
Acceptée sur proposition du jury

pour l’obtention du grade de Docteur ès Sciences

par

Robust Distributed Learning

El Mahdi EL MHAMDI

Thèse n° 7218

2020

Présentée le 6 mars 2020

Prof. B. Falsafi, président du jury
Prof. R. Guerraoui, directeur de thèse
Prof. M. Herlihy, rapporteur
Prof. F. Bach, rapporteur
Prof. M. Jaggi, rapporteur

à la Faculté informatique et communications
Laboratoire de calcul distribué
Programme doctoral en informatique et communications

 “ نوكش اھروّك يّللا ضرلا و عبنیاك نینم رحَبل ”

 راتخمُلا و ةزّی نب يطعملا

“If a machine is expected to be infallible, it cannot also be intelligent.”

 Alan Mathison Turing

ii

Acknowledgements
The many years that preceded and enabled this short 4-years journey would not have been what

they were if it was not for my parents, my sister and my two brothers who shaped my personality

and defined who I am. This work is dedicated to them.

This work would not have been possible without the collaborations I was allowed to start in

the distributed computing laboratory with other members of the lab, some of which were true

believers who abandoned their initial research plans to join the effort on robust learning. The use

of we instead of I is meant to reflect that.

This thesis would not have happened if the randomness of life didn’t put Rachid Guerraoui on

my path when I started an online science tutoring project called Wandida. During the Wandida

period, creating university-level computer science courses with Rachid made me discover how

many foundational questions one could find in computing and, during the PhD period, Rachid

gave me a level of freedom, autonomy and trust I could not have found elsewhere.

This thesis would also not have happened if that same randomness didn’t put my fiancée Mariame

on my path. I thank her for her support when I needed to decide whether I ”go back to school”

for a PhD, for her crucial presence when I was still on a blank page a few days away from my PhD

deadline and a book to finish in the same time, and for every other key moment in the four years

in between. My satisfaction in finishing this thesis is amplified by the joy of seeing her take the

same leap of faith and ”go back to school” after an even longer professional drift than mine. I am

looking forward to see what will come out of her own PhD.

I thank the members of the jury, Professors Francis Bach and Martin Jaggi, who brought their

internationally recognized machine learning expertise and Professor Maurice Herlihy, a true

pioneer in distributed systems who established some foundational results that are prior work to

this thesis and who also agreed to evaluate this thesis. It was intimidating but also intellectually

stimulating and rewarding to defend the thesis in front of them. Many thanks go to Professor

Babak Falsafi who presided the jury and provided valuable mentoring prior to the jury formation.

There are much more people who should be thanked for the past four years that I can list, from

friends to sports partners to neighbours to colleagues. They will pardon listing only four of them

by names: Kristine Verhamme and France Faille, they made the life in the lab easier and reminded

us that self-care should always come before work, Zaina Ait Said and Imad Grandi, who left this

world too soon for me to thank them.

Finally, I would like to thank the 8 million Swiss taxpayers who funded this research, the 83 million

German and 67 million French taxpayers who funded a few years of my academic journey and

i

Acknowledgements

most importantly, the 36 million Moroccan taxpayers who funded 15 years of primary, middle

school, high school and undergraduate university studies.

ii

Preface
This thesis is part of the work performed from September 2015 to September 2019 in the Dis-

tributed Computing Laboratory at EPFL, directed by Prof. Rachid Guerraoui. It focuses on the

robustness of distributed learning systems.

The main results presented in this dissertation appeared in the following publications (authors

order is alphabetical, except for the one with a * written with biologists).

1. Peva Blanchard; El-Mahdi El-Mhamdi; Rachid Guerraoui; Julien Stainer (2017). Machine

learning with adversaries: Byzantine tolerant gradient descent. In Advances in Neural

Information Processing Systems (NeurIPS) (pp. 119-129).

2. El-Mahdi El-Mhamdi; Rachid Guerraoui and Sébastien Rouault (2018). The Hidden Vul-

nerability of Distributed Learning in Byzantium. In International Conference on Machine

Learning (ICML) (pp. 3518-3527). Long talk.

3. Georgios Damaskinos, El-Mahdi El-Mhamdi; Rachid Guerraoui; Rhicheek Patra and Mahsa

Taziki (2018). Asynchronous Byzantine Machine Learning (the case of SGD). In Interna-

tional Conference on Machine Learning (ICML) (pp. 1153-1162). Long talk.

4. El-Mahdi El-Mhamdi; Rachid Guerraoui (2017). When Neurons Fail. In 2017 IEEE Interna-

tional Parallel and Distributed Processing Symposium (IPDPS) (pp. 1028-1037).

5. El-Mahdi El-Mhamdi; Rachid Guerraoui and Sébastien Rouault (2017). On the robustness

of a neural network. In 2017 IEEE 36th Symposium on Reliable Distributed Systems (SRDS)

(pp. 84-93).

During these four years of PhD, my colleagues and I also worked on other aspects of robustness

that are not included in this dissertation. Some of these aspects share the biological / fundamental

research motivation of the later part of this thesis (6, 7, 8), some are related to the Byzantine

resilient gradient aggregation problem introduced in this thesis (9, 10, 11, 12), and others are

more general questions in artificial intelligence safety and reliability (13, 14, 15).

6. El-Mahdi El-Mhamdi*; Andrei Kucharavy*, Rachid Guerraoui and Rong Li (2018). Predict-

ing complex genetic phenotypes using error propagation in weighted networks. bioRxiv,

487348.

7. El-Mahdi El-Mhamdi; Rachid Guerraoui; Alexandre Maurer and Vladislav Tempez (2019).

Exploring the borderlands of the gathering problem. Bulletin of the European Association

of Theoretical Computer Science (EATCS). To appear in October 2019.

iii

Preface

8. El-Mahdi El-Mhamdi; Rachid Guerraoui and Sergei Volodin (2019). Fatal Brain Damage.

arXiv preprint arXiv:1902.01686.

9. Georgios Damaskinos, El-Mahdi El-Mhamdi; Rachid Guerraoui; Arsany Guirguis and

Sébastien Rouault (2019). AGGREGATHOR: Byzantine Machine Learning via Robust Gradi-

ent Aggregation. In The Conference on Systems and Machine Learning (SysML).

10. El-Mahdi El-Mhamdi and Rachid Guerraoui (2019). Fast and Secure Distributed Learning

in High Dimension. arXiv preprint arXiv:1905.04374.

11. El-Mahdi El-Mhamdi; Rachid Guerraoui; Arsany Guirguis and Sébastien Rouault (2019).

SGD: Decentralized Byzantine Resilience. arXiv preprint arXiv:1905.03853.

12. El-Mahdi El-Mhamdi; Rachid Guerraoui and Arsany Guirguis (2019). Fast Byzantine Ma-

chine Learning with Unreliable Servers (under submission).

13. El-Mahdi El-Mhamdi; Rachid Guerraoui; Hadrien Hendrikx and Alexandre Maurer (2017).

Dynamic safe interruptibility for decentralized multi-agent reinforcement learning. In

Advances in Neural Information Processing Systems (NeurIPS) (pp. 130-140). Spotlight

Talk (given by H.H)

14. Henrik Aslund; El-Mahdi El-Mhamdi; Rachid Guerraoui and Alexandre Maurer (2018).

Virtuously Safe Reinforcement Learning. arXiv preprint arXiv:1805.11447.

15. El-Mahdi El-Mhamdi; Rachid Guerraoui; Lê Nguyên Hoang and Alexandre Maurer (2018).

Removing Algorithmic Discrimination (With Minimal Individual Error). arXiv preprint

arXiv:1806.02510.

Note on experiments: During this PhD, I was fortunate to benefit from the collaborations

prof. Rachid Guerraoui allowed us to freely start in his lab, in particular, the work presented in

this thesis could not happen without the crucial experimental contribution of my co-authors,

Sébastien Rouault and Georgios Damaskinos in particular. While this thesis focuses on the

theoretical problem statements, algorithmic solutions and proofs (my contributions), I have

included experimental results for didactic illustration. These experiments are mostly from my

co-authors, except the ones in Chapter 3 and the corresponding appendix (Krum, Multi-Krum,

(1-p)-Krum and the Medoid) which were mine.

iv

Abstract
Whether it occurs in artificial or biological substrates, learning is a distributed phenomenon in at

least two aspects. First, meaningful data and experiences are rarely found in one location, hence

learners have a strong incentive to work together. Second, a learner is itself a distributed system,

made of more basic processes; the change in the connections between these basic processes

is what allows learning. This generic view encompasses a large set of learning situations, from

brains, to metabolic networks in the organism to the data centers where several machines are

collaborating to recommend personalized content for a billion-users social media.

In both aforementioned aspects, a system’s ability to cope with the failure of some of its compo-

nents is crucial. This thesis explores the robustness of learning systems from these two aspects.

The first is coarse-grained, as the unit of failure is a whole learner. The second is fine-grained, as

the unit of failure is the basic component of the learner (e.g. a neuron or a synapse).

The first and larger part of this thesis focuses on the coarse-grained aspect. Specifically, we study

the robustness of distributed Stochastic Gradient Descent (SGD is the work-horse algorithm

behind most of today’s machine learning success). We begin by proving that the standard deploy-

ment of SGD today is brittle, as this deployment typically consists of averaging the inputs from

each learner. This leads to harmful consequences as the data that is used in machine learning

comes from different and potentially unreliable sources. To account for the various types of fail-

ures (data poisoning, malicious users, software bugs, communication delays, hacked machines

etc.), we adopt the general abstraction of arbitrary failures in distributed systems, namely, the

Byzantine failures abstraction. We provide a sufficient condition for SGD to be Byzantine resilient

and present three algorithms that satisfy our condition under different configurations.

The key algorithms that are introduced by this thesis are (1) Krum, a gradient aggregation rule

(GAR) that we prove to be a robust alternative to averaging in synchronous settings; (2) Bulyan, a

meta-algorithm that we prove to strengthen any given GAR in very high dimensional situations

and (3) Kardam, a gradient filtering scheme that we prove to be Byzantine resilient in the more

challenging asynchronous setting. For each of our algorithms, we also provide a few variants as

well as a discussion of their practical limitations.

The second part of this thesis goes down to the fine-grained aspect. We focus on the special

case of (artificial) neural networks. We view these networks as a weighted directed graph and

prove upper bounds on the forward propagated error when the basic components (neurons and

synapses) are failing. We also discuss the limitation of these bounds, how they could apply to

future neuromorphic hardware and how they could inform on other systems such as biological

(metabolic) networks.

v

Abstract

Keywords: robustness, distributed systems, Byzantine fault tolerance, machine learning, aggrega-

tion, poisoning, neural networks.

vi

Résumé
Qu’il se produise dans un substrat biologique ou artificiel, l’apprentissage est un phénomène

distribué selon au moins deux aspects. Premièrement parce que les données et les expériences

pertinentes sont rarement obtenues à la même location, ce qui incite fortement les apprenants à

travailler ensemble. Deuxièmement parce qu’un apprenant est lui-même un système distribué,

composé de processus plus basiques ; c’est le changement des connections entres ces processus

basiques qui permet l’apprentissage. Ce point de vue générique englobe un large spectre de

situations d’apprentissage, des cervaux aux réseaux métaboliques dans l’organisme aux centres

de données où plusieurs machines collaborent afin de recommander du contenu personalisé à

un milliard d’utilisateurs d’un réseau social.

Dans les deux aspects susmentionnés, la capacité d’un système à faire face aux dysfonction-

nements de certains de ses composants est crucial. Cette thèse explore la robustesse des sys-

tèmes d’apprentissage à partir de deux aspects. Le premier aspect est macroscopique, l’unité

de dysfonctionnement est un apprenant tout entier. Le second est microscopique, l’unité de

dysfonctionnement est un composant basique de l’apprenant (ex. un neurone ou une synapse).

La première et majeure partie de cette thèse se focalise sur l’aspect macroscopique. Plus précisé-

ment, nous y étudions la robustesse de la descente du gradient stochastique (l’algorithme de DGS

est au coeur de la plupart des succès en apprentissage machine aujourd’hui). Nous commençons

par prouver que le déploiement standard de DGS aujourd’hui est fragile, vu qu’il consiste prin-

cipalement à moyenner les entrées de chaque apprenant. Ceci conduit à des conséquences né-

fastes vu que les données utilisées en apprentissage machine proviennent de différentes sources,

potentiellement corrompues. Pour tenir compte des différents types de dysfonctionnements

(empoisonnement des données, utilisateurs malicieux, bugs de logiciel, délais de communication,

machines piratées etc.), nous adoptons l’abstraction générale des fautes arbitraires dans les sys-

tèmes distribués, à savoir celle des fautes Byzantines. Nous fournissons une condition nécessaire

à DGS pour qu’il soit tolérant aux fautes Byzantines et nous présentons trois algorithmes qui

satisfont cette condition sous différentes configurations.

Les algorithmes clés qui sont introduits par cette thèse sont (1) Krum, une règle d’agrégation de

gradients (RAG) que nous prouvons être une alternative robuste pour l’agrégation de gradients

en configuration synchrone ; (2) Bulyan, un méta-algorithme que nous prouvons être capable de

renforcer toute RAG en très haute dimension et (3) Kardam, un schèma de filtrage de gradients

que nous prouvons être tolérant aux Byzantins dans les configurations asynchrones, qui sont

plus délicates. Pour chacun de ces algorithmes, nous fournissons aussi quelques variantes ainsi

qu’une discussion de leurs limitations pratiques.

vii

Résumé

La seconde partie de cette thèse se planche sur l’aspect microscopique. Nous nous focalisons

sur le cas spécial des réseaux de neurones (artificiels). Nous modélisons ces réseaux comme des

graphes dirigés pondérés et nous prouvons des bornes supérieures sur la propagation d’erreur

vers l’avant (PEVA) quand des composantes basiques (neurones ou synapses) dysfonctionnent.

Nous discutons aussi les limitations de ces bornes, comment elles peuvent s’appliquer au futur

matériel neuromorphique et comment elles peuvent nous informer sur d’autres systèmes comme

les réseaux biologiques (métaboliques).

viii

Contents
Acknowledgements i

Preface iii

Abstract v

List of Figures xi

1 Introduction 1

1.1 Learning Systems Among Us . 1

1.2 Robust Distributed Learning . 3

1.3 Robust Learning Machines . 5

1.4 Contributions . 6

1.4.1 Byzantine Resilient SGD . 6

1.4.2 High Dimensional Vulnerabilities in Distributed Non-Convex Optimization 7

1.4.3 Asynchronous Byzantine Resilient SGD . 7

1.4.4 Neural Networks as a Distributed System . 8

1.5 Roadmap . 9

I Robust Distributed Learning 11

2 Preliminaries 13

2.1 Distributed Machine Learning with SGD . 13

2.2 Common Model . 14

2.3 Byzantine Resilience . 15

3 Krum: Synchronous Distributed Gradient Descent 17

3.1 Introduction . 17

3.2 The Krum Function . 19

3.3 Convergence Analysis . 24

3.4 Experimental Evaluation . 28

3.5 Beyond Krum . 30

3.6 Concluding Remarks . 33

4 Bulyan: When Convergence is Not Enough 35

ix

Contents

4.1 Introduction . 35

4.2 Model for Bulyan . 37

4.2.1 Distributed Stochastic Gradient Descent (DSGD) 37

4.2.2 Adversary . 37

4.2.3 Gradient Aggregation Rules (GARs) . 38

4.3 Effective Attack on `p norm–based GARs . 39

4.3.1 Intuition . 39

4.3.2 Attack on the Finite Norm, p ≥ 1 . 40

4.3.3 Attack on the Infinite Norm . 41

4.4 Bulyan . 41

4.5 Evaluation . 44

4.5.1 Overview of the Studied Models . 44

4.5.2 Results . 45

4.6 Concluding Remarks . 47

5 Kardam: Asynchronous Byzantine Gradient Descent 49

5.1 Introduction . 49

5.2 Model for Asynchronous SGD . 50

5.3 Kardam . 53

5.3.1 Byzantine-resilient Filtering Component . 53

5.3.2 Staleness-aware Dampening Component . 60

5.4 Concluding Remarks . 70

II Robust Learning Machines 73

6 Preliminaries 75

6.1 Robustness Within the Model . 75

6.2 Model . 77

6.2.1 Viewing a Neural Network as a Distributed System 77

6.2.2 Failures and Robustness . 80

6.2.3 Over-Provisioning . 80

7 Fault Tolerance in Neural Networks 81

7.1 Single-layer Neural Networks . 81

7.2 Multilayer Networks and Byzantine Failures . 83

7.2.1 Forward Error Propagation . 84

7.2.2 Tight Bound on Neuron Failures . 86

7.2.3 The Failure of Synapses . 87

7.2.4 Reduced Over-provisioning . 88

7.3 Applications . 88

7.3.1 Reducing Memory Cost . 88

7.3.2 Boosting Computations . 90

7.3.3 Balancing Robustness and Ease of Learning 90

x

Contents

7.4 Concluding Remarks . 91

III Conclusion 93

8 Summary and Future Work 95

8.1 Robust Distributed Learning . 95

8.1.1 Byzantine Resilient SGD . 95

8.1.2 High Dimensional Vulnerabilities in Distributed Non-Convex Optimization 95

8.1.3 Asynchronous Byzantine Resilient SGD . 95

8.1.4 Neural Networks as a Distributed System . 96

8.2 Back to Real Life Motivations . 96

8.3 Bridging the two Views of the Thesis . 97

8.4 Revisiting our Hypotheses and Future Work . 98

8.4.1 Systems for Robust Machine Learning . 98

8.4.2 Better Theory for Better Guarantees . 99

8.4.3 Robust Learning Machines . 100

8.4.4 Biological Networks . 101

A Krum 105

A.1 Multi-Krum and Krum with varying batch-size . 105

A.2 Other Krum variants . 107

B Bulyan 109

B.1 Brute’s
(
α, f

)
–Byzantine–resilience proof . 109

B.2 Approximation of αm , with p ∈N∗ . 112

B.3 Supplementary experiments . 114

C Kardam 117

C.1 Experiments . 117

Bibliography 121

Curriculum Vitae 135

xi

List of Figures
1.1 Coarse-Grained View (Part 1) Versus Fine-Grained View (Part 2) 3

2.1 Good Gradients and Misleading Gradients (generic) 15

2.2 Condition on the Correct Cone (generic) . 16

3.1 Collusion of Byzantine Workers . 17

3.2 Condition on the angles between xt , ∇Q(xt) and EKRt , in the region ‖xt‖2 > D . . 24

3.3 Krum Evolution with Rounds . 30

3.4 Comparing by Batch-sizes at 500 Rounds . 31

3.5 Multi-Krum . 32

4.1 Speculative View of the High Dimensional Vulnerability 36

4.2 Attack on MNIST . 45

4.3 Attack on CIFAR–10 . 46

4.4 Comparing GARs with Bulyan on MNIST . 46

4.5 Comparing GARs with Bulyan on CIFAR–10 . 47

4.6 Bulyan Performance . 48

5.1 Good Gradients and Misleading Gradients (Asynchronous SGD) 49

5.2 Condition of the Correct Cone (Kardam) . 56

6.1 Generic Neural Network . 77

6.2 Sigmoids with Different Slopes . 79

7.1 Experimental Error Propagation . 84

A.1 Multi-Krum Versus Averaging on Convolutional Neural Networks (CNNs) 105

A.2 Batch-Size Comparison on CNNs . 106

A.3 (1-p)-Krum, Multi-Krum, the Medoid and Averaging 107

A.4 (1-p)-Krum, Multi-Krum, the Medoid and Averaging (Byzantine) 108

B.1 Comparing GARs with Bulyan under Attack with MNIST 115

B.2 Comparing GARs with Bulyan under Attack with CIFAR–10 115

C.1 Staleness-aware learning for CIFAR-100 . 118

xiii

List of Figures

C.2 Impact of staleness for CIFAR-100. 119

C.3 Impact of staleness for EMNIST. 119

xiv

1 Introduction

A learning system is one that uses data to refine its workings. Learning systems are ubiquitous

in biology, where adaptation is the key to survival. In computer science, learning systems are

a promising complement to traditional, hand-programmed systems and are the driving force

behind the current growth in artificial intelligence (AI). The flexibility that is offered by learning

systems seems, however, to pose serious challenges to their robustness.

Before we delve into the technical motivations of this thesis, let us first insist on the urgency of

the research on AI safety. We illustrate this urgency using one of the many aspects of AI safety, the

robustness to data poisoning, which motivates a significant portion of our work.

1.1 Learning Systems Among Us

If you ask the general public about AI safety today, you will probably hear about killer robots or

rogue self-driving cars. AI safety is thought of as a concern that can wait for the far future. In fact,

AI safety is not just important as a long-term issue, the lack of safety in already deployed learning

systems is an actual threat. Technical AI safety research is a pressing concern in the present.

Take the example of one of the most influential learning systems in our societies today: the

recommender systems of social networks. Consider YouTube. Every hour, 30 000 hours worth of

videos are uploaded to the platform1. YouTube then has to sort and rank the content in order to

make recommendations to users. Reportedly, there are today about 5 million views per minute

on YouTube, more than there are searches on Google or logins on Facebook. This makes YouTube

one of the most influential media today. Most importantly, 70 % of these views are recommended

by the platform and not directly searched by the viewer2. Manually programming a recommender

system such as the one used by YouTube is a hopeless task given its complexity. Instead, a learning

system is leveraging data to offer meaningful recommendations.

1YouTube by the Numbers: https://www.youtube.com/about/press/
2According to Neal Mohan, YouTube’s chief product officer. https://www.cnet.com/news/

youtube-ces-2018-neal-mohan/

1

https://www.youtube.com/about/press/
https://www.cnet.com/news/youtube-ces-2018-neal-mohan/
https://www.cnet.com/news/youtube-ces-2018-neal-mohan/

Chapter 1. Introduction

One particular vulnerability of learning systems is that, since they learn from data, they are prone

to data poisoning. Poisoning describes the act of degrading the quality of a learning system by

feeding it maliciously mislabelled data before training.

Very few poisoned data is often enough. In February 2018, after the tragic Parkland High School

shooting in Florida, YouTube’s front page featured a video defaming teenager survivors Emma

Gonzalez and David Hogg among others as “paid crisis actors pretending to be survivors" as

they rose to prominence while campaigning for gun control. YouTube had to publicly apologize

but the harm was done and the debate on gun control in the U.S. successfully poisoned by false

claims. Some survivors of the shooting even received death threats3. These threats resulted from

a single uploaded video.

An even larger scale of poisoning is the spread of anti-vaccine propaganda, put on steroids by

recommender systems of social media. Consider a video that convinces young parents that

vaccines are dangerous for their babies and is labeled as ‘health advice’; this is arguably data

poisoning, given the medical consensus on vaccines. For instance, the World Health Organization

has declared vaccine hesitancy among the top 10 global health threats in 2019, reporting a surge of

30% in measles infections and resurgence in countries that were close to eliminating the disease

[136]. Some estimate that about 1500 U.S deaths per year are linked to come-back diseases,

due to anti-vaccine. The French medical research agency INSERM is noting a similar growth of

anti-vaccine surge in western Europe4. Recent research suggests a dangerous role played by social

medias’ recommender systems5 in the surge of the anti-vaccine resentment [150, 124, 149, 48].

From fuelling an ongoing ethnic cleansing6 in Myanmar7 to enabling interference in the elections

of the most powerful country in the world8, the past three years gave us numerous cases where

the amplification effect of social media calls for urgent research on securing learning systems

and making them less prone to poisoning. Poisoning is only one among many other pressing

questions in AI safety [8], but it is probably the most urgent motivation for the type of research

that the larger part (Part 1) of this thesis tackles.

In the following two sections, we present the main technical motivations of our work.

3https://goo.gl/DaK5X9
4From the INSERM website: https://goo.gl/J24Zud
52019 was a good year in terms of awareness. In a positive development, most platforms acknowledged their

vulnerability to poisoning and role in the aforementioned social issues while initiating research [86] to combat these
vulnerabilities. Platforms such as YouTube, Facebook, Twitter or Pinterest explicitly mentioned phony medical advice
or anti-vaccine resentment in their different statements.

6The United Nations Human Rights Council: Report of Independent International Fact-Finding Mission on Myan-
mar (27 August 2018).

7"We were too slow to respond to the concerns raised by civil society, academics and other groups in Myanmar". Mia
Garlick, Facebook’s director of Asia Pacific policy told Reuters. https://www.reuters.com/investigates/special-report/
myanmar-facebook-hate/

8U.S. House of Representatives Permanent Select Committee on Intelligence: The Internet Research Agency and
Advertisements. https://intelligence.house.gov/social-media-content/

2

https://goo.gl/DaK5X9
https://goo.gl/J24Zud
https://www.reuters.com/investigates/special-report/myanmar-facebook-hate/
https://www.reuters.com/investigates/special-report/myanmar-facebook-hate/
https://intelligence.house.gov/social-media-content/

1.2. Robust Distributed Learning

Learner

Learner
Learner

Learner

Learner

Learner
Learner

Learner

Aggregated Knowledge

component

component

component

component

component

component

component

Zoom on one learner, itself a distributed system (Part 2 of the thesis)

A distributed system, aggregating knowledge from many learners (Part 1 of the thesis)

Figure 1.1 – The coarse-grained aspect (Part 1) and the fine-grained aspect (Part 2) of this
thesis.

1.2 Robust Distributed Learning

At a very high level, (machine) learning could be seen as an attempt to aggregate knowledge from

data-points and update decision-making algorithms accordingly. A robust learning mechanism

should learn from data without being vulnerable to malicious input.

The increasing amount of data available [44], together with the growing complexity of machine

learning models [153], has led to learning schemes that require a lot of computational resources.

As a consequence, most industry-grade machine-learning implementations are now distributed

[1]. For example, as of 2012, Google reportedly used 16.000 processors to train an image classifier

[116]. More recently, attention has been given to federated learning and federated optimiza-

tion settings [95, 96, 118] with a focus on communication efficiency. However, distributing a

computation over several machines (worker processes) induces a higher risk of failures. These

include crashes and computation errors, stalled processes, biases in the way the data samples

are distributed among the processes, but also, in the worst case, attackers trying to compromise

the entire system. The most robust system is one that tolerates Byzantine failures [100], i.e.,

completely arbitrary behaviors of some of the processes.

3

Chapter 1. Introduction

A classical approach to mask failures in distributed systems is to use a state machine replication

protocol [146], which requires however state transitions to be applied by all processes. In the

case of distributed machine learning, this constraint can be translated in two ways: either (a) the

processes agree on a sample of data based on which they update their local parameter vectors, or

(b) they agree on how the parameter vector should be updated. In case (a), the sample of data

has to be transmitted to each process, which then has to perform a heavyweight computation

to update its local parameter vector. This entails communication and computational costs that

defeat the entire purpose of distributing the work. In case (b), the processes have no way to check

if the chosen update for the parameter vector has indeed been computed correctly on real data: a

Byzantine process could have proposed the update and may easily prevent the convergence of

the learning algorithm. Neither of these solutions is satisfactory in a realistic distributed machine

learning setting.

In fact, most learning algorithms today rely on a core component, namely stochastic gradient

descent (SGD) [24, 77], whether for training neural networks [77], regression [182], matrix fac-

torization [69] or support vector machines [182]. In all those cases, a cost function – depending

on the parameter vector – is minimized based on stochastic estimates of its gradient. (SGD is a

stochastic approximation of gradient descent (GD) optimization, it replaces the actual gradient

(calculated from the entire data set) by an estimate calculated from a randomly selected subset of

the data). Distributed implementations of SGD [181] typically take the following form: a single

parameter server is in charge of updating the parameter vector, while worker processes perform

the actual update estimation. More specifically, the parameter server executes learning rounds,

during each of which, the parameter vector is broadcast to the workers. In turn, each worker

computes an estimate of the update to apply (an estimate of the gradient), and the parameter

server aggregates their results to finally update the parameter vector. Today, this aggregation is

typically implemented through averaging [140], or variants of it [181, 108, 164].

Stochastic Gradient Descent (SGD), is arguably the backbone of the most successful machine

learning methods [103, 1, 44, 23]. Gradient Descent (GD), the underlying principle of SGD, is so

straightforward that we find traces of it back in the first days of calculus in the works of Cauchy

and Newton. In particular, GD relies on a simple observation: given a function Q, depending

on a parameter x, if one keeps updating x in the opposite direction of the gradient of Q, with

reasonably small, but not too small [23] steps, x eventually reaches the global minimum if Q is

convex or, if Q is not convex9, reaches a region where Q is either flat or in some local minima.

SGD is the lightweight version of GD, where a sample is drawn at random from the entire data-set

to estimate the gradient of Q on that sample and use as an approximation for the gradient on

the total data -set. But for SGD to work, the aforementioned estimation of the gradient should

however be done by correct and non-malicious workers.

Beyond image recognition or video labeling for social networks, SGD–based machine learning is

venturing into safety–critical applications, like health–care [80] and transportation [22]. Mean-

while, a growing body of work, coined Adversarial Machine Learning [20, 72, 70, 99] is unveiling

9In practically interesting cases such as neural networks, Q is far from being convex [34, 35].

4

1.3. Robust Learning Machines

serious vulnerabilities in some of the most performing algorithms. Essentially, the general effort

towards robust ML is conducted against three kinds of attacks: poisoning ones [19, 94] where an

adversary injects poisoned data during the training phase, exploratory attacks, where a curious

attacker attempts to infer privacy–sensitive information, and evasion attacks, where attackers try

to fool an already trained model with adversarial inputs. The three fronts are complementary and

each kind of attack poses a challenge on its own. Most of this thesis falls under the poisoning case.

1.3 Robust Learning Machines

We introduced the previous section by saying that (machine) learning could be seen as an attempt

to aggregate knowledge from data-points and update decision-making algorithms accordingly,

and we discussed the robustness of the learning mechanism. What about the robustness of the

decision making algorithms themselves, once learning has happened?

The most powerful of these decision making algorithms today turns out to be the ones that contain

many simple components and parameters. Among these, (artificial) Neural Networks (NNs) are

responsible for the current success and regain of interest in machine learning [103]. These

networks are very loosely inspired by the mammalian brain. Comprised of simple computing

units, neurons, connected with simple links, synapses, NNs learn by modifying the weights of

these links.

Biological plausibility, together with scalability, call for going one step further and considering

each neuron as a single physical entity (that can fail independently), i.e., to consider genuinely

distributed neural networks [123]. This approach is considered for example in the Human Brain

project [117], trying to emulate the mammalian brain, or the various works on hardware-based

neural networks, coined neuromorphic chips [82]. More recently, teams from IBM reported

[61, 59] a successful neuromorphic implementation of neural networks that require a running

power as low as 25 mW to 275 mW. In those settings, the unit of failure is one single neuron or

synapse, and not a whole machine as in the previous section (c.f. Figure 1.1).

In the later part of our work, we explore this granularity and view a neural network as a distributed

system where neurons can fail independently. We ask what is the maximum number of such

failures that can be masked by the neural network, i.e., without having any impact on the overall

computation. Addressing this question goes, however, first through precising it.

It is actually well known that the failure of neurons can be tolerated through additional learning

phases [138, 159]. However, stopping a neural network and recovering its failures through a new

learning phase is not an option for critical applications [36, 46, 63]. One can also consider specific

a priori learning schemes that make it possible to tolerate failures a posteriori, e.g., shutting down

parts of the network while learning, in order to cope with failures at run-time (dropout) [151, 91].

Our question can then be posed as follows: if (a) we do not make any assumption on the learning

scheme and (b) we preclude the possibility of adding learning phases to recover from failures

5

Chapter 1. Introduction

when the neural network is in the deployment phase, what is the maximum number of faulty

neurons that can be tolerated?

At this point, the question might sound trivial and the answer could be simply: none. Indeed,

how could a neural network tolerate failures if it was not specifically devised with that purpose in

mind? More specifically, if the failure of a number of neurons do not impact the overall result,

then these neurons could have been eliminated from the design of that network in the first place.

In fact, the reason why the question is nontrivial is over-provisioning [101]10. Indeed, neural

networks are rarely built with the minimal number of neurons to perform a computation. To

estimate exactly this minimal number, one needs to know the target function the network should

approximate, which by definition is unknown since the sole mainspring for machine learning is

that we only know a finite number of the values of the target function: the learning data set. In

fact, it has been experimentally observed that over-provisioning leads to robustness to the loss of

neurons [119, 32, 77, 91]. Yet, the exact relation between the over-provision and the actual number

of failures to be tolerated has never been precisely established. To the best of our knowledge, our

work establishes this relation for the first time.

1.4 Contributions

1.4.1 Byzantine Resilient SGD

We study the resilience to Byzantine failures of distributed implementations of Stochastic Gra-

dient Descent (SGD). So far, distributed machine learning frameworks have largely ignored the

possibility of failures, especially arbitrary (i.e., Byzantine) ones. Causes of failures include soft-

ware bugs, network asynchrony, biases in local datasets, as well as attackers trying to compromise

the entire system. Assuming a set of n workers, up to f being Byzantine, we ask how resilient can

SGD be, without limiting the dimension, nor the size of the parameter space. We first show that no

gradient aggregation rule based on a linear combination of the vectors proposed by the workers

(i.e, current approaches) tolerates a single Byzantine failure. We then formulate a resilience

property of the aggregation rule capturing the basic requirements to guarantee convergence

despite f Byzantine workers. We propose Krum, an aggregation rule that satisfies our resilience

property. We also report on experimental evaluations of Krum. To the best of our knowledge,

Krum was the first provably Byzantine-resilient algorithm for distributed SGD.

These results are provided in Chapters 2 and 3 and were initially published in the following.

Peva Blanchard; El-Mahdi El-Mhamdi; Rachid Guerraoui; Julien Stainer (2017). Machine learn-

ing with adversaries: Byzantine tolerant gradient descent. In Advances in Neural Information

Processing Systems (NeurIPS) (pp. 119-129).

10Another aspect of over-provisioning, which this thesis does not directly address is over-parametrization. In
particular, recent efforts are being made to understand why neural networks with an excessive number of parameters
do not over-fit [83, 33].

6

1.4. Contributions

Peva Blanchard; El-Mahdi El-Mhamdi; Rachid Guerraoui; Julien Stainer (2017). Brief Announce-

ment: Byzantine-Tolerant Machine Learning. In Proceedings of the ACM Symposium on Princi-

ples of Distributed Computing (PODC) (pp. 455-457). ACM.

1.4.2 High Dimensional Vulnerabilities in Distributed Non-Convex Optimization

While machine learning is going through an era of celebrated success, concerns have been raised

about the vulnerability of its backbone: SGD. Recent approaches have been proposed to ensure

the robustness of distributed SGD against adversarial (Byzantine) workers sending poisoned

gradients during the training phase. Some of these approaches have been proven Byzantine–

resilient: they ensure the convergence of SGD despite the presence of a minority of adversarial

workers. We show in this part of the work that convergence is not enough. In high dimension

d À 1, an adversary can build on the loss function’s non–convexity to make SGD converge to

ineffective models. More precisely, we bring to light that existing Byzantine–resilient schemes

leave a margin of poisoning of Ω
(

f (d)
)
, where f (d) increases at least like

p
d . Based on this

leeway, we build a simple attack, and experimentally show its strong to utmost effectivity on

CIFAR–10 and MNIST. We introduce Bulyan, and prove it significantly reduces the attacker’s

leeway to a narrow O (1p
d

) bound. We empirically show that Bulyan does not suffer the fragility

of existing aggregation rules and, at a reasonable cost in terms of required batch size, achieves

convergence as if only non–Byzantine gradients had been used to update the model.

These results are provided in Chapter 4 and appeared in the following.

El-Mahdi El-Mhamdi; Rachid Guerraoui and Sébastien Rouault (2018). The Hidden Vulnerability

of Distributed Learning in Byzantium. In International Conference on Machine Learning (ICML)

(pp. 3518-3527).

1.4.3 Asynchronous Byzantine Resilient SGD

Asynchronous distributed machine learning solutions have proven very effective so far, but always

assuming perfectly functioning workers. In practice, some of the workers can however exhibit

Byzantine behavior, caused by hardware failures, software bugs, corrupt data, or even malicious

attacks. In this part of the work, we introduce Kardam, the first distributed asynchronous stochas-

tic gradient descent (SGD) algorithm that copes with Byzantine workers. Kardam consists of

two complementary components: a filtering and a dampening component. The first is scalar-

based and ensures resilience against 1
3 Byzantine workers. Essentially, this filter leverages the

Lipschitzness of cost functions and acts as a self-stabilizer against Byzantine workers that would

attempt to corrupt the progress of SGD. The dampening component bounds the convergence

rate by adjusting to stale information through a generic gradient weighting scheme. We prove

that Kardam guarantees almost sure convergence in the presence of asynchrony and Byzantine

behavior, and we derive its convergence rate. We evaluate Kardam on the CIFAR-100 and EMNIST

datasets and measure its overhead with respect to non Byzantine-resilient solutions. We empiri-

7

Chapter 1. Introduction

cally show that Kardam does not introduce additional noise to the learning procedure but does

induce a slowdown (the cost of Byzantine resilience) that we both theoretically and empirically

show to be less than f /n, where f is the number of Byzantine failures tolerated and n the total

number of workers. Interestingly, we also empirically observe that the dampening component is

interesting in its own right for it enables to build an SGD algorithm that outperforms alternative

staleness-aware asynchronous competitors in environments with honest workers.

These results are provided in Chapter 5 and appeared in the following.

Georgios Damaskinos, El-Mahdi El-Mhamdi; Rachid Guerraoui; Rhicheek Patra and Mahsa Taziki

(2018). Asynchronous Byzantine Machine Learning (the case of SGD). In International Conference

on Machine Learning (ICML) (pp. 1153-1162).

1.4.4 Neural Networks as a Distributed System

In this part, we view a multilayer neural network as a distributed system of which neurons can fail

independently, and we evaluate its robustness in the absence of any (recovery) learning phase.

We give tight bounds on the number of neurons that can fail without harming the result of a

computation. To determine our bounds, we leverage the fact that neural activation functions

are Lipschitz-continuous. Our bound is on a quantity, we call the Forward Error Propagation,

capturing how much error is propagated by a neural network when a given number of components

is failing, computing this quantity only requires looking at the topology of the network, while

experimentally assessing the robustness of a network requires the costly experiment of looking at

all the possible inputs and testing all the possible configurations of the network corresponding to

different failure situations, facing a discouraging combinatorial explosion.

We distinguish the case of neurons that can fail and stop their activity (crashed neurons) from the

case of neurons that can fail by transmitting arbitrary values (Byzantine neurons). In the crash

case, our bound involves the number of neurons per layer, the Lipschitz constant of the neural

activation function, the number of failing neurons, the synaptic weights and the depth of the

layer where the failure occurred. In the case of Byzantine failures, our bound involves, in addition,

the synaptic transmission capacity. Interestingly, as we prove, our bound can easily be extended

to the case where synapses can fail.

More precisely, we present tight bounds on the number of faulty neurons a feed-forward neural

network11 can tolerate without harming the computation result, nor requiring any additional

learning phase or specific prior learning algorithm. In fact, our bounds are not simply expressed

in terms of numbers of failures, but in terms of weight and failure distribution. Indeed, unlike

process failures in traditional distributed computing that all have the same effect, neuron failures

do not: they are weighted. In the general case of multilayer, or so called deep, networks, we

11Feed-forward networks are the most common in the literature [77], and today’s most popular topology: the
convolutional neural network for example [102], is a particular case of the feed-forward topology. We will discuss some
of these in Section 7.3.

8

1.5. Roadmap

formulate our results in the form of a fault-per-layer distribution.

Our results are obtained using analytic properties of the different mathematical components of

a neural network, namely the activation function, the synaptic weights, and the neural compu-

tation model. By relying on the very fact that neural activation functions are bounded, and in

practice Lipschitzian [147], we set precise bounds on the error propagation over the layers, and

subsequently establish tight bounds on the number of failures a neural network can tolerate.

We present three applications of our results. The first is a quantification of the effect of mem-

ory cost reduction on the accuracy of a neural network. The second is a quantification of the

amount of information any neuron needs from its preceding layer, enabling thereby a boosting

scheme that prevents neurons from waiting for unnecessary signals. Our third application is a

quantification of the trade-off between neural networks robustness and learning cost.

These results are provided in chapters 6 and 7 and appeared in the following.

El-Mahdi El-Mhamdi; Rachid Guerraoui (2017). When Neurons Fail. In 2017 IEEE International

Parallel and Distributed Processing Symposium (IPDPS) (pp. 1028-1037).

El-Mahdi El-Mhamdi; Rachid Guerraoui and Sébastien Rouault (2017). On the robustness of

a neural network. In 2017 IEEE 36th Symposium on Reliable Distributed Systems (SRDS) (pp.

84-93).

1.5 Roadmap

Part I is the major contribution of this thesis, it presents the coarse-grained view on robustness

and the question of Byzantine resilient machine learning. Specifically, it contains the solutions

we have developed in synchronous, high dimensional, and asynchronous contexts, namely Krum,

Bulyan and Kardam. Chapter 2 contains the basic model and preliminary formalism that is

shared by the following chapters on distributed learning. In turn, each later chapter contains

definitions of concepts that are specific to that chapter and a comparison with related work that

are most related to the results of the chapter. Specifically, Chapter 3 tackles synchronous gradient

descent and introduces our solution, Krum. Chapter 4 addresses the vulnerabilities that arise in

high dimensional models and introduces our solution, Bulyan. Finally, Chapter 5 addresses the

asynchronous setting and introduces our solution, Kardam.

Part II is the other contribution of this thesis, the fine-grained view where we examine the

robustness of learning machines themselves. Chapter 6 provides the model as well as the formal

definitions that are needed for this part. Chapter 7 provides our set of bounds on error propagation

and the condition on the number of failing components that can derived from these bounds.

In Part III, we discuss the results of this thesis in the context of the ongoing effort to understand

the robustness of learning systems. Chapter 8 does so for our work on distributed learning,

connecting it to the growing body of work on Byzantine resilient machine learning that developed

9

Chapter 1. Introduction

in the past three years. This chapter also presents our research agenda on this direction which is

two-fold: (1) How to use our algorithmic toolbox to build reliable distributed learning systems

and (2) How to improve our theory by discarding some of our limiting hypothesis. Chapter 9

looks at the less explored fine-grained question and discusses the limitations of our results. This

chapter also introduces our research agenda on this front which has two facets. (1) One facet

where we question our hypotheses to provide better bounds on error propagation in learning

systems, and (2) Another facet where we collaborate with biologists in an effort to understand the

robustness of another class of learning systems, biological (metabolic) networks.

10

Part IRobust Distributed Learning

11

2 Preliminaries

2.1 Distributed Machine Learning with SGD

Machine learning schemes involve two ingredients: a d-dimensional parameter, x, that defines

an algorithm, and a cost function Q, such that Q(x) estimates the error made by the algorithm

when tuned with the value x. On a high level, learning consists in finding the best algorithm,

namely, the one with value x∗, the minimizer of the cost, i.e. x∗ = argmin
x∈Rd

Q(x). This high level

view applies whether the learning is supervised, i.e. guided by the labels in the data, unsupervised,

i.e. only guided by the structure of unlabeled data, or reinforced, i.e. guided by rewards depending

on what parameter x dictates the action to be taken when facing a given data (an environmental

state). Optimizing cost functions is the backbone of machine learning.

The parameter is updated as follows:

xt+1 = xt −ηt∇Q(xt), (GD parameter update) (2.1)

where xt+1 and xt refer to the next and current value of the parameter, ∇Q(xt) the current

gradient of the cost function and ηt is a step-size, called the learning rate. In practice, ∇Q(xt) is

not computed, instead, a random sample ξt is drawn at each step to perform an approximation

G(xt ,ξt) such that, under reasonable assumptions, replacing ∇Q(xt) by G(xt ,ξt) in Equation 2.1

leads to minimizing Q. The "S" in SGD refers to this stochastic approximation of the gradient.

In a distributed setting, the (heavy) task of computing G(xt ,ξt) is outsourced by a parameter server

(or simply "server") to several workers. Typically following the now standard parameter server

scheme [105, 106]. The computation is divided into epochs, i.e., parameter updates. The server

gathers gradient estimations from the workers and employs them to perform a single model

update, then broadcasts the new model to every worker for computing new gradient estimations.

When both the server-worker communication latency and the workers computing capabilities

are homogeneous and reliable, it is preferable to aggregate all the workers’ gradient estimations

(typically by averaging them) and perform a synchronous update using Equation 2.1. This prov-

13

Chapter 2. Preliminaries

ably [26] speeds up learning, in the sense that the server performs fewer updates to reach the

optimum, x∗, compared to if it was learning alone without leveraging many workers.

If however the workers are heterogeneous in their computing or communication capacities, it

can become preferable to perform asynchronous updates [109, 112, 79, 105]. Ones where the

server does not wait for late workers, but instead updates the parameter as soon as a gradient

estimation is delivered from a worker, the server then broadcasts the new value of the parameter.

2.2 Common Model

We consider the general distributed system model of [1] commonly referred to as the parameter

server and consisting of a parameter server1, and n workers, f of them possibly Byzantine (be-

having arbitrarily). Computation is divided into (infinitely many) synchronous rounds. During

round t , the parameter server broadcasts its parameter vector xt ∈ Rd to all the workers. Each

correct worker p computes an estimate V t
p =G(xt ,ξt

p) of the gradient ∇Q(xt) of the cost function

Q, where ξt
p is a random variable representing, e.g., the sample (or a mini-batch of samples)

drawn from the dataset. A Byzantine worker b proposes a vector V t
b which can deviate arbitrarily

from the vector it is supposed to send if it was correct, i.e., according to the algorithm assigned to

it by the system developer (see Figure 2.1).

Since the communication is synchronous, if the parameter server does not receive a vector value

V t
b from a given Byzantine worker b, then the parameter server acts as if it had received the default

value V t
b = 0 instead.

The parameter server computes a vector F (V t
1 , . . . ,V t

n) by applying a deterministic function F

(aggregation rule) to the vectors received. We refer to F as the aggregation rule of the parameter

server. The parameter server updates the parameter vector using the following SGD equation

xt+1 = xt −γt ·F (V t
1 , . . . ,V t

n).

The correct (non-Byzantine) workers are assumed to compute unbiased estimates of the gradient

∇Q(xt). More precisely, in every round t , the vectors V t
i ’s proposed by the correct workers are in-

dependent identically distributed random vectors, V t
i ∼G(xt ,ξt

i) with Eξt
i
G(xt ,ξt

i) =∇Q(xt). This

can be achieved by ensuring that each sample of data used for computing the gradient is drawn

uniformly and independently, as classically assumed in the literature of machine learning [23].

The Byzantine workers have full knowledge of the system, including the aggregation rule F as well

as the vectors proposed by the workers. They can furthermore collaborate with each other [113].

Also, note that the parameter server, as is any server in distributed settings, can be an abstraction

implemented by the workers, in a peer-to-peer version of distributed machine learning. In

1The parameter server is assumed to be reliable. Classical techniques of state-machine replication can be used to
ensure this.

14

2.3. Byzantine Resilience

Figure 2.1 – The gradient estimates computed by correct workers (black dashed arrows) are
distributed around the actual gradient (solid arrow) of the cost function (thin black curve). A
Byzantine worker can propose an arbitrary vector (red dotted arrow).

practice, this can be dictated by privacy concerns, imagine for instance a group of medical

institutions which, collectively, are trying to learn the optimal parameter vector x for a neural

network that predicts cancer, we can imagine that each institution has access to a subgroup of

patients on which it locally computes an estimate of the gradient, it only share this estimate, or

differentially private versions of it [2] with the other workers, without sharing its local data; this

way, the group of workers are collectively learning the best parameter x∗ without harming the

privacy of their patients.

2.3 Byzantine Resilience

We first show in this chapter that no linear combination (current approaches) of the updates

proposed by the workers can tolerate a single Byzantine worker. Basically, a single Byzantine

worker can force the parameter server to choose any arbitrary vector, even one that is too large

in amplitude or too far in direction from the other vectors. Clearly, the Byzantine worker can

prevent any classic averaging-based approach to converge. We then formulate a condition for an

aggregation rule to be Byzantine resilient.

In most SGD-based learning algorithms used today [24, 77, 69], the aggregation rule consists in

computing the average 2 of the input vectors. Lemma 1 below states that no linear combination

of the vectors can tolerate a single Byzantine worker. In particular, averaging is not Byzantine

resilient.

Lemma 1. Consider an aggregation rule Fl i n of the form Fl i n(V1, . . . ,Vn) =∑n
i=1λi ·Vi , where the

λi ’s are non-zero scalars. Let U be any vector in Rd . A single Byzantine worker can make F always

select U . In particular, a single Byzantine worker can prevent convergence.

Proof. Immediate: if the Byzantine worker proposes Vn = 1
λn

·U −∑n−1
i=1

λi
λn

Vi , then F =U . Note

that the parameter server could cancel the effects of the Byzantine behavior by setting, for

example, λn to 0. This however requires means to detect which worker is Byzantine.

In the following, we define basic requirements on an appropriate Byzantine-resilient aggregation

rule. Intuitively, the aggregation rule should output a vector F that is not too far from the “real”

2Or a closely related rule.

15

Chapter 2. Preliminaries

Figure 2.2 – If
∥∥EF − g

∥∥≤ r then 〈EF, g 〉 is bounded below by (1−sinα)‖g‖2 where sinα= r /‖g‖.

gradient g , more precisely, the vector that points to the steepest direction of the cost function

being optimized. This is expressed as a lower bound (condition (i)) on the scalar product of the

(expected) vector F and g . Figure 2.2 illustrates the situation geometrically. If EF belongs to the

ball centered at g with radius r , then the scalar product is bounded below by a term involving

sinα= r /‖g‖.

Condition (ii) is more technical, and states that the moments of F should be controlled by the

moments of the (correct) gradient estimator G . The bounds on the moments of G are classically

used to control the effects of the discrete nature of the SGD dynamics [23]. Condition (ii) allows

to transfer this control to the aggregation rule.

Definition 1 ((α, f)-Byzantine Resilience). Let 0 ≤α<π/2 be any angular value, and any integer

0 ≤ f ≤ n. Let V1, . . . ,Vn be any independent identically distributed random vectors in Rd , Vi ∼G,

with EG = g . Let B1, . . . ,B f be any random vectors inRd , possibly dependent on the Vi ’s. aggregation

rule F is said to be (α, f)-Byzantine resilient if, for any 1 ≤ j1 < ·· · < j f ≤ n, vector

F = F (V1, . . . , B1︸︷︷︸
j1

, . . . , B f︸︷︷︸
j f

, . . . ,Vn)

satisfies (i) 〈EF, g 〉 ≥ (1− sinα) · ‖g‖2 > 0 and (ii) for r = 2,3,4, E‖F‖r is bounded above by a linear

combination of terms E‖G‖r1 . . .E‖G‖rn−1 with r1 +·· ·+ rn−1 = r .

16

3 Krum: Synchronous Distributed Gradi-
ent Descent

3.1 Introduction

Choosing the appropriate aggregation of the vectors proposed by the workers turns out to be

challenging. A non-linear, squared-distance-based aggregation rule, that selects, among the

proposed vectors, the vector “closest to the barycenter” (for example by taking the vector that

minimizes the sum of the squared distances to every other vector), might look appealing. Yet,

such a squared-distance-based aggregation rule tolerates only a single Byzantine worker. Two

Byzantine workers can collude, one helping the other to be selected, by moving the barycenter of

all the vectors farther from the “correct area”.

C
B

b

Figure 3.1 – Selecting the vector that minimizes the sum of the squared distances to other vec-
tors does not prevent arbitrary vectors proposed by Byzantine workers from being selected
if f ≥ 2. If the gradients computed by the correct workers lie in area C , the Byzantine work-
ers can collude to propose up to f −1 vectors in an arbitrarily remote area B, thus allowing
another Byzantine vector b, close to the barycenter of proposed vectors, to be selected.

We formulate a Byzantine resilience property capturing sufficient conditions for the parameter

server’s aggregation rule to tolerate f Byzantine workers. Essentially, to guarantee that the cost

will decrease despite Byzantine workers, we require the vector output chosen by the parameter

server (a) to point, on average, to the same direction as the gradient and (b) to have statistical

moments (up to the fourth moment) bounded above by a homogeneous polynomial in the

moments of a correct estimator of the gradient. These two requirements enable us to re-use

traditional convergence proofs in non-convex optimization, mostly the one in [23]. One way to

ensure such a resilience property is to consider a majority-based approach, looking at every subset

of n − f vectors, and considering the subset with the smallest diameter. While this approach is

more robust to Byzantine workers that propose vectors far from the correct area, its exponential

17

Chapter 3. Krum: Synchronous Distributed Gradient Descent

computational cost is prohibitive. Interestingly, combining the intuitions of the majority-based

and squared-distance 1-based methods, we can choose the vector that is somehow the closest to its

n − f neighbors. Namely, the one that minimizes the sum of squared distances to its n − f closest

vectors. This is the main idea behind our aggregation rule, we call Krum2. Assuming 2 f +2 < n, we

show that Krum satisfies the resilience property aforementioned and the corresponding machine

learning scheme converges. An important advantage of Krum is its (local) time complexity

(O(n2 ·d)), linear in the dimension of the gradient, where d is the dimension of the parameter

vector. (In modern machine learning, the dimension d of the parameter vector may take values

in the hundreds of billions [163].) For simplicity of presentation, the version of Krum we first

consider selects only one vector. We also discuss other variants.

We evaluate Krum experimentally, and compare it to classical averaging. We confirm the very fact

that averaging does not stand Byzantine attacks, while Krum does. In particular, we report on

attacks by omniscient adversaries – aware of a good estimate of the gradient – that send the oppo-

site vector multiplied by a large factor, as well as attacks by adversaries that send random vectors

drawn from a Gaussian distribution (the larger the variance of the distribution, the stronger

the attack). We also evaluate the extent to which Krum might slow down learning (compared

to averaging) when there are no Byzantine failures. Interestingly, as we show experimentally,

this slow down occurs only when the mini-batch size is close to 1. In fact, the slowdown can be

drastically reduced by choosing a reasonable mini-batch size. We also evaluate Multi-Krum, a

variant of Krum, which, intuitively, interpolates between Krum and averaging, thereby allowing

to mix the resilience properties of Krum with the convergence speed of averaging. Multi-Krum

outperforms other aggregation rules like the medoid, inspired by the geometric median.

The code to reproduce experiments with Krum, Bulyan and other variants can be found in the

following repository: https://github.com/LPD-EPFL/AggregaThor. This repository is part of an

ongoing effort to build systems that are based on the algorithms we present in this thesis.

Chapter Organization.

Section 3.2 introduces our Krum function, computes its computational cost and proves its

(α, f)-Byzantine resilience. Section 3.3 analyzes the convergence of a distributed SGD using

Krum. Section 3.4 presents our experimental evaluation of Krum and Section3.5 introduces

some variants of Krum. We discuss related work and open problems in Section 3.6. Some

complementary experimental results are given in the Appendix.

1In all this chapter, distances are computed with the Euclidean norm.
2Krum, in GreekΚρούμος, was a Bulgarian Khan of the end of the eighth century, who undertook offensive attacks

against the Byzantine empire. Bulgaria doubled in size during his reign.

18

https://github.com/LPD-EPFL/AggregaThor

3.2. The Krum Function

3.2 The Krum Function

We now introduce Krum, our aggregation rule, which, we show, satisfies the (α, f)-Byzantine

resilience condition. The barycentric aggregation rule Fbar y = 1
n

∑n
i=1 Vi can be defined as the vec-

tor in Rd that minimizes the sum of squared distances 3 to the Vi ’s
∑n

i=1

∥∥Fbar y −Vi
∥∥2. Lemma 1,

however, states that this approach does not tolerate even a single Byzantine failure.

One could try to select the vector U among the Vi ’s which minimizes the sum
∑

i ‖U −Vi‖2, i.e.,

which is “closest to all vectors”4. However, because such a sum involves all the vectors, even those

which are very far, this approach does not tolerate Byzantine workers: by proposing large enough

vectors, a Byzantine worker can force the total barycenter to get closer to the vector proposed

by another Byzantine worker. This situation is depicted in Figure 3.1. In other words, since this

aggregation rule takes into account all the vectors, including the very remote ones, the Byzantine

workers can collude to force the choice of the parameter server.

Our approach to circumvent this issue is to preclude the vectors that are too far away. More

precisely, we define our Krum aggregation rule KR(V1, . . . ,Vn) as follows. For any i 6= j , we denote

by i → j the fact that V j belongs to the n − f −2 closest vectors to Vi . Then, we define for each

worker i , the score s(i) =∑
i→ j

∥∥Vi −V j
∥∥2 where the sum runs over the n − f −2 closest vectors to

Vi . Finally, KR(V1, . . . ,Vn) =Vi∗ where i∗ refers to the worker minimizing the score, s(i∗) ≤ s(i) for

all i .5

Lemma 2. The expected time complexity of the Krum Function KR(V1, . . . ,Vn), where V1, . . . ,Vn are

d-dimensional vectors, is O(n2 ·d)

Proof. For each Vi , the parameter server computes the n squared distances
∥∥Vi −V j

∥∥2 (time

O(n ·d)). Then the parameter server selects the first n − f −1 of these distances (expected time

O(n) with Quickselect) and sums their values (time O(n ·d)). Thus, computing the score of all

the Vi ’s takes O(n2 ·d). An additional term O(n) is required to find the minimum score, but is

negligible relatively to O(n2 ·d).

Proposition 1 below states that, if 2 f +2 < n and the gradient estimator is accurate enough, (its

standard deviation is relatively small compared to the norm of the gradient), then the Krum

function is (α, f)-Byzantine-resilient, where angle α depends on the ratio of the deviation over

the gradient.

Proposition 1. Let V1, . . . ,Vn be any independent and identically distributed random d-dimensional

vectors s.t Vi ∼G, with EG = g and E
∥∥G − g

∥∥2 = dσ2. Let B1, . . . ,B f be any f random vectors, possi-

3Removing the square of the distances leads to the geometric median, we discuss this when optimizing Krum.
4One could suggest to remove the square in the computed distance, this would be the medoid, which we later

compare to Krum but for which we have no theoretical guarantee. One could also pick the minimizer of the non-
squared distances (geometric median), we also discuss this later.

5If two or more workers have the minimal score, we choose the one with the smallest identifier.

19

Chapter 3. Krum: Synchronous Distributed Gradient Descent

bly dependent on the Vi ’s. If 2 f +2 < n and η(n, f)
p

d ·σ< ‖g‖, where

η(n, f) =
de f

√
2

(
n − f + f · (n − f −2)+ f 2 · (n − f −1)

n −2 f −2

)
=

{
O(n) if f =O(n)

O(
p

n) if f =O(1)
,

then the Krum function KR is (α, f)-Byzantine resilient where 0 ≤α<π/2 is defined by

sinα= η(n, f) ·pd ·σ
‖g‖ .

The condition on the norm of the gradient, η(n, f) ·pd ·σ < ‖g‖, can be satisfied, to a certain

extent, by having the (correct) workers compute their gradient estimates on mini-batches [23].

Indeed, averaging the gradient estimates over a mini-batch divides the deviationσ by the squared

root of the size of the mini-batch.

Depending on the readers’ interests, we give first the sketch of the proof, then we give the detailed

proof.

Proof. (Sketch) Without loss of generality, we assume that the Byzantine vectors B1, . . . ,B f occupy

the last f positions in the list of arguments of KR, i.e., KR = KR(V1, . . . ,Vn− f ,B1, . . . ,B f). Let i∗
be the index of the vector chosen by the Krum function. We focus on the condition (i) of (α, f)-

Byzantine resilience (Definition 1).

Consider first the case where Vi∗ = Vi ∈ {V1, . . . ,Vn− f } is a vector proposed by a correct process.

The first step is to compare the vector Vi with the average of the correct vectors V j such that i → j .

Let δc (i) be the number of such V j ’s.

E

∥∥∥∥∥Vi − 1

δc (i)

∑
i→ correct j

V j

∥∥∥∥∥
2

≤ 1

δc (i)

∑
i→ correct j

E
∥∥Vi −V j

∥∥2 ≤ 2dσ2. (3.1)

The last inequality holds because the right-hand side of the first inequality involves only vectors

proposed by correct processes, which are mutually independent and follow the distribution of G .

Now, consider the case where Vi∗ = Bk ∈ {B1, . . . ,B f } is a vector proposed by a Byzantine process.

The fact that k minimizes the score implies that for all indices i of vectors proposed by correct

processes∑
k→ correct j

∥∥Bk −V j
∥∥2 + ∑

k→ byz l

‖Bk −Bl‖2 ≤ ∑
i→ correct j

∥∥Vi −V j
∥∥2 + ∑

i→ byz l

‖Vi −Bl‖2 .

Then, for all indices i of vectors proposed by correct processes∥∥∥∥∥Bk −
1

δc (k)

∑
k→ correct j

V j

∥∥∥∥∥
2

≤ 1

δc (k)

∑
i→ correct j

∥∥Vi −V j
∥∥2 + 1

δc (k)

∑
i→ byz l

‖Vi −Bl‖2

︸ ︷︷ ︸
D2(i)

.

20

3.2. The Krum Function

The term D2(i) is the only term involving vectors proposed by Byzantine processes. However,

the correct process i has n − f −2 neighbors and f +1 non-neighbors. Therefore, there exists a

correct process ζ(i) which is farther from i than every neighbor j of i (including the Byzantine

neighbors). In particular, for all l such that i → l , ‖Vi −Bl‖2 ≤ ‖Vi −Vζ(i)‖2. Thus∥∥∥∥∥Bk −
1

δc (k)

∑
k→ correct j

V j

∥∥∥∥∥
2

≤ 1

δc (k)

∑
i→ correct j

∥∥Vi −V j
∥∥2 + n − f −2−δc (i)

δc (k)

∥∥Vi −Vζ(i)
∥∥2 . (3.2)

Combining equations 3.1, 3.2, and a union bound yields ‖EKR− g‖2 ≤ ηpd‖g‖, which, in turn,

implies 〈EKR, g 〉 ≥ (1−sinα)‖g‖2. Condition (ii) is proven by bounding the moments of KR with

moments of the vectors proposed by the correct processes only, using the same technique as

above. The full proof is provided in the supplementary material.

Now we provide the detailed proof.

Proof. Without loss of generality, we assume that the Byzantine vectors B1, . . . ,B f occupy the last

f positions in the list of arguments of KR, i.e., KR = KR(V1, . . . ,Vn− f ,B1, . . . ,B f). An index is correct

if it refers to a vector among V1, . . . ,Vn− f . An index is Byzantine if it refers to a vector among

B1, . . . ,B f . For each index (correct or Byzantine) i , we denote by δc (i) (resp. δb(i)) the number of

correct (resp. Byzantine) indices j such that i → j . We have

δc (i)+δb(i) = n − f −2

n −2 f −2 ≤δc (i) ≤ n − f −2

δb(i) ≤ f .

We focus first on the condition (i) of (α, f)-Byzantine resilience. We determine an upper bound

on the squared distance ‖EKR− g‖2. Note that, for any correct j , EV j = g . We denote by i∗ the

index of the vector chosen by the Krum function.

∥∥EKR− g
∥∥2 ≤

∥∥∥∥∥E
(

KR− 1

δc (i∗)

∑
i∗→ correct j

V j

)∥∥∥∥∥
2

≤ E
∥∥∥∥∥KR− 1

δc (i∗)

∑
i∗→ correct j

V j

∥∥∥∥∥
2

(Jensen inequality)

≤ ∑
correct i

E

∥∥∥∥∥Vi − 1

δc (i)

∑
i→ correct j

V j

∥∥∥∥∥
2

I(i∗ = i)

+ ∑
byz k

E

∥∥∥∥∥Bk −
1

δc (k)

∑
k→ correct j

V j

∥∥∥∥∥
2

I(i∗ = k)

21

Chapter 3. Krum: Synchronous Distributed Gradient Descent

where I denotes the indicator function6. We examine the case i∗ = i for some correct index i .∥∥∥∥∥Vi − 1

δc (i)

∑
i→ correct j

V j

∥∥∥∥∥
2

=
∥∥∥∥∥ 1

δc (i)

∑
i→ correct j

Vi −V j

∥∥∥∥∥
2

≤ 1

δc (i)

∑
i→ correct j

∥∥Vi −V j
∥∥2 (Jensen inequality)

E

∥∥∥∥∥Vi − 1

δc (i)

∑
i→ correct j

V j

∥∥∥∥∥
2

≤ 1

δc (i)

∑
i→ correct j

E
∥∥Vi −V j

∥∥2

≤ 2dσ2.

We now examine the case i∗ = k for some Byzantine index k. The fact that k minimizes the score

implies that for all correct indices i∑
k→ correct j

∥∥Bk −V j
∥∥2 + ∑

k→ byz l

‖Bk −Bl‖2 ≤ ∑
i→ correct j

∥∥Vi −V j
∥∥2 + ∑

i→ byz l

‖Vi −Bl‖2 .

Then, for all correct indices i∥∥∥∥∥Bk −
1

δc (k)

∑
k→ correct j

V j

∥∥∥∥∥
2

≤ 1

δc (k)

∑
k→ correct j

∥∥Bk −V j
∥∥2

≤ 1

δc (k)

∑
i→ correct j

∥∥Vi −V j
∥∥2 + 1

δc (k)

∑
i→ byz l

‖Vi −Bl‖2

︸ ︷︷ ︸
D2(i)

.

We focus on the term D2(i). Each correct process i has n− f −2 neighbors, and f +1 non-neighbors.

Thus there exists a correct worker ζ(i) which is farther from i than any of the neighbors of i . In

particular, for each Byzantine index l such that i → l , ‖Vi −Bl‖2 ≤ ∥∥Vi −Vζ(i)
∥∥2. Whence∥∥∥∥∥Bk −

1

δc (k)

∑
k→ correct j

V j

∥∥∥∥∥
2

≤ 1

δc (k)

∑
i→ correct j

∥∥Vi −V j
∥∥2 + δb(i)

δc (k)

∥∥Vi −Vζ(i)
∥∥2

E

∥∥∥∥∥Bk −
1

δc (k)

∑
k→ correct j

V j

∥∥∥∥∥
2

≤ δc (i)

δc (k)
·2dσ2 + δb(i)

δc (k)

∑
correct j 6=i

E
∥∥Vi −V j

∥∥2
I(ζ(i) = j)

≤
(
δc (i)

δc (k)
·+δb(i)

δc (k)
(n − f −1)

)
2dσ2

≤
(

n − f −2

n −2 f −2
+ f

n −2 f −2
· (n − f −1)

)
2dσ2.

6I(P) equals 1 if the predicate P is true, and 0 otherwise.

22

3.2. The Krum Function

Putting everything back together, we obtain

∥∥EKR− g
∥∥2 ≤ (n − f)2dσ2 + f ·

(
n − f −2

n −2 f −2
+ f

n −2 f −2
· (n − f −1)

)
2dσ2

≤ 2

(
n − f + f · (n − f −2)+ f 2 · (n − f −1)

n −2 f −2

)
︸ ︷︷ ︸

η2(n, f)

dσ2.

By assumption, η(n, f)
p

dσ< ‖g‖, i.e., EKR belongs to a ball centered at g with radius η(n, f) ·p
d ·σ. This implies

〈EKR, g 〉 ≥
(
‖g‖−η(n, f) ·

p
d ·σ

)
· ‖g‖ = (1− sinα) · ‖g‖2.

To sum up, condition (i) of the (α, f)-Byzantine resilience property holds. We now focus on

condition (ii).

E‖KR‖r = ∑
correct i

E‖Vi‖r I(i∗ = i)+ ∑
byz k

E‖Bk‖r I(i∗ = k)

≤ (n − f)E‖G‖r + ∑
byz k

E‖Bk‖r I(i∗ = k).

Denoting by C a generic constant, when i∗ = k, we have for all correct indices i∥∥∥∥∥Bk −
1

δc (k)

∑
k→correct j

V j

∥∥∥∥∥≤
√√√√ 1

δc (k)

∑
i→ correct j

∥∥Vi −V j
∥∥2 + δb(i)

δc (k)

∥∥Vi −Vζ(i)
∥∥2

≤C ·
(√

1

δc (k)
· ∑

i→correct j

∥∥Vi −V j
∥∥+√

δb(i)

δc (k)
·∥∥Vi −Vζ(i)

∥∥)
≤C · ∑

correct j

∥∥V j
∥∥ (triangular inequality).

The second inequality comes from the equivalence of norms in finite dimension. Now

‖Bk‖ ≤
∥∥∥∥∥Bk −

1

δc (k)

∑
k→correct j

V j

∥∥∥∥∥+
∥∥∥∥∥ 1

δc (k)

∑
k→correct j

V j

∥∥∥∥∥
≤C · ∑

correct j

∥∥V j
∥∥

‖Bk‖r ≤C · ∑
r1+···+rn− f =r

‖V1‖r1 · · ·∥∥Vn− f
∥∥rn− f .

Since the Vi ’s are independent, we finally obtain that E‖KR‖r is bounded above by a linear

combination of terms of the form E‖V1‖r1 · · ·E∥∥Vn− f
∥∥rn− f = E‖G‖r1 · · ·E‖G‖rn− f with r1 + ·· · +

rn− f = r . This completes the proof of condition (ii).

23

Chapter 3. Krum: Synchronous Distributed Gradient Descent

Figure 3.2 – Condition on the angles between xt , ∇Q(xt) and EKRt , in the region ‖xt‖2 > D.

3.3 Convergence Analysis

In this section, we analyze the convergence of the SGD using our Krum function defined in

Section 3.2. The SGD equation is expressed as follows

xt+1 = xt −γt ·KR(V t
1 , . . . ,V t

n)

where at least n− f vectors among the V t
i ’s are correct, while the other ones may be Byzantine. For

a correct index i , V t
i =G(xt ,ξt

i) where G is the gradient estimator. We define the local standard

deviation σ(x) by

d ·σ2(x) = E‖G(x,ξ)−∇Q(x)‖2 .

The following proposition considers an (a priori) non-convex cost function. In the context of

non-convex optimization, even in the centralized case, it is generally hopeless to aim at proving

that the parameter vector xt tends to a local minimum. Many criteria may be used instead. We

follow [23], and we prove that the parameter vector xt almost surely reaches a “flat” region (where

the norm of the gradient is small), in a sense explained below.

Proposition 2. We assume that (i) the cost function Q is three times differentiable with continuous

derivatives, and is non-negative, Q(x) ≥ 0; (ii) the learning rates satisfy
∑

t γt =∞ and
∑

t γ
2
t <∞;

(iii) the gradient estimator satisfies EG(x,ξ) =∇Q(x) and ∀r ∈ {2, . . . ,4}, E‖G(x,ξ)‖r ≤ Ar +Br ‖x‖r

for some constants Ar ,Br ; (iv) there exists a constant 0 ≤α<π/2 such that for all x

η(n, f) ·
p

d ·σ(x) ≤ ‖∇Q(x)‖ · sinα;

(v) finally, beyond a certain horizon, ‖x‖2 ≥ D, there exist ε > 0 and 0 ≤ β < π/2−α such that

‖∇Q(x)‖ ≥ ε> 0 and 〈x,∇Q(x)〉
‖x‖·‖∇Q(x)‖ ≥ cosβ. Then the sequence of gradients ∇Q(xt) converges almost

surely to zero.

Conditions (i) to (iv) are the same conditions as in the non-convex convergence analysis in [23].

Condition (v) is a slightly stronger condition than the corresponding one in [23], and states

that, beyond a certain horizon, the cost function Q is “convex enough”, in the sense that the

direction of the gradient is sufficiently close to the direction of the parameter vector x. Condition

(iv), however, states that the gradient estimator used by the correct workers has to be accurate

24

3.3. Convergence Analysis

enough, i.e., the local standard deviation should be small relatively to the norm of the gradient. Of

course, the norm of the gradient tends to zero near, e.g., extremal and saddle points. Actually, the

ratio η(n, f) ·pd ·σ/‖∇Q‖ controls the maximum angle between the gradient ∇Q and the vector

chosen by the Krum function. In the regions where ‖∇Q‖ < η(n, f) ·pd ·σ, the Byzantine workers

may take advantage of the noise (measured by σ) in the gradient estimator G to bias the choice of

the parameter server. Therefore, Proposition 2 is to be interpreted as follows: in the presence of

Byzantine workers, the parameter vector xt almost surely reaches a basin around points where

the gradient is small (‖∇Q‖ ≤ η(n, f) ·pd ·σ), i.e., points where the cost landscape is “almost flat”.

Note that the convergence analysis is based only on the fact that function KR is (α, f)-Byzantine

resilient. We now give the complete proof of Proposition 2.

Proof. For the sake of simplicity, we write KRt = KR(V t
1 , . . . ,V t

n). Before proving the main claim of

the proposition, we first show that the sequence xt is almost surely globally confined within the

region ‖x‖2 ≤ D .

Global confinement. Let ut =φ(‖xt‖2) where

φ(a) =
{

0 if a < D

(a −D)2 otherwise

Note that

φ(b)−φ(a) ≤ (b −a)φ′(a)+ (b −a)2. (3.3)

This becomes an equality when a,b ≥ D . Applying this inequality to ut+1 −ut yields

ut+1 −ut ≤
(−2γt 〈xt , KRt 〉+γ2

t ‖KRt‖2) ·φ′(‖xt‖2)

+4γ2
t 〈xt , KRt 〉2 −4γ3

t 〈xt , KRt 〉‖KRt‖2 +γ4
t ‖KRt‖4

≤−2γt 〈xt , KRt 〉φ′(‖xt‖2)+γ2
t ‖KRt‖2φ′(‖xt‖2)

+4γ2
t ‖xt‖2‖KRt‖2 +4γ3

t ‖xt‖‖KRt‖3 +γ4
t ‖KRt‖4.

Let P t denote the σ-algebra encoding all the information up to round t . Taking the conditional

expectation with respect to P t yields

E (ut+1 −ut |P t) ≤−2γt 〈xt ,EKRt 〉+γ2
t E

(‖KRt‖2)φ′(‖xt‖2)

+4γ2
t ‖xt‖2E

(‖KRt‖2)+4γ3
t ‖xt‖E

(‖KRt‖3)+γ4
t E

(‖KRt‖4) .

Thanks to condition (ii) of (α, f)-Byzantine resilience, and the assumption on the first four

moments of G , there exist positive constants A0,B0 such that

E (ut+1 −ut |P t) ≤−2γt 〈xt ,EKRt 〉φ′(‖xt‖2)+γ2
t

(
A0 +B0‖xt‖4) .

25

Chapter 3. Krum: Synchronous Distributed Gradient Descent

Thus, there exist positive constant A,B such that

E (ut+1 −ut |P t) ≤−2γt 〈xt ,EKRt 〉φ′(‖xt‖2)+γ2
t (A+B ·ut) .

When ‖xt‖2 < D , the first term of the right hand side is null becauseφ′(‖xt‖2) = 0. When ‖xt‖2 ≥ D ,

this first term is negative because (see Figure 3.2)

〈xt ,EKRt 〉 ≥ ‖xt‖ ·‖EKRt‖ ·cos(α+β) > 0.

Hence

E (ut+1 −ut |P t) ≤ γ2
t (A+B ·ut) .

We define two auxiliary sequences

µt =
t∏

i=1

1

1−γ2
i B

−−−→
t→∞ µ∞

u′
t =µt ut .

Note that the sequence µt converges because
∑

t γ
2
t <∞. Then

E
(
u′

t+1 −u′
t |P t

)≤ γ2
tµt A.

Consider the indicator of the positive variations of the left-hand side

χt =
{

1 if E
(
u′

t+1 −u′
t |P t

)> 0

0 otherwise

Then

E
(
χt · (u′

t+1 −u′
t)

)≤ E(
χt ·E

(
u′

t+1 −u′
t |P t

))≤ γ2
tµt A.

The right-hand side of the previous inequality is the summand of a convergent series. By the

quasi-martingale convergence theorem [130], this shows that the sequence u′
t converges almost

surely, which in turn shows that the sequence ut converges almost surely, ut → u∞ ≥ 0.

Let us assume that u∞ > 0. When t is large enough, this implies that ‖xt‖2 and ‖xt+1‖2 are

greater than D . Inequality 3.3 becomes an equality, which implies that the following infinite sum

converges almost surely
∞∑

t=1
γt 〈xt ,EKRt 〉φ′(‖xt‖2) <∞.

Note that the sequence φ′(‖xt‖2) converges to a positive value. In the region ‖xt‖2 > D , we have

〈xt ,EKRt 〉 ≥
p

D · ‖EKRt‖ ·cos(α+β)

≥
p

D ·
(
‖∇Q(xt)‖−η(n, f) ·

p
d ·σ(xt)

)
·cos(α+β)

≥
p

D ·ε · (1− sinα) ·cos(α+β) > 0.

26

3.3. Convergence Analysis

This contradicts the fact that
∑∞

t=1γt =∞. Therefore, the sequence ut converges to zero. This

convergence implies that the sequence ‖xt‖2 is bounded, i.e., the vector xt is confined in a

bounded region containing the origin. As a consequence, any continuous function of xt is also

bounded, such as, e.g., ‖xt‖2, E‖G(xt ,ξ)‖2 and all the derivatives of the cost function Q(xt). In

the sequel, positive constants K1,K2, etc. . . are introduced whenever such a bound is used.

Convergence. We proceed to show that the gradient ∇Q(xt) converges almost surely to zero. We

define

ht =Q(xt).

Using a first-order Taylor expansion and bounding the second derivative with K1, we obtain∣∣ht+1 −ht +2γt 〈KRt ,∇Q(xt)〉∣∣≤ γ2
t ‖KRt‖2K1 a.s.

Therefore

E (ht+1 −ht |P t) ≤−2γt 〈EKRt ,∇Q(xt)〉+γ2
t E

(‖KRt‖2|P t
)

K1. (3.4)

By the properties of (α, f)-Byzantine resiliency, this implies

E (ht+1 −ht |P t) ≤ γ2
t K2K1,

which in turn implies that the positive variations of ht are also bounded

E
(
χt · (ht+1 −ht)

)≤ γ2
t K2K1.

The right-hand side is the summand of a convergent infinite sum. By the quasi-martingale

convergence theorem, the sequence ht converges almost surely, Q(xt) →Q∞.

Taking the expectation of Inequality 3.4, and summing on t = 1, . . . ,∞, the convergence of Q(xt)

implies that
∞∑

t=1
γt 〈EKRt ,∇Q(xt)〉 <∞ a.s.

We now define

ρt = ‖∇Q(xt)‖2 .

Using a Taylor expansion, as demonstrated for the variations of ht , we obtain

ρt+1 −ρt ≤−2γt 〈KRt ,
(∇2Q(xt)

) ·∇Q(xt)〉+γ2
t ‖KRt‖2 K3 a.s.

Taking the conditional expectation, and bounding the second derivatives by K4,

E
(
ρt+1 −ρt |P t

)≤ 2γt 〈EKRt ,∇Q(xt)〉K4 +γ2
t K2K3.

27

Chapter 3. Krum: Synchronous Distributed Gradient Descent

The positive expected variations of ρt are bounded

E
(
χt ·

(
ρt+1 −ρt

))≤ 2γtE〈EKRt ,∇Q(xt)〉K4 +γ2
t K2K3.

The two terms on the right-hand side are the summands of convergent infinite series. By the

quasi-martingale convergence theorem, this shows that ρt converges almost surely.

We have

〈EKRt ,∇Q(xt)〉 ≥
(
‖∇Q(xt)‖−η(n, f) ·

p
d ·σ(xt)

)
· ‖∇Q(xt)‖

≥ (1− sinα)︸ ︷︷ ︸
>0

·ρt .

This implies that the following infinite series converge almost surely

∞∑
t=1

γt ·ρt <∞.

Since ρt converges almost surely, and the series
∑∞

t=1γt = ∞ diverges, we conclude that the

sequence ‖∇Q(xt)‖ converges almost surely to zero.

3.4 Experimental Evaluation

We report here on the evaluation of the convergence and resilience properties of Krum, as well as

an optimized variant of it. We also discuss other variants of Krum.

We evaluate our algorithm on a distributed framework where we set some nodes to have an

adversarial behavior of two kinds: (a) The omniscient Byzantine workers: workers have access

to all the training-set (as if they breached into the other workers share of data). Those workers

compute a rather precise estimator of the true gradient, and send the opposite value multiplied by

an arbitrarily large factor. (b) The Gaussian Byzantine workers: Byzantine workers do not compute

an estimator of the gradient and send a random vector, drawn from a Gaussian distribution of

which we could set the variance high enough (200) to break averaging strategies.

On this distributed framework, we train two models with non-trivial (a-priori non-Convex) loss

functions: a 4-layer convolutional network (ConvNet) with a final fully connected layer, and a

classical multilayer perceptron (MLP) with two hidden layers, and on two tasks: spam filtering and

image classification. We use cross-validation accuracy to compare the performance of different

algorithms. The focus is on the Byzantine resilience of the gradient aggregation rules and not on

the performance of the models per se.

Resilience to Byzantine processes. We consider the task of spam filtering (dataset spambase [110]).

The learning model is a multi-layer perceptron (MLP) with two hidden layers. There are n = 20

worker processes. Byzantine processes propose vectors drawn from a Gaussian distribution with

28

3.4. Experimental Evaluation

mean zero, and isotropic covariance matrix with standard deviation 200. We refer to this behavior

as Gaussian Byzantine. Each (correct) worker estimates the gradient on a mini-batch of size 3. We

measure the error using cross-validation. Figure 3.3 shows how the error (y-axis) evolves with the

number of rounds (x-axis).

In the first plot (left), there are no Byzantine workers. Unsurprisingly, averaging converges faster

than Krum. In the second plot (right), 33% of the workers are Gaussian Byzantine. In this case,

averaging does not converge at all, whereas Krum behaves as if there were no Byzantine workers.

This experiment confirms that averaging does not tolerate (the rather mild) Gaussian Byzantine

behavior, whereas Krum does.

The Cost of Resilience. As seen above, Krum slows down learning when there are no Byzantine

workers. The following experiment shows that this overhead can be significantly reduced by

slightly increasing the mini-batch size. To highlight the effect of the presence of Byzantine

workers, the Byzantine behavior has been set as follows: each Byzantine worker computes an

estimate of the gradient over the whole dataset (yielding a very accurate estimate of the gradient),

and proposes the opposite vector, scaled to a large length. We refer to this behavior as omniscient.

Figure 3.4 displays how the error value at the 500-th round (y-axis) evolves when the mini-batch

size varies (x-axis). In this experiment, we consider the tasks of spam filtering (dataset spambase)

and image classification (dataset MNIST). The MLP model is used in both cases. Each curve is

obtained with either 0 or 45% of omniscient Byzantine workers.

In all cases, averaging still does not tolerate Byzantine workers, but yields the lowest error when

there are no Byzantine workers. However, once the size of the mini-batch reaches the value 20,

Krum with 45% omniscient Byzantine workers is as accurate as averaging with 0% Byzantine

workers. We observe a similar pattern for a ConvNet as provided in the supplementary material.

Multi-Krum. For the sake of presentation simplicity, we considered a version of Krum which

selects only one vector among the vector proposed by the workers. We also propose a variant

of Krum, we call Multi-Krum. Multi-Krum computes, for each vector proposed, the score as in

the Krum function. Then, Multi-Krum selects the m ∈ {1, . . . ,n} vectors V ∗
1 , . . . ,V ∗

m which score

the best, and outputs their average 1
m

∑
i V ∗

i . Note that, the cases m = 1 and m = n correspond to

Krum and averaging respectively.

Figure 3.5 shows how the error (y-axis) evolves with the number of rounds (x-axis). In the

figure, we consider the task of spam filtering (dataset spambase), and the MLP model (the same

comparison is done for the task of image classification with a ConvNet and is provided in the

supplementary material). The Multi-Krum parameter m is set to m = n − f . Figure 3.5 shows that

Multi-Krum with 33% Byzantine workers is as efficient as averaging with 0% Byzantine workers.

From the practitionner’s perspective, the parameter m may be used to set a specific trade-off

between convergence speed and resilience to Byzantine workers.

29

Chapter 3. Krum: Synchronous Distributed Gradient Descent

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

er
ro

r

round

0% byzantine

average
krum

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500

er
ro

r

round

33% byzantine

average
krum

Figure 3.3 – Cross-validation error evolution with rounds, respectively in the absence and in
the presence of 33% Byzantine workers. The mini-batch size is 3. With 0% Gaussian Byzan-
tine workers, averaging converges faster than Krum. With 33% Gaussian Byzantine workers,
averaging does not converge, whereas Krum behaves as if there were 0% Byzantine workers.

3.5 Beyond Krum

So far, a part from Krum, we presented the strongest variant of Krum: the Multi-Krum aggregation

rule. We refer to this aggregation rule as mKrum in the following. In this section we present the

other aggregation rules that we tested.

• The Medoid.

This aggregation rule is an easily computable variant of the geometric median. The ge-

ometric median is known to have strong statistical robustness, however there exists no

algorithm yet [39] to compute its exact value 7. Recall that the geometric median of a set of

d-dimensional vectors V1, . . . ,Vn is defined as follows:

med(V1, . . . ,Vn) = argmin
x∈Rd

n∑
i=1

‖Vi −x‖

The geometric median does not necessarily lie among the vectors V1, . . . ,Vn . A computable

alternative to the median are the medoids, which are defined as follows:

medoi d s(V1, . . . ,Vn) = arg min
x∈{V1,...,Vn }

n∑
i=1

‖Vi −x‖.

A medoid is not unique, similarly to Krum, if more than a vector minimizes the sum, we

will refer to the Medoid as the medoid with the smallest index.

7The computable approximate ε-median [39] introduces a new parameter (ε) that should be studied with respect to
the risk of biasing the gradient estimator.

30

3.5. Beyond Krum

 0

 0.2

 0.4

 0.6

 0.8

 1

 40 80 120

er
ro

r a
t r

ou
nd

 5
00

batch size

spambase

average (0% byz)
krum (0% byz)

average (45% byz)
krum (45% byz)

 0

 0.2

 0.4

 0.6

 0.8

 1

 40 80 120 160

er
ro

r a
t r

ou
nd

 5
00

batch size

mnist

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 10 20 30 40

er
ro

r a
t r

ou
nd

 5
00

batch size

spambase

average (0% byz)
krum (0% byz)

krum (45% byz)

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 10 20 30 40

er
ro

r a
t r

ou
nd

 5
00

batch size

mnist

Figure 3.4 – Cross-validation error at round 500 when increasing the mini-batch size. The
two figures on the rights are zoomed versions of the two on the left). With a reasonably large
mini-batch size (arround 10 for MNIST and 30 for Spambase), Krum with 45% omniscient
Byzantine workers is as accurate as averaging with 0% Byzantine workers.

31

Chapter 3. Krum: Synchronous Distributed Gradient Descent

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 40 80 120 160 200 240 280 320 360 400 440 480

er
ro

r

round

multi-krum

average (0% byz)
krum (33% byz)

multi-krum (33% byz)

Figure 3.5 – Cross-validation error evolution with rounds. The mini-batch size is 3. Multi-
Krum with 33% Gaussian Byzantine workers converges as fast as averaging with 0% Byzantine
workers.

• 1−p Krum.

In this aggregation rule, the parameter server chooses the average of the proposed vectors

with probability p, and Krum with probability 1−p. Moreover, we choose p to depend

on the learning round. In our implementation pt = 1p
t
, where t is the round number.

With such a probability, and despite the presence of Byzantine workers, 1−p Krum has a

similar proof of convergence as Krum: the probability of choosing Krum goes to 1 when

t 7→ ∞. The rational is to follow averaging in the early phases, to accelerate learning in

the absence of Byzantine workers, while mostly following Krum in the later phases and

guarantee Byzantine resilience 8.

Replacing an MLP by a ConvNet. In addition to what have been presented above, we see from

Figure A.1 that, similarly to the situation on an MLP, mKrum is, despite attacks, comparable to

a non-attacked averaging. In the same veine, in Figure A.2, we observe that like for an MLP, the

ConvNet only requires a reasonably low batch size for Krum to perform (despite 45 % Byzantine

workers) as good as a non-attacked averaging.

Optimizing Krum. In Figure A.3 we compare the different variants in the absence of Byzantine

workers, we see that Multi-Krum is comparably fast to averaging, then comes 1-p Krum, while

Krum and the Medoid are slower.

In the presence of Byzantine workers (Figure A.4), Krum, Medoid and 1-p Krum are similarly

robust. Unsurprisingly, averaging is not resilient (no improvement over time). Multi-Krum

8Remember that the parameter server never knows if there are Byzantine workers or not. The latter can behave like
correct workers in the beginning and fool any fraud detection measure.

32

3.6. Concluding Remarks

outperforms all the tested aggregation rules.

3.6 Concluding Remarks

The Distributed Computing Perspective. Although seemingly related, results in d-dimensional

approximate agreement [121, 78] cannot be applied to our Byzantine-resilient machine context.

These forms of agreements would be tempting to use, as they guarantee that the vector which is

agreed on lies in the convex hull of the proposed vectors from correct processes. In particular, this

would satisfy the key intuition behind our solution, which is that the decided update points to

the same half-space as the correct gradients. In [122], Mendes, Herlihy, Vaidya and Garg showed

that these forms of agreement require a number of correct processes that grows as the product of

the number of Byzantine ones multiplied by the dimension (Ω(f .d)). Another reason why their

results are reasons not to look into the usual agreement toolbox, in [121], Mendes and Herlihy

proved that in asynchronous systems, these forms of agreements require a local computation

by each worker that is in O(nd). While this cost seems reasonable for small dimensions, such

as, e.g., mobile robots meeting in a 2D or 3D space, it becomes a real issue in the context of

machine learning, where d may be as high as 160 billion [163] (making d a crucial parameter

when considering complexities, either for local computations, or for communication rounds).

With our relaxation of what should the workers agree on, the expected time complexity of the

Krum function is O(n2 ·d), which is only linear in d . The cost of our asynchronous Byzantine

SGD is also only linear in d as we see later in this thesis.

A closer approach to ours has been recently proposed in [157, 158]. In [157], the study only deals

with parameter vectors of dimension one, which is too restrictive for today’s multi-dimensional

machine learning. In [158], the authors tackle a multi-dimensional situation, using an iterated

approximate Byzantine agreement that reaches consensus asymptotically. This is however only

achieved on a finite set of possible environmental states and cannot be used in the continuous

context of stochastic gradient descent.

The Statistics and Machine Learning View. Our work looks at the resilience of the aggregation

rule using ideas that are close to those of [65], and somehow classical in theoretical statistics on

the robustness of the geometric median and the notion of breakdown [47]. The closest concept to

a breakdown in our work is the maximum fraction of Byzantine workers that can be tolerated, i.e.
n−2
2n , which reaches the optimal theoretical value (1/2) asymptotically on n. It is known that the

geometric median does achieve the optimal breakdown. However, no closed form nor an exact

algorithm to compute the geometric median is known (only approximations are available [39]

and their Byzantine resilience is an open problem.). An easily computable variant of the median

is the Medoid, which is the proposed vector minimizing the sum of distances to all other proposed

vectors. The Medoid can be computed with a similar algorithm to Krum. We show however in the

supplementary material that the implementation of the Medoid is outperformed by multi-Krum.

33

4 Bulyan: When Convergence is Not
Enough

4.1 Introduction

Since the publication of our work on Krum [21], an emerging line of research (of about seventy

papers1 over the past two years) looks at robustness through the lenses of (distributed) optimiza-

tion. In all of these works, as we saw in the previous chapter, SGD can be proven to converge

despite the presence of a (bounded) number of adversaries. The general recipe is to find a robust

estimator for the gradient in the presence of adversaries, and to prefer that estimator over a mere

linear combination of the provided gradients [44, 181], known for not being robust [145].

Accordingly, Byzantine–resilient aggregation rules were derived and proved to guarantee the

convergence of SGD in this context [31, 21]. But is convergence enough in the non–convex, high

dimensional case of neural networks?

In fact, the question of SGD convergence in the case of neural networks is neither new and

unprecedented nor old and forgotten by the ML community. Two years ago, the convergence

question sparked a hot debate when some, using timely examples, were blaming SGD to be

“brittle”2. Others moderated that view, reminding us how blaming neural networks for their lack

of (provable) convergence led the community to “threw the baby with the bathwater back in the

1990s”3; which arguably slowed research progress in the understanding of neural networks as a

learning machine.

We show in this chapter that convergence is not enough. We look at the question from the robust

distributed optimization point of view, where some workers can be Byzantine and we show

that, whilst indeed neural networks usually benefit from the existence of many “similarly good”

local minima [34], making SGD convergence a preferable requirement is clearly not sufficient

in a Byzantine distributed setting. More precisely, we show that a single Byzantine worker can

make any known Byzantine-resilient aggregation rule for SGD learn ineffectual models. It is

1Some of which we discuss in the final part of this thesis.
2Ali Rahimi, Test of Time Award Lecture. NIPS 2017.
3Yann LeCun. “My Take on Ali Rahimi’s Test of Time Award Talk at NIPS 2017”. https://www2.isye.gatech.edu/

~tzhao80/Yann_Response.pdf

35

https://www2.isye.gatech.edu/~tzhao80/Yann_Response.pdf
https://www2.isye.gatech.edu/~tzhao80/Yann_Response.pdf

Chapter 4. Bulyan: When Convergence is Not Enough

important to note that we do not contradict the proof of convergence of these rules. We rather

take advantage of the high dimensional and highly non–convex landscape of the loss function

to make these rules converge, as they were proven to, but to ineffectual models. We provide an

analytic understanding of how attackers could benefit from this curse of dimensionality, and

propose a solution that enhances the Byzantine–resilience of SGD.

To start feeling the vulnerability, consider any Byzantine–resilient gradient aggregation rule based

on a distance criteria. When the distance criteria relies solely on norms in the `p categories, with

a small p (the Euclidean or `1 norms), a Byzantine gradient can both remain close to honest

gradients and have one of its coordinates poisoned, e.g. set to a large value. These poisoned

coordinates can take values on the order of Ω(p
p

d), a large order given the dimension d of

modern neural networks. And the gradient would still be seen as “legitimate” by the aggregation

rule. Inversely, when the distance criteria involves norms closer to the infinite norm, the Byzantine

worker can poison every coordinates while being exactly on the value that the aggregation rule

will decide on. This way, the Byzantine worker can drive the aggregation to converge, but to the

worst possible sub–optimum that the Ω(p
p

d) (`p norm) or the Ω(d) (infinite norm) margins

enable it to get. See section 4.3.1.

Figure 4.1 – In a non-convex situation, two correct vectors (black arrows) are pointing towards
the deep optimum located in area B, both vectors belong to the plane formed by lines L1 and
L2. A Byzantine worker (magenta) is taking benefit from the third dimension, and the non-
convex landscape, to place a vector that is heading towards one of the bad local optimums
of area A. This Byzantine vector is located in the plane (L1,L3). Due to the variance of the
correct workers on the plane (L1,L2), the Byzantine one has a budget of about

p
3 times the

disagreement of the correct workers, to put as a deviation towards A, on the line (L3), while
still being selected by a weak Byzantine resilient G AR, since its projection on the plane (L1,L2)
lies exactly on the line (L1), unlike that of the correct workers. In very high dimensions, the
situation is amplified by

p
d .

Given any Byzantine–resilient rule A , we propose a generic enhancement recipe we call Bulyan

of A , or simply Bulyan(A), that improves Byzantine–resilience in the following sense: if the

vectors selected by A are in a cone of angle α around the true gradient, then the vectors selected

by Bulyan(A) are in a cone of angle α′ ≤α. Most importantly, we prove that Bulyan(A) drastically

36

4.2. Model for Bulyan

reduces the leeway of Byzantine workers to a narrow O (1p
d

) bound.

We also empirically evaluate the trade–offs induced by Bulyan, and compare its convergence

speed with those of other aggregation rules. In particular, we show that with typically used values

for the batch size, Bulyan is comparable to the speed of averaging (the fastest aggregation rule),

which does not stand a single Byzantine worker.

The rest of the chapter is organized as follows. Section 4.2 briefly recalls the model of distributed

SGD with Byzantine workers as introduced in Chapter 2, together with recalling a few Byzantine–

resilient gradient aggregation rules that we need for Bulyan. Section 4.3 introduces our attack

and analytically discusses how it affects the aforementioned gradient aggregation rules. Section

4.4 describes our algorithm, Bulyan, and proves our two main theoretical results. Section 4.5

highlights the practical impacts of our attack, and the beneficial effects of Bulyan on MNIST and

CIFAR–10. Finally, Section 4.6 concludes with a few remarks.

4.2 Model for Bulyan

4.2.1 Distributed Stochastic Gradient Descent (DSGD)

As in the previous chapter, we follow the usual parameter server model used in distributed

implementations of machine learning [44, 105, 106]. The system consists in n +1 processes:

1 master and n workers. There are f ≤ n Byzantine, i.e. adversarial, workers. Their role and

capability are described in Section 4.2.2.

Let t be the current epoch, and xt be the model parameters, let Q be the cost function we aim to

minimize. Each honest worker i ∈ {1, . . . ,n − f } draws i.i.d. (mini–batches of) samples ξt
i from the

data set to compute an estimate V t
i =G(xt ,ξt

i) of the gradient ∇Q(xt).

We assume that ∇Q is K –Lipschtiz and that Q is three–times differentiable. We also assume

that G has a bounded variance σ, i.e. Eξ‖G(x,ξ)−∇Q(x)‖2 ≤σ2, and as assumed in [23, 21], for

r ∈ {1, . . . ,4}, the r –th statistical moments of G does not overgrow the r –th powers of the model:

∃ (Ar ,Br) ∈ (R+)2, Eξ‖G(x,ξ)‖r ≤ Ar +Br ‖x‖r

4.2.2 Adversary

The adversary in this model is an entity which controls f of the n workers. These adversarial

workers, and the gradients they send, are called Byzantine. The goal of the adversary is to prevent

the distributed SGD process from converging to a satisfying state. Ideally, a satisfying state with

Byzantine workers should achieve an accuracy that is comparable to the one achieved without

any Byzantine worker, all other things being equal; e.g. see Figure 4.4.

The adversary is omniscient, in the sense that it has a perfect knowledge of the system state at any

time. The system state is constituted exhaustively by:

37

Chapter 4. Bulyan: When Convergence is Not Enough

• the full state of the master (data and code)

• the full state of every worker (data and code)

• any data exchanged over any communication channel

Hence the adversary can leverage its knowledge of the master’s state and the submitted gradients

to build powerful attacks, as shown in sections 4.3.2 and 4.3.3. However, the adversary is not

omnipotent. It cannot directly modify the state of the system, impersonate other workers, or

delay communications. The adversary is only allowed to submit gradients via its f workers.

4.2.3 Gradient Aggregation Rules (GARs)

In this section, we describe the three studied gradient aggregation rule. A GAR, such as Krum

from the previous chapter, transforms the workers’ submitted gradients into a single, aggregated

one. This aggregated gradient is then used to update the model parameters.

A very commonly used aggregation rule is averaging [1], which has several variants [181] that

are also linear combinations. Yet linear combinations all have one major flaw: they give the

adversary, described in Section 4.2.2, full control of the aggregated gradient (and hence of the

model parameters), as proven in [21].

Contrary to linear combinations, the GARs studied here are all proven Byzantine-resilient in the

sense of Definition 1 introduced in [21].

Brute

The Brute GAR requires that n ≥ 2 f +1. Informally, it selects the n − f most clumped gradients

among the submitted ones, and average them as final output. It is reminiscent of the Minimal

Volume Ellipsoid estimator, introduced by [145], and proven to have the optimal breakdown

point of 50%.

Formally, let
(
n, f

) ∈ N2 with n ≥ 2 f +1, let
(
V1 . . .Vn− f

) ∈ (
Rd

)n− f
be independent, identically

distributed random vectors, with Vi ∼G and E[G] =G , let
(
B1 . . .B f

) ∈ (
Rd

) f
be random vectors,

possibly dependent between them and the vectors
(
V1 . . .Vn− f

)
, let Q = {V1 . . .Vn } be the set of

submitted gradients, let R = {
X |X ⊂Q, |X | = n − f

}
be the set of all the subsets of Q with a

cardinality of n − f , and let S = argmin
X ∈R

(
max

(Vi ,V j)∈X 2

(∥∥Vi −V j
∥∥

p

))
.

Then, the aggregated gradient is given by F = 1
n− f

∑
G∈S

G .

Since we use Brute as a benchmark when experimenting with small amount of workers, in Section

4.5.2, we also prove its
(
α, f

)
–Byzantine–resilience. The full proof is rather straightforward and is

available in the Appendix.

As a side note, this rule can hardly be used in practical cases, as |R| = n!
f !(n− f)!

. For instance,

38

4.3. Effective Attack on `p norm–based GARs

with n = 57 workers and f = 27, we have |R| ≈ 1.4 ·1016. Even with 109 measured subsets X per

second, aggregating these 57 gradients would take more than 5 months.

Krum

The Krum GAR requires that n ≥ 2 f +3. It was defined in the previous chapter as follows. Let

(V1, . . . ,Vn) be the n ≥ 2 f +3 received gradient, among which at most f are Byzantine gradients.

For i 6= j , let i → j denote the fact that V j belongs to the n − f −2 closest vectors to Vi . Finally,

let s (Vi) =∑
i→ j

∥∥Vi −V j
∥∥2

p be the score of Vi . Then, Krum outputs the vector Vk with the lowest

score. (Recall that the
(
α, f

)
–Byzantine–resilience of Krum was proven in the previous chapter

and in [21].)

The Geometric Median(s) - GeoMed

The third and last gradient aggregation rule we consider is the geometric median [145]. The exact

geometric median is known to suffer from computational issues but can be approximated [39].

While we know from [145] that the Median has an optimal breakdown of 0.5, i.e, n ≥ 2 f +1,

it is not known however what would be α such that the Median is (α, f)-Byzantine-resilient.

Empirically [21] and theoretically [31], variants of the Median were considered as GAR candidates.

In particular, the Medoid, which is any minimizer among the proposed vectors of the sum of

distances, can be used as a GAR and is easier to compute. Since there can be many minimizers,

we will simply call GeoMed the Medoid of the proposed vectors with the smallest index.

4.3 Effective Attack on `p norm–based GARs

In this section, we describe a simple, yet effective attack passing the Byzantine–resilient GARs,

such as the ones presented in Section 4.2.3. Actually, any `p -norm based GAR, where the chosen

vector is the result of a distance minimization scheme, is affected.

4.3.1 Intuition

In high dimensions, the distance function, between two vectors ‖X −Y ‖p , cannot answer this

core question: do X and Y “disagree” a bit on each coordinate, or do they disagree a lot on only

one? SGD has proven its ability to accommodate “small errors” from the gradient estimation.

Such “errors” are often beneficial, as they may allow the descent process to leave sub–optimal

local minima [25]. In Byzantine–free distributed setups, gradient estimations “disagree” a bit on

each coordinate4.

In a vector space of dimension d À 1, the “bit of disagreement” on each coordinate translates

into a distance ‖X −Y ‖p =O (p
p

d). For the omniscient adversary described in Section 4.2.2, it

4This has been observed during the experiments.

39

Chapter 4. Bulyan: When Convergence is Not Enough

translates into an opportunity to submit f Byzantine gradients that “disagree” a lot, as much

as O (p
p

d), on only one coordinate with at least one non–Byzantine gradient. As the `p norm

cannot answer the core question mentioned in the above paragraph, such Byzantine gradient

could then be selected by a `p norm–based GAR.

Each gradient aggregation rule presented in Section 4.2.3 performs a linear combination of

the selected gradient(s). Thus the final aggregated gradient might have one unexpectedly high

coordinate. Depending on the learning rate (Figure 4.4), updating the model with such gradient

may push and keep the parameter vector in a sub–space rarely reached with the usual, Byzantine–

free distributed setup.

The experiments gathered in Section 4.5.2 clearly show this dependency on the learning rate, and

indicate that this sub–space only offers sub–optimal to utterly ineffective models.

4.3.2 Attack on the Finite Norm, p ≥ 1

The adversary defined in Section 4.2.2 is omniscient and has arbitrary fast computation and

transmission throughput. So for each round, every time the n − f non–Byzantine gradients, are

produced, the adversary reads them and chooses the other f gradients the master receives. Based

on that capability, for each round, the adversary waits for n − f non–Byzantine gradients to be

received. Then it attacks.

Formally, let Q = {
V1 . . .Vn− f

}
be the set of submitted, non–Byzantine gradients, with ∀i ∈[

1..n − f
]

, Vi ∈Rd .

Let E = (0 . . .0,1,0 . . .0) ∈Rd be any coordinate to attack, and let B
(
γ
)= 1

n− f

(∑
V ∈Q V

)+γE . By a

simple linear regression, we estimate the highest value of γ, noted γm , such that B =B
(
γm

)
is

selected by the aggregation rule. Finally, B is submitted by every Byzantine worker.

For each presented GAR, we reveal a relation between a rough estimation of γm and a few hyper–

parameters. We study these approximations of γm within the minimal quorum cases, where the

proportion of Byzantine workers is maximized, respectively: n = 2 f +1 for Brute and n = 2 f +3

for Krum/GeoMed. The full details of the approximations are available in Appendix. We denote

by δ̄ the average folded standard deviation on each coordinate of G , and with p, q constants:

γm =O (δ̄ p
p

d) for Brute, and γm =O (δ̄ q
√

f p
p

d) for Krum/GeoMed. The added dependence in
q
√

f for Krum/GeoMed comes from the shape of the score function, which naturally decreases

the score of the Byzantine gradients as they all are identical.

As a side–note, an adversary does not necessarily need to know the submitted, non–Byzantine

gradients Q with this attack. Indeed non–Byzantine gradients are assumed to be unbiased, so by

the law of large numbers we have: lim|Q|→+∞B
(
γ
)= E[G]+γE . It indicates that, for this attack

to succeed as well, the adversary may only need to compute an unbiased gradient estimate by

itself (without the need to “spy” on the other workers) then add γE to it.

40

4.4. Bulyan

4.3.3 Attack on the Infinite Norm

In the previous subsection, we have seen thatγm vary as p
p

d . Yet, with d À 1 fixed: limp→+∞
p
p

d =
1. Basically, the curse of dimensionality exploited in the attack of Section 4.3.2 no longer exists

with p large enough, or infinite.

One effective attack in the case of an infinite norm is simply to change the vector E = (0 . . .0,1,0 . . .0)

introduced in the previous subsection for E = (1 . . .1). The idea is that modifying non–maximal

coordinates of a given vector does not substantially affect5 the distance to the unbiased gradient

for the modified vector. From this change on E , we proceed as in the previous subsection.

4.4 Bulyan

In addition to being Byzantine–resilient in the sense that it ensures convergence, our algorithm,

Bulyan6, also ensures that each coordinate is agreed on by a majority of vectors7 that were

selected by a Byzantine–resilient aggregation rule A . This rule A can for example be Brute, Krum,

a Medoid, the geometric median or any other Byzantine–resilient rule based on an `p norm or

the infinite norm.

Let A be any (α, f)-Byzantine–resilient aggregation rule. Bulyan(A) requires n ≥ 4 f +3 received

gradients in two steps. The first one is to recursively use A to select θ = n−2 f gradients, namely:

1. With A , choose, among the proposed vectors, the closest one to A ’s output; for Krum or

the Medoid, this would be the exact output of A .

2. Remove the chosen gradient from the “received set”, and add it to the “selection set”, noted

S .

3. Loop back to step 1 if |S | < θ, with |·| the cardinality.

With n ≥ 4 f +3, we ensure that there is a quorum of workers, i.e. 2 f +3, for each use of A .

Since θ = n −2 f ≥ 2 f +3, this selection S = (S1 . . . Sθ) contains a majority of non–Byzantine

gradients. Hence for each i ∈ [1 ..d], the median of the θ coordinates i of the selected gradients is

always bounded by coordinates from non–Byzantine submissions. Withβ= θ−2 f ≥ 3, the second

step is to generate the resulting gradient G = (G[1] . . . G[d]), so that for each of its coordinates G[·]:

∀i ∈ [1 ..d] , G[i] = 1
β

∑
X∈M [i]

X[i]

where: M [i] = argmin
R⊂S , |R|=β

(∑
X∈R

|X[i]−median[i]|
)

and: median[i] = argmin
m=Y[i],Y ∈S

(∑
Z∈S

|Z[i]−m|
)

.

5It may not affect the infinite norm at all for small–enough γ.
6Bulyan, Ilyan or more commonly, Julian count of Ceuta, was a Byzantine general, stationed in north Africa, who

betrayed the Byzantine empire, in this sense, he was “Byzantine to the Byzantines”.
7Agreed through the gradients they submitted, of course.

41

Chapter 4. Bulyan: When Convergence is Not Enough

Simply stated: each i -th coordinate of G is equal to the average of the β closest i -th coordinates

to the median i -th coordinate of the θ selected gradients.

Let C be the computational cost of running A for each epoch at the master to aggregate the

gradients.

Proposition 3. (Cost of one Bulyan(A) aggregation.)

(1) The average computational complexity of Bulyan(A) is O
(
(n −2 f)C +d n

)
for each epoch on

the master.

(2) If A is GeoMed or Krum, this cost is O
(
n2d

)
.

Proof. (1) We iterate A as much as θ = n −2 f times to get the selected vectors, then we run

quick–select to get each median component (O (n) on each coordinate, i.e. O (d n) times) and

another quick–select to get the β closest coordinates (another O (d n)). Note: we use quick–select

instead of quick–sort since we do not need ordered values, just the set of the β closest values.

For point (2) of the proposition, in fact, if we know more about how A is performed, we can get

rid of the n−2 f multiplications when iterating A : concretely, A relies on distance computations

between proposed vectors, when we iterate it in the same epoch, we do not need to re-compute

those distances and would amortize the cost. For instance, for Krum or GeoMed, Bulyan(Krum)

and Bulyan(GeoMed) have a cost of O
(
n2d +n d

)
. In modern machine learning, the models are

very large, and d À n holds. Therefore Bulyan runs in the same O
(
n2d

)
of the base GAR rule it is

using8.

Byzantine Leeway Reduction by Bulyan.

In the introduction of this chapter and in Section 4.3, we explained that the curse of dimension-

ality leaves the Byzantine worker, at a coordinate i , with a margin ofΩ(f (d)) computed as the

difference between the Byzantine proposed i -th coordinate and the honest proposed vectors’

i -th coordinates. In what follows, we prove that any vector produced by Bulyan is constrained, in

each coordinate, to remain within O
(
σp
d

)
of honest workers’ coordinates. Therefore, narrowing

the aforementioned margin to the desired O
(

1p
d

)
.

Proposition 4. Denote by But the vector chosen by Bulyan(A) at round t. Then for any dimension

i ∈ [1,d] and any honest worker k proposing gradient gk , we have E|But [i]− gk [i]| =O
(
σp
d

)
.

Proof. Let ξ = (ξ1, · · · ,ξn− f) denote the random (n − f)-tupple of samples used by the honest

workers. By assumption, the ξk ,k = 1 · · ·n − f , are assumed to be i.i.d. Let i ∈ [1 ..d] be any com-

ponent. We denote by B any vector that is selected by Buylan(A) in the set M [i] (i.e, B [i] scores

among the β closest values to medi an[i]). Let k be any honest worker proposing gradient gk ,

since B was selected by Bulyan, then B [i] is among the closest β propositions to medi an[i]. We

8For more comparison, averaging (which is not Byzantine–resilient) already has a cost of O (d n).

42

4.4. Bulyan

know that medi an[i] is the the median coordinate of θ ≥ 2 f +3 propositions, and we know that

β= θ−2 f therefore, all the set M [i] is closer to medi an[i] than at least 2 f other propositions, in

particular, on each side of medi an[i] (we are in a single dimension) there are at least f workers

who are farther from medi an[i] than is any B [i]. Therefore, there are at least two different honest

workers, call them l and r whose i -th coordinates are respectively on the left and on the right of

the B [i], for every B in M [i], i.e, gl [i] ≤ B [i] ≤ gr [i]. There are three cases:

1) gk [i] ∈]−∞, gl[i]
]
, then |B[i]− gk[i] | < |gl[i]− gk[i] |

2) gk[i] ∈]
gl[i] , gr[i]

[
, then |B[i]− gk[i] | < |gl[i]− gr[i] |

3) gk [i] ∈ [
gr[i] ,+∞[

, then |B[i]− gk[i] | < |gr[i]− gk[i] |

Denote by Ih the indicator function of each of the three situations h = 1,2,3, i.e. Ih = 1 only if we

are in case h, and Ih = 0 otherwise. Then we have the following bound:

|B [i]− gk [i]| < I1 |gl [i]− gk [i]|+ I2 |gl [i]− gr [i]|
+ I3 |gr [i]− gk [i]|

Let B1, · · · ,Bβ be the β elements of M [i], the previous inequality holds for every Bh , denote by

Ir,h ,r = 1. . .3 the corresponding indicator functions for each h, we have:

|But [i]− gk [i]| ≤ 1

β

β∑
h=1

|Bh[i]− gk [i]|

≤ 1

β

β∑
h=1

(
I1,h |gl [i]− gk [i]|

+ I2,h |gl [i]− gr [i]| +I3,h |gr [i]− gk [i]|)
Since gl , gr and gr are all honest workers, which in addition are positioned w.r.t. to other honest

workers, they are i.i.d random variables following the randomness of ξ and satisfy a vector–wise

variance bound (norm 2) E‖gr − gl‖ = E‖gk − gl‖ = E‖gk − gr ‖ ≤ E‖gk −G‖+E‖G − gr ‖ = O (σ),

where G is the unbiased estimator used by the honest workers with a bounded variance such that,

component–wise (we divide by
p

d): E|But [i]− gk [i]| =O (σp
d

).

Proposition 4 proves that Bulyan(A) reduces the component–wise margin of an attacker, i.e. how

much the latter can deviate from honest workers component–wise, while still be influencing the

aggregated gradient.

A last natural question to be posed is: will Bulyan(A) introduce an additional bias in gradient

estimations? The answer, provided by Proposition 1, is no. We show that Bulyan(A) keeps the

gradient estimation in the cone of angle α around the true gradient. In particular, Bulyan(A) is

also provably convergent.

Corollary 1. Let A be an (α, f)-Byzantine-resilient aggregation rule used by Bulyan. Then

43

Chapter 4. Bulyan: When Convergence is Not Enough

Bulyan(A) is also (α, f)–Byzantine–resilient.

Proof. This is an immediate consequence of the (α, f)–Byzantine–resilience of A (Definition 1)

and of the fact that any vector used as an input to the last (averaging) step of Bulyan already comes

from the cone of angle α, since it was selective by an iteration of A on a set of vectors of cardinal

≥ 2 f +2. Let g be the true gradient, a triangle inequality applied between g , Bu and the β terms

coming from the iterations of A , call them Ak ,k = 1, · · ·β gives: ‖Bu−g‖ ≤ 1
β‖Ak −g‖. Given how

A ’s iterations are performed (without re-sampling ξ), the Ak are themselves i.id and by taking

the E on the inequality, every term in the sum of the right-hand side is bounded by ‖g‖ · sin(α)

(since it lives in the cone of angle α around g . Therefore: ‖EBu − g‖ ≤ ‖g‖ · sin(α) which means

that EBu is also a vector in the cone of angle α around g . The proof on the statistical moments is

obtained with same steps above (except of bounding with E‖G‖r ’s instead of sin(α) · ‖g‖

Finally, even if the focus of our work was rather on narrowing the leeway of Byzantine workers

which we argue is a more powerful requirement than (α, f)–Byzantine–resilient alone. It is worth

mentioning that as a consequence of our results, convergence is ensured for Bulyan.

Corollary 2 (Convergence). With Bulyan(A), the sequence of models xt adopted by the master

almost surely converges to a region where ∇Q(x) = 0

Proof. As a consequence of Proposition 1, Bulyan is also (α, f)–Byzantine–resilient, by Proposi-

tion 2 of [21] guarantees almost sure convergence.

4.5 Evaluation

We implemented the three
(
α, f

)
–Byzantine–resilient gradient aggregation rules presented in

Section 4.2.3, along with the attack introduced in Section 4.3. We report in this section on the

actual impact this attack can have, on the MNIST and CIFAR–10 problems, despite the use of

such aggregation rules. Then, we evaluate the impact of Bulyan compared to these gradient

aggregation rules. Finally, we exhibit the cost, in terms of convergence speed, of using Bulyan in a

Byzantine–free setup.

4.5.1 Overview of the Studied Models

MNIST. We use a fully connected, feed–forward network with 784 inputs, 1 hidden layer of size

100, for a total of d ≈ 8 ·104 free parameters. The hidden layers use rectified linear units only. The

output layer uses softmax.

CIFAR–10. We use a convolutional network with the following 7–layers architecture: input 32×
32×3, convolutional (kernel–size: 3×3, 16 maps, 1 stride), max–pooling of size 3×3, convolutional

(kernel–size: 4× 4, 64 maps, 1 stride), max–pooling of size 4× 4, two fully connected layers

composed of 384 and 192 rectified linear units respectively, and softmax is used on the output

44

4.5. Evaluation

0

0.2

0.4

0.6

0.8

1

10 100 200 300 400 500 600 700 800 900 1000

A
cc

ur
ac

y

Epoch

Average (no attack)
Krum (norm 2)

GeoMed (norm 2)
Brute (norm 2)

Figure 4.2 – MNIST: accuracy on the testing set up to epoch 1000, comparing the presented
aggregation rules under our attack. The attack was maintained only up to epoch 50 (dotted
line). The average is the reference: it is the accuracy the model would have shown if only non–
Byzantine gradients had been selected.

layer. This model totals 106 free parameters. The hidden layers use rectified linear units. The

output layer uses softmax.

The maximum cross entropy loss function is used for both models. L2–regularization of value

10−4 is used for both models, and both use the Xavier weight initialization algorithm. We use a

fading learning rate η
(
epoch

)= η0
rη

epoch+rη
. The initial learning rate η0, the fading rate rη, and

the mini–batch size depend on each experiment.

The accuracy is always measured on the testing set.

4.5.2 Results

Attack on Brute, Krum and GeoMed

Figures 4.2 and 4.3 shows the impact of our attack on the aggregation rules presented in Section

4.2.3. The average rule computes the arithmetic mean of the submitted gradients.

On MNIST, we use η0 = 1, rη = 10000, a batch size of 83 images (256 for Brute), and for the worker

counts:

Krum/GeoMed 30 non–Byzantines + 27 Byzantines

Brute 6 non–Byzantines + 5 Byzantines

Average 30 non–Byzantines + 0 Byzantines

On CIFAR–10, we use η0 = 0.1, rη = 2000, a batch size of 128 images (256 for Brute), and for the

worker counts:

Krum/GeoMed 21 non–Byzantines + 18 Byzantines

Brute 6 non–Byzantines + 5 Byzantines

Average 21 non–Byzantines + 0 Byzantines

45

Chapter 4. Bulyan: When Convergence is Not Enough

0

0.2

0.4

0.6

0.8

1

10 100 200 300 400 500 600 700 800 900 1000

A
cc

ur
ac

y
Epoch

Average (no attack)
Krum (norm 2)

GeoMed (norm 2)
Brute (norm 2)

Figure 4.3 – CIFAR–10: accuracy on the testing set up to epoch 1000, comparing the presented
aggregation rules under our attack. The average is the reference: it is the accuracy the model
would have shown if only non–Byzantine gradients had been selected.

0
0.2
0.4
0.6
0.8

1

10 50 100 150 200 250 300 350 400 450 500

A
cc

ur
ac

y

Epoch

0.7
0.8
0.9

1

0.6

Krum (norm 2)
GeoMed (norm 2)
Bulyan (norm 2)

Average (no attack)

Figure 4.4 – MNIST: accuracy on the testing set up to 500 epochs for Krum, GeoMed, Bulyan
(A = Krum) rules. This graph illustrates the impact of the learning rate, as described in Sec-
tion 4.3.1.

In Figure 4.2, the attack is maintained only up to 50 epochs. As shown, and except for Brute, this

short attack phase at the beginning of the learning process is sufficient to put the parameter

vector in a sub–space of ineffective models that SGD did not succeed in leaving for at least 950

epochs. In Figure 4.3, the attack is never stopped. Only Brute preserved the accuracy. Krum

suffered a 33% decrease at epoch 1000, and GeoMed failed to produce a useful model.

Higher learning rates and lower batch sizes naturally extend the effectivity of our attack, by

increasing both its exploratory capabilities and the variance of the non–Byzantine submissions.

In the Appendix, we present slightly different initial parameters, for which the attack completely

prevented any learning.

The effect of Bulyan

Figures 4.4 and 4.5, respectively for MNIST and CIFAR–10, compares Krum, GeoMed and Bulyan

(with A = Krum).

On MNIST, we use η0 = 1 (η0 = 0.2 for the upper graph), rη = 10000, and a mini–batch size of

83 images. On CIFAR–10, we use η0 = 0.25, rη = 2000, and a mini–batch size of 128 images. For

both MNIST and CIFAR–10, we use 30 non–Byzantines + 9 Byzantines workers. Brute cannot be

used with that many workers, see Section 4.2.3. In Figure 4.4, with η0 = 1, Krum and GeoMed

fail to prevent the attack from pushing the model into an ineffective state, despite the reduced

46

4.6. Concluding Remarks

A
cc

ur
ac

y

Epoch

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

10 100 200 300 400 500 600 700 800 900 1000

Krum (norm 2)
GeoMed (norm 2)
Bulyan (norm 2)

Average (no attack)

Figure 4.5 – CIFAR–10: accuracy on the testing set up to 1000 epochs for Krum, GeoMed,
Bulyan (A = Krum) rules. The arithmetic mean of non–Byzantine gradients serves as ref-
erence.

proportion of Byzantine workers from roughly 1
2 , in Figure 4.2, to roughly 1

4 . With η0 = 0.2, Krum

and GeoMed support the attack, at the cost of a uselessly slower learning process. Here, Bulyan

is not affected by the attack, and achieves the same accuracy as if it averages only the non–

Byzantine gradients. In Figure 4.5, we do the same experiment with CIFAR–10. As with MNIST,

only Bulyan is not affected by our attack.

The cost of Bulyan

For both MNIST and CIFAR–10, we use the same configuration as in the experiments of Section

4.5.2.

In Figure 4.6, we study the cost of using Bulyan, in terms of convergence speed, when there

is actually no adversary. We define the convergence speed, for a given mini–batch size, as the

accuracy the model reaches at a fixed, arbitrary epoch. We use the average, i.e. the arithmetic

mean of the submitted gradients, as the reference aggregation rule.

Without Byzantine workers, the loss in convergence speed induced by Bulyan is minimized with

a reasonable batch size: 24 images/batch for MNIST, and 36 for CIFAR–10.

4.6 Concluding Remarks

In very high dimensions, and with highly–non convex cost functions, our work shows that the

inaugural distributed–computing defenses [21, 31, 155] against poisoning attacks, tough provably

converging, remain frail in the face of curse of dimensionality attacks. They might indeed converge,

as promised, but to the worst possible region. To defend against that, we introduce Bulyan, which

we theoretically prove to significantly reduce the adversarial leeway that causes this drift to

sub–optimal models.

We empirically show that Bulyan, indeed avoids convergence to ineffectual models, and instead,

ends up learning models that are comparable to a reasonable benchmark: a non–attacked averag-

ing scheme. However, the question of finding “the best direction” possible for non–convex cost

47

Chapter 4. Bulyan: When Convergence is Not Enough

Minibatch size

0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

13 6 12 24 48

A
cc

ur
ac

y
ep

oc
h

25
0

0.2
0.25
0.3

0.35
0.4

0.45
0.5

24 36 48 96

A
cc

ur
ac

y
ep

oc
h

35
0

Average
Bulyan

Figure 4.6 – MNIST (left), CIFAR–10 (right): Accuracy on the testing set at epoch 250 for Aver-
age and Bulyan. There are n = 39 workers and no adversary, but f is declared to 9. This shows
the trade–off between the Byzantine robustness of Bulyan and the loss in convergence speed
it introduces.

functions remains one of the most challenging ones in optimization for machine learning [35],

especially when we stick to such a cheap, first–order method as SGD, and avoid expensive,

Hessian–like, computations as pointed out by [144].

48

5 Kardam: Asynchronous Byzantine
Gradient Descent

5.1 Introduction

The Byzantine distributed ML solutions we have seen so far assume a restrictive synchronous

model. In each epoch, (1) all (honest) workers are supposed to use the exact same model to

compute the gradient, and (2) the parameter server waits for a quorum of workers before aggre-

gating their gradients. When networks are asynchronous, exhibiting heterogeneous (sometimes

arbitrary) communication delays, synchronous solutions inevitably lead to slow convergence.

Asynchronous SGD algorithms, on the other hand, enable huge performance benefits despite

heterogeneous communication delays [109, 112, 79, 105]. In short, such algorithms (1) allow

workers to make use of a stale model as well as (2) update the model as soon as a new gradient is

delivered (instead of waiting for a quorum). Nevertheless, none of these asynchronous algorithms

tolerate any Byzantine behavior. In fact, all provably convergent asynchronous SGD algorithms

assume that all the workers are permanently honest about their gradient, i.e., provide unbiased

estimations of the actual gradient (Figure 5.1).

Combining asynchrony with Byzantine resilience is challenging. In particular, aggregating gradi-

ents that were computed on different models requires the knowledge of how the curvature of the

cost function evolves with staleness. This curvature determines the window of synchrony within

Figure 5.1 – The gradients computed by non-stale honest workers (black dashed arrows) are
distributed around (and are on average equal to) the actual gradient (solid blue arrow) of the
cost function (thin black curve). A Byzantine worker can propose an arbitrary poisoning vec-
tor (red dotted arrow). A honest but stale worker computes the correct gradient but for a stale
version of the model (long green dotted arrow).

49

Chapter 5. Kardam: Asynchronous Byzantine Gradient Descent

which a synchronous method can be transposed into an asynchronous context. Roughly speaking,

the more locally curved the cost function is, the narrower this window and vice versa. Estimating

the curvature requires heavy computations of the Hessian matrix (O(d 2)), not to mention the fact

that this would deprive the parameter server from the most prominent advantage of asynchrony,

namely updating the model as soon as a single gradient is delivered (i.e., the parameter server

would need to aggregate a quorum).

In this chapter, we consider for the first time the situation where a significant fraction of workers

(f
n) can be Byzantine (arbitrarily adversarial) and consider unbounded communication delays.

Such situation corresponds to that of many realistic distributed platforms today. We present the

first asynchronous Byzantine gradient descent algorithm, we call Kardam. Kardam leverages

the Lipschitzness of the cost function to filter out gradients from potentially Byzantine workers,

while prohibiting Byzantine workers from flooding the parameter server (which in turn would

prevent honest workers from updating the model). Kardam also uses a dampening scheme

that scales each gradient based on its staleness. The computation overhead for each update is

negligible as the filtering component of Kardam is mostly scalar-based. The time complexity for

each update computed in terms of the dimension d of a gradient is O(d + f n). This complexity is

the same as the standard complexity of an asynchronous SGD update (O(d)) for the very high-

dimensional learning models of today (d À (f ,n)). We prove the convergence of Kardam and

precisely determine its convergence rate. In particular, we prove its self-stabilizing property using

a refined version of the global confinement argument [23].

We implemented and deployed Kardam in a distributed setting and we report in this chapter

on its in-depth empirical evaluation on the CIFAR-100 and EMNIST datasets. In particular, we

evaluate the overhead of Kardam with respect to non Byzantine-resilient solutions. Kardam

does not tamper with the learning procedure (i.e., include additional noise), yet it does induce a

slowdown that we empirically show to be less than f
n , where f is the number of Byzantine failures

tolerated and n the total number of workers (we also prove that theoretically). Finally, we show

that the dampening component (when plugged on an asynchronous non Byzantine-resilient SGD

solution) outperforms alternative staleness-aware asynchronous competitors in environments

with honest workers.

The code (written by my co-authors G.D. and R.P.) to reproduce our experiments as well as a few

additional results (varying f) is available at https://github.com/LPD-EPFL/kardam.

5.2 Model for Asynchronous SGD

As in the previous two chapters, we consider the general distributed model for machine learning,

namely the parameter server [1, 107]1. We assume that f of the n workers are Byzantine (behave

arbitrarily). Following the traditional assumption in distributed computing, we assume that the

identities of the Byzantine workers are unknown whereas f (in practice, an upper bound) is

1Classical techniques of state-machine replication [113] can be used to ensure that the parameter server is reliable.

50

5.2. Model for Asynchronous SGD

known. Computation is divided into (infinitely many) asynchronous model updates (epochs).

Given the entangled aspect of asynchronous distributed computing, we provide a table of addi-

tional notations for this chapter.

Definition 2 (Time). The global epoch (denoted by t) represents the global logical clock of the

parameter server (or equivalently the number of model updates). The local timestamp (denoted

by lp) for a given worker p, represents the epoch of the model that the worker receives from the

server and computes the gradient upon. The difference t − lp can be arbitrarily large due to the

asynchrony of the network.

t Epoch at the parameter server,incremented after

each update.

lp Timestamp (given by the parameter server) of the

model currently used by worker p.

xt Model (parameter vector) at epoch t with dimension-

ality d .

γt Learning rate at epoch t s.t
∞∑

t=1
γt =∞ and

∞∑
t=1

γ2
t <

∞.

gp Each gradient is a tuple [gp , l] denoting that a worker

p computed the gradient gp w.r.t xl .

|X | Cardinality of a set X .

M Number of gradients that the server waits for before

updating the model parameters. (M = 1 in asyn-

chrony).

Gt Set of gradients that the server receives in epoch t .

Note that |Gt | = M .

τt l Staleness value for a gradient [g , l] at epoch t (τt l ,
k − l).

ξ Mini-batch of training examples.

Q(x) Cost function for a model x.

K Global Lipschitz coefficient of ∇Q,

i.e K = sup
x,y∈Rd

(‖∇Q(x)−∇Q(y)‖
‖x−y‖).

Table 5.1 – The notations used in Kardam.
During each epoch t , the parameter server broadcasts the model xt ∈Rd to all the workers. A cost

function Q reflects the quality of the model for the learning task. Each non-Byzantine worker p

computes an estimate gp =G(xlp ,ξp) of the actual gradient ∇Q(xlp) of the cost function Q, where

ξp is a random variable representing, for example, the sample (or a mini-batch of samples) drawn

from the dataset at worker p. Each worker p sends the timestamp lp (to declare which version of

the model it used) and the gradient gp . See Table 5.1 for notational details.

A Byzantine worker b proposes a gradient gb which can deviate arbitrarily from G(xlb ,ξb) (see

Figure 2.1). A Byzantine worker may have full knowledge of the system, including the gradients

proposed by other workers. Byzantine workers can furthermore collude, as typically assumed

51

Chapter 5. Kardam: Asynchronous Byzantine Gradient Descent

in the distributed computing literature [100, 113, 27]. Since the communication is assumed to

be asynchronous, the parameter server takes into account the first gradient received at time t .

The parameter server then either suspects the gradient and ignores it, or employs it to update the

model and move to epoch t +1. We make the following assumptions about any honest worker p.

Assumption 1 (Unbiased gradient estimator).

Eξp G(xlp ,ξp) =∇Q(xlp)

Assumption 2 (Bounded variance).

Eξp‖G(xlp ,ξp)−∇Q(xlp)‖2 ≤ dσ2

Assumptions 1 and 2 are common in the literature [23] and hold if the data used for computing

the gradients is drawn uniformly and independently.

Assumption 3 (Linear growth of r -th moment).

Eξp‖G(x,ξp)‖r ≤ Ar +Br ‖x‖r ∀x ∈Rd , r = 2,3,4

Assumption 3 translates into “the r -th moment of the gradient estimator grows linearly with the

r -th power of the norm of the model” as assumed in [23].

Assumption 4 (Lipschitz gradient).

||∇Q(x1)−∇Q(x2)|| ≤ K ||x1 −x2||

Assumption 5 (Convexity in the horizon). We require that beyond a certain horizon, ‖x‖ ≥ D,

there exist ε> 0 and 0 ≤β<π/2 such that ‖∇Q(x)‖ ≥ ε> 0 and 〈x,∇Q(x)〉
‖x‖·‖∇Q(x)‖ ≥ cosβ.

Assumptions 4 and 5 are the same as in [21], the first is classic, the second is a slight refinement

of a similar assumption in [23]. It essentially states that, beyond a certain horizon D in the

parameter space, the opposite of the gradient points towards the origin.

Definition 3 (Byzantine resilience). Let Q be any cost function satisfying the assumptions above.

Let A be any distributed SGD scheme. We say that A is Byzantine-resilient if the sequence ∇Q(xt) = 0

converges almost surely to zero, despite the presence of up to f Byzantine workers.

52

5.3. Kardam

5.3 Kardam

In this section, we present the two main components of our algorithm, Kardam2, namely the

filtering and the dampening components. We also establish the theoretical guarantees of each

component.

5.3.1 Byzantine-resilient Filtering Component

The parameter server accepts a gradient gp from worker p (i.e., updates the model with gp) if

gp is accepted by the Byzantine-resilient filtering component of Kardam. This component itself

consists of a Lipschitz filter followed by a frequency filter that we describe in the following.

Lipschitz filter. This filter can be viewed as a kinetic validation at the parameter server based on

the empirical Lipschitzness.

Definition 4 (Empirical Lipschitz coefficient). The empirical Lipschitz coefficient at worker p is

defined as K̂p = ‖gp−g pr ev
p ‖

‖xlp −xpr ev
lp

‖ . The empirical Lipschitz coefficient at the parameter server is defined

with respect to a received gradient from worker p and an updated gradient from worker q at the

previous epoch (t −1) as K̂ p
t = ‖gp−gq‖

‖xt−xt−1‖ .

The empirical Lipschitz coefficient (K̂p) reflects the local empirical observation of the gradient

evolution, normalized by the model evolution. Each worker p derives this coefficient between

the current and the previous models used to compute the current and previous gradients of p

respectively.

The Lipschitz filter accepts the candidate gradient gp if the empirical Lipschitzness for gp (Def-

inition 4) is not suspicious, i.e., if it is smaller than a median empirical Lipschitzness of all the

workers as follows.

K̂ p
t ≤ K̂t , quanti le n− f

n
{K̂p }p∈P

where quanti le n− f
n

represents the element that separates the n− f
n fraction of workers with the

smallest empirical Lipschitz values from the remaining f
n fraction with the highest values (i.e.,

the (100 · n− f
n)th percentile). We highlight that there exist two honest workers p1 and p2 such that

K̂p1 ≤ K̂t ≤ K̂p2 since our single dimensional median is guaranteed to be bounded by values from

any group of size n − f (i.e., group of honest workers).

The complexity of the Lipschitz filter is O(d+n) (computing distances on 2 d-dimensional vectors,

then getting the median of n scalars, in O(n) with quick-select).

Obviously, the Lipschitz filter will end up filtering fast workers (that reach the more curved regions

of the cost functions before the others) or slow workers (that are delayed in a curved region while

2Kardam was a Bulgarian khan who pre-empted the Byzantine empire’s invasion. He was the predecessor of
Krum [21], the Bulgarian khan gave his name to the first provable solution for the synchronous Byzantine SGD
problem.

53

Chapter 5. Kardam: Asynchronous Byzantine Gradient Descent

everyone else is already in a less curved region). We note that this filter, roughly speaking, suspects

f workers to be Byzantine and thus a pessimistic choice for f would increase the overhead of

Kardam (filters more gradients due to a pessimistic choice for f).

Theorem 1 (Optimal Slowdown). We define the slowdown SL as the ratio between the number of

updates from honest workers that pass the Lipschitz filter and the total number of updates delivered

at the parameter server. We derive the upper and lower bounds of SL in the following.

n −2 f

n − f
≤ SL ≤ n − f

n

The lower and upper bounds are tight and hold when there are f Byzantine workers and no

Byzantine workers respectively. Therefore Kardam achieves the optimal bounds with respect to any

Byzantine-resilient SGD scheme and n ≈ 3 f workers.

Proof. Any Byzantine-resilient SGD scheme assuming f Byzantine workers will at most use n− f
n of

the total available workers (upper bound). By definition, the Lipschitz filter accepts the gradients

computed by n− f
n of the total workers with empirical Lipschitzness below K̂t . If every worker is

honest, then the filter accepts gradients from n− f
n of the workers. We thus get the tightness of the

upper bound for the slowdown of Kardam. For the lower bound, the Byzantine workers can know

that putting a gradient proposition above K̂t will get them filtered out and the parameter server

will end up using only the honest workers available. The optimal attack would therefore be to

slow down the server by getting tiny-Lipschitz gradients accepted while preventing the model

from actually changing. This way, the Byzantine workers will make the server filter gradients from

a total of f out of the n − f honest workers, leaving only n −2 f useful workers for the server.

Theorem 2 (Byzantine resilience in asynchrony). Let A be any distributed SGD scheme. If the

maximum successive gradients that A accepts from a single worker and the maximum delay are

both unbounded, then A cannot be Byzantine-resilient when f ≥ 1.

Proof. Without any restrictions, the parameter server could only accept successive gradients from

the same Byzantine worker (without getting any update from any honest worker), for example,

if the Byzantine worker is faster than any other worker (which is true by the definition of a

Byzantine worker and by the fact that delays on (honest) workers are unbounded). This way,

the Byzantine worker can force the parameter server to follow arbitrarily bad directions and

never converge. Hence, without any restriction on the number of gradients from the workers, we

prove the impossibility of asynchronous Byzantine resilience. Readers familiar with distributed

computing literature might note that if asynchrony was possible for Byzantine SGD without

restricting the number of successive gradients from a single worker, this could be used as an

abstraction to solve asynchronous Byzantine consensus (that is impossible to solve [66]). This

provides another proof (by contradiction) for our theorem.

Given Theorem 2 and the objective of making Kardam Byzantine-resilient in an asynchronous

54

5.3. Kardam

environment (i.e., while letting workers be arbitrarily delayed), we introduce the frequency filter.

Frequency filter. The goal of this filter is to limit the number of successive gradients 3 from a

single worker to a value of f , thus not allowing the Byzantine workers to prevent honest workers

from updating the model. Consider L as the list of workers who computed the last 2 f accepted

gradients. Assume that the candidate gradient gq passes the Lipschitz filter. The frequency filter

adds worker q at the end of L (i.e., at position L[2 f +1] = q). If adding this candidate gradient gq

makes any set of workers of size f appear more than f times in L, then q is rejected, otherwise,

q is accepted. For each worker p, the number of times p appeared in L is denoted by np . The

frequency filter accepts a gradient from worker p if the following holds:
∑

p∈θ np ≤ f , where θ

denotes the set of f workers with the f maxima of {np }n
p=1. The time complexity of the frequency

filter is O(2 f +1) to compute {np }n
i=1 (going through the list L of size 2 f +1), in addition to O(f n)

to find the f maxima among {np }n
i=1.

Lemma 3 (Limit of successive gradients). The frequency filter ensures that any sequence of length

2 f +1 consequently accepted gradients contains at least f +1 gradients computed by honest workers.

Proof. Given any sequence of 2 f +1 consequently accepted gradients (L), we denote by S the set

of workers that computed these gradients. The frequency filter guarantees that any f workers in

S computed at most f gradients in L. At most f workers in S can be Byzantine, thus at least f +1

gradients in L are from honest workers.

Given asynchrony (unbounded delays), we do not assume any upper bound on the norm of the

model, the norm of the gradients or the values of the cost function (regularization schemes can

make the loss grow arbitrarily and thereby the gradients norms). However, we assume (as in [23])

that the cost function is lower bounded by a positive scalar. This assumption holds for all the

standard cost functions that are at least lower bounded by zero (e.g., square loss, cross-entropy or

any norm-based cost). We denote Kar by the sequence of gradients accepted (i.e., not filtered) by

Kardam, and by Kart the gradient accepted by Kardam in epoch t .

Theorem 3 (Correct cone and bounded statistical moments). If N > 3 f +1 then for any t ≥ tr (we

show that tr ∈O(1
K
p

|ξ|) where |ξ| is the batch-size of honest workers):

E(‖Kart‖r) ≤ A′
r +B ′

r ‖xt‖r for any r=2, 3, 4 and

〈E(Kart),∇Qt 〉 =Ω(1−
p

dσ

‖∇Q(xt)‖)‖∇Q(xt)‖2.

Expectations are on any randomness up to time t conditioned on the past.

We begin by providing a proof sketch for readers who are only interested by the general intuitions.

3One open problem left in our work is the extent to which this filter is too harsh for asynchronous schemes. For
instance, it can at least lead to a randomly shuffled round-robin schedule.

55

Chapter 5. Kardam: Asynchronous Byzantine Gradient Descent

Figure 5.2 – If
∥∥∥EKarlp −∇Q(xt)

∥∥∥≤ (1+ε)
p

dσ+ε′ then 〈EKarlp ,∇Q(xt)〉 is upper bounded by

(1− sinα)‖∇Q(xt)‖2 where sinα= (1+ε)
p

dσ+ε′
‖∇Q(xt)‖ .

Proof. (Sketch) The frequency filter guarantees that there is always an update from a honest

worker in any sequence of f +1 updates (Lemma 3), i.e., at any time t , there is an interval t − i

where i < f +1 such that the vector that passed the Lipschitz filter is a vector sent by an honest

worker (therefore an unbiased estimation of the true gradient). With this in mind, and using

triangle inequalities over a series of (at most f) previous updates, we prove inequalities on the

r -th statistical moments of Kar. Those inequalities are in turn plugged into the requirements for

the (almost sure) global confinement argument of [23].

With the guarantees of almost sure global confinement, and using the Liptschitz properties, and

(again) the existence of honest (unbiased) workers in the “recent past” as explained above, we

find the lower-bound of the scalar product between the two desired vectors 〈E(Kart),∇Qt 〉 when

their distance is small enough compared to their own norms (Figure 5.2). This finally shows

that Kardam remains in a cone of an angle α that is upper bounded by arcsin((1+ε)
p

dσ+ε′
‖∇Q(xt)‖) with

appropriately chosen ε and ε′.

We now provide the complete proof.

Proof. First of all, it is important to note that a Byzantine worker can lie about its Lipschitz

coefficient without being able to fool the parameter server. The median Lipschitz coefficient is

always bounded between the Lipschitz coefficients of two correct worker, and it is against that

the gradient of the Byzantine worker would be tested to be filtered out if harmful and accepted if

useful.

We start the proof of Theorem 3 by proving that Kardam acts as self-stabilizing mechanism that

guarantees the global confinement of the parameter vector using the following remark.

Lemma 4 (Global Confinement). Let xt the sequence of parameter models visited by Kar. There

exist a constant D > 0 such that the sequence xt almost surely verifies ‖xt‖ ≤ D when t 7→∞.

Proof. (Global Confinement) Lemma 4 can be proven by using Remark 1 and the proof of con-

finement in [23].

Remark 1. Let r = 2,3,4. There exist A′
r ≥ 0 and B ′

r ≥ 0 such that:

(∀t ≥ 0)E‖Kart (xt ,ξ)‖r ≤ A′
r +B ′

r ‖xt‖r

56

5.3. Kardam

Proof. (Remark 1). Note that if Kart (xt) comes from a honest worker, we have Kart (xt ,ξ) =
G(xt ,ξ) therefore, (∀t ≥ 0)E‖Kart (xt ,ξ)‖r ≤ Ar +Br ‖xt‖r since by assumption on the estimator G

used by honest workers, we have

(∀x ∈R)E‖G(x,ξ)‖r ≤ Ar +Br ‖x‖r .

Let t > 2 f +1 be any epoch at the parameter server. Because of the Lipschitz filter (passed by

Kart), there exists i ≤ f such that Kart−i (xt−i) comes from an honest worker. Therefore, ‖xt−i‖ ≤
‖xt‖+∑i

l=1γ
′
t−l Kart−l (xt−l) ≤ ‖xt‖+∑i

l=1γt−l ·min(Kar0,‖Kart−l (xt−l)‖)
‖Kart−l (xt−l)‖ ·Kart−l (xt−l) ≤ f ·Kar0+‖xt‖.

So, for r = 2,3,4 there exists Cr such that ‖xt−i‖r ≤ (f ·Kar0)r +Cr ‖xt‖r .

According to the Lipschitz criteria:

‖Kart (xt)‖
≤ Kt (‖xt‖+‖xt−1‖)+‖Kart−1(xt−1)‖

≤
i∑

l=1
Kt−l+1(‖xt−l+1‖+‖xt−l‖)+‖Kart−i (xt−i)‖

≤ 2K
i∑

l=0
‖xt−l‖+‖Kart−i (xt−i)‖

≤ 2K
i∑

l=0

i−1∑
s=l

[γ′t−s · ‖Kart−s(xt−s)‖+‖xt−i‖]+‖Kart−i (xt−i)‖

≤ 2K
i∑

l=0

i−1∑
s=l

γt−s‖Kart−s(xt−s)‖ · min(Kar0,‖Kart−s(xt−s)‖)

‖Kart−s(xt−s)‖
+2 f K ‖xt−i‖+‖Kart−i (xt−i)‖

≤ K f (f −1)Kar0 +2 f K ‖xt−i‖+‖Kart−i (xt−i)‖
= D +E‖xt−i‖+F‖Kart−i (xt−i)‖

Where K is the global Lipschitz. (We do not need to know the value of K to implement Kar but

we use it for the proofs.) Taking both side of the above inequality to the power r , we have the

following for r = 2. . .4 for constants Dr , Er and Fr :

‖Kart (xt)‖r ≤ Dr +Er · ‖xt−i‖r +Fr ·E‖Kart−i (xt−i)‖r

As Kart−i (xt−i) comes from an honest worker, using the Jensen inequality and the assumption

on honest workers. We can take the expected value on ξ.

57

Chapter 5. Kardam: Asynchronous Byzantine Gradient Descent

E‖Kart (xt)‖r

≤ Dr +Er · ‖xt−i‖r +Fr [Ar +Br ‖xt−i‖r]

= Dr +Fr Ar +‖xt−i‖r [Er +Fr Br]

≤ Dr +Fr Ar + [(f ·Kar0)r +Cr ‖xt‖r] · [Er +Fr Br]

= Dr +Fr Ar + f r Karr
0[Er +Fr Br]+ [Er +Fr Br] · ‖xt‖r

We denote by A′
r = Dr +Fr Ar + (f ·Kar0)r · [Er +Fr Br] and B ′

r = Er +Fr Br , we obtain:

E‖Kart (xt)‖r ≤ A′
r +B ′

r ‖xt‖r

Remark 1 shows that with Kar, all the assumptions of Bottou [23] (Section 5.2) are holding even in

the presence of Byzantine workers, and thus, the global confinement of xt stated in Lemma 4.

Remark 1 have proved the first part of Theorem 3 To continue the proof of this Theorem, the

goal is to find a lower bound on the scalar product between Kardam and the real gradient of

the cost. This is achieved via an upper bound on: ‖EKart −∇Qt (xt)‖. Let p the worker whose

gradient estimation gp was selected by Kardam to be the update for epoch t at the parameter

server. According to Lemma 3, considering the latest 2 f +1 timestamps, at least f +1 of updates

came from honest workers. Hence, there exists i < f such that, Kart−i came from an honest

worker. Hence, EKart−i =∇Qt−i . By applying the triangle inequality twice, we have:

‖Kart −∇Q(xt)‖ ≤ ‖Kart −Kart−i‖
+‖Kart−i −∇Q(xt−i)‖
+‖∇Q(xt−i)−∇Q(xt)‖

We know:

‖Kart−i −Kart‖ ≤
1∑

k=i
‖Kart−k −Kart−k+1‖ ≤ K

i∑
k=1

‖xt−k+1 −xt−k‖

≤ K
i∑

k=1
γt−k‖Kart−k‖ ≤ i ·K ·γt−i · ‖Kar‖max(t ,i)

where, ‖Kar‖max(t ,i) is the upper-bound on the norm of Kar in the list from t − i to t −1. Since

i < f , we have ‖Kart−i −Kart‖ ≤ f Kγt−i‖Kar‖max(t ,i). Since xt is globally confined (Lemma 2),

by continuous differentiability of Q, so will be ‖∇Q(xt ,i)‖, therefore f K ‖Kar‖max(t ,i) is bounded,

and multiplies γt−i in the right hand side of the last inequality, and we know from the hypothesis

on the learning rate that limt→∞γt = 0 (sequence of summable squares, therefore goes to zero).

58

5.3. Kardam

Since i < f (and obviously, f , as a global variable, is independent of t), then we also have

limt→∞γt−i = 0. This means that for every ε > 0, eventually, the left hand-side of the above

inequality is bounded by ε‖Kart−i −∇Q(xt−i)‖, more precisely, since γt is typically O(1
t), this will

hold after tr such that tr =Ω(1
εK).

By replacing in Formula 5.3.1, we get:

‖Kart −∇Q(xt)‖ ≤ (1+ε)‖Kart−i −∇Q(xt−i)‖+‖∇Q(xt−i)−∇Q(xt)‖

≤ (1+ε)‖Kart−i −∇Q(xt−i)‖+
i∑

s=1
Kt−sγt−s‖∇Q(xt−s)‖

≤ (1+ε)‖Kart−i −∇Q(xt−i)‖+ f ·K ·γt−i · ‖∇Q‖max(t ,i).

Where Kt−s is the real local Lipschitz coefficient of the loss function at epoch t − s. Let j =
min(

p
dσ
2 ,‖∇Q(xt)‖−p

dσ), C = j

2ε
p

dσ
, ε′ = j

2.C . As limt→∞γt = 0 and ‖∇Q‖max(t ,i) is bounded,

there exist a time after which, the above quantity can be made bounded as

‖Kart −∇Q(xt)‖ ≤ (1+ε)‖Kart−i −∇Q(xt−i)‖+ε′.

And hence:

‖E(Kart)−∇Q(xt)‖ ≤ E(‖Kart −∇Q(xt)‖)

≤ (1+ε)E(‖Kart−i −∇Q(xt−i)‖)+ε′.

since Kart−i comes from a correct worker, we have:

E(‖Kart−i −∇Q(xt−i)‖) ≤
p

dσ

Therefore, ‖E(Kart)−∇Q(xt)‖ ≤ (1+ε)
p

dσ+ε′. Consequently, Kardam only selects vectors that

live on average in the cone of radius α around the true gradient, where α is given by:

sin(α) = (1+ε)
p

dσ+ε′
‖∇Q(xt)‖ . (as long as ‖∇Q(xt)‖ > (1+ε)

p
dσ+ε′, this has a sense)

Note:

• The
p

d in ‖∇Q(xt)‖ >p
dσ is not a harsh requirement, we are using the conventional nota-

tion where
p

dσ is the upper bound on the variance, σ should be seen as the “component-

wise” standard deviation, therefore, the norm of a non-trivial gradient is naturally larger

than the vector-wise standard deviation of its estimator, which is typically
p

dσ.

• As long as the true gradient has a nontrivial meaning (it is larger than the standard deviation

of its correct estimators), α is strictly bounded between −π
2 and π

2 , which means that as

59

Chapter 5. Kardam: Asynchronous Byzantine Gradient Descent

long as there is no convergence to null gradients, Kardam is selecting vectors in the correct

cone around the true gradient. Most importantly, this angle shrinks to zero when the

variance is too small compared to the norm of the gradient, i.e., with large batch-sizes,

Kardam boils down to be an unbiased gradient estimator. However, we only require the

“component-wise” condition.

In fact, as long as ‖∇Q(xt)‖ > p
d .σ, we can consider small enough ε and ε′ such that D1 =

(1+ 3
4C)

p
dσ

‖∇Q(xt)‖ , D2 = 1
C + C−1

C

p
dσ

‖∇Q(xt)‖ , and sin(α) = min(D1,D2) < 1. This indeed guarantees that

α< π
2 , moreover, it is enough to take C >> ∇Q(xt)‖p

dσ
and α would satisfy sin(α) ≈

p
dσ

‖∇Q(xt)‖ .

Actually, in a list of L previous selected vectors, more than half of the vectors are from correct

workers. (progress is made: liveness)

Consider a sublist of L from Li to L j . At the time of adding a worker in L j , the frequency criteria

was checked for the new addition to L. The active table at that time assure that in any new sublist

of L, especially L j
i), any f workers appear at most j−i

2 times. As the number of Byzantine workers

is maximum f . in sublist L j
i , the Byzantine workers did less than half of the updates. In other

words, at least half of the updates come from honest workers. This proves the safety of Kardam.

The Byzantine workers may stop sending updates or send incorrect updates. In the case where

the Byzantine workers stop sending updates, Kardam still guarantees liveness. The reason is that

there are at least 2 f +1 honest workers who update the model.

5.3.2 Staleness-aware Dampening Component

We now present the component of Kardam that enables staleness-aware asynchronous updates

for the ML model. For the sake of clarity, we denote the time by t ′ , t − tr (Theorem 3). We

introduce the M-soft-async protocol where the server updates the model only after receiving M

gradients. The update rule for Kardam is the following.

xt+1 = xt −γt Kart

= xt −γt
∑

[G(xl ;ξm),l]∈Gt

Λ(τt l) ·G(xl ;ξm) (5.1)

where G(xl ;ξm) denotes the gradient w.r.t the model parameters xl on the mini-batch ξm . We

assume that every gradient passes the filtering scheme (Section 5.3.1) at the epoch t . Kardam

requires |Gt | = M gradients for each update.

The difference between the standard SGD update rule and our Equation 5.1 illustrates how Kar-

dam handles asynchronous updates. Kardam dampens each update depending on its staleness

value (τt l). Kardam employs a decay functionΛ(τt l) such that 0 ≤Λ≤ 1 to derive the dampening

factor for each distinct value of staleness.

Definition 5 (Dampening function). We employ a bijective and strictly decreasing dampening

60

5.3. Kardam

function τ 7→Λ(τ) withΛ(0) = 1.4 Note that every bijective function is also invertible, i.e.,Λ−1(ν)

exists for every ν in the range of theΛ function.

LetΛt be the set ofΛ values associated with the gradients at timestamp t .

Λt = {Λ(τt l) | [g , l] ∈Gt }

We partition the set Gt of gradients at timestamp t according to theirΛ-value as follows.

Gt =
⊔
λ∈Λt

Gtλ

Gtλ = {[g , l] ∈Gt |Λ(τt l) =λ}

Therefore, the update equation can be reformulated as follows.

xt+1 = xt −γt
∑
λ∈Λt

λ · ∑
[G(xl ;ξ),l]∈Gtλ

G(xl ;ξ)

Definition 6 (Adaptive learning rate). Given the Lipschitz constant K , the total number of times-

tamps T , and the total number of gradients in each timestamp as M, we define γt as follows.

γt =
√

Q(x1)−Q(x∗)

K T Mdσ2︸ ︷︷ ︸
γ

· M∑
λ∈Λt

λ|Gtλ|︸ ︷︷ ︸
µt

(5.2)

where γ is the baseline component of the learning rate and µt is the adaptive component that

depends on the amount of stale updates that the server receives at timestamp t . Moreover,

µt incorporates the total staleness at any timestamp t based on the staleness coefficients (λ)

associated with all the gradients received in timestamp t . Q(x∗) (loss value at the optimum) can

be assumed to be equal to zero.

Remark 2 (Correct cone). As a consequence of passing the filter and of Theorem 3, G satisfies the

following.

〈EξG(x;ξ),∇Q(x)〉 >Ω((‖∇Q(xt)‖−
p

dσ)‖∇Q(xt)‖)

The theoretical guarantee for the convergence rate of Kardam depends on Assumptions 2,4 and

Remark 2. These assumptions are weaker than the assumptions for the convergence guarantees

in [183, 85]. In particular, due to unbounded delays and the potential presence of Byzantine

workers, we only assume the unbiased gradient estimator G(·) for honest workers (Assumption 1).

We instead employ (Remark 2) the fact that G(·) and ∇Q(x) make a lower bounded angle together

(and subsequently a lower bounded scalar product) for all the workers. The classical unbiased

assumption is more restrictive as it requires this angle to be exactly equal to 0, and the scalar

product to be equal to ‖∇Q(x)‖ · ‖G(x)‖. Most importantly, we highlight the fact that those

4IfΛ(0) = 1, then there is no decay for gradients computed on the latest version of the model, i.e., τt l = 0.

61

Chapter 5. Kardam: Asynchronous Byzantine Gradient Descent

assumptions are satisfied by Kardam, since every gradient used in this section to compute the

Kar update has passed the Lipschitz filter of the previous section.

Theorem 4 (Convergence guarantee). We express the convergence guarantee in terms of the ergodic

convergence, i.e., the weighted average of the L2 norm of all gradients (||∇Q(xt)||2). Using the

above-mentioned assumptions, and the maximum adaptive rate µmax = max{µ1, . . . ,µt }, we get the

following bound on the convergence rate.

1

T

T∑
t=1

E‖∇Q(xt)‖2 ≤ (
2+µmax +γK Mχµmax

)
γK dσ2

+dσ2 +2DKσ
p

d +K 2D2

under the prerequisite that

∑
λ∈Λt

λ2|Λt |
{

Kγ2
t +

∞∑
s=1

((5.3)

∑
ν∈Λt+s

γt+sK 2ν|Gt+s,ν|Λ−1(ν)I(s≤Λ−1(ν))γ
2
t)

}
≤∑
λ∈Λt

γtλ

|Gtλ|

where the Iverson indicator function is defined as follows.

I(s≤∆) =
1 if s ≤∆

0 otherwise.

It is important to note that the prerequisite (Inequality 5.3) holds for any decay functionΛ (since

λ< 1 holds by definition) and for any standard learning rate schedule such that γt < 1. Various

SGD approaches [183, 108, 180, 85] provide convergence guarantees with similar prerequisites.

Proof. We provide the convergence guarantee in terms of ergodic convergence—the weighted

average of the L2 norm of all gradients (||∇Q(xt)||2). For the sake of clarity in the proofs, if X is a

set, we also denote its cardinality by X .

Lemma 5. Assume that, for all epochs 1 ≤ t ≤ T

∑
λ∈Λt

{
Kγ2

t |Λt |+
∞∑

s=1

∑
ν∈Λt+s

γt+sK 2ν|Gt+s,ν|Λ−1(ν)I(s≤Λ−1(ν))γ
2
t |Λt |

}
λ2

≤ ∑
λ∈Λt

γtλ

|Gtλ|

62

5.3. Kardam

Then, the ergodic convergence rate is bounded as follows.

T∑
t=1

(
γt

∑
λ∈Λt

λGtλ

)
E||∇Q(xt)||2

T∑
t=1

γt
∑

λ∈Λt

λGtλ

≤ 2(Q(x1)−Q(x∗))
T∑

t=1
γt

∑
λ∈Λt

λGtλ

+

(
T∑

t=1
Kγ2

t
∑

λ∈Λt

λ2Gtλ+γt K 2 ∑
λ∈Λt

λGtλ

t−1∑
j=t−Λ−1(λ)

γ2
j

∑
λ′∈Λ j

λ′2G jλ′

)
·d ·σ2

T∑
t=1

γt
∑

λ∈Λt

λGtλ

Remark 3. Given a list of vectors u1, . . . ,uN , we implicitly use the following inequality in our proof.∥∥∥∥∥ N∑
i=1

ui

∥∥∥∥∥
2

≤ N ·
N∑

i=1
‖ui‖2 (5.3)

Proof. For the sake of concision, for every m = [g , l] ∈Gtλ, we denote by ξ[t] the set of ξ values that

the server sends during epoch t . Let ξ[t ,∗6=m] denote the set ξ[t] minus the variable ξ corresponding

to message m. Additionally, G[tm],G(xt−τt l ;ξ) and ∇Q[tm],∇Q(xt−τt l).

A second order expansion of Q, followed by the application of the Lipschitz inequality to ∇Q

yields the following.

Q(xt+1)−Q(xt) ≤ 〈∇Q(xt), xt+1 −xt 〉+ K

2
‖xt+1 −xt‖2

≤−γt
∑
Λt

λGtλ〈∇Q(xt),
1

Gtλ

∑
Gtλ

G[tm]〉+ K

2
γ2

t

∥∥∥∥∥∑
Λt

λ
∑
Gtλ

G[tm]

∥∥∥∥∥
2

Taking the expectation and using the correct cone property, we have:

Eξ[t]Q(x(t+1))−Q(xt) ≤−γt
∑
Λt

λGtλ〈∇Q(xt),
1

Gtλ

∑
Gtλ

∇Q[tm]〉

+ K

2
γ2

t Eξ[t]

∥∥∥∥∥∑
Λt

λ
∑
Gtλ

G[tm]

∥∥∥∥∥
2

63

Chapter 5. Kardam: Asynchronous Byzantine Gradient Descent

Using 〈a,b〉 = ||a||2+||b||2−||a−b||2
2 , we obtain the following inequality.

Eξ[t]Q(xt+1)−Q(xt) ≤−γt

2

∑
Λt

λGtλ ‖∇Q(xt)‖2

− γt

2

∑
Λt

λGtλ

∥∥∥∥∥ 1

Gtλ

∑
Gtλ

∇Q[tm]

∥∥∥∥∥
2

+ Kγ2
t

2
Eξ[t]

∥∥∥∥∥∑
Λt

λ
∑
Gtλ

G[tm]

∥∥∥∥∥
2

︸ ︷︷ ︸
S1

+ γt

2

∑
Λt

λGtλ

∥∥∥∥∥∇Q(xt)− 1

Gtλ

∑
Gtλ

∇Q[tm]

∥∥∥∥∥
2

︸ ︷︷ ︸
S2

We now define two terms S1 and S2 as follows.

S1 = Eξ[t]

∥∥∥∥∥∑
Λt

λ
∑
Gtλ

(G[tm]−∇Q[tm])+∑
Λt

λ
∑
Gtλ

∇Q[tm]

∥∥∥∥∥
2

= Eξ[t]

∥∥∥∥∥∑
Λt

λ
∑
Gtλ

(G[tm]−∇Q[tm])

∥∥∥∥∥
2

+Eξ[m]

∥∥∥∥∥∑
Λt

λ
∑
Gtλ

∇Q[tm]

∥∥∥∥∥
2

+2Eξ[t]〈
∑
Λt

λ
∑
Gtλ

(G[tm]−∇Q[tm]),
∑
Λt

λ
∑
Gtλ

∇Q[tm]〉

= Eξ[t]

∥∥∥∥∥∑
Λt

λ
∑
Gtλ

(G[tm]−∇Q[tm])

∥∥∥∥∥
2

+Eξ[t]

∥∥∥∥∥∑
Λt

λ
∑
Gtλ

∇Q[tm]

∥∥∥∥∥
2

+2〈∑
Λt

λ
∑
Gtλ

(∇Q[tm]−∇Q[tm]),
∑
Λt

λ
∑
Gtλ

∇Q[tm]〉

= Eξ[t]

∥∥∥∥∥∑
Λt

λ
∑
Gtλ

(G[tm]−∇Q[tm])

∥∥∥∥∥
2

︸ ︷︷ ︸
A1

+Eξ[t]

∥∥∥∥∥∑
Λt

λ
∑
Gtλ

∇Q[tm]

∥∥∥∥∥
2

︸ ︷︷ ︸
A2

Regarding A2, applying Equation 5.3 yields the following inequality.

A2 ≤ Eξ[t]Λt ·
∑
Λt

λ2‖∑
Gtλ

∇Q[tm]‖2 ≤Λt ·
∑
Λt

λ2Eξ[t]‖
∑
Gtλ

∇Q[tm]‖2

64

5.3. Kardam

Regarding A1, the term ‖. . .‖2 is expressed as a scalar product and expanded as follows.

A1 = Eξ[t]

∑
λ,λ′∈Λt

(∑
m∈Gtλ,
m′∈Gtλ′

λλ′ · 〈G[tm]−∇Q[tm],G[tm′]−∇Q[tm′]〉
)

= diagonal +off-diagonal

= ∑
λ∈Λt

∑
m∈Gtλ

λ2 ·Eξ[t]‖G[tm]−∇Q[tm]‖2 +Eξ[t ,m′ 6=m]

(
Eξ〈G[tm]−∇Q[tm],G[tm′]−∇Q[tm′]〉)

≤∑
Λt

λ2Gtλ ·d ·σ2 +d ·σ2 +2DKσ
p

d +K 2D2

The sum over the off-diagonal terms (i.e., (λ,m) 6= (λ′,m′)) is bounded by d ·σ2+2DKσ
p

d+K 2D2.

Moreover, if λ 6= λ′, then m 6= m′ because Gtλ and Gtλ′ are disjoint sets and thus for any off-

diagonal pair (λ,m), (λ,m′) we have m 6= m′.

Eξ[t]〈G[tm]−∇Q[tm],G[tm′]−∇Q[tm′]〉
= Eξ[t ,m′ 6=m]

(
Eξ〈G[tm]−∇Q[tm],G[tm′]−∇Q[tm′]〉)

= Eξ[t ,m′ 6=m]
〈EξG[tm]−∇Q[tm],G[tm′]−∇Q[tm′]〉

= Eξ[t ,m′ 6=m]
(〈EξG[tm],G[tm′]〉−〈∇Q[tm],G[tm′]〉−〈EξG[tm],∇Q[tm′]〉+〈∇Q[tm],∇Q[tm′]〉)

≤ Eξ[t ,m′ 6=m]
(‖EξG[tm]‖ ·‖G[tm′]‖+‖∇Q[tm]‖ ·‖G[tm′]‖

+‖EξG[tm]‖ ·‖∇Q[tm′]‖+‖∇Q[tm]‖ ·‖∇Q[tm′]‖)

≤ d ·σ2 +2DKσ
p

d +K 2D2

Hence, we obtain the following inequalities for S1 and S2.

S1 ≤
∑
Λt

λ2Gtλ ·d ·σ2 +Λt ·
∑
Λt

λ2Eξ[t]‖
∑
Gtλ

∇Q[tm]‖2 +d ·σ2 +2DKσ
p

d +K 2D2

S2 ≤
∥∥∥∥∥ 1

Gtλ

∑
Gtλ

∇Q(xt)−∇Q[tm]

∥∥∥∥∥
2

Recall that, since m = [g , l] ∈ Gtλ, we have ∇Q[tm] = ∇Q(xt−τt l). By applying the Lipschitz

65

Chapter 5. Kardam: Asynchronous Byzantine Gradient Descent

inequality, we get:

S2 ≤ K 2‖xt −xt−Λ−1(λ)‖2

≤ K 2

∥∥∥∥∥ t−1∑
j=t−Λ−1(λ)

x j+1 −x j

∥∥∥∥∥
2

≤ K 2

∥∥∥∥∥ t−1∑
j=t−Λ−1(λ)

γ j
∑
ν∈Λ j

ν
∑
G jν

G[j m]

∥∥∥∥∥
2

≤ K 2

∥∥∥∥∥ t−1∑
j=t−Λ−1(λ)

γ j
∑
ν∈Λ j

ν
∑
G jν

(G[j m]−∇Q[j m])

∥∥∥∥∥
2

︸ ︷︷ ︸
S3=‖a‖2

+K 2

∥∥∥∥∥ t−1∑
j=t−Λ−1(λ)

γ j
∑
ν∈Λ j

ν
∑
G jν

∇Q[j m]

∥∥∥∥∥
2

︸ ︷︷ ︸
S4=‖b‖2

+2K 2〈a,b〉

Hence, we obtain the following inequalities for S3 and S4.

Eξ[j],...S3 ≤
t−1∑

j=t−Λ−1(λ)

γ2
j

∑
Λ j

ν2G jν ·d ·σ2 (cross-products vanish)

Eξ[j],...S4 ≤Λ−1(λ)
t−1∑

j=k−Λ−1(λ)

γ2
jΛ j

∑
Λ j

ν2E

∥∥∥∥∥∑
G jν

∇Q[j m′]

∥∥∥∥∥
2

(by Eq. 5.3).

Moreover, we have E∗〈a,b〉 = 〈E∗a,b〉 = 0.

ES2 ≤ K 2
t−1∑

j=t−Λ−1(λ)

γ2
j

∑
Λ j

ν2G jν ·d ·σ2

+K 2Λ−1(λ)
t−1∑

j=t−Λ−1(λ)

γ2
jΛ j

∑
Λ j

ν2E

∥∥∥∥∥∑
G jν

∇Q[j m′]

∥∥∥∥∥
2

Eξ[t]Q(xt+1)−Q(xt) ≤−γt

2

∑
Λt

λGtλ ‖∇Q(xt)‖2

+∑
Λt

(
Kγ2

tΛtλ
2

2
− γtλ

2Gtλ

)
E

∥∥∥∥∥∑
Gtλ

∇Q[tm]

∥∥∥∥∥
2

+
(

Kγ2
t

2

∑
Λt

λ2Gtλ+
γt K 2

2

∑
Λt

λGtλ

t−1∑
j=t−Λ−1(λ)

γ2
j

∑
Λ j

ν2G jν

)
·d ·σ2

+ γt K 2

2

∑
Λt

λGtλΛ
−1(λ)

t−1∑
j=t−Λ−1(λ)

γ2
jΛ j

∑
Λ j

ν2E

∥∥∥∥∥∑
jν

∇Q[j m′]

∥∥∥∥∥
2

66

5.3. Kardam

Summing for t = 1, . . . ,T , we arrive at the following inequality.

EQ(xt+1)−Q(x1) ≤−∑
t

1

2

(
γt

∑
Λt

λGtλ

)
‖∇Q(xt)‖2

+∑
t

(
Kγ2

t

2

∑
Λt

λ2Gtλ+
γt K 2

2

∑
Λt

λGtλ

t−1∑
j=t−Λ−1(λ)

γ2
j

∑
Λ j

ν2G jν

)
·d ·σ2

+∑
t

∑
Λt

(
Kγ2

tΛtλ
2

2
− γtλ

2Gtλ

)
E

∥∥∥∥∥∑
Gtλ

∇Q[tm]

∥∥∥∥∥
2

+∑
t

(∞∑
s=1

∑
Λt+s

γt+sK 2νGt+s,νΛ
−1(ν)I(s ≤Λ−1(ν))

)
γtΛtλ

2

2
E

∥∥∥∥∥∑
Gtλ

∇Q[tm]

∥∥∥∥∥
2

The last term comes from the following observation.

T∑
t=1

∑
Λt

∞∑
s=1

Qλ
t Zt−s I(s ≤Λ−1(λ)) =

∞∑
s=1

T∑
t=1

∑
Λt

Qλ
t Zt−s I(s ≤Λ−1(λ))

=
∞∑

s=1

T−s∑
l=1−s

∑
Λl+s

Qλ
l+s Zl I(s ≤Λ−1(λ)) =

∞∑
s=1

T∑
t=1

∑
Λt+s

Qλ
t+s Zt I(s ≤Λ−1(λ))

=
T∑

t=1

(∞∑
s=1

∑
Λt+s

Qλ
t+s I(s ≤Λ−1(λ))

)
Zt

Since the two last terms sum to a non-positive value, we arrive at the following inequality.

∑
t

1

2

(
γt

∑
Λt

λGtλ

)
‖∇Q(xt)‖2 ≤Q(x1)−Q(x∗)

+∑
t

(
Kγ2

t

2

∑
Λt

λ2Gtλ+
γt K 2

2

∑
Λt

λGtλ

t−1∑
j=t−Λ−1(λ)

γ2
j

∑
Λ j

ν2G jν

)
·d ·σ2 +O(

1

K ·√|ξ|
)

We first recall Definition 6, which introduces the adaptive learning rate schedule, before we prove

Theorem 4 via employing Lemma 5. Due to the choice of the learning rate (Definition 6), the

inequality in Theorem 4 reduces to the following inequality.

1

T

T∑
t=1

E‖Q(xt)‖2 ≤ S5 +S6 +S7

67

Chapter 5. Kardam: Asynchronous Byzantine Gradient Descent

First, we obtain the following equality for S5.

S5 = 2(Q(x1)−Q(x∗))∑T
t=1γt

∑
λ∈Λt

λGtλ
= 2γ2K T M ·d ·σ2

γT M
= 2γK ·d ·σ2

Regarding S6, we obtain the following inequality.

S6 =
∑T

t=1 Kγ2
t
∑
λ∈Λt

λ2Gtλ∑T
t=1γt

∑
λ∈Λt

λGtλ
·d ·σ2 = Kγ2 ∑T

t=1µ
2
t
∑
λ∈Λt

λ2Gtλ

γT M
·d ·σ2

≤ Kγ2 ∑T
t=1µ

2
t
∑
λ∈Λt

λGtλ

γT M
·d ·σ2 (since λ2 ≤λ≤ 1)

≤ Kγ2T Mµmax

γT M
·d ·σ2 =µmaxγK ·d ·σ2

Finally, we obtain the following inequality for S7.

S7 =
∑T

t=1γt K 2 ∑
λ∈Λt

λGtλ
∑t−1

j=t−Λ−1(λ)γ
2
j

∑
λ′∈Λ j

λ′2M jλ′

γT M
·d ·σ2

≤
K 2γ3 ∑T

t=1µt
∑
λ∈Λt

λGtλ
∑t−1

j=t−Λ−1(λ)µ
2
j

∑
λ′∈Λ j

λ′2M jλ′

γT M
·d ·σ2

≤ K 2γ3 ∑T
t=1

∑
λ∈Λt

λGtλMΛ−1(λ)µmax

γT M
·d ·σ2

≤ K 2γ3 ∑T
t=1

∑
λ∈Λt

GtλMχµmax

γT M
·d ·σ2 ≤ K 2γ3T M 2χµmax

γT M
·d ·σ2

≤ γ2K 2Mχµmax ·d ·σ2

Hence, we prove the ergodic convergence rate.

1

T

T∑
t=1

E‖∇Q(xt)‖2 ≤ (
2+µmax +γK Mχµmax

) ·γK ·d ·σ2 +d ·σ2 +2DKσ
p

d +K 2D2

Theorem 5 (Convergence time complexity). Given any mini-batch size |ξ|, the number of gradients

M the server waits for before updating the model, and the total number of epochs T , the time

complexity for the convergence of Kardam is:

O

(
µmax√
T |ξ|M

+ χµmax

T
+dσ2 +2DKσ

p
d +K 2D2

)

68

5.3. Kardam

where χ denotes a constant such that for all τt l , the following inequality holds:

τt l ·Λ(τt l) ≤χ (5.4)

Theorem 5 highlights the relation between the staleness and the convergence time complexity.

This time complexity is linearly dependent on the decay bound (χ) and the maximum adaptive

rate (µmax).

We now prove Theorem 5 by employing Theorem 4 along with Definition 6.

Proof. Substituting the value of γ from Definition 6 in RHS of Theorem 4, we get the following.(
2+µmax +γK Mχµmax

) ·γK ·d ·σ2 +d ·σ2 +2DKσ
p

d +K 2D2

=O

(
µmax√

T · |ξ| ·M
+ χ ·µmax

T
+d ·σ2 +2DKσ

p
d +K 2D2

)

Note that σ=O(1/
√|ξ|) (Assumption 2) and therefore the bound is also dependent on n.

Remark 4 (Dampening comparison). Given two dampening functionsΛ1(τ) = 1
1+τ andΛ2(τ) =

exp(−α β
p
τ), and the convergence time complexity from Theorem 5, Λ2(τ) converges faster than

Λ1(τ) when β
e <α≤ ln(τ+1)

βpτ .

We also empirically highlight Remark 4 by comparing these two functions in Figure C.2 where

DYNSGD [85] employsΛ1 and Kardam employsΛ2.

Proof. (of Remark 4) From Inequality 5.4, we have the following forΛ1 andΛ2.

χ1 = max
τ

{
τ

τ+1

}
χ2 = max

τ

{
τ ·exp(−α β

p
τ)

}

The maximum value of {τ · exp(−α β
p
τ)} is

(
β

eα

)β
when τ =

(
β
α

)β
. We get that χ1 ≥ χ2 when the

following holds.
τ

τ+1
≥

(β
eα

)β
Hence, from the above inequality, we get the following.

τ≥ 1(
eα
β

)β−1

69

Chapter 5. Kardam: Asynchronous Byzantine Gradient Descent

Note that since τ> 0, we get
(

eα
β

)β > 1 which leads to the following lower bound on α.

α> β

e
(5.5)

Furthermore, for the µmax terms, we compare the values between the two dampening functions.

µ1 = max
τ

{
M∑

Λt
λ · |Gtλ|

}
= max

τ

{
M∑

τ
1
τ+1 · |Gtλ|

}
µ2 = max

τ

{
M∑

Λt
λ · |Gtλ|

}
= max

τ

{
M∑

τ exp(−α β
p
τ) · |Gtλ|

}

Hence, for µ1 ≥µ2, we need to show that 1
τ+1 ≤ exp(−α β

p
τ), i.e., τ+1 ≥ exp(α β

p
τ). The relation

holds for any α with the upper bound as follows.

α≤ ln(τ+1)
β
p
τ

(5.6)

From Inequalities 5.5 and 5.6, we get the following.

β

e
<α≤ ln(τ+1)

β
p
τ

One possible setting is β ≈ 1.85 when 1 ≤ τ ≤ 10, β ≈ 3.1 when 11 ≤ τ ≤ 33, and β ≈ 4 when

34 ≤ τ ≤ 75. Given these values of β and τ, Λ2(τ) has a smaller convergence time complexity

(Theorem 5) thanΛ1(τ). Hence,Λ2(τ) converges faster thanΛ1(τ).

5.4 Concluding Remarks

Kardam is, to the best of our knowledge, the first asynchronous distributed SGD algorithm that

tolerates Byzantine behavior. In the following, we discuss papers that either address asynchrony

or Byzantine behavior.

Asynchronous stochastic gradient descent. SGD is used widely in ML solutions due to its conver-

gence guarantees with low time complexity per update, low memory cost, and robustness against

noisy gradients. Several variants of SGD have been proposed to improve the convergence rate and

the robustness against noise. Stale-synchronous parallel [79, 41] or bulk-synchronous [184, 28]

variants typically target settings with limited staleness due to the limited performance variability

among the computing devices. Other approaches consider variance minimization by importance

sampling [3]. The theoretical guarantees underlying these approaches assume synchronous

70

5.4. Concluding Remarks

updates as well as a specific formula to compute a gradient norm on each sample, which is only

valid for multilayer perceptrons. The scheduler in [180] assumes all workers to be constantly

available, which makes the algorithm not applicable to our setting with Byzantine workers. [85]

recently introduced a stale-synchronous parallel (SSP) heterogeneity-aware algorithm. SSP al-

gorithms assume bounded staleness while Kardam guarantees convergence without any such

bound (i.e., asynchronous parallel). Additionally, Kardam provides the flexibility of choosing the

appropriate dampening function according to the expected staleness distribution while being

Byzantine tolerant and asynchronous. We show both theoretically (Remark 4) and empirically

(Figure C.1) that an exponential dampening function leads to a faster convergence. [89] recently

proposed an elegant optimizer to predict the optimal SGD variant based on the expected cost per

iteration and the estimated number of iterations. This estimation does not however account for

stale updates. Our convergence analysis for Kardam could be employed to estimate the number

of iterations for different dampening functions and hence to predict the optimal staleness-aware

SGD variant. (Lock-freedom) Kardam, put before lock-free solutions such as Hogwild [143] would

not break the convergence requirements (since the purpose of Kardam is to preserve them despite

Byzantine workers). However, Kardam and Hogwild do not commute.

Second order methods. These methods rely on computing the Hessian matrix instead of the

Lipschitz factor (Kardam filtering component). They were not specifically designed for Byzan-

tine resilience but can in fact be employed for that purpose. However, unlike our scalar-based

Lipschitz filter (O (d) time complexity that is already within the usual cost of an SGD update),

they suffer from the curse of dimensionality. Moreover, the parameter server does no less than

Ω(d 2) verifications on the Hessian matrix or on the gradient covariance matrix. In the presence

of a cheap (constant size K) heuristic, the parameter server will let the Byzantine worker with

a margin of d 2 −K open coordinates to use for an attack. Since d À K the heuristic alternative

clearly hampers Byzantine resilience.

The differentiability lenses of Lipschitz. A central piece of our work is to filter out suspected

vectors based on their (lack of) similar Lipschitzness with the median behavior. We prove that

this filtering idea is sound, given that a significant fraction (Ω(n− f
n)) of workers will almost surely

pass it and that Byzantine workers passing it are not harmful. In fact, leveraging the Lipschitzness

properties, in the differentiable context of gradient-based learning, is not an uncommon idea. It

was used in different contexts, for example, to understand fine-grained robustness, i.e robustness

of the model to internal errors at the level of neurons and/or weights, this was done in [49, 51,

55] proving a tight upper bound on the Lipschitz coefficient of neural networks, and deriving

an exponential dependency with the depth and a polynomial dependency with the Lipschitz

coefficient of the activation function used in each layer. In the same time, Lipschitzness was

leveraged to compute spectral bounds as in [37, 13] both of which observed the same exponential

dependency on the depth. In fact, manipulating differentiable objects is what makes the world of

learning fundamentally different from the usual world of distributed computing, where the focus

is on combinatorial and discrete structures. The differentiability of learning algorithms acts as a

source of relaxation to solve a distributed computing task (estimating a gradient, distributively)

in asynchrony and in the presence of Byzantine workers. The shorter the time it takes for Kardam

71

Chapter 5. Kardam: Asynchronous Byzantine Gradient Descent

to self-stabilize (tr) the better in term of the speed of convergence. As we prove in Theorem 3,

tr is shorter with a larger global Lipschitz coefficient, i.e., steeper cost functions. Nevertheless,

the cost function cannot be controlled. Yet, tr can be decreased by increasing the batch size

per worker, which is no surprise in learning theory (increasing the batch size is one of the most

unavoidable taxes [21, 26, 56] for increasing robustness). In practice, our experiments show no

significant impact from tr in the absence of actual Byzantine workers. In their presence, Kardam

remains, to the best of our knowledge, the first provably Byzantine-resilient option to run SGD

asynchronously.

An open problem is how to combine ideas from Bulyan and those from Kardam and secure

asynchronous SGD despite very high dimensional models and strong adversaries. Finally, the

Byzantine question remains unexplored in asynchronous machine learning beyond gradient-

based algorithms. We argue5 that the core idea we present –filtering on quantiles from the recent

past– could have applications to any approach where updates arrive with suspicion on either

staleness or malicious behavior.

5And we illustrate that in our ongoing work where the ideas of Kardam are applied on the models instead of the
gradients:
El-Mahdi El-Mhamdi; Rachid Guerraoui and Arsany Guirguis (2019). Fast Byzantine Machine Learning with Unreliable
Servers (under submission).

72

Part IIRobust Learning Machines

73

6 Preliminaries

6.1 Robustness Within the Model

Up to this chapter, this thesis dealt with robustness from a coarse-grained perspective: the unit

of failure is a worker, receiving its copy of the model and estimating gradients, based on either

local data or delegated data from a server. The nature of the model itself is not important, the

distributed system can be training models spanning a large range from simple regression to deep

neural networks. As long as this training is using gradient-based learning, our algorithms to

aggregate gradients, Krum, Bulyan and to filter them, Kardam, provably ensures convergence

when a simple majority of nodes are not compromised by an attacker.

A natural question to consider is the fine-grained view: is the model itself robust to internal

perturbations? In the case of neural networks, this question can somehow be tied to neuroscience

considerations: could some neurons and/or synapses misbehave individually without harming

the global outcome? We formulated this question in what follows and prove a tight upper bound

on the resulting global error when a set of nodes is removed or is misbehaving [51]. One of the

many practical consequences [55] of such fine-grained view is the understanding of memory

cost reduction trade-offs in deep learning. Such memory cost reduction can be viewed as the

introduction of precision errors at the level of each neuron and/or synapse [51].

Other approaches to robustness within the model tackled adversarial situations in machine learn-

ing with a focus on adversarial examples (during inference) [64, 166, 65] instead of adversarial

gradients (during training) as we did for Krum. Robustness to adversarial input can be viewed

through the fine-grained lens we introduced in [51], for instance, one can see perturbations of pix-

els in the inputs as perturbations of neurons in layer zero. It is important to note the orthogonality

and complementarity between the fine-grained (model/input units) and the coarse-grained

(gradient aggregation) approaches. Being robust, as a model, either to adversarial examples or

to internal perturbations, does not necessarily imply robustness to adversarial gradients during

training. Similarly, being distributively trained with a robust aggregation scheme such as Krum

does not necessarily imply robustness to internal errors of the model or adversarial input pertur-

bations that would occur later during inference. For instance, the theory we developed in the

75

Chapter 6. Preliminaries

previous chapters work is agnostic to the model being trained or the technology of the hardware

hosting it, as long as there are gradients to be aggregated.

In the remainder, we stop being agnostic about the learning machine that is being trained, assume

it to be a neural network and study its fine-grained robustness.

For didactic reasons, we present our results in an incremental manner. We consider first a network

with a single layer and focus on the crashes of neurons, then we generalize to a multilayer network

with Byzantine (arbitrary [100]) failures of neurons. We show that if the transmission capacity of

synapses is unlimited, no neural network can tolerate the presence of a single Byzantine neuron.

Inspired by results from biophysics [114] and neuroscience [6], we consider, however, synapses

with a limited transmission capacity, and give a bound on the Byzantine failures of neurons as a

function of this capacity. Finally we show how bounds on synapses failures can be derived from

bounds on neurons failures.

We discuss several applications of our results. The first is a bound on the effect on output

accuracy of reducing the computational precision per neuron. This effect has been recently

highlighted experimentally [88], however, without any theoretical explanation. The second is a

synchronization scheme that reduces the waiting time for neurons. The third is a quantification of

the trade-off between robustness and ease of learning. We also discuss how to adapt our bounds

to convolutional networks.

The rest of this part is organized as follows. In Section 6.2 we model a neural network as a

distributed system and state the robustness criteria. In Section 7.1 we prove an upper bound on

crash failures in the case of single-layer neural network. We use this proof as a starting point for

the generalization to Byzantine failures and given in Section 7.2, first for neurons and then for

synapses in the multilayer case. We discuss in Section 7.3 some applications of our results. We

conclude the chapter by discussing other models and future work.

76

6.2. Model

6.2 Model

6.2.1 Viewing a Neural Network as a Distributed System

We distinguish two main kinds of components of a neural network.

Neurons. These are the computing nodes (processes) of a neural network. They are either correct,

in which case they execute their assigned computation (see below), or they fail, in which case they

can stop computing (crash) or even send an arbitrary value (Byzantine faults). The failure of any

neuron is independent from the failure of any other. Neurons communicate via message-passing

[113] through synchronous point-to-point communication channels called synapses.

Figure 6.1 – A (feed forward) neural network (solid nodes and edges), with d = 3, L = 3, N2 = 3
and N1 = N3 = 4. Input and output nodes (dotted) are not considered as parts of the network,
but as its clients. For readability, only some synaptic weights are represented (bold blue). X =
(x1, . . . , xd).

Synapses. These are the communication channels connecting the neurons. Just like neurons,

synapses are either correct, in which case they transmit the signal provided to them (see below)

or fail, in which case they stop transmitting the signals, or they transmit arbitrary signals.The

failure of a synapse is also independent from that of other synapses and neurons. Synapses are

weighted1. The weight models the importance a neuron j gives to the signals emitted by a neuron

i at the other end of the synapse and is therefore also called the weight from neuron i to neuron

j . Faults at synapses can then be modeled as errors in the value of the weight: a crashed synapse

is viewed as weighted by value 0 (stops transmitting), whereas a Byzantine synapse transmits any

other value than the nominal value it is supposed to transmit, within its capacity.

Indeed, synapses have a bounded transmission capacity. This assumption is supported by two

important works in biophysics [114] and neuroscience [6]. Hence if a faulty neuron corrupts the

value it is supposed to send, the transmitted value is limited by the highest amount of electric

charge flow the synapse can transport to the next neuron.

Hypothesis 1. (Bounded transmission) There exists an upper bound C ∈ R∗+ such that, for any

input and any Byzantine neuron, the value transmitted by any synapse from that Byzantine neuron

is bounded by C in absolute value.

1The weights are determined by the initial learning phase, when training the network.

77

Chapter 6. Preliminaries

When Assumption 1 is not satisfied, we say that the network has unbounded transmission.

Neural Computation. The effectiveness of feed-forward neural networks relies on a fundamental

theorem [81] that guarantees their universal approximating power with as few2 as one single

layer.

Let ε be any positive real number (an accuracy level), and F any continuous function mapping

[0,1]d to [0,1]. The goal is to build an approximation of F with accuracy ε (as constructed in the

classical model of a multilayer perceptron [77]) which we abstract in the following description:

Neurons are distributed over a series of layers. We denote by L the number of layers, each

identified with index l and containing Nl neurons. Any neuron of layer l −1 is said to be on the

left of any neuron of layer l (layer l is on the right of layer l −1). Each neuron fires (broadcasts) a

signal (message) to all the neurons of the layer on its right. Neuron j at layer l receives the sum

given by s(l)
j of Equation 6.1, where y (l−1)

i and w (l)
j i denote respectively the output value at neuron

i of layer l −1, and the weight of the synapse from that same neuron to neuron j of the next layer

l . To define its own output y (l)
j , neuron j of layer l in turn injects the sum given by Equation 3

into a non-linear activation function, called a squashing function, ϕ, after adding a bias3.

Fneu(X) =
NL∑
i=1

w (L+1)
i y (L)

i (X) (6.1)

with y (l)
j =ϕ(s(l)

j)(l ≥ 1); y (0)
j (X) = x j (6.2)

and s(l)
j =

Nl−1∑
i=1

w (l)
j i y (l−1)

i (6.3)

Definition 7. (Approximation) We denote by A =C ([0,1]d , [0,1]) the space of continuous functions

mapping [0,1]d to [0,1]. Fneu as defined by Equation 6.1 is said to be a neural ε-approximation of

a target function F ∈ A if we have: ∀X ∈ [0,1]d : ‖F (X)−Fneu(X)‖ ≤ ε.

Universality. We recall the universality theorem for a single layer network4: Let d be any integer

and ϕ : R→ [0,1] a strictly-increasing continuous function, such that limx→−∞ϕ(x) = 0 and

limx→+∞ϕ(x) = 1. Given any function F ∈ A and ε> 0, there exist an integer N (ε), and a set of

coefficients (w (1)
j i)1≤i≤d

1≤ j≤N (ε) and (w (2)
i)1≤i≤N (ε) such that Fneu defined in Equation 6.1 is a neural

ε-approximation of F .

2Note that universality for L=1 is harder to obtain than for L > 1: fewer layers to approximate the target function.
3Following the usual notational convenience [77], we omit the bias in the computation model. This is done without

loss of generality, considering an additional constant neuron (value = 1) in each layer. During the learning phase –
when building the network – instead of learning its bias value, the neuron of layer l just learns the weight given to the
constant neuron of layer l −1. As this weight is always multiplied by 1, the weight serves as the bias, around which the
activation function is be centered.

4The interested reader can refer to the proof of [81].

78

6.2. Model

Figure 6.2 – The profile of a sigmoid function, centered around 0 and tuned with several values
of K. The larger is K, the steeper is the slope and the more discriminating is the activation
function at each neuron.

Activation Function. This function, denoted ϕ is the essence of the non-linearity of neural

networks. The universality theorem holds for any non-constant, bounded and monotonically

increasing activation function ϕ. Yet, two main popular choices for ϕ in machine learning

applications are the logistic function sigmoid given by: sigmoid(x) = 1
1+e−x and the hyperbolic

tangent tanh.

In this chapter, we only impose on ϕ the conditions of the universality theorem, and consider

that ϕ is K-Lipschitzian, meaning that K = sup |ϕ(x)−ϕ(y)
x−y |

x 6=y
exists and is a finite real number.

Moreover, K can be tuned. Consider for instance the commonly used function, sigmoid, this

function is 1
4 -Lipschitzian but can be tuned to be K-Lipschitzian (Figure 6.2) , by taking in this

case x 7→ϕ(4K x) as the K-tuned activation function. (The detailed derivation of the Lipschizness

of ϕ is given in a companion technical report [50].). In this chapter we consider, without loss of

generality, sigmoid as the choice for ϕ.

79

Chapter 6. Preliminaries

6.2.2 Failures and Robustness

Definition 8. (Failures) We say that a neuron i in layer l crashes when neuron i stops sending

values, in which case y (l)
i is considered5 to be equal to 0 by other neurons6. We say that neuron i is

Byzantine, when y (l)
i is arbitrary.

Definition 9. (Robustness) We say that a neural ε-approximation Fneu of a target function F

realized by N neurons tolerates N f ai l faulty neurons, if for any subset of neurons I f ai l ⊂ {1, · · · , N }

of size N f ai l , we can modify Fneu for the failing neurons according to Definition 8 and still ε-

approximate F by Fneu .

Lemma 6. With unbounded transmission, no neural network can tolerate a single Byzantine

neuron.

Proof. As a consequence of the neural computation and definitions 8 and 9, if the transmis-

sion is unbounded, a Byzantine neuron at layer L sending a value higher than ε plus the dif-

ference between the nominal Fneu and the contribution of the remaining neurons breaks the

ε-approximation as stated in Definition 7.

6.2.3 Over-Provisioning

Using the universality theorem, we can define a minimal number of neurons Nmi n(ε) below

which the neural network cannot yield an ε-approximation of F . By definition of Nmi n(ε), if a

neural network is built with Nmi n(ε) neurons, the network cannot tolerate any crashed neuron.

Clearly, neural networks are not robust, they do not tolerate any neuron failure when built with

the minimal amount of neurons. But, as we discussed in the introduction, this is usually not the

case: they are over-provisioned [101] and contain more than Nmi n(ε) neurons. With the work

of Barron [12], we know that Nmi n(ε) =Θ(1
ε) and that given N neurons, a network can achieve

an error in the order of 1
N when N is large. Instead of looking at over-provisioned networks as

containing more than Nmi n(ε), we consider the quality of the approximation they are providing:

given ε′ ≤ ε and Fneu a neural ε′-approximation of F , Fneu is also a neural ε-approximation of F

and is said to be an over-provisioned ε-approximation of F .

In the following, we set the conditions under which a neural network, realizing an ε′-approximation

(ε′ ≤ ε) of F , can tolerate N f ai l failures and keep realizing an ε-approximation of F . For conve-

nience, all the bounds on the failures are stated in terms of ε and ε′.

5The strictly-increasing activation function ϕ does not allow a correct neuron to output value 0.
6Remember that we assume synchronous transmission.

80

7 Fault Tolerance in Neural Networks

7.1 Single-layer Neural Networks

For didactic reasons, we first start with the case of a single layer neural network. We translate the

fact that the network tolerates the crash of N f ai l neurons as given by Definition 9 to an inequation,

which we combine with an estimation of the distance between the value of the damaged network

and the nominal value of the output (which we recall is close to the target by a distance ε′). We

end up with an upper bound on N f ai l .

To prove that the bound is tight, we look at the worst failure case. Intuitively, this corresponds,

following the tradition in distributed computing [113], to an adversary killing “key neurons“:

those with highest weights, and looking at an input were those same neurons were instrumental:

broadcasting the highest possible value y (1)
j , as close to 1 as possible.

Proposition 5. Let F be any function mapping [0,1]d to [0,1]. Let ε and ε′ be any two positive

real numbers such that 0 < ε′ ≤ ε. For any neural ε′-approximation Fneu of F (Definition 7) and

any integer N f ai l : If N f ai l ≤ ε−ε′
wm

where wm = max(‖w (2)
i ‖, i ∈ [1, N]) is the maximum norm of a

weight from the single layer to the output node, then Fneu is a neural ε-approximation of F that

tolerates N f ai l crashed neurons (Definition 9). The bound on N f ai l is tight.

Proof. Upper bound. Applying the universality theorem1 on F and ε′, let Fneu be a neural ε′-
approximation of F with N the number of neurons of Fneu and wm the maximal weight from the

single layer of Fneu to the output.

Let N f ai l be any integer such that N f ai l ≤ ε−ε′
wm

. Denote by F f ai l any of the modified values of

the neural function Fneu after N f ai l neurons crash: F f ai l =
N∑

i=1,i∉I f ai l

w (2)
i yi , where I f ai l is a a set

1The existence of a neural approximation for a given target function is taken here as granted by the universality
theorem. One might wonder how do neurons, viewed as distributed processes, build the network (i.e put the correct
weights to their linking synapses) in the first place to approximate that target function. This is done, during the
learning phase, via the back-propagation algorithm [168]: neurons communicate in the reverse direction (from the
output to the input) and re-adjust the weights locally according to the error value they are given by the output client.

81

Chapter 7. Fault Tolerance in Neural Networks

containing N f ai l crashed neurons. Let X ∈ [0,1]d be any input vector. By the triangle inequality:

‖F (X)−F f ai l (X)‖ ≤ ‖F (X)−Fneu(X)‖
+‖Fneu(X)−F f ai l (X)‖.

(7.1)

Since Fneu is an ε′-approximation of F we have:

‖F (X)−Fneu(X)‖ ≤ ε′. (7.2)

From the definition of F f ai l , we have: ‖Fneu(X)−F f ai l (X)‖ = ‖
N∑

i=1,i∈I f ai l

w (2)
i yi (X)‖. Using another

triangle inequality on norms we get:

‖Fneu(X)−F f ai l (X)‖ ≤
N∑

i=1,i∈I f ai l

‖w (2)
i ‖yi (X). (7.3)

By definition of wm and the hypothesis on the bounded activation function, ‖w (2)
i ‖ ≤ wm and

yi (X) ≤ 1 for all X and i . Inequality 7.3 becomes:

‖Fneu(X)−F f ai l (X)‖ ≤
N∑

i=1,i∈I f ai l

wm = N f ai l wm (7.4)

Merging inequalities 7.1, 7.2 and 7.4 we obtain: ‖F (X)−F f ai l (X)‖ ≤ N f ai l .wm +ε′.

Since N f ai l ≤ ε−ε′
wm

, we have ‖F (X)−F f ai l (X)‖ ≤ ε.

Therefore the upper bound on N f ai l : N f ai l ≤ ε−ε′
wm

, guarantees that F f ai l , the neural function

obtained from Fneu with N f ai l crashed neurons is still an ε-approximation of F .

Tightness. Let N f ai l be any integer such that N f ai l > ε−ε′
wm

and assume that Fneu tolerates the

crash of N f ai l . Let δ= N f ai l − ε−ε′
wm

, by the initial assumption, δ> 0.

Consider ε′ to be the supremum on the approximation with which the over-provisioned neural

network Fneu approximates F , i.e ε′ = supX∈[0,1]d (‖F (X)−Fneu(X)‖).

Consider the equality cases as well as the limit cases (close to equality) for the key inequalities that

lead to the upper bound on N f ai l : In 7.1, equality occurs iff F (X)−Fneu(X) and Fneu(X)−F f ai l (X)

are positively proportional (equality case of the triangle inequality). In 7.3, equality occurs iff

the weights of the crashed neurons are positively proportional. Assume an input and choice of

crashed neurons satisfying both of these equality cases.

Let α be any positive real number. To be close to the limit case of Inequality 7.2, we can chose

82

7.2. Multilayer Networks and Byzantine Failures

inputs X such that ‖F (X)−Fneu(X)‖ > ε′− α
2 , those inputs exist otherwise ε′ is not the supremum

error achieved by Fneu or F is not a continuous function and we will have a contradiction.

In 7.4, the limit case corresponds to crashed neurons being those with maximal weights and inputs

such that the neurons in Icr ash all output a value close to 1: let X be an input satisfying the previous

equality and limit cases such that for any neuron i in I f ai l , we have yi (X) > max(1− α
2 ,1− α

2(ε−ε′)),

i.e yi (X) close to 1. With this worst-case choice of input and crashed neurons, we obtain: ‖F (X)−
F f ai l (X)‖ = ‖F (X)−Fneu(X)‖+‖

N∑
i=1,i∈I f ai l

w (2)
i yi (X)‖ > ε′− α

2 +max(1− α
2 ,1− α

2(ε−ε′))N f ai l .wm .

Thus, in case of more crashes than allowed by the upper bound of the proposition (N f ai l > ε−ε′
wm

)

leads to:

‖F (X)−F f ai l (X)‖ > ε′− α
2 +max(1− α

2 ,1− α
2(ε−ε′))(ε−ε′+δwm) = ε− α

2 +max(−α
2 ,− α

2(ε−ε′))(ε−ε′+
δwm)+δwm = ε− α

2 −mi n(α2 , α
2(ε−ε′))(ε−ε′+δwm)+δwm .

If ε− ε′ ≥ 1 then mi n(α2 , α
2(ε−ε′)) = α

2(ε−ε′)) and the latter inequality leads to ‖F (X)−F f ai l (X)‖ >
ε− α

2 − α
2(ε−ε′) (ε−ε′+δwm)+δwm = ε−α+δ′, where δ′ = δwm(1− α

2(ε−ε′)) > 0 (for small α).

If ε−ε′ < 1 then mi n(α2 , α
2(ε−ε′)) = α

2 and the latter inequality leads to ‖F (X)−F f ai l (X)‖ > ε− α
2 −

α
2 (ε− ε′+δwm)+δwm = ε− α

2 (1+ (ε− ε′+δwm))+δwm and since ε− ε′+δwm > 0 this implies

that ‖F (X)−F f ai l (X)‖ > ε− α
2 +δwm , which also leads to:

‖F (X)−F f ai l (X)‖ > ε−α + δ′ (δ′ < δwm for small α and −α<−α
2) since α> 0).

In the inequality ‖F (X)−F f ai l (X)‖ > ε−α+δ′.

α is any positive real number, for which we can chose an input leading to the inequality. Since F

and F f ai l are continuous, we can take the previous inequality to the limit α 7→ 0 and we abtain an

inequality that contradict the assumption that Fneu tolerates the crash of N f ai l neurons.

Therefore, by contradiction, the bound is tight.

7.2 Multilayer Networks and Byzantine Failures

This section generalizes Proposition 5. While that proposition says that we can derive a tight

bound on how many neurons can crash without losing ε-accuracy, it does not capture the situation

where neurons can send values different from those expected, whether this difference is arbitrary

or controlled. The latter situation is that of correct neurons in a multilayer network: if a correct

neuron has faulty neurons on its left2, the output value of this neuron embeds some imprecision.

The aim is to evaluate how the loss of accuracy propagates through layers and bound it on the

output.

2The conventions of left and right are defined in the neural computation described in Section 6.2.1.

83

Chapter 7. Fault Tolerance in Neural Networks

7.2.1 Forward Error Propagation

Proposition 6 below says that, when errors occur at fl neurons of layer l , the effect is transmitted

by all correct neurons at any layer l ′ between layer l and the output. This leads, in the worst case,

to a series of multiplications, as many times as there are layers on the right before reaching the

output, i.e (L− l) times, by the Lipschitz constant, by the number of correct neurons at layer l ′, i.e

(Nl ′ − f ′
l), by the maximum weight w (l ′)

m , by fl and by the bound C of Assumption 1. The previous

products are summed over the layers. As a calculation convention for the rest of the chapter,

we consider an (L+1)-th layer consisting of the output node with NL+1 = 1 correct neuron and

fL+1 = 0 failing neurons (though it is not part of the neural network, unlike the (L+1)-th sets of

synapses which are part of the network). Finally, the effect of a failure on the output increases

exponentially with the depth of the layer (dependency on K L−l).

Denote by Fep the quantity described above and given by the following equation:

Fep =C
L∑

l=1

(
fl K L−l w (L+1)

m

L∏
l ′=l+1

(Nl ′ − fl ′)w (l ′)
m

)
.

Note that Fep has a polynomial dependency on K as observed in Figure 7.1.

Net 1
Net 2
Net 3
Net 4
Net 5
Net 6
Net 7
Net 8

Er

Figure 7.1 – Experimental values of the error (Er) at the output of several neural networks,
affected with similar amount of neuron failures, plotted against the Lipschitz constant in a
log scale.

Proposition 6. Consider a neural network containing L layers. If in each layer l , fl neurons, among

the Nl neurons, are affected by errors such that any neuron j within layer l broadcasts an output

y (l)
j +λl

j to the next layer instead of the nominal y (l)
j , then the effect on the output is bounded as

84

7.2. Multilayer Networks and Byzantine Failures

follows:

‖Fneu(X)−Fλ(X)‖ ≤ Fep (7.5)

where Fneu is the nominal neural function, Fλ the neural function accounting for the errors λ(l)
j ,

and w (l)
m = max(|w (l)

j i |, (j , i) ∈ [1, Nl][1, Nl−1]) is the maximum norm of the weights of the incoming

synapses to layer l . The bound (7.5) is tight.

Proof. We proceed by induction on L.

Initiation.

Let N f ai l = f1 be the number of neurons failing in the single layer of the network, let I f ai l be the

set containing those neurons, we have:

‖Fneu(X)−Fλ(X)‖ = ‖ ∑
i∈I f ai l

w (2)
i (y (1)

i +λ(1)
i)‖

Which, by the triangle inequality leads to:

‖Fneu(X)−Fλ(X)‖ ≤ ∑
i∈I f ai l

‖w (2)
i (y (1)

i +λ(1)
i)‖, equality cases occur for positively proportional terms

(Condition 1). Applying Assumption 1 and the definition of wm(2) gives us:

‖Fneu(X)−Fλ(X)‖ ≤ f1w (2)
m C (7.6)

Equality cases occur for inputs such that y (1)
i +λ(1)

i =C (Condition 2) and when the failing neurons

are all linked to the output with the maximal weight w (2)
m (Condition 3).

We observe that Inequation 7.6 is the (L = 1) version of Proposition 2, and that similarly, due to

the worst case of failures (i.e when Conditions 1 to 3 are simultaneously occurring), the bound is

tight.

Induction step.

Assume Proposition 6 holds for networks with up to some number of layers L ≥ 1.

Now consider a network consisting of (L+1) layers. The layered structure of the network enables

us to see each of the NL+1 neurons of the (L+1)th layer, first as an output to an L-layer network

(all the nodes to the left of that neuron), and second, after applying the activation function, as a

neuron in a single-layer neural network (consisting of the (L+1)th layer alone).

In this last (L+1)th layer, we can distinguish two subsets of neurons:

85

Chapter 7. Fault Tolerance in Neural Networks

1. (Failing neurons at layer L+1) A subset of fL+1 failing neurons, that yields, as in the initiation

step (sigle layer), an error of at most fL+1w (L+2)
m C .

2. (Correct neurons at layer L+1) A subset of NL+1 − fL+1 correct neurons. Those neurons

transmit to the output side (their right side), in addition to their nominal value, the error

E of the L-layer neural network on the left of layer (L+1), multiplying it by at most the

maximum synaptic weight from layer L to layer (L+1), w (L+1)
m and the Lipschitz constant K,

yielding an error of at most E(NL+1 − fL+1)K .

By the induction hypothesis we have:

E ≤C
L∑

l=1
fl K L−l

L+1∏
l ′=l+1

(Nl ′ − f ′
l)w (l ′)

m

As the output node is linear (not part of the neural network and not performing any non-linear

activation function), the errors mentioned in 1 and 2 are added and yield a total error bounded as

follows:

‖Fneu(X)−Fλ(X)‖ ≤ fL+1w (L+2)
m C + (NL+1 − fL+1)K E

≤C
L+1∑
l=1

fl K L+1−l
L+2∏

l ′=l+1
(Nl ′ − f ′

l)w (l ′)
m

which is the desired bound for an (L+1)-layer network. The equality case follows from considering

the inter-occurrence of the equality cases at all the contributing parts, in case no constraint on

the network is set to avoid it.

By induction, Proposition 6 is true for any integer L ≥ 1.

7.2.2 Tight Bound on Neuron Failures

With the notations used before, in a network of L layers, each layer l containing Nl neurons,

we consider N f ai l = (fl)L
l=1 as the distribution per layer of Byzantine neurons (fl being the

contribution of layer l to N f ai l). Using Proposition 6, and the same reasoning as in the proof of

Proposition 5, it is possible to derive a tight bound, not on the total number of failures as in single

layer case, but on the failures per layer distribution3 N f ai l = (fl)L
l=1.

Corollary 3. Let F be any continuous function mapping [0,1]d to [0,1], let ε and ε′ be any two pos-

itive real numbers such that 0 < ε′ ≤ ε. Given any Fneu that is an L-layer neural ε′-approximation

of F with Nl neurons per layer l , given N f ai l = (fl)L
l=1 such that ∀l fl < Nl and

Fep ≤ ε−ε′. (7.7)

3We use the natural extension of Definition 9 to this generalization from an integer N f ai l to an L-tuple of failures
per layer.

86

7.2. Multilayer Networks and Byzantine Failures

Then Fneu tolerates the distribution of Byzantine neurons N f ai l . The bound (7.7) is tight.

Proof. Denote by F f ai l the output of the network after N f ai l failures, using Proposition 6 we have:

‖Fneu(X)−F f ai l (X)‖ ≤C
L∑

l=1
fl K L−l

L+1∏
l ′=l+1

(Nl ′ − f ′
l)w (l ′)

m . Combining this with inequalities 7.1 and

7.2 we obtain: ‖F (X)−F f ai l (X)‖ ≤ ε′+C
L∑

l=1
fl K L−l

L+1∏
l ′=l+1

(Nl ′ − f ′
l)w (l ′)

m . If N f ai l satisfies inequality

7.7 then we have ‖F (X)−F f ai l (X)‖ ≤ ε. This proves the upper bound. Tightness follows the worst

case reasoning on the equality and limit cases as done in the proof of Proposition 5.

To better appreciate the message of Proposition 3, one has to bare in mind that the left-hand

side of Equation 7 comes from the forward error propagation due to the failure distribution N f ai l

(Proposition 2) while the right-hand side is the the maximal error permitted by the over-provision.

Note that, in Proposition 6, small K and small weights reduce the propagating error Fep, which

translates in Proposition 3 to: the smaller the K and the weights, the easier it is to satisfy the

condition with large fl . This sets the basis for the trade-off on tuning K or reducing the weights,

as we stated in the introduction and as we discuss in the last section. Note also that in the case

of crashes without Byzantine neurons, Assumption 1 is not necessary and C can be replaced by

the maximum of the activation function (1 in case of si g moi d), which is the maximum value a

neuron can send. Note finally that Lemma 2 can also be derived as a limit case of Proposition 3:

N f ai l
C→∞−−−→ 0.

7.2.3 The Failure of Synapses

The following lemma links errors at synapses to errors at neurons. Again we use the convention

that layer L + 1 corresponds to the output node, in addition to the convention that layer 0

corresponds to input nodes.

Lemma 7. In any L-layer neural network, an error of value λ(l)
j i at the synapse from neuron i of

layer l −1 to neuron j of layer l is at worst, equivalent to an error at neuron i of value C .K .

Proof. Let l be a layer in the neural network, and let i and j be any neurons from l −1 and l

respectively.

An error of value λ(l)
j i in the synapse from neuron i to neuron j yields a received sum at neuron j ,

noted s(l)
λ, j and given by Equation 6.1 as follows:

s(l)
λ, j =

Nl−1∑
k=1,k 6=i

w (l)
j k y (l−1)

k +w (l)
j i y (l−1)

i +λ(l)
j i

=
Nl−1∑
k=1

w (l)
j k y (l−1)

k +λ(l)
j i

87

Chapter 7. Fault Tolerance in Neural Networks

Therefore, by K-Lipschitzness of the activation function, the output error of neuron j is bounded

as follows:

|er r or | = |ϕ(s(l)
λ, j)−ϕ(s(l)

j)| ≤ K .|s(l)
λ, j − s(l)

j | = K .|λ(l)
j i |

In the worst case the transmitted error |λ(l)
j i | is equal to C following Assumption 1 and the bound

|er r or | ≤C .K is tight.

Corollary 4. Given N f ai l = (fl)L+1
l=1 , the distribution of Byzantine synapses, with fl being the

number of failing ones linking layer l −1 to layer l : If C
L+1∑
l=1

fl K L+1−l w (l)
m

L+1∏
l ′=l+1

(Nl ′ − f ′
l)w (l ′)

m ≤ ε−ε′

then Fneu tolerates the distribution of Byzantine synapses N f ai l = (fl)L+1
l=1 . This bound is tight.

Proof. Lemma 7 implies that the failure of a distribution N f ai l of synapses in an L-layer network

is equivalent, in the worst case, to the failure of a distribution N f ai l of neurons in an L+1 network.

Applying Proposition 3, the result follows.

7.2.4 Reduced Over-provisioning

Our condition, under which over-provisioned networks can be robust (Proposition 3), concerns

networks reaching a precision ε′ finer than the one they are required to keep ε (i.e ε′ < ε). One

can wonder how hard it is to reach ε′ (i.e, how precise should the over-provisioned network be

to tolerate N f ai l). The following corollary establishes the feasibility of building robust networks

that can be arbitrarily close to non robust ones (ε′−ε being arbitrarily small).

Corollary 5. Let N f ai l be any set of L integers as described in 7.2.2, ε > 0 any precision level

and F any target function. Then for every ε′ > 0 such that ε′ < ε, there exist a neural network

approximating F with precision ε′ and preserving precision ε under failure distribution N f ai l .

Proof. The existence of a network ε′-approximating F is guaranteed by the universal approxi-

mation theorem [81] applied to ε′ and F . Let w (l)
m be the maximal weights at each layer of this

network, for the robustness constraint, let (Nl)1≤l≤L be any set of integers, large enough such that

the condition of Proposition 3 is satisfied with N f ai l , w (l)
m and ε−ε′. Then, following Proposition

3, this network is an ε-approximation of F that tolerates the failure distribution N f ai l .

7.3 Applications

7.3.1 Reducing Memory Cost

When implementing neural networks in hardware, reducing memory cost typically goes with re-

ducing the precision with which each neuron performs its local computation. However, reducing

88

7.3. Applications

this local precision impacts accuracy. Recently, experimental results [88] reported interesting

trade-offs between cost reduction and accuracy of the output. We provide here the first theoretical

result quantifying those trade-offs.

In the case of a neural network containing L layers where the cost reduction implies a maximum

error of λl per layer l , the accuracy degradation in the output is bounded by a sum similar to

what we give in Proposition 3. This application is not a direct consequence of Proposition 3 but

can be more specifically derived from the observations made in the proof of Proposition 6, in

which we replace the uniform bound C on the transmission capacity by local bounds λl per layer.

We get the following proposition.

Proposition 7. If in each layer l , the implementation induces an error at each neuron j of layer l

bounded by λl , then the effect on the output is bounded as follows:

‖Fneu(X)−Fλ(X)‖ ≤
L∑

l=1
K L−lλl

L∏
l ′=l

Nl ′w
(l ′+1)
m (7.8)

where Fneu is the nominal neural function, Fλ the neural function accounting for the errors λl ,

w (l)
m = max(‖w (l)

j i ‖, (j , i) ∈ [1, Nl][1, Nl−1]) the maximum norm of the weights of the incoming

synapses to layer l , and K the Lipschitz coefficient of the activation function. Inequality 7.8 is tight.

Proof. The proof is similar to that of Proposition 6. We proceed by induction on L, the number of

layers in a neural network.

Initiation. In a single-layer neural network with N neurons, if each neuron i introducing an error

λi , and all errors bounded by C , then the difference between the nominal output and the output

affected by errors is given by
N∑

i=1
λi w (2)

i where w (2)
i is the weight from neuron i to the output,

therefore the total error is bounded by NC w (2)
m where w (2)

m is the maximum weight from the single

layer to the output. This is the base case (L = 1) of our induction.

Induction step. Let L be an integer such that we have the result of Inequality 7.8 for every network

of L layers. Let EL =
L∑

l=1
K L−lλl

L∏
l ′=l

Nl ′w
(l ′+1)
m .

Consider now a network of L+1 layers. As for the proof of Proposition 6, every neuron i of layer

L+1 is the output of an L layer network. Neuron i therefore receives a sum affected by an error

of at most EL to which it adds its own error λL+1
i , and applies the activation function which

multiplies the total error by at most K .

The total error at each neuron i is therefore bounded by K El +KλL+1. Applying the base case at

the final output of the network, we bound the final error by NL+1w (L+2)
m (K El +KλL+1) which is

equal to
L+1∑
l=1

K L−lλl

L+1∏
l ′=l

Nl ′w
(l ′+1)
m and proves the induction.

89

Chapter 7. Fault Tolerance in Neural Networks

7.3.2 Boosting Computations

Consider a network where neurons do not have the same reactive speed to inputs, but can be reset

instantly to ignore their actual computation. Each time a neuron receives a sufficient amount of

information from its preceding input layer, it sends a reset to the slow neurons (in the preceding

layer) instead of waiting for their values and move on with its own computation, adopting value 0

for the slow neurons. Proposition 3 gives a sense of that sufficient amount of information from

which we derive the following corollary.

Corollary 6. Following the notation of Proposition 3 in the crash case (C = 1 as explained in 7.2.2),

If Fneu is an ε′-approximation of F , then given any family of integers fl satisfying the conditions of

Proposition 3, then each neuron of layer l has to wait only for Nl−1 − fl−1 signals from layer l −1 to

send a value to layer l +1, as well as a reset to the missing neurons at layer l −1, while guaranteeing

a correct ε-approximation of F at the output.

Proof. The corollary is a direct consequence of Proposition 3.

7.3.3 Balancing Robustness and Ease of Learning

Improving the robustness of a neural network can be viewed as minimizing Fep (the right hand

term of the inequality in Proposition 6) during the learning scheme.

This would ensure that the neural network has learned the optimal weight distribution and is

taking full advantage of the over-provisioning. Clearly, over-provisioning to guarantee ε′-accuracy

impacts the amount of data needed for learning without over-fitting. This creates a dilemma

that somehow resembles the famous bias/variance dilemma [68] in machine learning. In our

case, this corresponds to a robustness/ease-of-learning dilemma. The trade-off has two forms we

detail below.

Trade-off on the Lipschitz constant of the activation function (K). Choosing a low value of K

leads to satisfying the inequalities of propositions 3 and 4 with high numbers of faults (depen-

dency on K L−l). But one should recall that K is an estimate of how sharp the discrimination

between inputs at the level of a single neuron is (Figure 6.2). Therefore, for a network with a

low-K activation function, the learning time and the number of necessary neurons can be higher

than with a high-K activation function, for the latter is more discriminating.

Trade-off on synaptic weights. Like for the Lipschitz-constant K , one can note in propositions

3 and 4 (multiplications by the weight) that imposing low weights leaves some room for higher

numbers of faults while still satisfying the bound. Achieving this goes through increasing the

number of neurons. Intuitively, more neurons are needed to sum to the desired value, if the

weights are lower.

90

7.4. Concluding Remarks

7.4 Concluding Remarks

We established tight bounds relating the output accuracy loss of a neural network to failures

of its neurons and synapses. Our bounds are derived from a quantity, Fep, the forward error

propagation (given in Proposition 6), relating the propagation of imprecision in a neural network

to specific parameters of that network, namely, weights, transmission capacity of synapses,

coefficient of Lipschitzness of the activation function and number of neurons per layer. The

bounds provide a theoretical explanation for some of the cost reduction strategies observed

experimentally [88]. Leveraging these bounds, we provided a scheme to boost the synchronization

of neural networks and we identified key trade-offs between robustness on the one hand, and

learning cost on the other hand.

Whilst our results were established in the context of a feed forward neural network, the underlying

methodology (propositions 1, 2 and 3) can be applied to other neural computing models. In

the case of the convolutional network model [102], the neurons have a limited receptive field

(they are not connected to all other neurons in the adjacent layers like in the feed-forward case),

and the weights have a periodic distribution within each layer reducing the size of the set of

synapses, which leads in turn to less restrictive bounds (i.e tolerating larger amount of failures).

More precisely, the maximal weight constraint w (l)
m appearing in propositions 2 and 3 will run

only4 on the R(l)-different values of the weights from layer l −1 to layer l , R(l) being the size

of the receptive field of layer l (i.e to how many neurons of layer l −1 each neuron of layer l is

connected).

More generally, we believe that the methodology that led to our results can be applied to any

distributed system that is organised as weighted directed graph. In these systems, processes

achieve a global computation while putting weights on the values of each other and (unlike

classical settings in distributed computing [113]) are not performing the same computation in

each node . These systems do not need to agree on values, as long as a similar condition to

Assumption 1 applies (bounded channel capacity). In the last part of this thesis, we introduce

one of our ongoing efforts to apply this methodology to biological (metabolic) networks.

To conclude, it is important to note that our results were established independently of the chosen

learning scheme. An appealing research direction is to consider a specific learning scheme

taking the forward error propagation as an additional minimization target which would reduce

the impacts of failures. To our knowledge, there has been one single attempt to theoretically

formulate such an optimization problem [132], but it only minimizes the effect of the crash of a

single neuron. Our bounds help formulate the distributed optimization problem for a multiple

neurons and synapses, which opens the question of the computational cost of building a neural

network that achieves a given robustness constraint with such a learning scheme.

4With the notation of propositions 2 and 3, let us consider a convolutional network as a multilayer feed forward
neural network such as for each synapse connecting a neuron i in layer l to a neuron j in layer l −1 not belonging to

the receptive field of i , we have w (l)
j i = 0. Together with the weight sharing property of convolutional networks this

leads to the equality between the maximal weight in absolute value over a layer w (l)
m and the maximum weight in

absolute value over a single receptive field.

91

Part IIIConclusion

93

8 Summary and Future Work

8.1 Robust Distributed Learning

This thesis can be summarized into four technical contributions.

8.1.1 Byzantine Resilient SGD

In Chapter 2, we started by noting that the actual methods of aggregation gradients in distributed

SGD are vulnerable. We formulated a condition on gradient aggregation in order to preserve

convergence despite the presence of Byzantine workers.

In Chapter 3, we introduced Krum, which we proved to satisfy the aforementioned condition.

We discussed Krum’ computational cost, which is only linear in the dimension. We explained in

the conclusion why the toolbox of traditional distributed computing is not suitable for the high

dimensional situation of machine learning.

8.1.2 High Dimensional Vulnerabilities in Distributed Non-Convex Optimization

In Chapter 4, we showed that convergence is not enough. In high dimension d À 1, an adversary

can build on the loss function’s non–convexity to make SGD converge to ineffective models.

More precisely, we brought to light that existing Byzantine–resilient schemes leave a margin of

poisoning ofΩ
(

f (d)
)
, where f (d) increases at least like

p
d . We introduced Bulyan, and proved it

significantly reduces the attacker’s leeway to a narrow O (1p
d

) bound.

8.1.3 Asynchronous Byzantine Resilient SGD

In Chapter 5, we introduced Kardam, the first distributed asynchronous stochastic gradient

descent (SGD) algorithm that copes with Byzantine workers. Kardam consists of two complemen-

tary components: a filtering and a dampening component. The first is scalar-based and ensures

resilience against 1
3 Byzantine workers. Essentially, this filter leverages the Lipschitzness of cost

95

Chapter 8. Summary and Future Work

functions and acts as a self-stabilizer against Byzantine workers that would attempt to corrupt the

progress of SGD. The dampening component bounds the convergence rate by adjusting to stale

information through a generic gradient weighting scheme. We prove that Kardam guarantees

almost sure convergence in the presence of asynchrony and Byzantine behavior, and we derive

its convergence rate.

We empirically showed that Kardam does not introduce additional noise to the learning procedure

but does induce a slowdown (the cost of Byzantine resilience) that we both theoretically and

empirically showed to be less than f /n, where f is the number of Byzantine failures tolerated and

n the total number of workers. We also empirically observed that the dampening component is

interesting in its own right for it enables to build an SGD algorithm that outperforms alternative

staleness-aware asynchronous competitors in environments with honest workers.

8.1.4 Neural Networks as a Distributed System

In Chapter 6 and Chapter 7, we view a multilayer neural network as a distributed system of

which neurons can fail independently, and we evaluate its robustness in the absence of any

(recovery) learning phase. We give tight bounds on the number of neurons that can fail without

harming the result of a computation. To determine our bounds, we leverage the fact that neural

activation functions are Lipschitz-continuous. Our bound is on a quantity, we call the Forward

Error Propagation, capturing how much error is propagated by a neural network when a given

number of components is failing, computing this quantity only requires looking at the topology

of the network, while experimentally assessing the robustness of a network requires the costly

experiment of looking at all the possible inputs and testing all the possible configurations of

the network corresponding to different failure situations, facing a discouraging combinatorial

explosion.

8.2 Back to Real Life Motivations

At first glance, the Byzantine–failure model might seem specific to distributed computing, and

too pessimistic in a general ML context, for it assumes that some workers actively try to fool SGD

towards the worst possible direction. In fact, we argue that this failure model is also relevant for

poisoning attacks on single machines, as well as learning with unreliable data in a centralized,

single–worker setting.

For instance, even when there is no group of workers whose estimated gradients are aggregated,

an SGD update is still an attempt to aggregate knowledge from data and update the model

subsequently. Consider a centralized, single learner, drawing data from a distribution containing a

fraction of corrupt samples. The 0.5 breakdown limit for unbiased estimators, initially formulated

[145] without computability considerations, establishes a formal limit to poisoning attacks: they

are impossible to counter if at least half of the data is not i.i.d. from the (desired) training

distribution, even with a convex cost function in small dimensions.

96

8.3. Bridging the two Views of the Thesis

Going back to our introductory motivation, one should view the accounts of a social network as

workers 1 who, by behaving on the platform, generate gradients, which are in turn used by a server

to modify the recommendations. In a recent interview 2, Guillaume Chaslot, a former member of

the Youtube recommendations team gave a striking illustration of what a Byzantine worker looks

like in real life and what damage it can cause. In particular, he described how a tiny minority

of paedophiles on Youtube could (even without aiming to) influence the recommendation of

child content on the larger portion of the 3 billion users. These particular "Byzantine" users

spend significantly more time on child content and hence generate gradients with larger impact.

Spotting these gradients in the very high dimensional space of Youtube parameters would be

hopeless, but our methods could (provably) help filtering them out of the learning, as long as the

majority of Youtube users are not paedophiles.

8.3 Bridging the two Views of the Thesis

It is important to recall that our approach tackles what happens while training, with the goal of

avoiding bad models due to poisoning attacks. We did not address the problem of evasion attacks,

i.e. attacking an already trained model with adversarial inputs.

From a distributed computing point of view, there seems to be two complementary views on

robustness to be made: (1) a coarse-grained robustness (quality of the gradient aggregation

scheme), and (2) a fine-grained robustness (quality of the model w.r.t single parameters). For the

first view, the unit of failure would be a single machine, hosting a copy of the model (or significant

parts of it) and attacked in its attempt to estimate gradients. For the second view, the models

used by ML, neural networks for example, can themselves be viewed as distributed computing

objects[138], where the units of failure are individual neurons and weight values. The question

was explored[90] in the 1990s with unexpected connections with todays’ popular tools such as

the dropout algorithm, which was initially derived with a (distributed computing) fault-tolerance

purpose[91], then independently re-discovered as a robust regularization scheme to reduce over-

fitting 20 years latter[152]. Recently, this gap-bridging between robustness from the distributed

computing point of view, and robustness, from a learning performance perspective is being

revived, with questions such as: how much error will be forward-propagated if units of the model

are erroneous?

We argue that poisoning attacks should be studied both from a fine-grained, and coarse-grained

perspective. For instance, the curse of dimensionality attack (Chapter 4) is an example of a coarse-

grained problem (the whole system being wrong about the model) arising from a fine-grained

(single-parameter) attack. An interesting question can therefore be posed: given bounds on how

much an error in an individual weight value can influence the output of a model, can we compute

the impact of a poisoning attack of one single component of the gradient? Subsequently, could

this link be leveraged to discover the theoretical limits of any defense against poisoning?

1In fact, a worker could be any "unit" that produces gradients.
2https://www.youtube.com/watch?v=-bDho-i5Bqg

97

https://www.youtube.com/watch?v=-bDho-i5Bqg

Chapter 8. Summary and Future Work

8.4 Revisiting our Hypotheses and Future Work

While our algorithms enable the replacement of the brittle averaging of gradient by more robust

gradients, and led, among other things to the first version of the popular TensorFlow framework

that is Byzantine resilient and could communicate over UDP3; it remains handicapped by the

hypotheses we made to prove Byzantine resilience.

8.4.1 Systems for Robust Machine Learning

Over the past two years, a growing body of work, beyond our own, e.g., [4, 29, 171, 16, 45, 156,

76, 115, 174, 173, 178, 17, 177, 97, 175, 43, 30, 73, 111, 128, 75, 169, 161, 142, 127, 176, 42, 87, 141,

160, 84, 174, 67, 172, 179, 11, 165], took up the challenge of Byzantine-resilient ML. This thesis

is part of this larger enterprise. Data poisoning [19, 170] attacks, which can have disastrous

consequences [150, 124, 149, 48], represent, as we argued, a special case of this broader challenge.

Beyond data poisoning, the Byzantine failure model, as originally introduced in [100], encom-

passes crashes, software bugs, hardware defects, message omissions, and even worse, hacked

machines.

So far, all the work on Byzantine-resilient ML assumed that a fraction of workers could be Byzan-

tine, but the server is however assumed to be always honest and failure-free. While the work

produced by this line of research is useful with a trusted server, none consider the general learning

scheme when the server could misbehave.

A natural way to prevent the parameter server from being a single point–of–failure is to replicate

it. But this poses the problem of how to synchronize the replicas4. A classical technique is state

machine replication [146] (SMR), which provides the abstraction of one parameter server5, while

benefiting from the resilience of the multiplicity of underlying replicas. But the SMR approach

raises two issues. First, applying SMR to a distributed stochastic gradient descent (SGD) would

lead to a potentially huge overhead as, in order to maintain the same state, replicas would need

to agree on a total order of the model updates, which would induce frequent exchanges (and

retransmissions) of gradients and parameter vectors, that can be several hundreds of MB large [93].

Second, agreement (on a total order) is known to be impossible in asynchronous networks [66]

and hence, one needs to assume a bound on communication delays. But estimating this bound

is challenging. A large conservative bound would imply slow reactions to message omissions

and crashes, whereas a small bound could be easily exploited by an adversary that could congest

3TensorFlow communicates over TCP. Communicating over UDP would be faster, but causes errors that averaging
does not support. Our algorithms enable the fast communication over UDP by being robust to the errors caused by
UDP communication.
Georgios Damaskinos, El-Mahdi El-Mhamdi; Rachid Guerraoui; Arsany Guirguis and Sébastien Rouault (2019).
AGGREGATHOR: Byzantine Machine Learning via Robust Gradient Aggregation. In The Conference on Systems and
Machine Learning (SysML).

4A problem that we did not address in this thesis, by simply assuming the server to be reliable via some other
protocol.

5This would allow the transparent reuse of algorithms that tolerate Byzantine workers [21, 29, 57].

98

8.4. Revisiting our Hypotheses and Future Work

parts of the network [38], jeopardizing convergence.

In one of our ongoing follow-ups [53] to this thesis, we argue that the Byzantine SGD problem,

even when neither the workers nor the servers are trusted and when the network is asynchronous,

is strictly easier than the general state machine problem [100] since total ordering of updates is

not required in the context of ML applications: only convergence to a good final cross-accuracy is

needed. We thus follow a different route where we do not require all replicas of a parameter server

to maintain the same state. Instead, we allow mildly diverging parameters (which have proven

beneficial in other contexts [181, 5, 96]) and present a new way to contract them in a distributed

manner. In a second follow-up, we investigate the same problem in the synchronous setting,

at we show that the filtering techniques presented in this thesis in the context of asynchronous

networks (Kardam) can inspire fast solutions to the Byzantine servers problem[52].

However, we should acknowledge that both of the aforementioned follow-ups require, so far,

constraining statistical conditions on the correct servers that we should alleviate. Specifically,

either correct models (held by correct servers) are assumed to be somehow "aligned", or correct

gradients (generated by correct workers) need drastically low variance values.

8.4.2 Better Theory for Better Guarantees

The weaknesses we just mentioned are a legacy of some of the hypothesis we needed to make

the GARs of this thesis work. Specifically, we required the variance of the correct workers to be

sufficiently low.

In Chapter 3, we experimentally showed that having a reasonably high (but not unusually high)

batch size suffices to make Krum (and its more practical variant Multi-Krum) converge almost as

fast as the non Byzantine resilient averaging.

In Chapter 4, we exploited our own assumptions in the high dimensional situation, which helped

develop Bulyan that strengthens not only Krum, but any similar GAR. In the few days before this

thesis was submitted, an interesting paper[14] was accepted to NeurIPS 2019. The authors exploit

the assumptions of Krum (namely the low variance assumption) to craft attacks that are in the

same spirit as the ones we presented in Chapter 4 with even less computational requirement from

the adversary. Theses assumption are unfortunately data and model dependent, which makes

it hard to theoretically assess if they hold a priori, when the model is an un-interpretable deep

neural network.

An urgent direction we should follow is to take a step back from the non-convex world of deep

learning, and formulate a better theory of Byzantine resilience, first in the simpler world of convex

loss functions (as initiated by [4]). This theory should not be agnostic to the model being trained

(as ourselves and most of the community did so far), but connect the assumptions that are needed

for Byzantine resilience to the properties of the model. Then we can go beyond the convex case,

e.g. by incorporating architecture specific properties in these assumptions and possibly leverage

the recent results on neural kernels [33, 83].

99

Chapter 8. Summary and Future Work

8.4.3 Robust Learning Machines

Fault Tolerance as a Part of Theoretical NNs Research

Understanding the inner working of artificial neural networks (NNs) is currently one of the most

pressing questions[103] in machine learning. As of now, neural networks are the backbone of the

most successful machine learning solutions[148, 98]. They are deployed in safety-critical tasks in

which there is little room for mistakes [62, 154]. Nevertheless, such issues are regularly reported

since attention was brought to the NNs vulnerabilities over the past few years[148, 18, 125, 57].

Understanding complex systems requires understanding how they can tolerate failures of their

components. This has been a particularly fruitful method in systems biology, where the mapping

of the full network of metabolite molecules is a computationally quixotic venture. Instead of fully

mapping the network, biologists improved their understanding of biological networks by studying

the effect of deleting some of their components, one or a few perturbations at a time[40, 71].

Biological systems in general are found to be fault tolerant[131], which is thus an important

criterion for biological plausibility of mathematical models.

Neuromorphic hardware

Current Machine Learning systems are bottlenecked by the underlying computational power

[7]. One significant improvement over the now prevailing CPU/GPUs is neuromorphic hardware.

In this paradigm of computation, each neuron is a physical entity [60], and the forward pass

is done (theoretically) at the speed of light. However, components of such hardware are small

and unreliable, leading to small random perturbations of the weights of the model [162]. Thus,

robustness to weight faults is an overlooked concrete Artificial Intelligence (AI) safety problem [9].

Since we ground the assumptions of our model in the properties of NH and of biological networks,

our fundamental theoretical results can be directly applied in these computing paradigms.

Research on NNs fault tolerance

In the 2000s, the fault tolerance of NNs was a major motivation for studying them [77, 92, 15].

In the 1990s, the exploration of microscopic failures was fueled by the hopes of developing

neuromorphic hardware (NH) [120, 32, 139]. Taylor expansion was one of the tools used for the

study of fault tolerance [74, 129]. Another line of research proposes sufficient conditions for

robustness [137]. However, most of these studies are either empirical or are limited to simple

architectures [162]. In addition, those studies address the worst case [18], which is known to be

more severe than a random perturbation. Recently, fault tolerance was studied experimentally as

well. DeepMind proposes to focus on neuron removal [126] to understand NNs. NVIDIA [104]

studies error propagation caused by micro-failures in hardware [10]. In addition, mathematically

similar problems are raised in the study of generalization [133, 134] and robustness [167].

100

8.4. Revisiting our Hypotheses and Future Work

Limitations of our results

In this part of the thesis, we heavily relied on the assumption that the neural networks are of

minimal size. This assumption is useful to prove the tightness of our bounds, however, practically

built neural networks are far from being minimal. In one of the ongoing follow-ups[54], we

successfully got rid of this hypothesis. However, we require other hypotheses that we argue (and

experimentally show) are more reasonable. Specifically, we look at the continuous limit regime,

where adjacent neurons are assumed to have almost similar weights. We obtain new bounds that

are closer to the empirical error, even for non-minimal networks.

8.4.4 Biological Networks

The abstraction of weighted directed graphs with non linear units is not unique to neural networks.

Many other biological networks can be reasonably modelled as such. In fact, many of these

networks can be also viewed as learning machines6. During this thesis, we initiated a collaboration

with biologist colleagues in an effort to apply our results to models of metabolic networks. Our

preliminary results[58] show the potential for our bounds to predict the most critical nodes in

such a network. These nodes are the ones that are responsible for the highest forward-propagated

error. Specifically, our model of error propagation could shed light on key concepts in systems

biology such as essential genes or evolvable essential genes.

6What Bodies Think About: Bioelectric Computation Outside the Nervous System. Michael Levin NeurIPS 2018
(Invited Talk).

101

Appendix

103

A Krum

A.1 Multi-Krum and Krum with varying batch-size

Figure A.1 – Comparing an averaging aggregation with 0% Byzantine workers to mKrum fac-
ing 45% omniscious Byzantine workers for the ConvNet on the MNIST dataset. The cross-
validation error evolution during learning is plotted for 3 sizes of the size of the mini-batch.

105

Appendix A. Krum

Figure A.2 – Test accuracy after 500 rounds as a function of the mini-batch size for an aver-
aging aggregation with 0% Byzantine workers for the ConvNet on the MNIST dataset versus
mKrum facing 45% of omniscious Byzantine workers.

106

A.2. Other Krum variants

A.2 Other Krum variants

Figure A.3 – Evolution of cross-validation accuracy with rounds for the different aggregation
rules in the absence of Byzantine workers. The model is the MLP and the task is spam filtering.
The mini-batch size is 3. Averaging and mKrum are the fastest, 1-p Krum is second, Krum and
the Medoid are the slowest.

107

Appendix A. Krum

Figure A.4 – Evolution of cross-validation accuracy with rounds for the different aggregation
rules in the presence of 33% Gaussian Byzantine workers. The model is the MLP and the task
is spam filtering. The mini-batch size is 3. Multi-Krum (mKrum) outperforms all the tested
aggregation rules.

108

B Bulyan

B.1 Brute’s
(
α, f

)
–Byzantine–resilience proof

Background

Definition 10 (
(
α, f

)
–Byzantine–resilience).

Let
(
n, f

) ∈ (N∗)2 with n > f .

Let
(
α, f

) ∈ [
0, π2

]× [0 ..n] be any angle and any integer.

Let
(
V1 . . .Vn− f

) ∈ (
Rd

)n− f
be independent, identically distributed random vectors, with Vi ∼ G

and E[G] =G.

Let
(
B1 . . .B f

) ∈ (
Rd

) f
be random vectors, possibly dependent between them and the vectors(

V1 . . .Vn− f
)
.

Then, an aggregation rule F is said to be
(
α, f

)
-Byzantine-resilient if, for any 1 ≤ j1 < ·· · < j f ≤ n,

the vector:

F =F

V1, . . . , B1︸︷︷︸
j1

, . . . , B f︸︷︷︸
j f

, . . . ,Vn


satisfies:

1. 〈E[F] ,G〉 ≥ (1− sinα) · ‖G‖2 > 0

2. ∀r ∈ {2,3,4} , E‖F‖r is bounded above by a linear combination of the terms E‖G‖r1 · . . . ·
E‖G‖rn−1 ,

with r1 +·· ·+ rn−1 = r .

DefinitionLet
(
n, f

) ∈ (N∗)2 with n ≥ 2 f +1.

Let
(
V1 . . .Vn− f

) ∈ (
Rd

)n− f
be independent, identically distributed random vectors, with Vi ∼G

and E[G] =G .

Let
(
B1 . . .B f

) ∈ (
Rd

) f
be random vectors, possibly dependent between them and the vectors

109

Appendix B. Bulyan

(
V1 . . .Vn− f

)
.

Let ‖·‖p be the `p –norm, with p ∈N∗∪ {+∞ }.

Let Q = {V1 . . .Vn } be the set of submitted gradients.

Let R = {
X |X ⊂Q, |X | = n − f

}
be the set of all the subsets of Q with a cardinality of n − f .

Let S = argmin
X ∈R

(
max

(Vi ,V j)∈X 2

(∥∥Vi −V j
∥∥

p

))
.

Then, the aggregated gradient F = 1
n− f

∑
V ∈S

V .

ProofLet ∀(
i , j

) ∈ [
1..n − f

]2 , i 6= j be σ̄ , E
∥∥Vi −V j

∥∥
p . Under the assumption that 2 f σ̄ <(

n − f
)‖G‖p , we will prove that this rule is

(
α, f

)
–Byzantine–resilient.

Trivial case: ∀i ∈ [
1.. f

]
, Bi ∉S .

As the aggregated gradient F is the arithmetic mean of unbiased vectors V j , we have E[F] =G ,

and points 1. and 2. of definition 10 are trivially satisfied.

Otherwise, without loss of generality, let b ∈ [
1.. f

]
and S = {

V1 . . .Vn− f −b ,B1 . . .Bb
}
, R̄ =R \S .

It holds:

∀S̄ ∈ R̄, ∃Xi ∈ S̄ \S , ∃X j ∈ S̄ \ { Xi } ,

∀Xk ∈S , ∀Xl ∈S \ { Xk } ,

‖Xk −Xl‖p < ∥∥Xi −X j
∥∥

p

We can also notice that: ∃V ∈ R̄, ∀i ∈ [
1.. f

]
, Bi ∉ V . Then, by combining this observation with

the previous one:

∀a ∈ [1 ..b] , Ba ∈S

⇒∃(
x, y

) ∈ [
1..n − f

]2 , i 6= j ,

∀k ∈ [
1..n − f −b

]
, ‖Ba −Vk‖p < ∥∥Vx −Vy

∥∥
p

This last observation will be reused in the following.

We can compute the aggregated gradient:

F = 1

n − f

(
n− f −b∑

i=1
Vi +

b∑
i=1

Bi

)

110

B.1. Brute’s
(
α, f

)
–Byzantine–resilience proof

and compare it with the average of the non–Byzantine ones:

Ĝ = 1

n − f

n− f∑
i=1

Vi

F −Ĝ = 1

n − f

(
b∑

i=1
Bi −

n− f∑
i=n− f −b+1

Vi

)

= 1

n − f

b∑
i=1

Bi −Vi+n− f −b

∥∥F −Ĝ
∥∥

p ≤ 1

n − f

b∑
i=1

∥∥Bi −Vi+n− f −b
∥∥

p

≤ 1

n − f

b∑
i=1

(‖Bi −Vk‖p

+∥∥Vk −Vi+n− f −b
∥∥

p

)
≤ 1

n − f

b∑
i=1

(∥∥Vx −Vy
∥∥

p

+∥∥Vk −Vi+n− f −b
∥∥

p

)

We can then compute the expected value of this distance, and with E
[
Ĝ

]
,G and the Jensen’s

inequality:

‖E[F]−G‖p ≤ E∥∥F −Ĝ
∥∥

p

≤ 1

n − f

b∑
i=1

σ̄+ σ̄

≤ 2b σ̄

n − f
≤ 2 f σ̄

n − f

So, under the assumption that 2 f σ̄ < (
n − f

)‖G‖p , we verify that ‖E[F]−G‖p < ‖G‖p , and so:

〈E[F] ,G〉 > 0.

Point 2. can also be verified formally, ∀r ∈ {2,3,4}:

E‖F‖r
p ≤ n − f −b

n − f
E‖G‖r

p + 1

n − f

b∑
i=1

E‖Bi‖r
p

111

Appendix B. Bulyan

Then, by using the binomial theorem twice:

‖Bi‖r
p ≤ ∑

r1+r2=r

(
r

r1

)
‖Bi −Vk‖r1

p ‖Vk‖r2
p

with k ∈ [
1..n − f −d

]
‖Bi −Vk‖r1

p ≤ ∥∥Vx −Vy
∥∥r1

p

≤ ∑
r3+r4=r1

(
r1

r3

)
‖Vx‖r3

p

∥∥Vy
∥∥r4

p

Finally, as
(
V1 . . .Vn− f

)
are independent, identically distributed random variables following the

same distribution G , we have that ∀(
i , j

) ∈ [
1..n − f

]2 , i 6= j , E
[
‖Vi‖r1

p

∥∥V j
∥∥r2

p

]
= E‖G‖r1

p ·E‖G‖r2
p ,

and so E‖Bi‖r
p is bounded as described in point 2. of definition 10.

B.2 Approximation of αm, with p ∈N∗

Prior conventions and assumptionsLet remind that ∀i ∈ [
1..n − f

]
, Vi =

(
v (i)

1 . . . v (i)
d

)
∼G .

We model each coordinate as a normal distribution:

∀ j ∈ [1 ..d] , ∃(
µ j ,σ j

) ∈R2,

∀i ∈ [
1..n − f

]
, v (i)

j ∼N
(
µ j ,σ j

2)
We assume d À 1, and we will write δ̄ for:

∀(
i , j

) ∈ [
1..n − f

]2 , i 6= j , δ̄= 1

d

d∑
k=1

E
∣∣∣v (i)

k − v (j)
k

∣∣∣
= 2

d
p
π

d∑
k=1

σk

and note that:
1

d

d∑
k=1

E
∣∣∣v (i)

k −µk

∣∣∣= p
2

d
p
π

d∑
k=1

σk

= δ̄p
2

Then, ∀(
i , j

) ∈ [
1..n − f

]2 , i 6= j , we can approximate:

∥∥Vi −V j
∥∥

p =
(

d∑
k=1

∣∣∣v (i)
k − v (j)

k

∣∣∣p
) 1

p

≈ (
d δ̄p) 1

p

Let E = (0 . . .0,1,0 . . .0) ∈ Rd the attacked coordinate. Then, with αm > 0, B = V +αm E , we can

112

B.2. Approximation of αm , with p ∈N∗

approximate:

‖B −Vi‖p =
((

d∑
k=1

∣∣∣v (i)
k − v̄k

∣∣∣p
)

−
∣∣∣v (i)

e − v̄e

∣∣∣p +
∣∣∣v (i)

e − v̄e +αm

∣∣∣p) 1
p

≈
(
αm

p +
d∑

k=1

∣∣∣v (i)
k −µk

∣∣∣p
) 1

p

≈
(
αm

p +d

(
δ̄p
2

)p) 1
p

Attack against BruteWe only study the worst case scenario, where n = 2 f +1, maximizing the

proportion of Byzantine workers.

Assuming B is selected by Brute:

B ∈S

⇒∃(
x, y

) ∈ [
1..n − f

]2 , i 6= j ,

∀k ∈ [
1..n − f −b

]
, ‖B −Vk‖p < ∥∥Vx −Vy

∥∥
p

(
αm

p +d

(
δ̄p
2

)p) 1
p

< (
d δ̄p) 1

p

 αm <
((

1− 1p
2

p

)
d

) 1
p

δ̄

This is a necessary, approximated condition. It is only to give broad insights on the relation

between some hyper–parameters and αm : with p, q constants, αm =O
(
δ̄

p
p

d
)
.

Attack against Krum/GeoMedWe only study the worst case scenario, where n = 2 f +3, maximiz-

ing the proportion of Byzantine workers.

Let q ∈ {1,2}, q = 1 for GeoMed and q = 2 for Krum.

First, we approximate the Byzantine submission’s score:

s (B) ≈ 2‖B −Vi‖q
p

≈ 2

(
αm

p +d

(
δ̄p
2

)p) q
p

∀i ∈ [
1..n − f

]
, let b ∈ [

0.. f
]

be how many B belongs to the n − f −2 closest vectors to Vi . Then

113

Appendix B. Bulyan

the score of Vi is:

s (Vi) ≈ b ‖B −Vi‖q
p + (

f +1−b
)∥∥V j −Vi

∥∥q
p

≈ b

(
αm

p +d

(
δ̄p
2

)p) q
p

+ (
f +1−b

)(
d δ̄p) q

p

Finally, B is selected ⇒ ∀i ∈ [
1..n − f

]
, s (B)/ s (Vi)

⇒
↑
∀i

(2−b)

(
αm

p +d

(
δ̄p
2

)p) q
p

/
(

f +1−b
)(

d δ̄p) q
p

⇒
↑
∃i

αm /

((
f +1−b

2−b

) p
q − 1p

2
p

) 1
p

d
1
p δ̄

This last implication is always true: there must be at least one non–Byzantine vector V j for with

b ∈ {0,1}; else αm could increase unbounded, which would be absurd.

In conclusion, with p, q constants: αm =O
(
δ̄ q

√
f p

p
d

)
.

B.3 Supplementary experiments

Attack on Brute, Krum and GeoMedOn MNIST, here we use η0 = 1, rη = 10000, a batch size of 83

images (256 for Brute), and for the workers:

Krum/GeoMed 30 non–Byzantines + 27 Byzantines

Brute 6 non–Byzantines + 5 Byzantines

Average 30 non–Byzantines + 0 Byzantines

On CIFAR–10, we use η0 = 0.5, rη = 2000, a batch size of 128 images (256 for Brute), and for the

worker counts:

Krum/GeoMed 21 non–Byzantines + 18 Byzantines

Brute 6 non–Byzantines + 5 Byzantines

Average 21 non–Byzantines + 0 Byzantines

In Figure B.1, the attack is maintained only up to 50 epochs. The attack variant for `∞ norm–

based gradient aggregation rules exhibited a very strong impact. None of the presented gradient

aggregation rules prevented the stochastic gradient descent from being pushed and remaining in

a sub–space of ineffective models, and for at least 1000 epochs.

In Figure B.2, the attack is never stopped. Again, none of the presented gradient aggregation rules

prevented the stochastic gradient descent from being pushed and remaining in a sub–space of

114

B.3. Supplementary experiments

0

0.2

0.4

0.6

0.8

1

10 100 200 300 400 500 600 700 800 900 1000

A
cc

ur
ac

y

Epoch

Average (no attack)
Krum (norm ∞)

GeoMed (norm ∞)
Brute (norm ∞)

Figure B.1 – MNIST: accuracy on the testing set up to epoch 1000, comparing the presented
aggregation rules under our attack. The attack was maintained only up to epoch 50 (dotted
line). The average is the reference: it is the accuracy the model would have shown if only non–
Byzantine gradients had been selected.

0

0.2

0.4

0.6

0.8

1

10 100 200 300 400 500 600 700 800 900 1000

A
cc

ur
ac

y

Epoch

Average (no attack)
Krum (norm 2)

GeoMed (norm 2)
Brute (norm 2)

Figure B.2 – CIFAR–10: accuracy on the testing set up to epoch 1000, comparing the presented
aggregation rules under our attack. The average is the reference: it is the accuracy the model
would have shown if only non–Byzantine gradients had been selected.

ineffective models, for at least 1000 epochs.

115

C Kardam

C.1 Experiments

In this section, we report on our empirical evaluation of our distributed implementation of

Kardam. Experiments on Byzantine attacks are mostly illustrative for (1) the importance of the

dampening component and (2) the overhead of the filtering component. Due to the intractability

of testing all possible attacks, the only option is to prove Byzantine resilience mathematically and

focus in the empirical part on the performance overhead of Kardam.

We employ the convolutional neural network (CNN) described in Table C.1 for image classifi-

cation on CIFAR-100. The chosen base learning rate is 15∗10−4 and the mini-batch size is 100

examples [135]. If not stated otherwise, we employ a setup with no actual Byzantine behavior

and deploy Kardam with f = 3 on 10 workers.

Parameters Input Conv1 Pool1 Conv2 Pool2 FC1 FC2 FC3
Kernel size
Strides

32×32×3
3×3×16
1×1

3×3
3×3

3×3×64
1×1

4×4
4×4

384 192 100

Table C.1 – CNN parameters for CIFAR-100.

Staleness-aware learning. We simulate a Gaussian staleness distribution [183] and evaluate Kar-

dam with different dampening functionsΛ(τ) (Definition 5) shown in Figure C.1(a). We compare

with the performance of Kardam without the Byzantine resilience component (BASELINE-ASGD)

by using the constant function (Λ1 = 1). Additionally, we compare with a state-of-the-art

staleness-aware learning algorithm (DYNSGD [85]) that employs an inverse dampening function

(Λ2(τ) = 1
1+τ). Finally, we use two exponential functions (Λ= exp(−α∗τ)) which, to the best of

our knowledge, only Kardam enables.

Figure C.1 depicts the very fact that the staleness-aware component of Kardam is crucial in

asynchronous environments. We simulate a Gaussian distribution (Figure C.1(b)) (similar to [183])

and show that SSGD has the faster convergence whereas BASELINE-ASGD diverges (Figures C.1(b)

and C.1(c)).

Figure C.1 also highlights the need for an adjustable smoothness on the dampening function. A

117

Appendix C. Kardam

very steep function (Λ2) almost ignores many of the updates (weighted by a very small value) and

thus suffers a slower convergence. A tuned exponential function (Λ3) accelerates the convergence

in comparison with the inverse function of DYNSGD. Moreover, Kardam (Λ3) assigns larger

weights to the less stale updates (τ< 13) compared to DYNSGD and vice versa.

The dampening function selection is the outcome of adjusting the trade-off between the robust-

ness and the magnitude of each update. We observe similar results for the EMNIST dataset (in

our supplementary material) and thus highlight that the dampening function can be selected

based on the expected staleness distribution, and not necessarily adjusted for each different

application.

0 6 12 18 240.0

0.2

0.4

0.6

0.8

1.0

(
)

Baseline-ASGD
DynSGD (1)
Kardam (2)
Kardam (3)

(a) Dampening functions

0 6 12 18 24
Epoch (x 1000)

1608

1616

1624

1632

1640

Co
st

SSGD

(b) Cost

0 6 12 18 24
Epoch (x 1000)

0.0

0.1

0.2

0.3

0.4

Ac
cu

ra
cy

(c) Accuracy

Figure C.1 – Staleness-aware learning for CIFAR-100. BASELINE-ASGD denotes Kardam with-
out the dampening component and SSGD the ideal (synchronous) SGD execution. The stal-
eness follows a Gaussian distribution (mean === 12, σ === 4) and the dampening functions are
Λ1 === 1

τ+1 ,Λ2 === e0.5τ,Λ3 === e0.2τ.

Impact of staleness. An increase in the amount of staleness leads to a slower convergence

according to Theorem 5 (i.e., largerχ in Equation 5.4). Figure C.2 depicts the impact of the amount

of staleness on Kardam and DYNSGD for two different staleness distributions (D1 and D2). We

observe that the smaller the mean of the distribution, the faster the convergence. We verify that

Kardam outperforms DYNSGD for D1 and vice versa for D2, as the values of the exponential

dampening function become very small for the larger staleness values (D2). We highlight that our

experimental setup includes significantly higher staleness (D2) than the competitors [183, 85].

Byzantine resilience. We observe that the overhead of the Byzantine resilience in the setup with

no actual Byzantine behavior is only in terms of filtered (i.e., wasted) gradients and not in terms of

convergence speed (in terms of epochs). Moreover, the drop ratio under the staleness distribution

D1 is 27.9% and 19.6% for Kardam employing Λ1 and Λ3 respectively, thus aligned with our

theoretical bound (Theorem 1). The slowdown would decrease accordingly by decreasing f , i.e.,

being more optimistic about the number of Byzantine workers.

We test Kardam against a baseline Byzantine behavior (3 out of 10 workers send g by z
p =−10gp)

and observe that Kardam successfully filters 100% of the Byzantine gradients (an empirical

confirmation of the theoretically proven Byzantine resilience of Kardam).

118

C.1. Experiments

0 40 800.00

0.04

0.08

0.12
Pr

ob
ab

ilit
y

D1
D2

(a) Staleness distributions

0 6 12 18 24
Epoch (x 1000)

1608

1616

1624

1632

1640

Co
st

(D1) Kardam (3)
(D1) DynSGD (1)
(D2) Kardam (3)
(D2) DynSGD (1)

(b) Cost

0 6 12 18 24
Epoch (x 1000)

0.0

0.1

0.2

0.3

0.4

Ac
cu

ra
cy

(c) Accuracy

Figure C.2 – Impact of staleness for CIFAR-100.

Experimental Results.We also evaluate the performance of Kardam for image classification

on the EMNIST dataset1 consisting 814,255 examples of handwritten characters and digits (62

classes). We perform min-max scaling normalization as a pre-processing step resulting in 784

normalized input. We split the dataset into 697,932 training and 116,323 test examples and

employ a base learning rate of 8∗ 10−4 alongside a mini-batch of 100 examples if not stated

otherwise.

0 40 800.00

0.04

0.08

0.12

Pr
ob

ab
ilit

y

D1
D2

(a) Staleness distributions

0 2 4 6 8 10
Epoch (x 1000)

0.0

1.5

3.0

4.5

Co
st

 (x
 1

05)

(D1) Kardam (3)
(D1) DynSGD (1)
(D2) Kardam (3)
(D2) DynSGD (1)

(b) Cost

0 2 4 6 8 10
Epoch (x 1000)

0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy

(c) Accuracy

Figure C.3 – Impact of staleness for EMNIST.

1https://www.nist.gov/itl/iad/image-group/emnist-dataset

119

https://www.nist.gov/itl/iad/image-group/emnist-dataset

Bibliography

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving,

M. Isard, et al. Tensorflow: A system for large-scale machine learning. In Proceedings of

the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI).

Savannah, Georgia, USA, 2016.

[2] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and L. Zhang. Deep

learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC Conference on

Computer and Communications Security, pages 308–318. ACM, 2016.

[3] G. Alain, A. Lamb, C. Sankar, A. Courville, and Y. Bengio. Variance reduction in sgd by

distributed importance sampling. arXiv preprint arXiv:1511.06481, 2015.

[4] D. Alistarh, Z. Allen-Zhu, and J. Li. Byzantine stochastic gradient descent. In Neural

Information Processing Systems, to appear, 2018.

[5] D. Alistarh, J. Li, R. Tomioka, and M. Vojnovic. Qsgd: Randomized quantization for

communication-optimal stochastic gradient descent. arXiv preprint arXiv:1610.02132,

2016.

[6] C. Allen and C. F. Stevens. An evaluation of causes for unreliability of synaptic transmission.

Proceedings of the National Academy of Sciences, 91(22):10380–10383, 1994.

[7] D. Amodei and D. Hernandez. AI and compute. Downloaded from

https://blog.openai.com/ai-and-compute, 2018.

[8] D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman, and D. Mané. Concrete

problems in ai safety. arXiv preprint arXiv:1606.06565, 2016.

[9] D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman, and D. Mané. Concrete

problems in ai safety. arXiv preprint arXiv:1606.06565, 2016.

[10] A. P. Arechiga and A. J. Michaels. The robustness of modern deep learning architectures

against single event upset errors. In 2018 IEEE High Performance extreme Computing

Conference (HPEC), pages 1–6. IEEE, 2018.

[11] E. Bagdasaryan, A. Veit, Y. Hua, D. Estrin, and V. Shmatikov. How to backdoor federated

learning. arXiv preprint arXiv:1807.00459, 2018.

121

Bibliography

[12] A. R. Barron. Universal approximation bounds for superpositions of a sigmoidal function.

IEEE Transactions on Information Theory, 39(3):930–945, 1993.

[13] P. L. Bartlett, D. J. Foster, and M. J. Telgarsky. Spectrally-normalized margin bounds for

neural networks. In Neural Information Processing Systems, pages 6241–6250, 2017.

[14] M. Baruch, G. Baruch, and Y. Goldberg. A little is enough: Circumventing defenses for

distributed learning. NeurIPS (to appear), 2019.

[15] Y. Bengio and R. De Mori. Use of neural networks for the recognition of place of articulation.

In Acoustics, Speech, and Signal Processing, 1988. ICASSP-88., 1988 International Conference

on, pages 103–106. IEEE, 1988.

[16] J. Bernstein, J. Zhao, K. Azizzadenesheli, and A. Anandkumar. signSGD with majority vote

is communication efficient and fault tolerant. In International Conference on Learning

Representations, 2019.

[17] A. N. Bhagoji, S. Chakraborty, P. Mittal, and S. Calo. Analyzing federated learning through

an adversarial lens. arXiv preprint arXiv:1811.12470, 2018.

[18] B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Šrndić, P. Laskov, G. Giacinto, and F. Roli.

Evasion attacks against machine learning at test time. In Joint European conference on

machine learning and knowledge discovery in databases, pages 387–402. Springer, 2013.

[19] B. Biggio and P. Laskov. Poisoning attacks against support vector machines. In In Interna-

tional Conference on Machine Learning (ICML. Citeseer, 2012.

[20] B. Biggio and F. Roli. Wild patterns: Ten years after the rise of adversarial machine learning.

arXiv preprint arXiv:1712.03141, 2017.

[21] P. Blanchard, E. M. El Mhamdi, R. Guerraoui, and J. Stainer. Machine learning with adver-

saries: Byzantine tolerant gradient descent. In Advances in Neural Information Processing

Systems (NeurIPS). 2017.

[22] M. Bojarski, D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D. Jackel, M. Mon-

fort, U. Muller, J. Zhang, et al. End to end learning for self-driving cars. arXiv preprint

arXiv:1604.07316, 2016.

[23] L. Bottou. Online learning and stochastic approximations. Online learning in neural

networks, 17(9):142, 1998.

[24] L. Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings

of COMPSTAT’2010, pages 177–186. Springer, 2010.

[25] L. Bottou. Stochastic Gradient Descent Tricks, pages 421–436. Springer Berlin Heidelberg,

Berlin, Heidelberg, 2012.

122

Bibliography

[26] O. Bousquet and L. Bottou. The tradeoffs of large scale learning. In Neural Information

Processing Systems, pages 161–168, 2008.

[27] C. Cachin, R. Guerraoui, and L. Rodrigues. Introduction to reliable and secure distributed

programming. 2011.

[28] J. Chen, R. Monga, S. Bengio, and R. Jozefowicz. Revisiting distributed synchronous sgd.

arXiv preprint arXiv:1604.00981, 2016.

[29] L. Chen, H. Wang, and D. Papailiopoulos. Draco: Robust distributed training against

adversaries, 2018.

[30] X. Chen, T. Chen, H. Sun, Z. S. Wu, and M. Hong. Distributed training with heterogeneous

data: Bridging median and mean based algorithms. arXiv preprint arXiv:1906.01736, 2019.

[31] Y. Chen, L. Su, and J. Xu. Distributed statistical machine learning in adversarial settings:

Byzantine gradient descent. arXiv preprint arXiv:1705.05491, 2017.

[32] C.-T. Chiu et al. Robustness of feedforward neural networks. In IEEE International Confer-

ence on Neural Networks, pages 783–788. IEEE, 1993.

[33] L. Chizat, E. Oyallon, and F. Bach. On lazy training in differentiable programming. 2019.

[34] A. Choromanska, M. Henaff, M. Mathieu, G. Ben Arous, and Y. LeCun. The loss surfaces of

multilayer networks. In Artificial Intelligence and Statistics, pages 192–204, 2015.

[35] A. Choromanska, Y. LeCun, and G. Ben Arous. Open problem: The landscape of the loss

surfaces of multilayer networks. In Conference on Learning Theory, pages 1756–1760, 2015.

[36] G. Chowdhary and E. Johnson. Adaptive neural network flight control using both current

and recorded data. In AIAA Guidance, Navigation, and Control Conference, AIAA-2007-6505.

Hilton Head, 2007.

[37] M. Cisse, P. Bojanowski, E. Grave, Y. Dauphin, and N. Usunier. Parseval networks: Improving

robustness to adversarial examples. In International Conference on Machine Learning,

pages 854–863, 2017.

[38] A. Clement, E. L. Wong, L. Alvisi, M. Dahlin, and M. Marchetti. Making byzantine fault

tolerant systems tolerate byzantine faults. In NSDI, volume 9, pages 153–168, 2009.

[39] M. B. Cohen, Y. T. Lee, G. Miller, J. Pachocki, and A. Sidford. Geometric median in nearly lin-

ear time. In Proceedings of the forty-eighth annual ACM symposium on Theory of Computing,

pages 9–21. ACM, 2016.

[40] M. Costanzo, B. VanderSluis, E. N. Koch, A. Baryshnikova, C. Pons, G. Tan, W. Wang, M. Usaj,

J. Hanchard, S. D. Lee, et al. A global genetic interaction network maps a wiring diagram of

cellular function. Science, 353(6306):aaf1420, 2016.

123

Bibliography

[41] H. Cui, J. Cipar, Q. Ho, J. K. Kim, S. Lee, A. Kumar, J. Wei, W. Dai, G. R. Ganger, P. B. Gibbons,

et al. Exploiting bounded staleness to speed up big data analytics. In USENIX ATC, pages

37–48, 2014.

[42] A. R. da Silva, L. M. Rodrigues, L. de Oliveira Rech, and A. F. Luiz. Rdfm: Resilient distributed

factorization machines. In International Conference on Artificial Intelligence and Soft

Computing, pages 585–594. Springer, 2019.

[43] D. Data, L. Song, and S. Diggavi. Data encoding for byzantine-resilient distributed gradi-

ent descent. In 2018 56th Annual Allerton Conference on Communication, Control, and

Computing (Allerton), pages 863–870. IEEE, 2018.

[44] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, A. Senior, P. Tucker, K. Yang,

Q. V. Le, et al. Large scale distributed deep networks. In Advances in neural information

processing systems, pages 1223–1231, 2012.

[45] I. Diakonikolas, G. Kamath, D. M. Kane, J. Li, A. Moitra, and A. Stewart. Robustly learning

a gaussian: Getting optimal error, efficiently. In Proceedings of the Twenty-Ninth Annual

ACM-SIAM Symposium on Discrete Algorithms, pages 2683–2702. Society for Industrial and

Applied Mathematics, 2018.

[46] A. Diaz Alvarez et al. Modeling the driving behavior of electric vehicles using smartphones

and neural networks. Intelligent Transportation Systems Magazine, IEEE, 6(3):44–53, 2014.

[47] D. L. Donoho and P. J. Huber. The notion of breakdown point. A festschrift for Erich L.

Lehmann, 157184, 1983.

[48] M. Dredze, D. A. Broniatowski, M. C. Smith, and K. M. Hilyard. Understanding vaccine

refusal: why we need social media now. American journal of preventive medicine, 50(4):550–

552, 2016.

[49] E. El Mhamdi and R. Guerraoui. When neurons fail - technical report. page 19, 2016.

Biological Distributed Algorithms Workshop, Chicago.

[50] E. M. El Mhamdi and R. Guerraoui. When neurons fail. Technical report, EPFL, 2016.

[51] E. M. El Mhamdi and R. Guerraoui. When neurons fail. In IEEE International Parallel and

Distributed Processing Symposium (IPDPS). 2017.

[52] E. M. El Mhamdi, R. Guerraoui, and A. Guirguis. Fast Byzantine machine learning with

unreliable servers. arXiv preprint arXiv:1911.07537, 2019.

[53] E. M. El Mhamdi, R. Guerraoui, A. Guirguis, and S. Rouault. Sgd: Decentralized Byzantine

resilience. arXiv preprint arXiv:1905.03853, 2019.

[54] E. M. El Mhamdi, R. Guerraoui, A. Kucharavy, and S. Volodin. The probabilistic fault

tolerance of neural networks in the continuous limit. arXiv preprint arXiv:1902.01686,

2019.

124

Bibliography

[55] E. M. El Mhamdi, R. Guerraoui, and S. Rouault. On the robustness of a neural network. In

IEEE Symposium on Reliable Distributed Systems (SRDS). 2017.

[56] E. M. El Mhamdi, R. Guerraoui, and S. Rouault. The hidden vulnerability of distributed

learning in byzantium. arXiv preprint arXiv:1802.07927, 2018.

[57] E. M. El Mhamdi, R. Guerraoui, and S. Rouault. The hidden vulnerability of distributed

learning in Byzantium. In International Conference on Machine Learning (ICML). 2018.

[58] E. M. El Mhamdi, A. Kucharavy, R. Guerraoui, and R. Li. Predicting complex genetic

phenotypes using error propagation in weighted networks. bioRxiv, 487348 (under review

for a biology journal), 2018.

[59] S. K. Esser, R. Appuswamy, P. Merolla, J. V. Arthur, and D. S. Modha. Backpropagation for

energy-efficient neuromorphic computing. In Advances in Neural Information Processing

Systems, pages 1117–1125, 2015.

[60] S. K. Esser, R. Appuswamy, P. Merolla, J. V. Arthur, and D. S. Modha. Backpropagation for

energy-efficient neuromorphic computing. In Advances in Neural Information Processing

Systems, pages 1117–1125, 2015.

[61] S. K. Esser, P. A. Merolla, J. V. Arthur, A. S. Cassidy, R. Appuswamy, A. Andreopoulos, D. J.

Berg, J. L. McKinstry, T. Melano, D. R. Barch, et al. Convolutional networks for fast, energy-

efficient neuromorphic computing. Proceedings of the National Academy of Sciences, page

201604850, 2016.

[62] A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau, and S. Thrun.

Dermatologist-level classification of skin cancer with deep neural networks. Nature,

542(7639):115, 2017.

[63] M. E. Farmer, C. S. Jacobs, and S. Cong. Neural network radar processor, Apr. 2 2002. US

Patent 6,366,236.

[64] A. Fawzi, S.-M. Moosavi-Dezfooli, and P. Frossard. Robustness of classifiers: from ad-

versarial to random noise. In Advances in Neural Information Processing Systems, pages

1624–1632, 2016.

[65] J. Feng, H. Xu, and S. Mannor. Outlier robust online learning. arXiv preprint

arXiv:1701.00251, 2017.

[66] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus with

one faulty process. Journal of the ACM (JACM), 32(2):374–382, 1985.

[67] C. Fung, C. J. Yoon, and I. Beschastnikh. Mitigating sybils in federated learning poisoning.

arXiv preprint arXiv:1808.04866, 2018.

[68] S. Geman, E. Bienenstock, and R. Doursat. Neural networks and the bias/variance dilemma.

Neural computation, 4(1):1–58, 1992.

125

Bibliography

[69] R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis. Large-scale matrix factorization with dis-

tributed stochastic gradient descent. In Proceedings of the 17th ACM SIGKDD international

conference on Knowledge discovery and data mining, pages 69–77. ACM, 2011.

[70] J. Gilmer, L. Metz, F. Faghri, S. S. Schoenholz, M. Raghu, M. Wattenberg, and I. Goodfellow.

Adversarial spheres. arXiv preprint arXiv:1801.02774, 2018.

[71] J. I. Glass, N. Assad-Garcia, N. Alperovich, S. Yooseph, M. R. Lewis, M. Maruf, C. A. Hutchi-

son, H. O. Smith, and J. C. Venter. Essential genes of a minimal bacterium. Proceedings of

the National Academy of Sciences, 103(2):425–430, 2006.

[72] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples.

arXiv preprint arXiv:1412.6572, 2014.

[73] N. Gupta and N. H. Vaidya. Byzantine fault tolerant distributed linear regression. arXiv

preprint arXiv:1903.08752, 2019.

[74] N. C. Hammadi and H. Ito. A learning algorithm for fault tolerant feedforward neural

networks. IEICE TRANSACTIONS on Information and Systems, 80(1):21–27, 1997.

[75] C. Hardy. Contribution au développement de l’apprentissage profond dans les systèmes

distribués. PhD thesis, Rennes 1, 2019.

[76] C. Hardy, E. Le Merrer, and B. Sericola. Md-gan: Multi-discriminator generative adversarial

networks for distributed datasets. In 2019 IEEE International Parallel and Distributed

Processing Symposium (IPDPS), pages 866–877. IEEE, 2019.

[77] S. S. Haykin. Neural networks and learning machines, volume 3. Pearson Upper Saddle

River, NJ, USA:, 2009.

[78] M. Herlihy, S. Rajsbaum, M. Raynal, and J. Stainer. Computing in the presence of concurrent

solo executions. In Latin American Symposium on Theoretical Informatics, pages 214–225.

Springer, 2014.

[79] Q. Ho, J. Cipar, H. Cui, S. Lee, J. K. Kim, P. B. Gibbons, G. A. Gibson, G. Ganger, and E. P.

Xing. More effective distributed ml via a stale synchronous parallel parameter server. In

Advances in neural information processing systems, pages 1223–1231, 2013.

[80] A. Holzinger. Interactive machine learning for health informatics: when do we need the

human-in-the-loop? Brain Informatics, 3(2):119–131, 2016.

[81] K. Hornik. Approximation capabilities of multilayer feedforward networks. Neural networks,

4(2):251–257, 1991.

[82] G. Indiveri et al. Neuromorphic silicon neuron circuits. Frontiers in neuroscience, Vol. 5,

2011.

126

Bibliography

[83] A. Jacot, F. Gabriel, and C. Hongler. Neural tangent kernel: Convergence and generalization

in neural networks. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi,

and R. Garnett, editors, Advances in Neural Information Processing Systems 31, pages

8580–8589. Curran Associates, Inc., 2018.

[84] J. Ji, X. Chen, Q. Wang, L. Yu, and P. Li. Learning to learn gradient aggregation by gradient

descent.

[85] J. Jiang, B. Cui, C. Zhang, and L. Yu. Heterogeneity-aware distributed parameter servers. In

SIGMOD, pages 463–478, 2017.

[86] R. Jiang, S. Chiappa, T. Lattimore, A. Agyorgy, and P. Kohli. Degenerate feedback loops in

recommender systems. arXiv preprint arXiv:1902.10730, 2019.

[87] R. Jin, X. He, and H. Dai. Distributed byzantine tolerant stochastic gradient descent in the

era of big data. arXiv preprint arXiv:1902.10336, 2019.

[88] P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt, N. E. Jerger, and A. Moshovos. Proteus:

Exploiting numerical precision variability in deep neural networks. In Proceedings of the

2016 International Conference on Supercomputing, page 23. ACM, 2016.

[89] Z. Kaoudi, J.-A. Quiané-Ruiz, S. Thirumuruganathan, S. Chawla, and D. Agrawal. A cost-

based optimizer for gradient descent optimization. In SIGMOD, pages 977–992, 2017.

[90] P. Kerlirzin. Etude de la robustesse des réseaux multicouches. PhD thesis, Paris 11, 1994.

[91] P. Kerlirzin and F. Vallet. Robustness in multilayer perceptrons. Neural computation,

5(3):473–482, 1993.

[92] P. Kerlirzin and F. Vallet. Robustness in multilayer perceptrons. Neural computation,

5(3):473–482, 1993.

[93] L. Kim. How many ads does google serve in a day? http://goo.gl/oIidXO, November 2012.

[94] P. W. Koh and P. Liang. Understanding black-box predictions via influence functions. In

International Conference on Machine Learning, pages 1689–1698, 2017.

[95] J. Konečnỳ, B. McMahan, and D. Ramage. Federated optimization: Distributed optimization

beyond the datacenter. arXiv preprint arXiv:1511.03575, 2015.

[96] J. Konečnỳ, H. B. McMahan, F. X. Yu, P. Richtárik, A. T. Suresh, and D. Bacon. Federated learn-

ing: Strategies for improving communication efficiency. arXiv preprint arXiv:1610.05492,

2016.

[97] N. Konstantinov and C. Lampert. Robust learning from untrusted sources. arXiv preprint

arXiv:1901.10310, 2019.

127

Bibliography

[98] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convo-

lutional neural networks. In Advances in neural information processing systems, pages

1097–1105, 2012.

[99] A. Kumar, S. Mehta, and D. Vijaykeerthy. An introduction to adversarial machine learning.

In International Conference on Big Data Analytics, pages 293–299. Springer, 2017.

[100] L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem. ACM Transactions

on Programming Languages and Systems (TOPLAS), 4(3):382–401, 1982.

[101] S. Lawrence, C. L. Giles, and A. C. Tsoi. What size neural network gives optimal gener-

alization? Convergence properties of backpropagation. Pennsylvania State University,

1998.

[102] Y. LeCun and Y. Bengio. Convolutional networks for images, speech, and time series. The

handbook of brain theory and neural networks, 3361(10), 1995.

[103] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436–444, 2015.

[104] G. Li, S. K. S. Hari, M. Sullivan, T. Tsai, K. Pattabiraman, J. Emer, and S. W. Keckler. Un-

derstanding error propagation in deep learning neural network (dnn) accelerators and

applications. In Proceedings of the International Conference for High Performance Comput-

ing, Networking, Storage and Analysis, page 8. ACM, 2017.

[105] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski, J. Long, E. J. Shekita,

and B.-Y. Su. Scaling distributed machine learning with the parameter server. In OSDI,

volume 1, page 3, 2014.

[106] M. Li, D. G. Andersen, A. J. Smola, and K. Yu. Communication efficient distributed machine

learning with the parameter server. In Advances in Neural Information Processing Systems,

pages 19–27, 2014.

[107] M. Li, L. Zhou, Z. Yang, A. Li, F. Xia, D. G. Andersen, and A. Smola. Parameter server for

distributed machine learning. In Big Learning NIPS Workshop, volume 6, page 2, 2013.

[108] X. Lian, Y. Huang, Y. Li, and J. Liu. Asynchronous parallel stochastic gradient for nonconvex

optimization. In Advances in Neural Information Processing Systems, pages 2737–2745,

2015.

[109] X. Lian, H. Zhang, C.-J. Hsieh, Y. Huang, and J. Liu. A comprehensive linear speedup

analysis for asynchronous stochastic parallel optimization from zeroth-order to first-order.

In NIPS, 2016.

[110] M. Lichman. UCI machine learning repository, 2013.

[111] F. Lin, Q. Ling, and Z. Xiong. Byzantine-resilient distributed large-scale matrix comple-

tion. In ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), pages 8167–8171. IEEE, 2019.

128

Bibliography

[112] J. Liu, Stephen, and J. Wright. Asynchronous stochastic coordinate descent: Parallelism

and convergence properties. Technical report, SIAM Journal on Optimization, 2015.

[113] N. A. Lynch. Distributed algorithms. Morgan Kaufmann, 1996.

[114] D. M. MacKay and W. S. McCulloch. The limiting information capacity of a neuronal link.

The bulletin of mathematical biophysics, 14(2):127–135, 1952.

[115] S. Mahloujifar, M. Mahmoody, and A. Mohammed. Multi-party poisoning through general-

ized p-tampering. arXiv preprint arXiv:1809.03474, 2018.

[116] J. Markoff. How many computers to identify a cat? 16,000. New York Times, pages 06–25,

2012.

[117] H. Markram, E. Muller, S. Ramaswamy, et al. Reconstruction and simulation of neocortical

microcircuitry. Cell, 163(2):456–492, 2015.

[118] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas. Communication-

efficient learning of deep networks from decentralized data. In Artificial Intelligence and

Statistics, pages 1273–1282, 2017.

[119] K. Mehrotra, C. K. Mohan, S. Ranka, and C.-t. Chiu. Fault tolerance of neural networks.

Technical report, DTIC Document, 1994.

[120] K. Mehrotra, C. K. Mohan, S. Ranka, and C.-t. Chiu. Fault tolerance of neural networks.

Technical report, DTIC Document, 1994.

[121] H. Mendes and M. Herlihy. Multidimensional approximate agreement in byzantine asyn-

chronous systems. In Proceedings of the forty-fifth annual ACM symposium on Theory of

computing, pages 391–400. ACM, 2013.

[122] H. Mendes, M. Herlihy, N. Vaidya, and V. K. Garg. Multidimensional agreement in byzantine

systems. Distributed Computing, 28(6):423–441, 2015.

[123] J. Misra and I. Saha. Artificial neural networks in hardware: A survey of two decades of

progress. Neurocomputing, 74(1):239–255, 2010.

[124] T. Mitra, S. Counts, and J. W. Pennebaker. Understanding anti-vaccination attitudes in

social media. In ICWSM, pages 269–278, 2016.

[125] S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard. Universal adversarial perturba-

tions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,

pages 1765–1773, 2017.

[126] A. S. Morcos, D. G. Barrett, N. C. Rabinowitz, and M. Botvinick. On the importance of single

directions for generalization. In International Conference on Learning Representations,

2018.

129

Bibliography

[127] L. Muñoz-González, K. T. Co, and E. C. Lupu. Byzantine-robust federated machine learning

through adaptive model averaging. arXiv preprint arXiv:1909.05125, 2019.

[128] E. Munsing and S. Moura. Cybersecurity in distributed and fully-decentralized optimization:

Distortions, noise injection, and admm. arXiv preprint arXiv:1805.11194, 2018.

[129] A. F. Murray and P. J. Edwards. Enhanced mlp performance and fault tolerance resulting

from synaptic weight noise during training. IEEE Transactions on neural networks, 5(5):792–

802, 1994.

[130] M. Métivier. Semi-Martingales. Walter de Gruyter, 1983.

[131] S. Navlakha and Z. Bar-Joseph. Distributed information processing in biological and

computational systems. Communications of the ACM, 58(1):94–102, 2015.

[132] C. Neti, M. H. Schneider, and E. D. Young. Maximally fault tolerant neural networks. IEEE

Transactions on Neural Networks, 3(1):14–23, 1992.

[133] B. Neyshabur, S. Bhojanapalli, D. McAllester, and N. Srebro. Exploring Generalization in

Deep Learning. coRR, 2017.

[134] B. Neyshabur, S. Bhojanapalli, and N. Srebro. A pac-bayesian approach to spectrally-

normalized margin bounds for neural networks. arXiv preprint arXiv:1707.09564, 2017.

[135] B. Neyshabur, R. R. Salakhutdinov, and N. Srebro. Path-sgd: Path-normalized optimization

in deep neural networks. In Neural Information Processing Systems, pages 2422–2430, 2015.

[136] W. H. Organization and R. Akbar. Ten threats to global health in 2019. https://www.who.int/

emergencies/ten-threats-to-global-health-in-2019, 2019. [Online; accessed 21-January-

2019].

[137] D. S. Phatak and I. Koren. Complete and partial fault tolerance of feedforward neural nets.

IEEE Transactions on Neural Networks, 6(2):446–456, 1995.

[138] V. Piuri. Analysis of fault tolerance in artificial neural networks. Journal of Parallel and

Distributed Computing, 61(1):18–48, 2001.

[139] V. Piuri. Analysis of fault tolerance in artificial neural networks. Journal of Parallel and

Distributed Computing, 61(1):18–48, 2001.

[140] B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approximation by averaging. SIAM

Journal on Control and Optimization, 30(4):838–855, 1992.

[141] A. Qiao, B. Aragam, B. Zhang, and E. P. Xing. Fault tolerance in iterative-convergent machine

learning. arXiv preprint arXiv:1810.07354, 2018.

[142] S. Rajput, H. Wang, Z. Charles, and D. Papailiopoulos. Detox: A redundancy-based frame-

work for faster and more robust gradient aggregation. Neural Information Processing

Systems, 2019.

130

https://www.who.int/emergencies/ten-threats-to-global-health-in-2019
https://www.who.int/emergencies/ten-threats-to-global-health-in-2019

Bibliography

[143] B. Recht, C. Re, S. Wright, and F. Niu. Hogwild: A lock-free approach to parallelizing

stochastic gradient descent. In Neural Information Processing Systems, pages 693–701,

2011.

[144] S. J. Reddi, M. Zaheer, S. Sra, B. Poczos, F. Bach, R. Salakhutdinov, and A. J. Smola. A generic

approach for escaping saddle points. arXiv preprint arXiv:1709.01434, 2017.

[145] P. J. Rousseeuw. Multivariate estimation with high breakdown point. Mathematical statistics

and applications, 8:283–297, 1985.

[146] F. B. Schneider. Implementing fault-tolerant services using the state machine approach: A

tutorial. ACM Computing Surveys (CSUR), 22(4):299–319, 1990.

[147] H. T. Siegelmann and E. D. Sontag. Analog computation via neural networks. Theoretical

Computer Science, 131(2):331–360, 1994.

[148] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrittwieser,

I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. Mastering the game of go with deep

neural networks and tree search. nature, 529(7587):484, 2016.

[149] N. Smith and T. Graham. Mapping the anti-vaccination movement on facebook. Informa-

tion, Communication & Society, pages 1–18, 2017.

[150] M. Y.-J. Song and A. Gruzd. Examining sentiments and popularity of pro-and anti-

vaccination videos on youtube. In Proceedings of the 8th International Conference on

Social Media & Society, page 17. ACM, 2017.

[151] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A

simple way to prevent neural networks from overfitting. The Journal of Machine Learning

Research, 15(1):1929–1958, 2014.

[152] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A

simple way to prevent neural networks from overfitting. The Journal of Machine Learning

Research, 15(1):1929–1958, 2014.

[153] R. K. Srivastava, K. Greff, and J. Schmidhuber. Training very deep networks. In Advances in

neural information processing systems, pages 2377–2385, 2015.

[154] J. Stilgoe. Machine learning, social learning and the governance of self-driving cars. Social

studies of science, 48(1):25–56, 2018.

[155] L. Su. Defending distributed systems against adversarial attacks: consensus, consensus-based

learning, and statistical learning. PhD thesis, University of Illinois at Urbana-Champaign,

2017.

[156] L. Su and S. Shahrampour. Finite-time guarantees for byzantine-resilient distributed state

estimation with noisy measurements. arXiv preprint arXiv:1810.10086, 2018.

131

Bibliography

[157] L. Su and N. H. Vaidya. Fault-tolerant multi-agent optimization: optimal iterative dis-

tributed algorithms. In Proceedings of the 2016 ACM Symposium on Principles of Distributed

Computing, pages 425–434. ACM, 2016.

[158] L. Su and N. H. Vaidya. Non-bayesian learning in the presence of byzantine agents. In

International Symposium on Distributed Computing, pages 414–427. Springer, 2016.

[159] Y. Tan and T. Nanya. Fault-tolerant back-propagation model and its generalization ability.

In Neural Networks, 1993. Proceedings of 1993 International Joint Conference on, volume 3,

pages 2516–2519. IEEE, 1993.

[160] W. TianXiang, Z. ZHENG, T. ChangBing, and P. Hao. Aggregation rules based on stochastic

gradient descent in byzantine consensus. In 2019 IEEE 8th Joint International Information

Technology and Artificial Intelligence Conference (ITAIC), pages 317–324. IEEE, 2019.

[161] R. Tomsett, K. Chan, and S. Chakraborty. Model poisoning attacks against distributed ma-

chine learning systems. In Artificial Intelligence and Machine Learning for Multi-Domain

Operations Applications, volume 11006, page 110061D. International Society for Optics and

Photonics, 2019.

[162] C. Torres-Huitzil and B. Girau. Fault and error tolerance in neural networks: A review. IEEE

Access, 5:17322–17341, 2017.

[163] A. Trask, D. Gilmore, and M. Russell. Modeling order in neural word embeddings at scale.

In ICML, pages 2266–2275, 2015.

[164] J. Tsitsiklis, D. Bertsekas, and M. Athans. Distributed asynchronous deterministic and

stochastic gradient optimization algorithms. IEEE transactions on automatic control,

31(9):803–812, 1986.

[165] P. Vyavahare, L. Su, and N. H. Vaidya. Distributed learning with adversarial agents under

relaxed network condition. arXiv preprint arXiv:1901.01943, 2019.

[166] B. Wang, J. Gao, and Y. Qi. A theoretical framework for robustness of (deep) classifiers under

adversarial noise. arXiv preprint arXiv:1612.00334, 2016.

[167] T.-W. Weng, P.-Y. Chen, L. M. Nguyen, M. S. Squillante, I. Oseledets, and L. Daniel. Proven:

Certifying robustness of neural networks with a probabilistic approach. arXiv preprint

arXiv:1812.08329, 2018.

[168] P. Werbos. Beyond regression: New tools for prediction and analysis in the behavioral sciences.

Harvard University, 1974.

[169] Q. Xia, Z. Tao, Z. Hao, and Q. Li. Faba: An algorithm for fast aggregation against byzantine

attacks in distributed neural networks.

132

Bibliography

[170] H. Xiao, B. Biggio, G. Brown, G. Fumera, C. Eckert, and F. Roli. Is feature selection secure

against training data poisoning? In International Conference on Machine Learning, pages

1689–1698, 2015.

[171] C. Xie. Zeno++: robust asynchronous sgd with arbitrary number of byzantine workers.

arXiv preprint arXiv:1903.07020, 2019.

[172] C. Xie, O. Koyejo, and I. Gupta. Generalized byzantine-tolerant sgd. arXiv preprint

arXiv:1802.10116, 2018.

[173] C. Xie, O. Koyejo, and I. Gupta. Phocas: dimensional byzantine-resilient stochastic gradient

descent. arXiv preprint arXiv:1805.09682, 2018.

[174] C. Xie, O. Koyejo, and I. Gupta. Zeno: Distributed stochastic gradient descent with suspicion-

based fault-tolerance. arXiv preprint arXiv:1805.10032, 2018.

[175] C. Xie, S. Koyejo, and I. Gupta. Fall of empires: Breaking byzantine-tolerant sgd by inner

product manipulation. arXiv preprint arXiv:1903.03936, 2019.

[176] H. Yang, X. Zhang, M. Fang, and J. Liu. Byzantine-resilient stochastic gradient descent for

distributed learning: A lipschitz-inspired coordinate-wise median approach. arXiv preprint

arXiv:1909.04532, 2019.

[177] Z. Yang and W. U. Bajwa. Bridge: Byzantine-resilient decentralized gradient descent. arXiv

preprint arXiv:1908.08098, 2019.

[178] C. Yu, H. Tang, C. Renggli, S. Kassing, A. Singla, D. Alistarh, C. Zhang, and J. Liu. Distributed

learning over unreliable networks. In International Conference on Machine Learning, pages

7202–7212, 2019.

[179] Q. Yu, S. Li, N. Raviv, S. M. M. Kalan, M. Soltanolkotabi, and S. Avestimehr. Lagrange

coded computing: Optimal design for resiliency, security and privacy. arXiv preprint

arXiv:1806.00939, 2018.

[180] R. Zhang, S. Zheng, and J. T. Kwok. Asynchronous distributed semi-stochastic gradient

optimization. In AAAI, pages 2323–2329, 2016.

[181] S. Zhang, A. E. Choromanska, and Y. LeCun. Deep learning with elastic averaging sgd. In

Advances in Neural Information Processing Systems, pages 685–693, 2015.

[182] T. Zhang. Solving large scale linear prediction problems using stochastic gradient descent

algorithms. In Proceedings of the twenty-first international conference on Machine learning,

page 116. ACM, 2004.

[183] W. Zhang, S. Gupta, X. Lian, and J. Liu. Staleness-aware async-sgd for distributed deep

learning. In IJCAI, pages 2350–2356, 2016.

[184] M. Zinkevich, M. Weimer, L. Li, and A. J. Smola. Parallelized stochastic gradient descent. In

Neural Information Processing Systems, pages 2595–2603, 2010.

133

El Mahdi EL MHAMDI
Telephone : (+41) 76 587 53 84​ -- ​Email : ​elmahdi@elmhamdi.com​ Webpage: ​www.elmahdielmhamdi.com

About:
My current research is mostly on the robustness of (distributed) learning systems, where I focus on algorithmic
design and formal proofs, while closely collaborating with systems engineering colleagues. My contributions led to
the first provably Byzantine-resilient algorithm for Gradient Descent and a series of follow-ups. I also have a keen
interest in theoretical biology on which I collaborated with colleagues from the Johns Hopkins School of Medicine.
Before my PhD, I worked as a Research Engineer in applied physics, co-founded a University-level e-Learning
platform in Switzerland and an award winning News portal in my home country, Morocco.

Publications:​ (authors order is alphabetic in most papers, except when indicated with *, details ​in my website​.)

Peer reviewed conferences and journals:

E.M. El Mhamdi, R. Guerraoui, A. Maurer, V. Tempez. ​“Exploring the Borderlands of the Gathering Problem”. Bulletin of
the European Association of Theoretical Computer Science (​EATCS​). 2019. (I presented an earlier version of this
work at the​ ​5th Biological Distributed Algorithms, Washington D.C, July 2017).

G. Damaskinos, E.M. El Mhamdi, R. Guerraoui, A. Guirguis, S. Rouault. ​“AggregaThor: Byzantine Machine Learning via
Robust Gradient Aggregation”. ​Conference on Machine Learning and Systems ​MLsys​ 2019. ​Regular Talk​ ​(Given by G.D).

E.M. El Mhamdi, R. Guerraoui, S. Rouault. ​“The Hidden Vulnerability of Distributed Learning in Byzantium”. ​International
Conference on Machine Learning (​ICML​), Sweden. July 2018. ​Long Talk ​(Given by myself)​.

G. Damaskinos, E.M. El Mhamdi, R. Guerraoui, R. Patra, M. Taziki. ​“Asynchronous Byzantine Machine Learning (the case of
SGD)”. ​(​ICML​), Sweden. July 2018. ​Long Talk ​(Given by myself).

El Mahdi El Mhamdi*, Andrei Kucharavy*, Rachid Guerraoui, Rong Li. ​“Predicting complex genetic phenotypes using error
propagation in weighted networks”. ​Conferences of the European Molecular Biology Laboratory ​(​EMBL​) Heidelberg,
Germany Nov 2018. Short Talk (given by A.K.). (​Currently under review for a Biology journal, preprint:
https://www.biorxiv.org/content/10.1101/487348v1​)

E.M. El Mhamdi, R. Guerraoui, H. Hendrikx, A. Maurer. ​“Dynamic Safe Interruptibility for Decentralized Multi-Agent
Reinforcement Learning”. ​Neural Information Processing Systems (​NeurIPS​), California. Dec 2017. ​Spotlight ​(by H.H)​.

P. Blanchard, E.M. El Mhamdi, R. Guerraoui, J.Stainer. ​“Machine Learning in the Presence of Attackers: Byzantine-Tolerant
Gradient Descent”. ​Neural Information Processing Systems (​NeurIPS​), California. Dec 2017.

E.M. El Mhamdi, R. Guerraoui, S. Rouault. ​“On The Robustness of a Neural Network”. ​IEEE ​38th Symposium on Reliable
Distributed Computing (​SRDS​), Hong Kong, China. Sept. 2017. ​Regular Talk (Given by myself).

P. Blanchard, E.M. El Mhamdi, R. Guerraoui, J. Stainer. ​“Byzantine-Tolerant Machine Learning”. ​ACM Symposium on
Principles of Distributed Computing (​PODC​), Washington D.C, USA. July 2017. ​Short Talk (Given by myself).

E.M. El Mhamdi and R. Guerraoui. ​“When Neurons Fail”. ​IEEE 31st International Parallel and Distributed Processing
Symposium (​IPDPS​), Orlando, Florida, USA. June 2017. ​Regular Talk (Given by myself).

E.M. El Mhamdi*, J. Holovsky, B. Demaurex, C. Ballif and S. De Wolf. “​Is Light Induced Degradation of a-Si:H/​c-Si
interfaces reversible?” ​Applied Physics Letters​, June 2014. (APL is the leading journal in applied physics, condensed
matter and semiconductors).

E.M. El Mhamdi*, S. De Wolf, J. Holovsky, B. Demaurex and C. Ballif. “​Metastability versus Irreversibility in a-Si:H
Degradation - Understanding Passivation in Silicon Heterojunction Solar Cells ​” 3rd International Conference on Crystalline
Silicon Photovoltaics. March 2013, Hamelin, Germany. ​Plenary Oral ​(​Given by myself​).

D. Boullier and E.M. El Mhamdi. ​“Machine learning and social sciences in the face of computational complexity”​. Accepted to the
Revue d’Anthropologie des Connaissances​, to appear, 2020.

135

R. Rößler*, L. Korte, C. Leendertz, N. Mingirulli, E.M El Mhamdi, B Rech. “​ZnO: Al/(p) a-Si: H Contact Formation and
Its Influence on Charge Carrier Lifetime Measurements”. ​EuPVSEC​, Sept. 2012, Frankfurt, Germany. ​Regular Talk (by R.R).

In preparation / workshops:

E.M. El Mhamdi and R. Guerraoui. ​“Asynchronous Learning in the Optimal Window of Staleness”. Under review. ​In this work
we look at asynchrony (in the absence of malicious nodes) as a “mild” adversary for the convergence of SGD.

E.M. El Mhamdi, R. Guerraoui, A. Guirguis. ​“Fast Machine Learning with Byzantine Workers and Servers ”. 2019. ​This is a
follow-up on my research on Byzantine-resilient workers-servers learning, now the servers could also be faulty.
(synchronous setting). Preprint: ​https://arxiv.org/abs/1911.07537

E.M. El Mhamdi, R. Guerraoui, A. Guirguis, S. Rouault. ​“SGD: Decentralized Byzantine Resilience”. 2019. ​This is a
follow-up on my research on Byzantine-resilient workers-servers learning, now the servers could also be faulty.
(asynchronous setting). Preprint: ​https://arxiv.org/abs/1905.03853

E.M. El Mhamdi, R. Guerraoui, A. Kucharavy, S. Volodin. (submitted). ​“The Probabilistic Fault Tolerance of Neural
Networks in the Continuous Limit”. 2019. ​Here we generalize the results of my IPDPS and SRDS 2017 papers on
probabilistic error propagation (and fault tolerance) in neural networks. Preprint: ​https://arxiv.org/abs/1902.01686

E.M. El Mhamdi*, A. Kucharavy*, R. Guerraoui, R. Li. ​“Essential genes as evolutionary dead-ends in biomolecular networks”.
5th Biological Distributed Algorithms, Washington D.C, July 2017.

E.M. El Mhamdi, R. Guerraoui, L.N Hoang, A. Maurer. ​“Removing Algorithmic Discrimination (with minimal individual
error)”. Preprint:​ ​https://arxiv.org/abs/1806.02510​.

H. Aslund, E.M. El Mhamdi, R. Guerraoui, A. Maurer. ​“Virtuously Safe Reinforcement Learning”. Preprint:
https://arxiv.org/abs/1805.11447​. (Here we look back at our NeurIPS 2017 work on safe interruptibility, this time
introducing an unreliable perception mechanism, we prove inevitable trade-offs).

E.M. El Mhamdi, R. Guerraoui, A. Maurer, V. Tempez. ​“Learning to Gather Without Communication” ​5th Biological
Distributed Algorithms, Washington D.C, July 2017. Preprint: ​https://arxiv.org/abs/1802.07834​.

Other Academic activities:

Reviewing: ​NeurIPS 2018, 2019 (among top reviewers). ICML 2019, 2020. ICLR 2019, 2020. AAAI 2020. UAI 2019,
2020. DISC 2017 (external reviewer).

Grants: ​Wrote the research proposal part of two successful grants for a total 1.2 Million $ funding (PI: Prof. Rachid
Guerraoui): (1) on Biological Distributed Algorithms (400k) and (2) on Robust Distributed Machine Learning (800k).

Patents:

E.M. El Mhamdi, R. Guerraoui, S. Rouault, M. Taziki. ​“Strong Byzantine Tolerant Gradient Descent with Asynchrony for
Distributed Machine Learning”. ​Filed by EPFL on July. 10th 2018 under: PCT/EP2018/080812.

P. Blanchard, E.M. El Mhamdi, R. Guerraoui, J. Stainer. ​“Byzantine Tolerant Gradient Descent for Distributed Machine
Learning with Adversaries”. ​Filed by EPFL on Nov. 29th 2017 under: PCT/EP2017/080806.

Book:​ ​“​The Fabulous Endeavor: Making Artificial Intelligence Robustly Beneficial​” written with Lê Nguyên Hoang.
A French version was published in November 2019 by academic publisher ​EDP Sciences under “​Le fabuleux chantier:
rendre l’intelligence artificielle robustement bénéfique​”. The English version is due for mid 2020.

136

Talks:

Academic talks​:

During my PhD​: UC Berkeley (invited by members of the CHAI group, 2019). ICML 2018 (​two long talks​), IPDPS
2017, SRDS 2017, PODC 2017, BDA 2016, Netys-Metis 2017 (invited). TDAH-Lausanne 2018 (invited). Beneficial
AGI 2019 (invited).
Before my PhD​:
- Silicon Photovoltaics 2013, Hamelin, Germany (​Plenary oral session​, to present my work in Physics).
- The association of learning technology (ALT) conference, University of Manchester, 2015
Industrial talks​:

Google Brain Seattle​, 2019 (invited by the Federated Learning team). ​IBM Zurich​, 2019 (Distributed Computing &
Machine Learning groups). ​Ecocloud 2019. ​Applied Machine Learning Days 2019 in the AI & Trust track. The ​AI
Governance Forum​, Geneva, 2019.

Awards:

PhD Thesis: ​My thesis is currently nominated for a best thesis award.

EPFL IC Research Day 2018: ​First runner-up presentation. Finalists were preselected among 60 PhD talks.

Google & Global Voices Online: Breaking Borders Award 2012 to ​Mamfakinch​, a citizen-media I co-founded with
fellow Moroccan bloggers following the 2011 so called “Arab Spring”. (Google press release: ​http://goo.gl/dRcNvA​).

EPFL​: Excellence Scholarship for Masters studies, 2010-2012.

Military dean of the ​Ecole Polytechnique: “​Outstanding student for his leadership skills and capacity to draw people together in
a collaborative project​”(OL) & “​Outstanding student who has distinguished himself through his dedication and commitment to the student
body”​(OI). ​Only 3%​ of the students got a double award (OL & OI).

Procter and Gamble North Africa: Youngest participant and winner (team of 6) of the May 2008 edition of ​the
business case-studies competition organized by Procter and Gamble (Talent’ger).

French Ministry of Foreign Affairs: ​Academic excellence scholarship, 2007-2010.

Professional Experience:

Research and Teaching Assistant
Sep. 2015 – Present: ​Distributed Computing Laboratory ​– Lausanne, Switzerland

Teaching assistant for three graduate courses in Distributed Computing and Optimization for Machine Learning.
Currently developing and teaching a full graduate-level introductory course on Machine Learning in Morocco.

Technical/Scientific reviewer
Dec. 2016 – Jan. 2017: ​The African Innovation Foundation ​– Zurich, Switzerland / Accra, Ghana

Reviewed and wrote reports on ~100 technical applications for the annual grant share-prize of USD 185.000 with
competitors from 42 different african countries ​http://innovationprizeforafrica.org/news06-14-17.html

In charge of the Wandida online education project
Jun. 2013 – Sept. 2015: ​Swiss Federal Institute of Technology​ (EPFL) – Lausanne, Switzerland

Co-founded the online learning project ​Wandida​ with Prof. R. Guerraoui.
Wrote and obtained grants from third-party organizations, including ​Google.
Involved high profiles such as French Academy of Sciences members Serge Abiteboul and Gérard Berry.

137

Research Engineer
2012 – 2013: ​Photovoltaics lab.​, Neuchâtel, Switzerland

Implemented a model for photoluminescence reaction of solar cells to laser pulses in a physical lab-setup.
Investigated light induced degradation (LID). Established the first-evidence of a non-reversible component of the
Staebler-Wronsky effect. Published in the ​Applied Physics Letters of the American Institute of ​Physics.
http://scitation.aip.org/content/aip/journal/apl/104/25/10.1063/1.4885501

Research Intern
April - August 2010: ​Helmholtz Zentrum Berlin für Materialien und Energie​, Berlin, Germany.

Education:

PhD in Computer and Communication Sciences
Sep. 2015- Nov. 2019: ​Swiss Federal Institute of Technology​, EPFL, Lausanne, Switzerland
Currently nominated for a best thesis award. Jury: Francis Bach (ENS Ulm), Martin Jaggi (EPFL), Maurice Herlihy
(Brown University), Rachid Guerraoui (EPFL). President: Babak Falsafi (EPFL).

MSc in Material Sciences
2010- 2012: ​Swiss Federal Institute of Technology​, EPFL, Lausanne, Switzerland
Focused on condensed-matter and semiconductors physics.

Polytechnicien

2007 - 2010: ​Ecole Polytechnique, ​Paris, France
Double major in Physics and Mathematical Economics.
Co-Organizer of the 2009 Caroline Aigle Triathlon.
Treasurer of the Ecole Polytechnique Diving Club, managing a 30 000 € annual budget.

Mathematics, Physics and Philosophy Bachelor-level program
2004 - 2007: ​Mohammed V​, Casablanca, Morocco.
Admitted to the Ecole Polytechnique of Paris (the only admitted out of ~250 candidates from Casablanca).

Languages​: Fluent in Arabic, French and English;​ ​Basics of Spanish and Maltese.

Extra Curricular / MISC:

Sports : ​Winner (single) of the Lausanne 24 hours ​swimming challenge in 2011 (​36 km non-stop, 1096
participants​, supported by the International Olympic Committee). (​http://goo.gl/9mZbTW​).
Five times Finisher (2011 to 2016) of the “Tour ​du Léman” world’s longest rowing race in a closed area (​160 km
non-stop in about 16 hours). Participants of the Tour include Olympic gold medallist Tim Grohmann and world
Champion Patrik Stöcker. In 2013, I was vice-champion of Switzerland for Masters-A mixed-boats in a team of 4.

Jury member / Coach ​for December 2013’ HackXplor hackathon, ​organized by the ​Wallonia Export and
Investment Agency, Belgium​. ​Helped organizing following editions of hackXplor (December 2013 in Liège,
Belgium​, April 2014 in Meknes, ​Morocco​, November 2014 in Dakar,​ Senegal​) (​https://goo.gl/t93u2W​ ​).

Author in ​Futurechallenges.org​, ​Germany​: Web-based project gathering more than a hundred bloggers,
FutureChallenges.org won the 2012 German Online Communication Award (​https://goo.gl/jCkgzQ​).

Coach and Educator ​at the Fondation d’Auteuil, Château des Vaux, France : Ecole Polytechnique’s ​Human &
Military Training in an institution for teenagers in social difficulty.

Columnist (sporadic) : ​When time allowed (up to ~2016), I used to write for some media outlets, such as here for
Le Monde​ (French) ​https://goo.gl/T9z9By​ ​or the moroccan ​Medias24​ (Arabic and French) ​https://goo.gl/kq2GRC​.

138

	Acknowledgements
	Preface
	Abstract
	Contents
	List of Figures
	Introduction
	Learning Systems Among Us
	Robust Distributed Learning
	Robust Learning Machines
	Contributions
	Byzantine Resilient SGD
	High Dimensional Vulnerabilities in Distributed Non-Convex Optimization
	Asynchronous Byzantine Resilient SGD
	Neural Networks as a Distributed System

	Roadmap

	I Robust Distributed Learning
	Preliminaries
	Distributed Machine Learning with SGD
	Common Model
	Byzantine Resilience

	Krum: Synchronous Distributed Gradient Descent
	Introduction
	The Krum Function
	Convergence Analysis
	Experimental Evaluation
	Beyond Krum
	Concluding Remarks

	Bulyan: When Convergence is Not Enough
	Introduction
	Model for Bulyan
	Distributed Stochastic Gradient Descent (DSGD)
	Adversary
	Gradient Aggregation Rules (GARs)

	Effective Attack on p norm–based GARs
	Intuition
	Attack on the Finite Norm, p 1
	Attack on the Infinite Norm

	Bulyan
	Evaluation
	Overview of the Studied Models
	Results

	Concluding Remarks

	Kardam: Asynchronous Byzantine Gradient Descent
	Introduction
	Model for Asynchronous SGD
	Kardam
	Byzantine-resilient Filtering Component
	Staleness-aware Dampening Component

	Concluding Remarks

	II Robust Learning Machines
	Preliminaries
	Robustness Within the Model
	Model
	Viewing a Neural Network as a Distributed System
	Failures and Robustness
	Over-Provisioning

	Fault Tolerance in Neural Networks
	Single-layer Neural Networks
	 Multilayer Networks and Byzantine Failures
	Forward Error Propagation
	Tight Bound on Neuron Failures
	The Failure of Synapses
	Reduced Over-provisioning

	Applications
	Reducing Memory Cost
	Boosting Computations
	Balancing Robustness and Ease of Learning

	Concluding Remarks

	III Conclusion
	Summary and Future Work
	Robust Distributed Learning
	Byzantine Resilient SGD
	High Dimensional Vulnerabilities in Distributed Non-Convex Optimization
	Asynchronous Byzantine Resilient SGD
	Neural Networks as a Distributed System

	Back to Real Life Motivations
	Bridging the two Views of the Thesis
	Revisiting our Hypotheses and Future Work
	Systems for Robust Machine Learning
	Better Theory for Better Guarantees
	Robust Learning Machines
	Biological Networks

	Krum
	Multi-Krum and Krum with varying batch-size
	Other Krum variants

	Bulyan
	Brute's (, f)–Byzantine–resilience proof
	Approximation of m, with p N*
	Supplementary experiments

	Kardam
	Experiments

	Bibliography
	Curriculum Vitae

