
Studying graph convolutional neural networks

Thomas Grivaz

School of Computer and Communication Sciences

Semester Project

December 2016

Responsible

Prof. Pierre Vandergheynst
EPFL / LTS2

Supervisors

Michaël Defferrard
Nathanaël Perraudin

EPFL / LTS2

Contents

1 Introduction 1

2 Background 1

2.1 Signal Processing on Graphs . 1

2.2 Stationary signal on Graphs . 2

2.3 Graph convolutional neural networks . 2

3 Framework description 4

3.1 tools . 5

3.2 Synthetic dataset . 5

4 Experiments 7

4.1 Assertion of the ground truth . 7

4.2 Fixing the Chebyshev coefficients of the filters . 8

4.3 Fixing the weights of the fully connected layer . 9

4.4 Tests with different initializations and regularizations 9

5 Conclusion 12

1 Introduction

Convolutional neural networks have been used for a number of years in various applications.
They are particularly efficient to detect and extract features that lie on a regular euclidian domain
such as images or sound. But not all data are confined to such regular grids, in fact many
important real-world datasets are now in the form of graphs or networks such as social networks,
protein-interaction networks, communication or transportation networks and so on. Yet it’s not until
recently that work has been devoted to adapt convolutional neural networks on such datasets. As
this is a recent field, there is no established literature on how graph convolutional neural networks
work and what make them work. In this report, we try to answer those questions and bring an
intuitive and in depth explanation of the behaviour of a graph convolutional neural network with
help of a synthetic dataset.

What makes standard convolutional neural networks good in the first place is their ability to
detect local patterns in the data and combine them to provide high-level structures. At the core of
this success is the stationary property of the input: filters learn local features shared across the input
regardless of their exact spatial location. In this case stationarity is well defined via the translation
operator on the grid. The first challenge here is how to generalize this property to graphs and exploit
it.

The second important characteristic of CNNs is the convolution operator. In the 2D domain
a localized kernel is slid across the input performing point-wise multiplications resulting in feature
maps. Bringing convolution to graphs is not straight-forward as we have to take into account the
properties of the operation: how can we define localized filters? How can we spatially cover the
input? How do we define graph convolution? We’ll answer those questions thanks to prior works
in the domain. Less formally, the role of filters in standard CNNs is figured out. If we take the
example of images, generally the first convolutional layer acts as an edge detector. We will also
explain what represent the learned filters in a graph convolutional neural network.

Finally we will try to characterize the problem to be optimized i.e. what the optimal solu-
tion would be, how we can help the network converging to this solution by trying different
initializations and regularizations.

2 Background

In this section we review the theory upon which graph convolutional neural networks are based.

2.1 Signal Processing on Graphs

Signal processing on graphs is a novel field that merges algebraic and spectral graph theoretic
concepts with computational harmonic analysis to process such signals on graphs. A more in depth
analysis of the field can be found in [1], we will state here the main concepts and formulas.

Weighted graphs and graph signals

The data we analyzed during this project were undirected, connected, weighted graphs. Such graphs
are defined as G = {V, E ,W} where V is the set of vertices with |V| = N , E is the set of edges and
W is the weighted adjacency matrix. A signal or function f : V ! R defined on the vertices of the
graph may be represented as a vector x 2 RN where x

i

represents the signal value at the i

th vertex.

1

Graph Laplacian and Graph Fourier transform

The combinatorial graph Laplacian is defined as L = D � W 2 RN⇥N . Where D is the
diagonal degree matrix. The graph Laplacian is a real symmetric matrix, thus it has a complete
set of orthonormal eigenvectors denoted by {u

l

}n�1
l=0 2 RN with associated real, non-negative

eigenvalues {�
l

}n�1
l=0 . The normalized Laplacian is defined as L = I�D

�1/2
WD

�1/2, satisfying
0 �

l

 2. Using the eigendecomposition of a matrix, we can write L = U⇤U

T where U is the
Fourier basis and ⇤ is the diagonal matrix with ordered eigenvalues on its diagonal.
In classical Fourier analysis, complex exponentials associated with low frequencies are smooth and
slowly oscillating while high frequency complex exponentials oscillate rapidly. In graph theory, we
have an equivalent notion by means of the eigenvalues and eigenvectors. Eigenvectors associated
to low eigenvalues �

l

behave smoothly across the graph while eigenvectors associated to high
eigenvalues oscillate more rapidly.
The graph Fourier transform of a signal x is defined as ˆ

x = U

T

x. Its inverse graph Fourier
transform is then given by x = U

ˆ

x. This operation enables us to represent a signal either in the
vertex domain or in the graph spectral domain.

Convolution and graph spectral filtering

Because of the irregular structure of a graph, there is no notion of translation of a signal across
the vertex set but we can define the convolution between two graph signals as a point-wise
multiplication in the Fourier domain, similarly to a classic time signal. For two graph signals x,y,
it follows that :

x ⇤G y = U((U

T

x)� (U

T

y))

We define graph spectral filtering as:

y = h(L)x = h(U⇤U

T

)x = Uh(⇤)U

T

x

where h(.) is the transfer function of the filter and h(⇤) is a diagonal matrix with entries h(�
l

).

2.2 Stationary signal on Graphs

The stationary property of data is a very important property that will become handy later on. From
[6], a stochastic graph signal x defined on the vertices of a graph G is called Graph Wide-Sense
Stationary (GWSS). if and only if it satisfies the following properties:

1. its first moment is constant over the vertex set: m
x

[i] = E{x[i]} = c 2 R.
2. its covariance matrix ⌃

x

[i, j] is jointly diagonalizable with the Laplacian of G, i.e.
⌃

x

= U�

x

U

T , where �

x

is a diagonal matrix.

This definition implies that the spectral components of x are uncorrelated. We also state here an
important theorem: When a graph filter h is applied to a GWSS signal, the result remains GWSS.

2.3 Graph convolutional neural networks

Graph convolutional neural networks (GCNNS) extend the notion of CNNS by learning filters on
irregular domains. All theoretical concepts are based on [2]. We present here layer by layer how
they operate.

Data

The network takes as input a data matrix X 2 Rn⇥N where rows are individual observations and
columns are features. This matrix bears information content related to the underlying graph (e.g.
signals having different frequency contents). Note that we have as many features as nodes in the
graph. Besides this matrix, we will also use a representative description of the graph in matrix form,
typically the adjacency matrix A or the Laplacian L, both of size N⇥N .

For a signal classification or regression task, our goal is to predict a discrete or continuous
label y

i

for each sample, respectively. This is the assignment we will focus on in this project. Other
tasks include node classification/regression where we have to predict labels for nodes or graph
classification/regression: given a collection of graphs, the goal is to learn a function that can be

2

used on unseen graphs. More informations on those problems can be found in [3]-[4].

Convolutional layer

Before we get into details on the convolutional layer. Let us first state that there are two ways to
convolve the input with a filter: either in spatial domain or in frequency/spectral domain. We only
used the later approach in this project. We would like our filters to have two desirable properties:
locality and low computational complexity. We previously defined the (non-parametric) filtering
operation as y = Uh(⇤)U

T

x. The issues with a non-parametric filter are that they are not localized
in space and learning takes O(N) steps, the dimensionality of the graph.
The locality problem can be overcome by using Laplacian-based polynomial spectral filters instead,
defined as:

h

✓

(⇤) =

K�1X

k=0

✓

k

⇤

k

With ✓ 2 RK being a vector of polynomial coefficients. An interesting property of the spectral fil-
tering approach is that we can naturally define the localization by a Kronecker delta function. Given
a kernel h

✓

, we can localize this kernel at vertex i with the operation h

✓

(L)�

i

i.e. the value at ver-
tex j of the filter h

✓

centered at vertex i is given by h

✓

(L)[i, j]. An example is displayed on figure 1.

(a) PSD of the filter (b) Filter localized at i = 2 (c) Filter localized at i = 60

Figure 1: Example of different localizations of a filter

figure 1a shows the PSD of the filter defined on a sensor graph of 64 nodes, here a heat ker-
nel defined as h(x) = e

(�⌧x) with ⌧ = 5 was used. The heat kernel represents the evolution of
temperature in a region whose boundary is held fixed at a particular temperature (typically zero),
such that an initial unit of heat energy is placed at a point at time t = 0, which will be the center of
the filter in our case. Figures 1b and 1c show the filter plotted on the graph and localized at different
vertices.
Moreover these filters are localized in a ball of radius K, provided that the filter is a K

th-order
polynomial of the Laplacian. An extensive proof of this result can be found in [5]. Learning
these filters boils down to learning coefficients ✓

k

, thus the learning complexity if O(K) (same as
standard CNNS).

Now that we have overcome the first problem, the locality, by using parametric spectral fil-
ters, there is still one issue to tackle: the computational complexity. Indeed the filtering operation
still implies to compute the eigenvalue decomposition of the Laplacian, but also two successive
matrix multiplications (graph Fourier transform and inverse one) which each take O(n

2
) steps.

A solution of this problem brought in [2] is to recursively compute the polynomial function by a
Chebyshev expansion of the Laplacian. Such operation has a cost of O(K|E|) ⌧ O(n

2
). The

resulting filter is as follows:

h

✓

(⇤) =

K�1X

k=0

✓

k

T

k

(

˜

⇤)

T

k

are Chebyshev polynomials of orker k, computed recursively with the formula
T

k

(x) = 2xT

k�1(x) � T

k�2(x) with T0 = 1 and T1 = x, ˜

⇤ is the diagonal matrix of
scaled eigenvalues i.e. ˜

⇤ = 2⇤/�

max

� I

n

so that the eigenvalues are within the [�1, 1] range.

3

Learning filters and producing feature maps, in short

Now that we saw the technique used to compute these filters, here’s what happens in the
convolutional layer:

• For layer j, a batch input volume X

(j) of dimensions n⇥ p⇥ F

(j�1) is fed to the filters,
n being the number of observations in this batch, p the number of nodes of the graph and
F

(j�1) the depth of the previous layer.

• for each filter i:

– each depth slice X

(j)
s

2 Rn⇥p of X(j) is fetched to the filter i, resulting in the output
y

i

= h

✓

i

(L)(X

(j)
s

)

T

=

P
K�1
k=0 ✓

i,k

T

k

(

˜

L)(X

(j)
s

)

T .

– the learned parameters are the Chebyshev coeffcients ✓
i,k

. For F (j) filters at layer j,
each of polynomial order K, this amounts to F

(j�1)⇥F

(j)⇥K weight parameters to
learn.

– Note that in practice, the splitting is actually not done this way, the input volume is
reshaped differently to take advantage of tensor operations and compute the filtering
only once.

• After filtering, the feature maps are passed through a non-linearity, typically a ReLU.

• Graph is coarsened and pooled (not covered in this project, we advise the reader to refer to
[2]).

convolutional layer j-1 convolutional layer j

Figure 2: Visual representation of the convolutional layer. The output of layer j � 1 is a volume
n⇥p⇥2. Assume that we have two filters for layer j, each dashed line represents a filtering operation,
red being filter 1 and blue filter 2. Thus we have K⇥2⇥2 Chebyshev coefficients and the output
volume will be n⇥p⇥(2⇥2)

Fully connected layer

The fully connected layer is the same as in any standard CNN: every neuron in the previous layer
is connected to every neuron of the next layer and followed by an activation function. The role of
the fully connected layer is to create high-level features by learning non-linear combinations of the
features learned at the previous layer(s).

3 Framework description

In this section we briefly describe the tools and libraries we used to conduct our analysis.

4

3.1 tools

PyGSP

PyGSP1 is a graph processing toolbox implemented in Python. This toolbox provides many features
such as easy graph creation from a list of pre-constructed graphs, signal processing tasks like
filtering and so on.

cnn graph

This repository2 is the implementation of a functional graph convolutional neural network model.

3.2 Synthetic dataset

Since our goal here is to study the inner working and performance of a graph convolutional neural
network, we needed a dataset that exhibited certain properties and complied to constraints:

• The most important feature is that the data has to be stationary i.e. the output is not depen-
dent of the spatial location on the signal on the graph. Similarly to an object recognition
task where the label is independent of the position of the object(s) in the image, we need
stationarity to be able to study the data independently of its localization.

• Given our small processing power, training time has to be manageable.
• Data should be random but free of outliers or uncontrolled noise so that results are repro-

ducible and explainable.
• We need to be able to tweak certain properties of the data easily to observe its influence on

the network.

In order to create stationary data, we have to generate signals which are not localisation dependent
but have a characterized spectral signature. Recall that when a graph filter h is applied to a GWSS
signal, the result remains GWSS. Thus a simple way to artificially produce stationary signals is to
filter white noise with a kernel of your choice. We chose to use non-normalized Gaussian bandpass
filters of frequency band [f

min

, f

max

], defined as:

h

f

min

,f

max

(�

l

) = exp

(�

l

� µ)

2

2�

2
,

µ =

f

min

+ f

max

2

,

� = 0.3

(f

max

� f

min

)p
2 log (2)

� has been heuristically derived so that the width of the Gaussian matches with the frequency band
[f

min

, f

max

] . We create two kernels having different frequency band and assign a label for each
signal being filtered (i.e. y = 0 for a signal filtered with the first kernel, y = 1 for the second one).

The frequency band of the filter can be adjusted by choosing cutoff numbers {c
min

, c

max

} 2 [0, 1]

such that f
min

= c

min

⇤ �

max

and f

max

= c

max

⇤ �

max

, �
max

being the largest eigenvalue of
the graph. This way we can easily control how “spaced” filters are, making the problem more or
less difficult for the network. An example is displayed on figure 3, both figures display the PSD
of the two stationary data generative kernels. On figure 3a, the band of the blue filter is set to
(c

min

, c

max

) = (0.2, 0.4) and the green filter one is set to (c

min

, c

max

) = (0.7, 0.9), we can see
that there is no overlap between filters and that bands are “narrow”. On figure 3b, we brought the
filters closer to each other and widened the bands.

1
https://github.com/epfl-lts2/pygsp

2
https://github.com/mdeff/cnn_graph

5

https://github.com/epfl-lts2/pygsp
https://github.com/mdeff/cnn_graph

(a) Blue filter frequency band = [0.2, 0.4],
Green filter frequency band = [0.7, 0.9]

(b) Blue filter frequency band = [0.3, 0.6],
Green filter frequency band = [0.4, 0.7]

Figure 3: PSD of the filters with different frequency bands

After the filtering operation, white Gaussian noise with adjustable variance � is added to make the
problem more difficult. A flow chart of the data generation is displayed on figure 4.
We now have generated our dataset. We will take advantage of it to try to assess the problem to be
optimized

A graph G is generated

Two Gaussian bandpass filters
are constructed from the graph:

F0 = h0(⇤)

F1 = h1(⇤)

Signals are sampled from X ⇠ N (0, 1)
and then filtered with one of

the two filters, the correspond-
ing label y 2 {0, 1} is added

Additive white gaussian noise with
adjustable variance � is added

Data is shuffled and split into
training, validation and testing sets

Figure 4: Data generation chart

6

4 Experiments

In this section we report our observations and results with different settings of our problem.

4.1 Assertion of the ground truth

We begin by checking our hypothesis that the optimal solution is the one for which the learned
filters approximate the PSD of the generative filters. Consequently, since the filters are optimal and
separate the frequency content, the columns of the fully connected layer weight matrix should have
their sign inverted i.e. if there is a plus sign at row i for the first column, there should be a minus
sign at row i of the second column, with approximately the same magnitude. Recall that the fully
connected layer creates linear combinations of features learned in the convolutional layer. Thus
with mutually exclusive features, the contribution of one particular feature should be increased for
one class and decreased for the other, hence the inversion in signs for the same row.

To check this we filter again the samples with both filters and combine the outputs to create
new samples of size 2 ⇥ N , then a non-linearity (a ReLU in this case) is applied. These two
steps allow us to localize the energy content in certain features depending on the class labels
i.e. for samples belonging to class 0, only the first N features will be active while the remain-
ing ones will be set to 0 while for samples belonging to class 1 only the last N features will be active.

We fix the band of the first filter to [0.2�

max

, 0.4�

max

] and the second filter to [0.7�

max

, 0.9�

max

].
A gaussian noise of variance �

2 is added before the second filtering operation. Figure 5 shows the
energy content of 500 samples of each class of the data matrix, here a grid graph of 256 nodes was
used. We can observe that the filtering followed by the non-linearity “separated” the energy content
of the data. Intuitively, those new features should be optimal as it creates a linearly separable space
of the data. This preprocessing followed by the fully connected layer and the softmax function is
similar to a simple logistic regression model.

(a) Samples for class 0 (b) Samples for class 1

Figure 5: Energy of the data after refiltering

We also fix the weights of the fully connected layer to be:

W 2 R2N⇥2
=

2

66666664

1 �1

...
...

1 �1

�1 1

...
...

�1 1

3

77777775

9
>=

>;
N

9
>=

>;
N

We report here the mean test accuracy, averaged on 5 runs, with different noises. Noise here

7

is expressed in terms of the signal-to-noise ratio, defined as SNR =

P

signal

P

noise

where P is the average
power. Note that since both signals and noise are zero-mean, we used the alternative definition
SNR =

�

2
signal

�

2
noise

.

SNR Mean test accuracy (± std) (%)
20 100 (± 0)
2 100 (± 0)

0.4 99.88 (± 0.032)

Table 1: Ground truth test results

We can conclude that our hypothesis is correct and there exists an optimal solution that approximates
the PSD of the generative filters which creates mutually exclusive features. We will now try to assess
under what conditions does the network converge to this solution.

4.2 Fixing the Chebyshev coefficients of the filters

In this setup we initialize the learned filters with the coefficients extracted from the Chebyshev
approximation of the generative filters and look at the fully connected layer. For reference, the
average variance of graph signals is �

2
signal

' 0.07 when the bands are [0.2, 0.4], [0.7, 0.9] and
�

2
signal

' 0.2 when the bands are [0.3, 0.6], [0.4, 0.7].

Results are displayed on table 2.

Filter bands SNR Mean test accuracy (± std) (%)

[0.2, 0.4], [0.7, 0.9]
20 100 (± 0)
2 99.71 (± 0.41)

0.4 98.87 (± 1.39)

[0.3, 0.6], [0.4, 0.7]
20 100 (± 0)
2 99.91 (± 0.045)

0.4 98.69 (± 0.736)

Table 2: Fixed filters test results.

As we can see the network gives near perfect predictions even with noise and high overlap between
filters. Figure 6 shows the distribution of the weights in the fully connected layer after training, split
in different blocks to exhibit the sign inversion that we hypothesized earlier. The difference in row
indexes with the former case is due to implementation details. The Gaussian shape of the histogram
comes from the Gaussian initialization.

Figure 6: Histogram of weights of the fully connected layer after training.

8

4.3 Fixing the weights of the fully connected layer

We now let the network learn the filters but fix the weights of the fully connected layer to a coefficient
↵ while keeping the optimal structure i.e. we set W to be :

W =

2

664

↵ �↵

�↵ ↵

...
...

↵ �↵

3

775

Figure 7 shows the PSDs of both the generative filters (top) and the learned filters after training
(bottom) obtained for ↵ = 1, SNR=20 with a mean validation accuracy of 99.78%. Even though
the network correctly predicted the classes, we see a clear discrepancy between the optimal solution
and the obtained one. Only of the two filters is active, the amplitude of the red filter is very high and
both are not smooth. With this setup the network is also very sensitive to initialization.

Figure 7: Results for ↵ = 1, SNR=20, with accuracy of 99.78%.

Figure 8 shows the PSDs of the filter for a network that hasn’t converged. One interesting feature
here is that the shapes of the filters are similar to the plot above but in this case the magnitudes are
very high.

Figure 8: Results for ↵ = 1, SNR=20, with 50.80% of accuracy.

We can see that the results we obtained by fixing the fully connected layer diverged from the op-
timal solution. Other values of ↵ were tried but gave similar results. Other noise variances were
also explored. The qualitative difference between results with small noise and high noise is that
convergence of the network occurs more often in the first case. Regarding the shape of the filters
after convergence, we noticed similar results in both cases.

4.4 Tests with different initializations and regularizations

We begin by training the network without any constraints and see how “far” the result is from the
optimal solution. Figure 9 shows the PSDs of the filters and the distribution of the fully connected
weights obtained after training with 100% accuracy.

9

As we can see optimal structure of weight matrix of the fully connected layer is conserved but the
learned filters do not closely approximate the PSD of the generative filters. Even though we notice
a substantial improvement compared to the previous experiment. This result was consistent across
several results that yielded perfect or near perfect accuracy. There can be several causes as to why
we end up in local minima: the state space might be very large and thus sensitive to initialization or
maybe the optimal solution can only be attained with additional constraints for the network.

Figure 9: Results for an unconstrained model with 100% accuracy. (SNR=20)

Figure 10 displays the values of the Chebyshev coefficients learned during the training correspond-
ing to figure 9. These scatter plots represent the value of each Chebyshev coefficient as a function of
its order. During training an order K = 30 was used. The top row shows the Chebyshev coefficients
extracted from the Chebyshev approximation of the generative filters while the bottom row shows
the Chebyshev coefficients learned during training. We can notice a clear trend from the generative
filters: there is a decay from low order coefficients to high order coefficients. This decay induces a
smoothness of the approximated function and is non-existent in the trained filters. Thus a possible
solution to help the network converge to the optimal solution would be to constraint the Chebyshev
coefficients by adding an adaptive L2 regularization.

Figure 10: Scatter plots of Chebyshev coefficients.

Figure 11 shows the filters obtained with the coefficients regularization corresponding to the left
hand side of the figure. With a mean accuracy of 99.74%, we can see that the PSDs of the filters
obtained for this solution are closer to the optimal ones. Compared to the previous solutions, we
now have a smaller magnitude for the filters, the shape is closer to a Gaussian and we reduced the
ripple between the frequency bands. The issue here is that this local minimum is unstable: even
though adding regularization makes the filters smoother with a smaller magnitude in general, most
of the time results are not interpretable.
To cope with this, we can try different initializations of Chebyshev coefficients instead of the random
normal one.

10

Figure 11: Results with regularization, SNR=20.

We begin with the “perfect” initialization i.e. with initialize the trainable coefficients to the ones
of the generative filters but let them be eventually modified by the network, we also add a small
regularization. Results are displayed on figure 12. As expected we have perfect accuracy and the
shape of the filters is conserved. Still, we can see that the magnitude has been increased, even
though the Chebyshev coefficients before and after training are highly similar.

Figure 12: Results with initialization from the generative filters, SNR=20.

We now initialize all the coefficients to zeros, and add a small regularization. From figure 13a we
can see that only one of the two filters is active, this makes sense since the filters do not overlap,
activating for only of the two classes is enough to discriminate, which is verified by the fact that the
network achieves 100% accuracy. From figure 13b we can see that the filters obtained by bringing
the generative ones closer have a smooth shape. At the midpoint � ' 1 the network has cut all
frequencies to be able to discriminate.

(a) No overlap. (b) High overlap

Figure 13: Results with all zeros initialization, SNR=20.

Finally, we initialize the coefficients with an itersine3 function. The PSD of the filter is
shown on figure 14a. From figure 14b we can see that results are satisfactory, the learned filters are
smooth because of the a priori smoothness of the initialization.

3
https://media.readthedocs.org/pdf/pygsp/latest/pygsp.pdf, page 35

11

https://media.readthedocs.org/pdf/pygsp/latest/pygsp.pdf

(a) Itersine construction with two
filters.

(b) Resulting filters

Figure 14: Results with itersine initialization, SNR=20.

5 Conclusion

In this work we analyzed how a graph convolutional neural network works. We first reviewed the
underlying theory and explained layer by layer what happens in the network.

With help of a synthetic dataset, we first verified our hypothesis that an optimal solution exists and
how to characterize the solution. The experimental results showed how we can help the network
converge to this optimal solution by adding different initializations and regularizations. This could
eventually help us to better tune a network in a situation where we don’t know the optimal solu-
tion but we have a prior knowledge on the form of the solution e.g. if we want to learn smooth filters.

The problem we characterized in this work can be considered as an easy problem. A possible future
outlook would be to experiment with data where a point-wise non-linearity has been applied, hereby
making the data non-stationary, and see if the network is able to make the data stationary after some
non-linear transformations. A more complex data generation process and network structure would
be involved.

12

References

[1] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, “Signal process-
ing on graphs: Extending high-dimensional data analysis to networks and other irregular data
domains,” CoRR, vol. abs/1211.0053, 2012.

[2] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks on graphs
with fast localized spectral filtering,” CoRR, vol. abs/1606.09375, 2016.

[3] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks,”
CoRR, vol. abs/1609.02907, 2016.

[4] M. Niepert, M. Ahmed, and K. Kutzkov, “Learning convolutional neural networks for graphs,”
CoRR, vol. abs/1605.05273, 2016.

[5] D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on Graphs via Spectral Graph
Theory,” ArXiv e-prints, Dec. 2009.

[6] N. Perraudin and P. Vandergheynst, “Stationary signal processing on graphs,” CoRR,
vol. abs/1601.02522, 2016.

13

	Introduction
	Background
	Signal Processing on Graphs
	Stationary signal on Graphs
	Graph convolutional neural networks

	Framework description
	tools
	Synthetic dataset

	Experiments
	Assertion of the ground truth
	Fixing the Chebyshev coefficients of the filters
	Fixing the weights of the fully connected layer
	Tests with different initializations and regularizations

	Conclusion

