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1 Introduction

Below is a list of project proposals for the CS 413 course, Spring semester
2020. Clarifications about each proposal can be obtained from the corresponding
supervisor TA. The deliverables explain what is expected from you to submit
by the end of the semester, aside from presentations/reports.

2 Projects

2.1 Attack v.s. Defense on Corrupted Images (2 Teams)

Synopsis: Recent studies have shown that image classifiers based on deep learn-
ing models are vulnerable to adversarial attacks [15]. Small but imperceptible
perturbations can cause the state-of-the-art models give wrong predictions with
very high confidence. The research on robust image classification is divided
into two parts: from the attack side, we search for the input perturbations that
do not change the semantic meanings of the image but fool the classifier; from
the defense side, we need to construct the models resistant to these adversarial
attacks. Formally, we let g(6, ) be the loss function of the model parameter 6
and input x. For a training set D, we are interested in the following problem:

min E.wD o g(0,2") (1)

The attack focuses on the inner maximization problem while the defense
focuses on the outer minimization problem. In addition, S.(x) is the set of
all allowed perturbed images of =, whose size is parameterized by €. In many
existing works [7], the set S¢(z) is defined by a I, norm based ball in the neigh-
borhood of z: Sc(z) = {z'|||xz — 2’|, < €}. Here we study other reasonable
settings of S¢(z):

1. Broken pixels: [13] Sc(x) = {2']||z — 2'||o0 < €} means we can perturb at
most € pixels. We do not constrain the magnitude of perturbation to each
perturbed pixel.



(c) Broken pixels

(d) Blurred image (e) Mosaic image

Figure 1: The original image and different kinds of perturbed images.

2. Blurred images: Sc(z) = {z® W|||W —I||; < €} means the blurred images
by a convolutional kernel W € R2k+1x2k+1 Here I represent the identity
kernel i.e. Ij ; = 1 and other entries of I are 0.

3. Mosaic images: In each k x k image patch, we calculate the average value
x(Pateh) For each pixel z, the mosaical pixel ' = ex(®h) 4 (1 — €).

Figure 1 shows some examples of perturbed images under different adversar-
ial budgets. We encourage students to explore other reasonable image perturba-
tions. We use CIFAR10 and CIFAR100 as the main dataset of our experiments.

This project has two teams. The first half of the project is the same: finding
adversarial examples in the sets defined above. Since we initially have no idea
about the reasonable values of € in each case, we then ask each team to find
the smallest value of € such that they can fool the prediction accuracy below a
threshold e.g. 20%. The team finding a smaller value of € wins bonus points.

The second half of the project is defense, we need to construct a robust
model resistant against such perturbations. In this part, one team is allowed to
denoise the perturbed images but not allowed to change the training method of
the model. That is to say, the model must be trained in the normal way, but
denoising technique such as [16] can be applied to ‘remove’ the adversarial per-
turbations. On the contrary, other team is allowed to change of model training
algorithm, such as adversarial training [11], but not allowed to post-processing
the input data. We will compare the performance of both teams and cross-test
their methods i.e. test the performance of team A’s method under team B’s
attack. The teams will lose points if their cross-test performance is significantly
worse than their reported one.



Deliverables: Attack and defense algorithms for each kind of adversarial bud-

gets.
Supervised by: Chen
Bibliography: [7] This paper points out the existence of the adversarial at-

tacks and propose adversarial training.

[11] This paper propose projected gradient descent (PGD), the current most
popular defense algorithm against [, attack.

[13] This paper introduces the one-pixel attack, which fool the classification
model by perturbing just one pixel.

[16] This paper introduce denoising auto-encoders to construct robust features.

2.2 Microscopy Deblurring

Synopsis: Capturing a full scan of an eye, for medical examination, is very
challenging. As visualized in Fig. 2, the cornia has a spherical shape, but an
imaging system can only focus (at its maximum sharpness) on a given depth
range in the scene. You might have witnessed this when capturing photos, all
objects closer or further away from the object at which you focus your camera
end up blurry/out of focus. While this can be used for artistic effects in photog-
raphy, it is very detrimental in biomedical imaging. The goal of this project is to
deblur the cornia scans, as much as possible while reconstructing faithfully the
original signal. It is probably not possible to deblur the entire range of depth
values, but the more we can extend the depth of field of the imaging system,
the fewer shots need to be captured, and the less time patients need to sit in
front of the imaging system. One challenge in this project is that you are not
provided with a lot of data. Your approach should take that into account, and
could possibly be developed as a method that needs retraining for new data
(this can also be a good advantage of your method, since it means it can apply
well to new imaging systems, or imaged content, without the need for a large
dataset each time).

Deliverables: A method that takes as input single-focus cornea scans, with a
certain depth range that is originally in focus, and extends the depth of field by
deblurring as much as possible around that range. The deblurred result must
be reliable (faithful reconstruction of the true underlying signal), as your results
will be evaluated by a cell-counting algorithm and a biomedical imaging expert.
Supervised by: Majed

Bibliography: [{] presents a method to measure the extent of axial chromatic
aberration of a given imaging system, [6] uses that phenomenon for the depth-
from-defocus application, and [5] uses it to deblur an image channel with other
channels as guide. They can give you a better understanding of chromatic
aberration, and how to best work with multi-channel (RGB, or more) images.
[3] explains how to solve large-image optimizations very efficiently using the
frequency domain. You can use these techniques to (1) estimate blur kernels, (2)
deblur an image with a known degradation kernel (called non-blind deblurring),
or (3) set up your own optimization functions and solve them efficiently.

If you work instead with deep-learning-based methods, the literature is very
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Figure 2: Setup illustration and some sample scans.



Figure 3: A representative indoor scene in the dataset. Each scene is captured under
40 unique lighting conditions, 12 of which are shown in the figure (4 color temperatures
with 3 light positions).

broad and we can guide you during the project to make sure you follow best
practices.

2.3 2D Scene Relighting

Synopsis: We used Unreal Engine to render high-resolution and realistic scenes
to build a dataset that includes 396 different scenes (300 of which are used for
developing a solution, and the rest for validation/testing), each with 40 prede-
termined lighting conditions: the combinations of 5 color temperatures (2500,
3500, 4500, 5500 and 6500) and 8 light directions (NW, N, NE, E, SE, S, SW,
W). The dataset includes both indoor and outdoor scenarios, and miscellaneous
objects with different surfaces and materials. All scenes were rendered with a
resolution of 1024 x 1024, and we saved the raw (linear) and sRGB images. The
lighting conditions are recorded with the rendered images. A scene example
is presented in Fig. 3. Your objective is to develop a (possibly deep learning
based) method to transform one scene illumination into another illumination
(with a guide target image).

Deliverables: A method that takes in 2 different input scenes, with different
illumination, and transforms the illumination of one scene image to match the
other target image. The problem can potentially be divided into an illuminant



change subproblem, and a lighting direction change subproblem.

Supervised by: Majed

Bibliography: [12] This paper presents a dataset of interior scenes, mostly
objects in small shooting areas. Each scene is captured with a flash coming
from 25 different orientations. The illuminant itself is however not varied.

[17] This paper presents a dataset of pairs of underexposed images which is
used to train a novel network. The dataset is used rather than the MIT-Adobe
FiveK dataset, as the latter focuses on general photo enhancement, while the
authors focus specifically on enhancing underexposed photos. The ground-truth
enhanced images are created by photography experts using Adobe Lightroom.
[18] This paper, similar to [12], also builds a dataset of scenes with different
light directions. The differences are that the images are rendered and that the
light directions are randomized.

[141] This paper aims at relighting human portrait photos. The method is trained
on a dataset consisting of 18 individuals captured under different directional
light sources. The capture is under controlled settings, with the individual
illuminated by a sphere with numerous lights. This is specifically targeted at face
relighting, and does not extend to general scenes. Indeed, even the background
is lost in the re-lit images.

IIW [1] and SAW [9] contain human-labeled reflectance and shading annotations,
BigTime [10] contains time-lapse data where the scenes are illuminated with
different lighting conditions.

2.4 Predicting Photographers’ Retouchings with
Deep Learning

this project can only be selected by a team if all other projects are already taken
Synopsis: In this project you will use a dataset! of professional photographers’
image manipulations from [2] and we ask you to build a machine learning system
that learns experts’ edits from the dataset. Figure 4 shows two different manip-
ulated images of the same raw-RGB image by two professional photographers.
Where Figure 4.A shows the Expert A’s preferred edits, Figure 4.B shows the
Expert B’s preferred edits. This is useful when automatically generating simi-
lar photographic manipulations based on the examples in a set of manipulated
images. This is a well studied research area where you can find both traditional
methods, e.g., [2], as well as recent deep learning based methods, e.g., [3].
Deliverables: A report and a running prototype of a deep neural network
that takes a raw image as input and produces an expert’s preferred rendering.
Comparison with the baseline methods [2], as well as the state-of-the-art [8]
and improving it. In deep-learning approaches, you need to train the network
for each different expert—for example, two different models are required for two
experts.

Supervised by: Hakki

Ihttps://data.csail.mit.edu/graphics/fivek/


https://data.csail.mit.edu/graphics/fivek/

A. Photofinishing as applied by the expert A B. Photofinishing as applied by the expert B

Figure 4: Two different renderings of the same raw-RGB image that is manipulated by
two different experts: A. Photofinishing as applied by the expert A, B. Photofinishing
as applied by the expert B.

Bibliography:

[2] presents the dataset and employs the traditional baseline methods where you
can compare your results.

[8] is a recent work where authors train a deep network for this task.
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