplitude A of 0.2 µm for the
sake of example.
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Figure D.3 – Standard deviation due to random error of each of the 8 displacement
channels
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Figure D.4 – Uncertainty on the amplitude of the fitted sine from 2 · 105 data points

D.5.2 Linearity error

The proximity probes manufacturer guarantee a maximum linearity error of 0.026% of
the full measurement range, here 500 µm, resulting in a absolute deviation of 0.13 µm.
However, this value is not the uncertainty on the amplitude of a small relative displacement
where the absolute position is meaningless. The significant metric to know is the deviation
of the sensor sensitivity from linearity. In order to address it, the manufacturer provided
the author with a calibration report of such a device, showing the relative deviation on
voltage in function of the absolute position. The data were digitized and fitted with
a polynomial, to be then scaled up to reach a maximum relative deviation of 0.026%,
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Figure D.5 – Uncertainty on the phase of the fitted sine from 2 · 105 data points, assuming
a sine amplitude of 0.2 µm

representing a conservative case (Figure D.6) .
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Figure D.6 – Relative linearity error on the voltage, scaled on the full scale range of the
sensor

e(x) =
V (x)− Vlin(x)

Vmax
D.11

V (x) = Vmaxe(x) + Vlin(x) D.12

Defining the sensitivity α:

α =
dV (x)

dx
= Vmax

de(x)

dx
+

dVlin(x)

dx
= Vmax

de(x)

dx
+ αlin D.13
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And the error on the amplitude of a relative displacement:

Err =
∆xlin −∆x

∆xlin
=
α− αlin

α
D.14

Err = 1− αlin

Vmax
de(x)

dx + αlin
D.15

The result of this equation is shown in Figure D.7 for different absolute positions.
The upper bound for the linearity error of the local measurement of small amplitude
displacement is 0.4 %. This conservative value is used in the uncertainty computations.
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Figure D.7 – Relative error on small relative displacements against the absolute position

D.5.3 Roundness error

The displacement capacitive sensors are provided with a default calibration for a flat
surface. However, the target of 4 of the 8 probes bearing a rotor, the curvature of the
target has an influence of the measurements, especially when the measurement distance
is small. In order to quantify the measurement error of small amplitude displacements
caused by the curvature, a test rotor of diameter 16 is installed on a calibration rig (Figure
D.8) consisting of a micrometric screw moving a slider where the target is attached, whose
position is measured by a reference displacement probe. In front of the target is fixed
the test probe. The micrometric screw is slowly actuated to push the target toward the
probe while both displacements are being recorded.

The absolute error against position is shown in Figure D.9, with a logarithmic curve
fitted on the data points. The capacitive sensor reports a distance systematically higher
than the output of the reference probe. The error is maximum when the distance is
maximum, with an offset of the 0 point (physical contact between the probe head and
the target surface) of approximately 26 µm. However, as only relative displacements are
of importance for the identification of bearing impedances, the error on the sensitivity of
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Figure D.8 – Calibration apparatus assessing the measurement error due to curvature of
the target

the probe is the relevant metric to assess. The relative sensitivity error, i.e. the derivative
of the error over the displacement based on the fitted curve, is shown in Figure D.10.
The relative error is maximum when the target and probe head are in physical contact,
and decreases monotonically as the two element are moved apart. The threshold of 5%
error on the sensitivity is reached at a approximately 0.3 mm, therefore the sensors are
employed beyond this limit in order to keep the sensitivity error to acceptable values.
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Figure D.9 – Absolute error on the position against target distance

The roundness relative error, affecting displacement channels W2, W4, W6 and W8, is put
at the conservative value of 5%:

|σi
xi
| = 0.05 D.16
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Figure D.10 – Error on the local sensitivity of the probe

D.5.4 Filter and fit error

In order to extract motion at a particular frequency, a time-domain method is used. the
time domain raw data are band-filtered around a guess frequency and fitted with a sine,
outputting amplitude, phase and signal frequency. In order to estimate the uncertainty
on these parameters due to the filtering and fitting steps, a simulation is put in places
with the conditions actually used to process the raw data. A signal composed of one
known single sine wave is polluted with a Gaussian noise of known amplitude.

yi = sin(ωexti) +Nrn D.17

where n is a random variable following a normal law:

n ∼ N (0, 1) D.18

The noise ratio Nr is varied between 0 and 10. The band-pass filter is applied around ωex
and the time-domain sine fit is performed to extract the amplitude and the phase. For
each noise ratio, the identification exercise was repeated 285 times to extract statistical
information out of the process. The signal is of the same duration and sampling rate as
in experimental conditions.

An example of error distribution on the amplitude and phase made on the signal to isolate
is shown for a noise ratio of 5 in Figures D.11 and D.12 respectively.
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D.5. Displacement probes
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Figure D.11 – Distribution of relative amplitude error on the isolated signal for a noise
ratio of 5
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Figure D.12 – Distribution of absolute phase error on the isolated signal for a noise ratio
of 5

Obtaining the distribution of errors over a spectrum of noise ratio and extracting their
standard deviation, a link can be established between the noise ratio and a signal
processing uncertainty. The standard deviation over noise ratio are shown for amplitude
and phase in Figure D.13 and D.14 respectively.

In practice, a reference data sample where no shakers are activated is first used to evaluate
the level of background noise in the vicinity of the excited frequencies, and determine a
equivalent noise ratio of each excited data sample and finally conclude to signal processing
uncertainties based on these simulations.
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Appendix D. Parameters and displacement uncertainties
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Figure D.13 – Standard deviation of relative amplitude error on the isolated signal for
different noise ratio
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Figure D.14 – Standard deviation of absolute phase error on the isolated signal for different
noise ratio

D.6 Temperature measurements

D.6.1 Infra-red temperature sensors

The two IR temperature sensors are calibrated for the particular rotor and tilted configu-
ration using a setup as described in Figure D.15. The rotor is inserted in a heating bed
in one end while the other end has its surface temperature measured with the test two
probes, maintained in position and angle with a 3D-printed support mounted on the shaft
itself. A reference PT100 probe measures the shaft temperature at the same axial position
as the IR-probes. The setup is insulated and the heating bed temperature is progressively
increased in steps, with 2 hours hours settling time between each measurement point. A
linear regression is performed on the data of each of two sensors to establish a calibration
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D.6. Temperature measurements

curve between the output of the sensors and the measures of the reference probe. Results
are shown in Figure D.16.
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Figure D.15 – Setup for the calibration of the two IR probes
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Figure D.16 – Results of the calibration, with the two sets of data and the corresponding
regression

D.6.2 PT100 temperature sensors

The PT100 inserted in the bushings flexible supports are calibrated following a similar
procedure. The setup, described in Figure D.17, consist of a heating bed, a reference
PT100 probe and the two test probes.The heating bed is heated in steps, with two hours
between each measures. Results are shown in Figure D.18.
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Figure D.17 – Setup for the calibration of the PT100 probes
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Figure D.18 – Results of the PT100 calibration, with the two sets of data and the
corresponding regression
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E Results of force coefficients identifi-
cation is ambient air

Results of the identification of bearing force coefficients are presented for different rota-
tional speeds.
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Appendix E. Results of force coefficients identification is ambient air
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Figure E.3 – Results of identified force coefficient for 50 krpm in ambient air
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Figure E.4 – Results of identified force coefficient for 60 krpm in ambient air

219



Appendix E. Results of force coefficients identification is ambient air

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

f
ex

/f
rot

 [-]

0.5

1

1.5

2

2.5

3

3.5

K
 [

M
N

/m
]

K
xx

K
yy

Model nominal

Mean deviation

Max deviation

Bearing A, Direct stiffness

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

f
ex

/f
rot

 [-]

-0.6

-0.4

-0.2

0

0.2

0.4

K
 [

M
N

/m
]

-K
xy

K
yx

Model nominal

Mean deviation

Max deviation

Bearing A, Cross-coupled stiffness

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

f
ex

/f
rot

 [-]

0

50

100

150

200

C
 [

N
s/

m
]

C
xx

C
yy

Model nominal

Mean deviation

Max deviation

Bearing A, Direct damping

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

f
ex

/f
rot

 [-]

-150

-100

-50

0

50

C
 [

N
s/

m
]

-C
xy

C
yx

Model nominal

Mean deviation

Max deviation

Bearing A, Cross-coupled damping

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

f
ex

/f
rot

 [-]

1

1.5

2

2.5

3

3.5

4

K
 [

M
N

/m
]

K
xx

K
yy

Model nominal

Mean deviation

Max deviation

Bearing B, Direct stiffness

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

f
ex

/f
rot

 [-]

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

K
 [

M
N

/m
]

-K
xy

K
yx

Model nominal

Mean deviation

Max deviation

Bearing B, Cross-coupled stiffness

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

f
ex

/f
rot

 [-]

0

50

100

150

200

250

C
 [

N
s/

m
]

C
xx

C
yy

Model nominal

Mean deviation

Max deviation

Bearing B, Direct damping

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

f
ex

/f
rot

 [-]

-200

-150

-100

-50

0

50

100

C
 [

N
s/

m
]

-C
xy

C
yx

Model nominal

Mean deviation

Max deviation

Bearing B, Cross-coupled damping

Figure E.5 – Results of identified force coefficient for 70 krpm in ambient air
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Figure E.6 – Results of identified force coefficient for 80 krpm in ambient air
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Figure E.7 – Results of identified force coefficient of bearing A for 90 krpm in ambient air
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F Nucleation in saturated thin gas
films

The time required for condensation to actually happen, considering the nucleation time
required to form stable liquid droplets, estimated. If the pressure excursion in the saturated
domain is not sufficient or if the residence time of the fluid at saturated conditions is
too short, formation of a liquid phase within the gas phase might not happen and the
study of saturated-gas bearings would be reduced to the evaluation of super-saturated
gas properties (non-equilibrium state). A strategy applied by Lettieri [1] and Baltadjiev
[2] in the problem of condensation in a CO2 compressor wheel is applied to the present
problem, which consists of the evaluation of the time in the saturated region required to
have the first stable nucleus of liquid and compare it to the residence time of the gas in
this region. If the ratio is well below 1, condensation will occur and the state is assumed
to be at thermodynamic equilibrium. In the inverse case, condensation will not occur
and the fluid remains single-phase in super-saturated conditions.

Unlike Lettieri who neglected heterogeneous nucleation (nucleation occurring on the
walls or on foreign particulates serving as nucleation sites) to consider the homogeneous
nucleation only (the gas molecules serve as nucleation site themselves), it is believed that
the particular aspect ratio in thin-fluid lubrication will bring the influence of the walls to
a non-negligible order of magnitude compared to the homogeneous nucleation. From the
classical nucleation theory [3], the rate of homogeneous nucleation is defined as follows

Jhomo =

(√
2σ

πm3

ρ2
v

ρl

)
︸ ︷︷ ︸

1

exp

(
−∆Ghomo

kT

)
︸ ︷︷ ︸

2

F.1

The prefactor (noted 1) corresponds to the rate of nuclei formation while the term noted 2
is the probability for a nucleus to reach a stable radius. ∆Ghomo is the Gibbs free energy
barrier between the saturated and super-saturated states to form a spherical nuclei

∆Ghomos =
16πσ3

3ρ2
l [g(Pv, T )− g(Ps, T )]2

F.2
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Appendix F. Nucleation in saturated thin gas films

The presence of walls in the heterogeneous nucleation problem reduces the Gibbs free
energy required to form a nuclei of stable size

∆Ghetero = ∆Ghomo
2− 3 cos θ + cos3 θ

4
F.3

Where θ is the contact angle between a liquid-phase drop and the wall. Heterogeneous
and homogeneous nucleation time constant are considered separately as follows

thomo =
1

Jhomo,maxVhomo
thetero =

1

Jhetero,maxVhetero
F.4

Vhomo and Vhetero are the volumes of the fluid subjected to homogeneous and heterogeneous
saturation respectively

Vhomo = Ssath0 Vhetero = 2Ssatδ F.5

Where Ssat is the saturated area of the thin film and δ is the mean free path of the
gas molecules, representing the thickness of the gas layer subjected to interact with the
wall. Figure F.1 presents the result of the ratio nucleation time over residence time
for CO2 at two reduced pressure against the saturated pressure ratio. The considered
geometry is a infinitely long journal bearing (10mm diameter, 5µm clearance, running at
100 kRPM with a saturated region covering a angle of 20◦). The contact angle is 30◦, the
same value as chosen in the work of Letieri [1]. Two observations can be made : High
reduced temperature decreases the nucleation time and the heterogeneous nucleation
dominates the nucleation process. A ratio of time constant of 1 is reached at Tr = 0.85 at
a pressure ratio of 1.05, meaning that the particular bearing configuration will not induce
condensation with lower saturated pressure ratios.
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Figure F.1 – Ratio of nucleation time over residence time against saturation pressure
ratio for CO2

Literature on contact angle measurements for artificial refrigerants is meager. A value of
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5 ◦ between R134a and aluminum and steel plates is taken as reference [4], although these
two materials are not commonly used for the manufacturing of gas bearings. With such a
contact angle value and under the same conditions as previously applied, condensation
occur virtually at P/Psat = 1 because of the extremely reduced heterogeneous Gibbs free
energy , which makes the residence time to overcome the heterogeneous nucleation time
by 20 orders of magnitude, as shown in Figure F.2. This ratio is large enough to discard
the influence of the particular bearing geometry and operating conditions on the results.
Even very close to the triple point temperature, the heterogeneous condensation time
dominates for pressure ratios very close to unity. Lack of data regarding contact angle
measurements of refrigerant and construction material for aerodynamic bearing (coated
steel, carbides) is compensated by the extremely low values of contact angle reported
in the literature, values so close to 0 degree that the assumption of thermodynamic
equilibrium in the condensation process is legitimated in most practical cases.
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Figure F.2 – Ratio of nucleation time over residence time against saturation pressure
ratio for R134a, Tr = 0.85
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