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Graph alignment in two correlated random graphs refers to the task of identifying the correspondence between

vertex sets of the graphs. Recent results have characterized the exact information-theoretic threshold for graph

alignment in correlated Erdős-Rényi graphs. However, very little is known about the existence of efficient

algorithms to achieve graph alignment without seeds.

In this workwe identify a region inwhich a straightforwardO(n11/5 logn)-time canonical labeling algorithm,

initially introduced in the context of graph isomorphism, succeeds in aligning correlated Erdős-Rényi graphs.

The algorithm has two steps. In the first step, all vertices are labeled by their degrees and a trivial minimum

distance alignment (i.e., sorting vertices according to their degrees) matches a fixed number of highest degree

vertices in the two graphs. Having identified this subset of vertices, the remaining vertices are matched using

a alignment algorithm for bipartite graphs. Finally, we show that the implementation of a variant of this

algorithm allows for the efficient alignment of large graphs under limited noise.
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1 INTRODUCTION
Graph alignment (GA) (also called network reconciliation) refers to a class of computational tech-

niques to identify node correspondences across related networks based on structural information.

GA has applications in a variety of domains, including data fusion [1, 2], privacy [3–5] and in

computational biology [6–10]. For example, in computational biology, a coarse description of the

metabolic machinery of a particular species is via a protein-protein interaction (PPI) network,
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which essentially captures which protein can react with which other protein in that species. Across

species, the PPI networks tend to be strongly correlated, because evolution transfers metabolic

processes from species to species. Therefore, by identifying correspondences among proteins in

different species (so-called orthologs), one is able to transfer biological knowledge from one species

to the other. However, crucially, the actual proteins tend to be chemically different across species,

because random mutations alter these proteins over time without affecting their function. It is

therefore not possible to find correspondences between proteins in different species simply by

examining their amino-acid sequences. GA computes such correspondences by exploiting the

correlation across networks in different species.

A similar challenge arises in social networks: suppose a set of users have accounts in several

social networks. It is plausible that their links in these networks would be correlated, in the sense

that given u and v are linked in the first network, it makes it conditionally more likely that they

are connected in the second. This can help network reconciliation (e.g., if one wants to create a

single network out of several component networks), and it can hurt privacy (e.g., by exploiting one

public network to de-anonymize a private network whose node identities have been obfuscated).

While a lot of prior work on GA is heuristic in nature, a clean mathematical treatment of the

problem first posits a stochastic model over two random graphs. One parametrization of this model

assumes a generator graphG , and then generates two correlated observable graphGa,b by sampling

the edge set ofG twice, independently. An equivalent formulation, adopted in this paper, considers

a joint distribution that generates both graphs without the assumption of an underlying true graph.

Given this random graph model, we can recover the perfect alignment as the matching of the vertex

sets under the assumption that pairs of vertices in one graph tend to be adjacent if and only if their

true matches are adjacent in the other graph. This can be considered as a generalization of the

problem of identifying graph isomorphisms, which corresponds to matching graphs where edges

are not just likely but certain to be the same in both graphs.

In this paper, to the best of our knowledge, we present the first algorithm that possesses the

following advantages: (i) it is seedless, i.e., it does not require side-information in the form of

pre-aligned pairs to operate; (ii) under a well-studied stochastic graph model, the regime where

the algorithm matches perfectly can be characterized; and (iii) the algorithm incurs an O(n2 logn)
computational cost in the size of the graph, enabling the alignment of large networks.

The algorithm proceeds in two phases: during the first phase, for a fixed threshold parameter h,
the h highest-degree vertices in both graphs are matched in the natural way (highest degree to

highest, second-highest to second-highest, and so forth). For convenience, we call these ‘anchors’.

In the second phase, each remaining vertex is labeled with a binary vector of length h that encodes

its adjacency to the set of anchor vertices. The final alignment is then generated via a minimum-

distance matching over the labels in both graphs. Note that the second phase is equivalent to the

matching of two bipartite graphs given the matching of one of their partite sets.

We evaluate the performance of the algorithm on the correlated random graph model of asymp-

totic size and determine conditions for the reliable performance of the algorithm. This result relies

on an achievability result on the matching of bipartite graphs as an intermediary step, which is of

independent interest.

The remainder of the paper is organized as follows: In Section 2, we survey the relevant prior

work on the problem of graph matching in large networks. In Section 3, we introduce our notation,

formalize the problem, and present our model of correlated graphs and correlated bigraphs. In

Section 4, we state our main result, present the conditions on the successful performance of the

two steps of the algorithm, and finally provide the proof for our main result. Then in Section 5, we

compare the algorithm with other known algorithms from the literature. In Section 6, we suggest
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some directions for future work. We present the proofs of all of our intermediary results in the

appendix.

2 RELATEDWORK
The graph alignment problem has been studied in a diverse set of fields and with different applica-

tions in mind. First, a line of work focuses on GM as a mode of attack on private information. An

adversary tries to de-anonymize a network that is publicly released, but where node identities have

been deliberately obfuscated. Obviously, there are also legitimate applications for GM: for example,

similar approaches have been proposed to reconcile databases, by aligning their database schema

[1, 2]. One such scenario considers the possibility of manipulating the network prior to its release,

such that an identifiable sub-network is created [11] through a form of “graph steganography”.

In another scenario, the attacker uses queries to attempt to locate the node of a given user [3].

Yet other scenarios assume the availability of some kind of side information, such as community

assignments [4, 5] or subsets of identified vertices (seeds) [12–15]. One important method making

use of such side information is the so-called percolation method, which starts from the seeds

vertices to iteratively grow the alignment until the whole graph is identified [16], [17].

In computational biology, PPI network alignment algorithms typically rely on both structural

and biological information (in particular, the amino acid sequences of the proteins). Many heuristics

have been developed, which typically try to minimize a cost function that is a convex combination

of structural similarity and of sequence similarity. A few prominent examples include IsoRank

[6], the GRAAL family [7, 8], MAGNA and its successor MAGNA++ [9], and SPINAL [10]. All of

these methods are purely heuristic in nature, and have been evaluated without the availability of a

ground truth. Their relative merits are a matter of ongoing debate in the computational biology

community.

We show in this paper that efficient graph alignment is possible without any side information.

Henderson et al. propose one such method that performs alignment based on expressions of

structural features of vectors [18]. The proposed features are of two kinds: neighborhood features,

constructed only using information on immediate neighbors of the vertex, and recursive features,

which include information from a wider region of around the vertex with every iteration. Also,

[19] presents a heuristic that builds a alignment in phases; matched nodes in one phase serve as

distance fingerprints for additional nodes in the next phase.

Non-iterative approaches for graph alignment have also been suggested. Recently a quasi-

polynomial time algorithm has been proposed by Boaz et al. that performs alignment by locating

copies of some low-likelihood subgraphs in both graphs and using these as the basis of the alignment

[20]. We especially note the study by Mitzenmacher and Morgan [21] that proposes performing

graph alignment based on algorithms to determine graph isomorphisms. Defining the problem of

graph alignment as a generalization of the isomorphism problem, it becomes possible to attempt to

align graphs using some very efficient algorithms developed for the setting of isomorphic graphs.

We consider one such algorithm. Mitzenmacher and Morgan analyze an adversarial setting in which

a small number of edge differences are introduced and the algorithm is required to succeed in all

cases. In contrast, we are interested in the case where edge differences are generated at random

and the algorithm succeeds with high probability.

Studies on the information-theoretical bound of the graph alignment problem first given by

Pedarsani et al. [22] and further developed by Cullina et al. [23], [24] have established conditions

beyond which no algorithm can succeed. These fundamental bounds provide the main benchmark

against which our algorithm will be compared below.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 36. Publication date: June 2019.



36:4 O. E. Dai et al.

3 MODEL
3.1 Notation
For a graphG we denote its vertex set and edge set asV (G) and E(G), respectively. Alternatively we
write G = (V ;E) where V = V (G) and E = E(G). For a bipartite graph H we denote H = (A,B;E)
where A and B are the partite sets and E = E(H ). For any vertex v ∈ V (G) let NG (v) be the set of
its neighbors in G, dG (v) its degree and dG (v) its complementary degree. The maximum degree in

graphG is denoted by ∆(G). When referring to graphs distinguished by their subscript (e.g.Ga ,Gb ),

we use a shorthand notation to denote neighborhoods, degrees etc. as follows: Na (v) = NGa (v),
da (v) = dGa (v), da (v) = dGa

(v). For a set X , let X k
be set of vectors of length k with entries from

X . We will use [k] as the index set for these vectors. We denote vectors in lower case bold font, e.g.

v = (v1,v2, · · · ,vk ) ∈ V k
.

For any n ∈ N, [n] denotes the set of all integers from 1 to n. We denote by Bin(n;p) the binomial

distribution with n trials and event probability p.

3.2 Problem Definition
Let Ga = (Va ;Ea) and Gb = (Vb ;Eb ) be graphs and let M : Va → Vb be a bijection between their

vertex sets. We say that these graphs are correlated if the edge set of one provides information about

the edge set of the other. We are interested in the case of simple positive correlation: conditioning

on the event {u,v} ∈ Ea makes the event {M(u),M(v)} ∈ Eb more likely. The details of our random

graph model are given in Section 3.4.

Graph Alignment Problem: For a pair of correlated random Ga = (Va ;Ea) and Gb = (Vb ;Eb )
, recover M :Va → Vb , the bijection between the vertex pairs in the two graphs based on the

correlation of the edge sets.

3.3 Alignment by Canonical Labeling
The classical graph isomorphism recovery problem, that is, finding the bijection between vertex

sets of a pair of identical graphs, is often solved by canonical labeling based approaches. For a

graphG = (V ;E) this approach returns a function ℓG from a set of verticesV to a set of labels called

the canonical labeling of vertices, with the property that, any for any permutation σ of the vertex

set and the graph H induced by this permutation on G, ℓG (v) = ℓH (σ (v)) for all vertices v ∈ V . In

other words, the canonical labeling only depends on the structure of the graph and is invariant to

permutations of the vertex set. This allows us to identify an underlying bijection. If ℓG is injective,

then the labeling allows for recovery of the automorphism.

If the canonical labeling scheme is robust in the sense that small differences in the structure

of the graph induce small perturbations on the labels of vertices, then the canonical labeling can

still be used to align a pair of graphs that are “adequately” correlated. In this setting, we seek to

find a matching between the label sets of the two graphs that minimizes an appropriately defined

labeling distance.

Labeling is done in two steps: In the first step vertices are labeled with their degrees and the

small subset of the vertices with high-degrees are identified. These are referred to as ‘anchors’ and

form a basis for the alignment of the rest of the graph. In the second step, the remaining vertices

are labeled with signature vectors based on their adjacencies with the anchors identified in step

one.

This second step ignores all edges between unidentified vertices, effectively treating the graph

as a bipartite graph. Therefore, the second step may be considered separately as an algorithm to

align two bipartite graphs with one unidentified partite set. In the remainder of this paper, we refer
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to the first step as the anchor alignment algorithm and the second step as the bipartite alignment
algorithm.

Algorithm 1 AnchorSignAlign

Input: Ga = (Va ;Ea), Gb = (Vb ;Eb ), h

Output: Estimated alignment M̂ : Vb → Va

1: Step 1: Anchor alignment

2: wa = fh (Ga )

3: wb = fh (Gb )

4: for i ∈ [h] do

5: M̂(wb,i ) = wa,i
6: end for

7: Step 2: Bipartite alignment

8: Ha =
{
wa,i : i ∈ [h]

}
9: Hb =

{
wb,i : i ∈ [h]

}
10: for vertex v ∈ Vb \ Hb do

11: M̂(v) = argminu ∈Va\Ha

��
siga (u) − sigb (v)

��
12: end for

The alignment algorithm uses the same canonical labeling scheme originally presented for the

graph isomorphism problem by Babai, Erdős, and Selkow [25] and subsequently used for graph

alignment in the adversarial setting [21]. (Note that the graph isomorphism algorithm runs in

O(n2)-time when graphs because the signature matching step can be accomplished by sorting the

signatures. The variation for noisy signatures requires O(n2h)-time.)

Definition 3.1. For a n-vertex graph G, let δG = (δG,1, · · · ,δG,n) be the degree sequence of G in

decreasing order.

Definition 3.2. The high-degree sorting function fh takes as input a graphG on the vertex set

V and lists the h highest-degree vertices, sorted by degree. More precisely, fh(G) is some vector

w = (w1,w2, · · · ,wh) ∈ V h
of distinct vertices such that dG (wi ) = δG,i .

The degree sequence of G is always uniquely defined. fh(G) is uniquely defined only if the first

h entries of δG are strictly decreasing. If multiple high-degree vertices have the same degree, fh(G)
lists them in some arbitrary order.

Anchor alignment on graphsGa andGb corresponds to the index-by-index alignment of vertices

of fh(Ga) and fh(Gb ). We refer to the set of h vertices that appear in fh(Ga) as Ha , the set of h
vertices that appear in fh(Gb ) asHb , and when they are the same we sayHa = Hb = H . The bipartite

alignment algorithm labels each vertex in Va \Ha by a binary vector encoding its adjacency with

vertices in Ha . These labels, which we refer to as signatures, are defined as follows:

Definition 3.3. Given graph G and anchor vector fh(G) = w = (w1,w2, · · · ,wh), the signature

function sigG takes as input vertex u ∈ V (G) and returns the signature label of the vertex such that,

sigG (u) ∈ {0, 1}h and sigG (u)i = 1{{u,wi } ∈ E(G)}

where 1{·} denotes the indicator function of an event. We use the shorthand notation siga(u) =
sigGa

(u), sigb (u) = sigGb
(u) when referring to graphs Ga and Gb .

The bipartite alignment algorithm aligns vertices in V \ H such as to minimize the Hamming

distance between pairs of signatures of aligned vertices. In our analysis we consider a naive
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approach, aligning each vertex in one graph to the vertex with the closest signature in the other

graph. Notice that any graph alignment approach limited to signatures ignores all information

pertaining to edges among the unidentified set of vertices.

The steps of the alignment algorithm are summarized in Algorithm 1. We refer to the estimated

alignment as M̂ . We say the algorithm is successful when M̂ = M .

3.4 Correlated Erdős-Rényi Graphs
We perform our analysis on correlated Erdős-Rényi (ER) graphs [23]. Under the basic ER model

of random graphs, G ∼ ER(n;p) is a random graph on n vertices where any two vertices share an

edge with probability p independent from the rest of the graph. Under the correlated graph model,

(Ga ,Gb ) ∼ ER (n; (p11,p10,p01,p00)) are a pair of graphs on the same set of n vertices where the

occurrences of an edge e = {u,v} between any pair of vertices u,v is independent and identically

distributed with the following probabilities:

(1{e ∈ E(Ga)},1{e ∈ E(Gb )}) =


(1, 1) w.p. p11

(1, 0) w.p. p10

(0, 1) w.p. p01

(0, 0) w.p. p00.

(1)

The marginal probabilities are then defined as:

p1∗ = p11 + p10 p∗1 = p11 + p01

p0∗ = p01 + p00 p∗0 = p10 + p00

Wedenote the vector of probabilities as p = (p11,p10,p01,p00). Note that all probabilities are functions
of n. We limit our interest to sparse graphs and only consider p such that limn→∞ p00 = 1.

Two other variations of the correlated Erdős-Rényi model have appeared in the literature.

Subsampling model: This generates a pair of correlated graphs via subsampling of a parent

graph Gparent ∼ ER(n; r ). Each edge in Gparent is then included in Ga with probability sa and in

Gb with probability sb . Each of these 2|E(Gparent)| edge subsampling events are independent. This

results in (Ga ,Gb ) ∼ ER (n; (p11,p10,p01,p00)) with

p11 = rsasb

p10 = rsa(1 − sb )

p01 = r (1 − sa)sb

p00 = 1 − r (sa + sb − sasb ).

This model appeared in Pedarsani and Grossglauser [22] in the symmetric case sa = sb . Observe
that

p11
p1∗p∗1

= 1

r ≥ 1, so this model can only represent non-negatively correlated graphs.

Perturbationmodel: This starts by generating a base graphGparent ∼ ER(n; r ). In the adversarial
perturbation model considered by Mitzenmacher and Morgan [21], Ga and Gb are each created

by making up to d/2 changes to the edge set of Gbase. In the natural randomized version, Ga and

Gb differ from Gbase at each of the

(n
2

)
vertex pairs independently with probability δ = d

n(n−1) . This
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results in (Ga ,Gb ) ∼ ER (n; (p11,p10,p01,p00)) with

p11 = r (1 − 2δ ) + δ 2

p10 = δ − δ 2

p01 = δ − δ 2

p00 = (1 − r )(1 − 2δ ) + δ 2.

The models that we have just described generates a pair of graphs on the same vertex set V . To

convert these graphs to a pair of correlated graphs on distinct vertex sets, the vertices ofGb can be

relabeled using the bijectionM : V → Vb . This relabeling hides the association between the vertex

sets and makes the alignment recovery problem nontrivial. For the analysis of Algorithm 1, it is

more convenient to work with pairs of graphs on the same vertex sets rather than work withM
explicitly, so we will do this for the remainder of the paper.

In the case of bipartite graphs we use an analogous model. We denote the distribution as

ER (h,k ; p) for pairs of correlated graphs with left vertex set of size h and right vertex set of size k .
For random bipartite graphs (Ba ,Bb ) ∼ ER (h,k ; p), a left vertex u, and a right vertex v , the pair of
random variables (1{(u,v) ∈ E(Ba)},1{(u,v) ∈ E(Bb )}) have the same distribution as (1).

3.5 Outline and Intuition for the Analysis
The two steps of Algorithm 1 dictate opposing bounds on the value of the parameter h. The bipartite
alignment phase requires distinct signatures, which is guaranteed only if the length of the signature

vectors (h) is large enough. However, the performance of the anchor alignment phase degrades as

h grows larger. Our analysis consists of determining upper and lower bounds on h and identifying

the region for h which satisfies both bounds.

In Subsection 4.1 we present a sufficient condition to perfectly align theh highest-deegree vertices

in correlated ER graphs. This gives an upper bound on h. The result is derived by determining

the conditions that guarantee, with high probability, that the h highest-degree vertices have large

enough degree separation. It is then unlikely that any two high-degree vertices have their degree

order reversed. Applying the Chernoff bound, we show that a degree separation of σ
√
logh is

sufficient, where σ 2 ≈ n(p10 + p01) is the variance of a vertex degree in Gb given its degree in Ga .

Trivially, independent of the variance, the degree separation must also be at least 1. Thus we get

minimum degree separation ≥ max

{
1,σ

√
logh

}
. (2)

Combining (2) with a known result on the degree separation of high-degree vertices gives Theorem

4.7, which states a sufficient condition on h for high-degree matching. Ignoring logarithmic terms,

this condition can be simply written as

√
np11

max

{
1,
√
n(p10 + p01)

} ≥ ω
(
h2
)
.

The intuition behind this result is as follows: given that all vertex degrees are distributedwithin an in-

terval of size roughly

√
np11, we can partition the range of degrees into

√
np11/max{1,

√
n(p10 + p01)}

bins of size equal to the minimum degree separation. Two vertices in the same bin violate the

degree separation requirement. If the degrees of the h high-degree vertices were to be distributed

uniformly within this range, then by the birthday paradox, we would need the number of bins to be

significantly larger than h2. Clearly high-degree vertices are not uniformly distributed. Nevertheless

a rigorous analysis shows that this rough estimate is accurate in the leading term and differs from

the actual necessary condition only in the logarithmic terms.
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In order to understand the constraints on the bipartite matching phase, in Subsection 4.2 we

analyze the closely related problem of correlated random bipartite graphs. We try to match one

of the partite sets based on the complete knowledge of the matching of the other partite set. The

identified set is of size h. As in Algorithm 1, this matching is done through sparse binary signatures.

The signatures of the copies of any vertex in the two graphs have around hp11 common ones. Thus

h ≥ Ω(1/p11) is a necessary condition for matching. Applying the Chernoff inequality and the

union bound over all

(n−h
2

)
≈ n2/2 possible mismatches, we derive the result in Remark 1 which

gives the sufficient condition as

h ≥
2 logn + ω(1)

p11
.

This problem closely relates to the bipartite alignment phase of Algorithm 1; in both cases we

assume to have complete knowledge of the alignment of one partite set (i.e. the set of anchor

vertices) and try to match the other side by only considering edges that connect these two sets. In

the case of the correlated bipartite distribution, the analysis is straightforward since edge random

variables are independent. But in the general case the edge random variables between the high-

degree set and the remaining vertices are not independent. Fortunately the dependence is weak

and it is possible to handle this issue by requiring the anchor set to be robust to the addition or

removal of a pair of vertices. (This simply requires an additional degree separation of 2 between

anchor vertices.)

4 ANALYSES AND RESULTS
Our main result is a condition under which Algorithm 1 successful recovers the true graph align-

ment.

Theorem 4.1. Let Ga = (V ;Ea) and Gb = (V ;Eb ) such that (Ga ,Gb ) ∼ ER(n, p) where p is a
function of n with p11 ≤ o(1),

p11 ≥ ω

(
log

7/5 n

n1/5

)
and p01 + p10 ≤ o

(
p5
11

log
6 n

)
,

Then Algorithm 1 with parameter h such that

logn + ω(1)

p11
≤ h ≤ O

(
logn

p11

)
exactly recovers the alignment between the vertex sets of Ga and Gb with probability 1 − o(1).

Fig. 1 illustrates the asymptotic achievability region of Algorithm 1 as a function of graph density(
logp11
logn

)
and noise

(
logp10
logn

)
. We also include the achievability of the noiseless scenario [25], more

challenging adversarial scenario [21], as well as the information theoretic achievability region [23].

We only consider the symmetric case, where p10 = Θ (p01). The x-axis shows
logp01
logn and the y-axis

shows
logp11
logn . Note that in the region x < −2, the number of edge edge differences between the

pairs of graphs is zero under the adversarial model and is zero with high probability under the

random graph model, so the alignment problem reduces to the graph isomorphism problem.

The adversarial model is defined as follows: Consider a random graph Ga = ER(n;p) and its

modified copy Gb obtained by the addition or deletion of at most d edges by an adversary where

d ≥ 2 is a deterministic function of n.
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Fig. 1. Comparison of regions of achievability for symmetric noise (p10 = Θ (p01)): (A) region achievable
by Algorithm 1 under no expected noise [26], (A∪B) under the adversarial model [21], (A∪B∪C) under the
random graph model, (A∪B∪C∪D) theoretical achievability region for the random graph model [23].

Note that the parameters in this problem formulation relate to the correlated random graph

problem through:

p = p1∗ = p11 + p10 = p11 (1 + o(1)) and d = (p10 + p01)

(
n

2

)
. (3)

By Theorem 5.3 in [21], there exists an appropriate choice of parameter h for which Algorithm

1 perfectly aligns the vertex sets of the two graphs with probability at least 1 − o(1) as long as

p = ω

(
d logn

(
d2

n

)
1/7

)
. By the equalities in (3), this condition is satisfied when

Ω
(
n−2

)
≤ (p01 + p10)

9

7 ≤ o

(
p11
logn

n−17/7
)
.

Recall that the x-axis shows
logp01
logn and the y-axis shows

logp11
logn . Taking the logarithm of both

sides and dividing by logn, in the symmetric case, results in the triangular region defined by the

inequality

−2 ≤
9

7

x ≤ y −
17

7

− o(1).

Note that d = o(1) for p01 + p10 ≤ o
(
n−2

)
, so the adversarial scenario with a fixed number of

edge changes reduces to the graph isomorphism problem and under the random graph model the

graphs are isomorphic with high likelihood. The condition to guarantee successful alignment for

that problem, given in Theorem 3.17 in [26], is p = ω
(
n−1/5 logn

)
, which corresponds to the region

where

y ≥ −
1

5

+ o(1) and x ≤ −2.

The achievability region is derived similarly. Theorem 2 in [23] gives the following achievability

condition as

p11 ≥ 2

logn + ω(1)

n
and p01p10 = o (p11p00) ,
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which for p00 = 1 − o(1) and p10 = Θ (p01) corresponds to

p11 = Ω

(
logn

n

)
and p2

01
= o (p11) .

This gives the the region defined by

y ≥ −1 + o(1) and 2x ≤ y.

In subsection 4.1 we analyze the performance of the anchor alignment stage of the algorithm. In

subsection 4.2 we present the result on the performance of bipartite graph alignment stage of the

algorithm. Finally, in subsection 4.3 the results from these two analyses are combined to provide a

proof on performance of the alignment algorithm.

4.1 Anchor alignment
The expected performance on the alignment of the anchors (i.e. high-degree vertices) is a function

of the sparsity of the graph, its size, and the number of anchors to be matched. We first present

a result on the required minimum degree separation between a pair of vertices in one graph to

guarantee a given degree separation on the other graph with high probability. We remind the reader

of our shorthand notation where for any vertex v ∈ V , da (v) and da (v) = |V | − da (v) − 1 denote

v’s degree and inverse degree in Ga , respectively. Similarly db (v) ,db (v) denote the degree and
inverse degree in Gb .

Lemma 4.2. Let (Ga ,Gb ) ∼ ER(n; p). Given u,v ∈ V (G) such that da (u) > da (v), define φ ≜
da (u)

p10
p1∗
+ da (v)

p01
p0∗

and ε = p01
p0∗
+

p10
p1∗

. Let η ∈ (0,∞) be a function of n. If

da (u) − da (v) ≥ (1 − ε)−1
(
k + 4max

(
η,
√
φ · η

) )
,

Then P [db (u) − db (v) ≤ k] ≤ e−η .

Lemma 4.2 involves two lower bounds on the gap between degrees: one depending on η and

the other on

√
φ · η. The quantity φ is the expected number of edges ‘lost’ by u and ‘gained’ by v

when moving fromGa toGb . A larger φ implies higher likelihood for the degree gap to be ‘bridged’

moving from Ga to Gb . At the dense high-noise performance limit, the

√
φ · η lower bound is

dominant. The η lower bound arises from the discreteness of the degrees. This bound is dominant

at the sparse low-noise limit.

Lemma 4.2 only concerns pairs of vertices. Next we present a condition on the graph sequence

of Ga that guarantees with high probability the desired degree separation among high-degree

vertices inGb . Recall that, by Definition 3.1, δa and δb denote the degree sequences in Ga and Gb
respectively.

Corollary 4.3. Let (Ga ,Gb ) ∼ ER(n; p) where Ga = (V ;Ea) and Gb = (V ;Eb ). Define φ ≜
∆(Ga)

p10
p1∗
+ n

p01
p0∗

and ε ≜ p01
p0∗
+

p10
p1∗

. Let h ∈ [n] and η be functions of n. Let s be an integer such that
s ≥ h + 1

η log

( n
h

)
+ 1. If

∀i ∈ [s], δa,i − δa,i+1 ≥ (1 − ε)−1
(
k + 4max

{
η,
√
φ · η

} )
(4)

then, with probability at least 1−(2h+1)e−η
1−e−η , fh(Ga) = fh(Gb ) and δb,i − δb,i+1 > k for any i ∈ [h].

The φ term in Corollary 4.3 corresponds to an upper bound for the same term in Lemma 4.2 that

we obtain by replacing the vertex degree with the max degree in the graph, and the inverse degree

with n. We then need the following upper bound on the maximum degree of a random graph.
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Lemma 4.4. Let G ∼ ER(n;p) with p ≥ ω
(
logn
n

)
. For any constant ϵ > 0, we have P[∆(G) ≥

pn(1 + ϵ)] ≤ o(1).

Corollary 4.3 relies onGa having a degree sequence whose largest terms are sufficiently separated.

We now present a condition that guarantees a given degree separation for almost all random graphs.

Theorem 4.5. ([26] Theorem 3.15) Let h ∈ N and c ∈ R+ functions of n such that h = o(n) and
c = o(1). Then, with probability 1 − o(1), in G ∼ ER(n,p)

δi − δi+1 ≥
c

h2

(
np(1 − p)

logn

)
1/2

for each i ∈ [h].

We are now in a position to present a result on the performance of the high-degree matching step

of our algorithm. First we define the three events that are needed to be able to successfully align

the high-degree vertices: the set of high-degree vertices must be the same in the two graphs and

in each graph the high-degree vertices must have sufficiently separated degrees. Distinct degrees

are clearly required, but we require the stronger condition that degrees have difference of at least

3. This allows us to establish the independence of this stage of the algorithm with the bipartite

matching stage later in Subsection 4.3.

Definition 4.6. Let EH
be the event that the lists of the h highest-degree vertices in Ga and Gb

are the same, i.e. fh(Ga) = fh(Gb ). This is the “high-degree match” event. Let ES

a be the event that

δa,i > δa,i+1 + 2 for all i ∈ [h]. Define ES

b analogously for δb . These are the “degree separation”
events.

Theorem 4.7. Let (Ga ,Gb ) ∼ ER(n, p) where p is a function of n such that p00 = 1−o(1). Moreover
let h ∈ [n] such that ω(logn) ≤ h ≤ o(n). If

max

{
(logh)2,n(p01 + p10) logh

}
≤ o

(
np11

h4 logn
·
p11
p1∗

)
, (5)

then P
[
EH ∧ ES

a ∧ ES

b

]
≥ 1 − o(1).

Proof. To apply Corollary 4.3, η and s must satisfy s ≥ h + 1

η log

( n
h

)
. We pick η such that

s =
⌈
h + 1

η log

( n
h

)⌉
and logh + ω(1) ≤ η ≤ O(logh). The condition h ≥ ω(logn) guarantees that

s ≤ h(1 + o(1)).
Applying Lemma 4.4 , we have

φ = ∆(Ga)
p10
p1∗
+ n

p01
p0∗

≤ (1 + ϵ)np10 + n
p01
p0∗

≤ (1 + ϵ + o(1))n(p10 + p01). (6)

Define c ≜
(
s4 logn
n p1∗

)
1/2 (

1 −
p01
p0∗

−
p10
p1∗

)−1 (
2 + 4max{η, (rη)1/2}

)
. By p00 = 1 − o(1) we have(

1 −
p10
p1∗

−
p01
p0∗

)−1
=

(
p11
p1∗

− o(1)
)−1
= Θ

(
p1∗
p11

)
. Together with the upper bounds on η, h, and s ,

we get

c ≤O(1)

(
h4 logn

np11
·
p1∗
p11

)
1/2

max

{
logh, (n(p01 + p10) logh)

1/2
}
.

From (5), we have c ≤ o(1).
By Theorem 4.5, with probability 1−o(1), we have a minimum separation of 2+4max{η, (φ ·η)1/2}

among the top s degrees in Ga ∼ ER(n;p1∗). Then Corollary 4.3 implies that the probability that

fh(Ga) , fh(Gb ) is at most se−η ≤ (1 + o(1))he− logh−ω(1) ≤ o(1). □
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4.2 Bipartite graph alignment
We will need the following method of specifying an induced bipartite subgraph. Let G be a graph

on the vertex set V and let U ⊆ V . Let w be a vector of h distinct vertices in V \U . Define G[U ,w]

to be the bipartite graph with left vertex setU , right vertex set [h], and edge set

E(G[U ,w]) = {(u, j) ∈ U × [h] : (u,w j ) ∈ E(G)}).

Recall that in Algorithm 1, we have wa = fh(Ga) and wb = fh(Gb ). By Definition 3.3, the

signature of any u ∈ U is the edge indicator function for Ga[{u},wa]:

siga(u) ∈ {0, 1}h and siga(u)i = 1{(u, i) ∈ E(Ga[{u},wa])}.

We define an analogous signature scheme for bipartite graphs to be used for the bipartite alignment

step.

Definition 4.8. Given the bipartite graph B = (V , [h];E), the bipartite signature function sig
′
B

takes as input vertex u ∈ V and returns the signature label of the vertex such that

sig
′
B (u) ∈ {0, 1}h and sig

′
B (u)i = 1{(u, i) ∈ E}

When referring to signatures on bipartite graphs that are distinguished only by their subscripts

(e.g. Ba and Bb ) we only denote the signatures in shorthand notation, e.g. sig
′
a(u) = sig

′
Ba (u),

sig
′
b (u) = sig

′
Bb
(u).

We restate the second half of Algorithm 1 as the bipartite graph alignment algorithm in Algorithm

2

Algorithm 2 Bipartite Graph alignment

Input: Ba = (Va , [h];Ea), Bb = (Vb , [h];Eb )

Output: Estimated alignment M̂ : Vb → Va

1: for vertex v ∈ Vb do

2: M̂(v) = argminu ∈Va

���sig′a (u) − sig
′
b (v)

���
3: end for

Suppose that we have bipartite graphs Ba = (Va , [h];Ea) and Bb = (Vb , [h];Eb ) such that |Va | =
|Vb |. Assume there is an exact correspondence between the vertex sets, expressed by the alignment

M : Vb → Va . Algorithm 2 is guaranteed to map vertex u ∈ Vb toM(u) ∈ Va if��
sig

′
a (M(v)) − sig

′
b (u)

�� > ��
sig

′
a (M(u)) − sig

′
b (u)

��
(7)

for any v ∈ Vb \ {u}. Hence verifying the equality above for any ordered pair of vertices (u,v) ∈ V 2

b
guarantees that the algorithm perfectly aligns all vertices.

In the remainder of the section, in order to avoid cumbersome notation, we assume that, without

loss of generality, Va = Vb = V and the true alignment is the trivial alignment M(v) = v for any

v ∈ V .

To analyze Algorithm 2 for random bipartite graphs, we need the following lemma which bounds

the probability that a pair of vertices are misaligned. This corresponds to the failure of (7) for either

one of the vertices.

Lemma 4.9. Let bipartite graphs Ba = ({u,v}, [h];Ea) and Ba = ({u,v}, [h];Eb ) be distributed
according to (Ba ,Bb ) ∼ ER(2,h; p).
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Define EM(Ba ,Bb ) to be the “misalignment event” i.e. the event where either of the following
inequalities hold: ��

sig
′
a (v) − sig

′
b (u)

�� ≤ ��
sig

′
a (u) − sig

′
b (u)

��
or

��
sig

′
a (u) − sig

′
b (v)

�� ≤ ��
sig

′
a (v) − sig

′
b (v)

�� .
Then P

[
EM(Ba ,Bb )

]
≤ 2 exp

(
−hρ2

)
where

ρ ≜
√
p00p1∗ + p11p0∗ −

√
p10p0∗ + p01p1∗.

The quantity ρ is a measure of the correlation between the pair of graphs. The likelihood of

misalignment between a pair of vertices can be upper bounded in terms of h, the size of the readily
identified set, and ρ, the strength of the correlation between the new graphs. Applying this result

over the entire graph gives us the following result.

Remark 1. Let (Ba ,Bb ) ∼ ER(n,h; p). Then for eachu,v ∈ [n], the subgraphs induced by {u,v} and
[h] have joint distribution ER(2,h; p). By Lemma 4.9, the probability that Algorithm 2 misalignsu with
v orv withu is at most 2 exp

(
−hρ2

)
. Then, by the union bound over all

(n
2

)
pairs of vertices, Algorithm

2 correctly recovers the alignment between Ba and Bb with probability at least 1−n(n − 1) exp
(
−hρ2

)
and the algorithm is correct with probability 1 − o(1) when

h ≥
2 logn + ω(1)

ρ2
. (8)

In our analysis of Algorithm 1, the situation is similar yet not quite as simple as the one described

in Remark 1. After we find the lists of anchors in Ga and Gb , we obtain a pair of induced bipartite

subgraphs:Ga[Va \Ha ,wa] andGb [Vb \Hb ,wb ]. When the anchor lists are the same, i.e. wa = wb ,

Algorithm 2 can be applied, but bipartite graphs do not have the joint distribution ER(n − h,h, p),
required for Remark 1. This is due to the fact that we used edge information to partition the original

vertex set, so the edges are not independent of this partition. However, this dependence is weak. In

Section 4.3 we will apply Lemma 4.9 after careful conditioning.

4.3 General alignment algorithm
In this section we first show that the anchor alignment stage is independent from the alignment

of any pair of non-anchor vertices in the bipartite alignment step. We do this by considering the

subgraph obtained by removing any pair of vertices and show that the anchor set is sufficiently

stable due to the degree separation of at least 3 as guaranteed by Theorem 4.7. This then allows us

to combine results on both stages to get the condition for successful alignment of pairs of random

graphs.

Recall thatwa = fh(Ga) andwb = fh(Gb ). ForU = {u1,u2} ⊆ V , the induced bipartite subgraphs

(Ga[U ,wa],Gb [U ,wb ]) determine whether Algorithm 1misalignsu1 withu2 oru2 withu1. However,
these graphs do not have a correlated ER joint distribution, so we define a related pair of induced

bipartite subgraphs.

Definition 4.10. Let Ga and Gb be graphs on vertex set V . For set U = {u1,u2} ⊆ V , and h ∈ N,
define

wU
a = fh(Ga[V \ {u1,u2}]) and BUa = Ga[U ,wU

a ],

i.e. (u, i) ∈ E(BUa ) ⇐⇒ {u,wU
i } ∈ E(Ga) for anyu ∈ U and i ∈ [h]. DefinewU

b and BUb analogously.

Let EH(U ) be the event wU
a = wU

b .
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We emphasize that in both BUa and BUb the left vertex set is {u1,u2} and the right vertex set is

[h], so the vertex sets are not random variables.

We start by stating a result on conditional independence of the high-degree neighborhoods of a

pair of vertices.

Lemma 4.11. Let (Ga ,Gb ) ∼ ER(n; p) be correlated graphs on the vertex setV and letU = {u1,u2} ⊆
V . Then

BUa ∼ ER(2,h,p1∗), BUb ∼ ER(2,h,p∗1)

and (BUa ,B
U
b )|E

H(U ) ∼ ER(2,h, p),

where BUa and BUb are as defined in Definition 4.10

Proof. Recall that, by definition, BUa = Ga[U ,wU
a ] and 1{(u, j) ∈ E(BUa )} = 1{{u,wU

a, j } ∈

E(Ga)}. We will show that despite being defined using wU
a , the random variable BUa is independent

of the random variable wU
a . Observe that B

U
a = Ga[U ,wU

a ] is independent of Ga[V \U ] because

they have no edge random variables in common. Because wU
a = fh(Ga[V \U ]), BUa is independent

of wU
a as well.

Similarly, BUb is independent of wU
b and 1{(u, j) ∈ E(BUb )} = 1{{u,wb, j } ∈ E(Gb )}. As long as

wU
a = wU

b holds, 1{(u, j) ∈ E(BUa )} and 1{(u, j) ∈ E(BUb )} have the joint distribution of a pair of

corresponding edges in the correlated Erdős-Rényi model. □

This result may be counterintuitive because we are selecting the right vertex set of BUa using

high degree vertices, but there the edge density of BUa is the same asGa . For a fixed (u, j) ∈ U × [h],
the random variable 1{(u, j) ∈ E(BUa )} is not determined by any single edge random variable from

Ga , but is a mixture of 1{{u,v} ∈ E(Ga)} over all v ∈ V \U because wU
b is random. It is helpful to

compare with Ga[U
wa ,wa], where U

wa = {u1,u2} is a uniformly random subset of V \ Ha . This

bipartite graph is not distributed as ER(n,p1∗) because edges of Ga are slightly more likely to be

sampled than non-edges.

Recall from Definition 4.6 that ES

a is defined as the event that δa,i > δa,i+1 + 2 for all i ∈ [h] and
ES

b is the corresponding event for wb and Gb .

Lemma 4.12. The event ES

a implies wa = wU
a for allU ⊆ V pair of vertices that do not include any

from wa . Similarly ES

b implies wb = wU
b .

Proof. For anyv ∈ V , the degree ofv inGa differs by at most 2 from the degree ofv inGa[V \U ].

The same holds for Gb . □

Finally we prove our main theorem:

Proof of Theorem 4.1. Theorem 4.7 provides the condition on the correlation of graphs

required to successfully align a given number h of high-degree vertices. From the inequalities

h ≤ O

(
logn
p11

)
, logh ≤ logn, and the conditions in the theorem statement, p11 ≥ ω

(
n−1/5 log7/5 n

)
and p01 + p10 ≤ o

(
p5
11

log
6 n

)
, we have

max

{
(logh)2,n(p10 + p01) logh

}
≤ o

(
np11

h4 logn
·
p11
p1∗

)
.

Thus P
[
EH ∧ ES

a ∧ ES

b

]
≥ 1 − o(1), where EH

, ES

a and ES

b are events as defined in Definition 4.6.

These events imply Ha = Hb = H .
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Recall the definition of EM(Ba ,Bb ) from Lemma 4.9 and EH(U ) from Definition 4.10. Applying

the union bound to error events in the bipartite alignment stage of the algorithm results in the

following:

P[M̂ , M |EH ∧ ES

a ∧ ES

b ]

≤
∑

{u1,u2 }⊆V \H

P
[
EM(Ga[U ,wa],Gb [U ,wb ]) ∧ EH ∧ ES

a ∧ ES

b

]
(a)
≤

∑
{u1,u2 }⊆V \H

P
[
EM(BUa ,B

U
b ) ∧ EH(U )

]
(b)
≤

∑
{u1,u2 }⊆V

P
[
EM(BUa ,B

U
b )

��EH(U )
]

(c)
≤

∑
{u1,u2 }⊆V

exp(−hρ2).

The inequality (a) is derived by applying Lemma 4.12 twice, which gives Ga[U ,wa] = BUa ,
Ga[U ,wb ] = BUb , and wU

a = wU
b . (Recall that the event {wU

a = wU
b } is denoted by EH(U ).) In

(b), we use P[EU ] ≤ 1 and also extend the sum to include pairs {u1,u2} that include members of

H . Because u1 and u2 are now arbitrary vertices with no conditioning, from Lemma 4.11 we have

that (BUa ,B
U
b ) ∼ ER(2,h, p). Observe that for any U = {u1,u2} ⊆ V \ H , the signatures in Lemma

4.9 are the same as the signatures in Algorithm 1: sigGa [U ,wa ]
(ui ) = sig

′
a (ui ). Finally, (c) follows

from Lemma 4.9. Note that the final bound is the same as the one stated earlier in Remark 1.

We have

ρ =
√
p00p1∗ + p11p0∗ −

√
p10p0∗ + p01p1∗

=
√
p11p00

(√
2 +

p10
p11
+
p01
p00

−

√
2

p01p10
p11p00

+
p10
p11
+
p01
p00

)
≥
√
2p11

(
1 − O

(
1

logn

))
because

p10
p11

≤ o
(

1

log
6 n

)
and

p01
p00

≤ o
(

1

log
6 n

)
. The logarithm of the probability of an incorrect

alignment in V \ H is at most

log

(
n(n − 1) exp(−hρ2)

)
≤ 2 logn −

logn + ω(1)

p11
· 2p11

(
1 − O

(
1

logn

))
≤ 2 logn − 2 logn + O(1) − ω(1)

(
1 − O

(
1

logn

))
= −ω(1).

□

5 IMPLEMENTATION AND PERFORMANCE EVALUATION
In this section, we study the performance of our canonical labeling algorithm through simulations

over real and synthetic data. In Section 5.1, we describe our slight modification to the original

algorithm to improve its performance in small graphs. In Section 5.2 and 5.3, we compare the per-

formance of our algorithm against EigenAlign and LowRankAlign [27] on synthetically generated

correlated ER graphs and on a protein network, respectively.
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5.1 Implementation
We consider an implementation of a variant of Algorithm 1 for finite graphs. The modifications

introduced over the original algorithm provide some robustness against certain events that have

low likelihood in the asymptotic case but that become more significant when considering small

graphs. Thus our theoretical analysis applies equally to the modified algorithm.

Consistent bipartite alignment: By Lemma 4.9, with high probability within the regime of

interest, there is a unique signature sigb (v) inGb at minimum distance to any signature siga(u) in
Ga . If there are two signatures from Gb that both lie at minimum distance to a given signature in

Ga , the naive approach considered in the analysis would simply align both vertices from Vb to the

same vertex in Va . We impose a requirement of ‘consistency’ to the signature alignment operation

that acts less naively in this event. Let D ∈ NUa×Ub be the matrix whose entries Du,v correspond to

the Hamming distance between signatures siga(u) and sigb (v) obtained by anchor list Ha and Hb .

Let µa→b : Ua → Ub and µb→a : Ub → Ua denote the position of the minimum value in any row

or column respectively. Consistent signature alignment aligns (u,v) is aligned if and only if all of

the following hold: ∀u ′ ∈ Ua \ {u}, µa(u) , v , ∀v ′ ∈ Ub \ {v}, µb (v) , u and either µa(u) = v or

µb (v) = u. Consistent signature alignment might leave some vertices unmatched, in which case we

perform another alignment until all vertices have been matched.

Robust anchor alignment: By Corollary 4.3 and Theorem 4.5, the degree sequence on the

higher extreme is well separated in Ga which guarantees it preserving the same order in Gb . The

same argument can be shown to apply for the lower extreme of the degree sequence. Thus in the

implementation we extract anchors from both extremes. Furthermore we consider a modification

that filters out anchors that appear to be misaligned. This is done as follows: We pick a given number

of vertices from both extremes of the degree sequence in both graphs and align them one-by-one

according to their position in the degree sequence. Then, using this alignment as anchors, we

perform consistent signature alignment over the same subset of vertices to get a new alignment.

Then we construct the agreement graph Gagr, i.e. a graph over the aligned pairs of vertices where

any edge e ∈ Gagr if and only if e ∈ Ga and e ∈ Gb or e < Ga and e < Gb ). We prune this graph

down to a minimum size and consider the surviving pairs of aligned vertices to be our anchors.

We iteratively repeat this process of degree alignment - signature alignment - pruning. At each

iteration, degree alignment is only performed on the vertices that haven’t been included in the

final anchor set in the previous iteration. We stop iterating when the pruned agreement graph’s

density stops increasing between iterations.

Note that neither modification changes the performance of the algorithm as n → ∞ since the

events where the original algorithm would give a different outcome than the variant has occur

with probability o(1) in the regime of interest.

5.2 Performance over Erdős-Rényi graphs
We ran simulations on correlated ER graphs of size ranging from n = 128 to n = 16, 384 to see how

well our theoretical results generalize to small graphs. As expected, the algorithm’s performance

suffers in small graphs as a result of the discreteness of degrees. However this effect becomes less

significant as the graphs grow in size.

We ran the algorithm over 20 pairs of correlated random Erdős-Rényi graphs with p11 = 1/4 for

various values of p10 = p01. We report the noise level as −
log

2
p10

log
2
n which is the relevant measure as

seen in Fig. 1. In Fig. 2 we give the mean performance of these experiments while Table 1 shows the

median over the experiments. The performance of the algorithm increases as we consider larger

graphs. We also note that, as seen in Table 1, our implementation tends to either properly align

nearly all vertices or almost none of them.
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Fig. 2. Ratio of properly aligned vertices (mean over 20 random graph pairs)
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− log
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log
2
n = 7 0.78 0.78 1.17 1.56 1.95

log
2
n = 8 0.39 0.39 0.39 0.39 1.17

log
2
n = 9 0.20 0.20 0.20 0.20 99.61

log
2
n = 10 0.10 0.10 0.10 100.00 99.90

log
2
n = 11 0.05 0.05 0.10 100.00 100.00

log
2
n = 12 0.02 0.02 100.00 100.00 100.00

log
2
n = 13 0.01 0.02 100.00 100.00 100.00

log
2
n = 14 0.01 99.98 100.00 100.00 100.00

Table 1. Ratio of properly aligned vertices (median over 20 random graph pairs)

We also compared the algorithm’s performance with EigenAlign and LowRankAlign [27]. Since

these algorithms do not scale well for large graphs, we only considered a small graph of size

n = 128. This setting is unfavorable for our canonical labeling algorithm (since anchor alignment is

difficult due to the discrete nature of degrees). Yet we still observe that the algorithm outperforms

EigenAlign and is comparable to LowRankAlign for low noise.

Algorithms based on a semidefinite programming relaxation of quadratic alignment have also

been proposed [27], but are not computationally feasible even for n = 128.

5.3 Simulation over protein-protein interaction network
To study the performance of the algorithm in actual networks, we ran simulations on a protein-

protein interaction network. The distribution of such networks often is quite different from the ER

model. Our results show that the algorithm is applicable as long as noise level is low enough.

The implementation has been run over the protein-protein interaction network of Campylobacter

jejuni, which a species commonly considered when studying cross-species alignments of protein
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Fig. 3. Number of properly aligned vertices (mean over 20 random graph pairs)
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networks [9]. Since AnchorSignAlign is only suitable for the alignment of graphs whose vertex

sets have a one-to-one correspondence, we generate a pair of correlated graphs from this single

network by subsampling at various rates s . (The probability of any edge from the original graph

being included in any of the new graphs is s independently from all other edges and the other new

graph.)

− log
2
(1 − s) 5 6 7 8 9 10 ∞

# correctly aligned 10 751 755 763 765 765 765

Table 2. Number of vertices properly aligned by AnchorSignAlign over a pair of subsampled networks with
different subsampling rates (n = 1095)

The algorithm shows robustness against noise up to 2
−6

over this network.While the performance

appears to plateau once the noise level goes below that value, this is in fact due to the automorphisms

of the network, as many proteins are not distinguishable from others by simply considering the

structure of the protein-protein interaction network.

We have not been able to test EigenAlign and LowRankAlign on any protein-protein interaction

network as these typically have more than 1000 nodes.

5.4 Computational time
Experimental results show the run-time of our implementation to scale as t ≈ 0.5s × (n2 log

2
n).

log
2
n 11 12 13 14

t/(n2 log
2
n) 0.52 0.52 0.53 0.41

Table 3. Scaling factor for different values of n

This is significantly better than the run-time of EigenAlign and LowRankAlign. This shows this

approach to be suitable to perform alignment over very large graphs.
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Fig. 4. Average time to compute an alignment
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6 CONCLUSION
We studied the performance of a canonical graph matching algorithm under the correlated ER

graph model and obtained the expression for the region where the algorithm succeeds. To do so we

analyzed the two steps of the algorithm, comprised of a high-degree matching and a subsequent

bipartite matching. The first step which identified the pairing between high-degree subset of vertices

can provide an initial set of seed vertices which may be used for various seed-based matching

approaches. In this work we used a particular bipartite matching algorithm based on signatures

derived from connections of the remaining (i.e. unidentified) vertices to the high-degree vertices

identified at the first step.

There are a number of possible directions in which this work can be extended. One would

be removing the assumption of the current model that the two vertex sets have a one-to-one

correspondence. This would allow the analysis of more realistic scenarios where both graphs can

potentially contain many vertices that have no exact match in the other. In this case it is necessary

to avoid matching such vertices by considering some measure of the strength of correspondence

between matching candidates. Another direction to consider is the scenario where information

offered by the graph structure is richer. This would be the case when the edges are directed or

weighted. It could also be the case that adjacency relations are defined by more than 2 states, rather

than our model where the existence and absence of edges are the only 2 states. Another model with

richer information would be the case of hypergraphs. Finally we note that some extensions to the

algorithm, (such as considering highest-degree vertices at distance two rather than only immediate

neighbor in the bipartite matching step) could provide considerable improvements to the region

where the algorithm succeeds.
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A PROOFS OF LEMMAS ON ANCHOR ALIGNMENT
Proof of Lemma 4.2. Let us denote the degree separations in the two graphs by α ≜ da (u) −

da (v) and β ≜ db (u) − db (v). Observe that the presence of the edge {u,v} in Ga does not affect α .
Thus we define

dua ≜ |Na(u) \ {v}| dua ≜ n − 2 − dua

dva ≜ |Na(v) \ {u}| dva ≜ n − 2 − dva .

The error event in the degree sequence, i.e. db (u) − db (v) ≤ k , corresponds to β ≤ k . By the

Chernoff bound:

P
[
β ≤ k |dua ,d

v
a
]
≤ z−kE

[
zβ |dua ,d

v
a

]
∀0 < z ≤ 1.

In Appendix Cwe derive an expression for the probability generating function Fβ (z) ≜ E
[
zβ |dua ,d

v
a
]
:

Fβ (z) =z
α
(
1 +

p10
p1∗

(z − 1)

)dva (
1 +

p01
p0∗

(z − 1)

)dua
×

(
1 +

p10
p1∗

(
z−1 − 1

) )dua (
1 +

p01
p0∗

(
z−1 − 1

) )dva
.

By applying 1 + x ≤ ex we get

Fβ (z) ≤ exp

{
α log z +

(
p10
p1∗

dva +
p01
p0∗

dua

)
(z − 1)

}
× exp

{(
p10
p1∗

dua +
p01
p0∗

dva

) (
z−1 − 1

)}
Furthermore applying logx ≤ x − 1 we have

z−kFβ (z) ≤ exp

{(
α − k +

p10
p1∗

dva +
p01
p0∗

dua

)
(z − 1)

}
× exp

{(
p10
p1∗

dua +
p01
p0∗

dva

) (
z−1 − 1

)}
(9)

Denote the coefficients by

r ′ ≜ α − k +
p10
p1∗

dva +
p01
p0∗

dua and r ≜
p10
p1∗

dua +
p01
p0∗

dva .

Denote their difference as

∆r ≜ r ′ − r = α − k +
p10
p1∗

dva −
p10
p1∗

(
(n − 2) − dva

)
−
p10
p1∗

dua +
p01
p0∗

(
(n − 2) − dua

)
= α − k −

(
p01
p0∗
+
p10
p1∗

)
(dua − dva )

= α

(
1 −

p01
p0∗

−
p10
p1∗

)
− k

Proc. ACM Meas. Anal. Comput. Syst., Vol. 3, No. 2, Article 36. Publication date: June 2019.



Analysis of a Canonical Labeling Algorithm for the Alignment of Correlated ER Graphs 36:21

The right hand side of the inequality in (9) is minimized at z∗ ≜
√
r/r ′. Taking the logarithm of

both sides in (9) and evaluating it at z = z∗ we get

log Fβ (z
∗) − k log z∗ ≤ −

(√
r ′ −

√
r
)
2

= −∆r
(√

1 + r/∆r −
√
r/∆r

)
2

.

The inequality

√
1 + x2 −x ≥ 1

1+2x holds for any x ≥ 0. Specifically the choice of x =
√
r/∆r results

in

−
[
log Fβ (z

∗) − k log z∗
]
≥

∆r

(1 + 2
√
r/∆r )

Note that:

∆r ≥ 4max

{
η,
√
rη
}
=⇒

(
1 + 2

√
r

∆r

)2
≤ 4min

{
1,
r

η
,

√
r

η

}
=⇒

∆r(
1 + 2

√ r
∆r

)
2
≥

1

4

max

{
∆r ′,∆r

η

r
,∆r

√
η

r

}
≥

∆r

4

≥ η

which implies (z∗)−k Fβ (z
∗) ≤ e−η . Finally observe that φ ≜ da (u)

p10
p1∗
+ da (v)

p01
p0∗

is at least r .

Therefore the condition in the statement of the lemma implies ∆r ≥ 4max

{
η,
√
rη
}
. □

Proof of Lemma 4.3. Let Ha and Sa be the set of h and s highest-degree vertices in Ga
respectively and define Hb analogously for Gb . The following two events collectively imply

fh(Ga) = fh(Gb ) and δb,i − δb,i+1 > k for any i ∈ [h].

• Let Ehigh
be the event that vertices in Ha have the same degree ordering in Ga and in Gb as

well as a minimum degree separation larger than k in Gb . Note that this does not guarantee

Ha = Hb .

• Let E low
be the event that all vertices in V \ Ha have degree less than δb,h − k in Gb , i.e. no

vertex from V \ Ha is in Hb and all have a sufficiently large degree separation with the h-th
highest-degree vertex.

First we consider Ehigh
, i.e. the event where δb,i − δb, j > k for any i < j with i, j ∈ [h]. Notice

that it is sufficient to check this condition for consecutive pairs of vertices in the degree sequence.

Given the condition in (4), Lemma 4.2 states that for any pair of vertices vi ,vi+1 ∈ Ha , vi and vi+1
in Gb have the same degree ordering as well as a degree separation larger than k with probability

at least e−η . Thus, by the union bound, we get P
[
Ehigh

]
≤ 1 − he−η .

Second we consider E low
, i.e. the event where δb,h −δb,i > k for any i ∈ [n]\[h]. By the condition

in (4) we have, ∀i ∈ [s] \ [h],

δa,h − δa,i ≥ (i − h)(k + 4max

{
η,
√
φ · η

}
)(1 − ε)−1

≥

(
k + 4max

{
(i − h)η,

√
(i − h)φη

})
(1 − ε)−1

and ∀i ∈ [n] \ [s],

δa,h − δa,i ≥ (s + 1 − h)(k + 4t max

{
η,
√
φ · η

}
)(1 − ε)−1

≥

(
k + 4max

{
(s + 1 − h)η,

√
(s + 1 − h)φη

})
(1 − ε)−1.
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By Lemma 4.2 we then have

P
[
δa,h − δa,i ≤ k

]
≤ exp(−ηmin{i − h, s + 1 − h}).

Then, by the union bound,

P
[
E low

]
≤

s∑
i=h+1

e−η(i−h) +
n∑

i=s+1

e−η(s+1−h)

≤
e−η

1 − e−η
+ (n − s)

h

n
e−η

Applying the union bound again we obtain

P
[
Ehigh ∨ E low

]
≤ (2h + 1)e−η/(1 − e−η).

□

Proof of Lemma 4.4. For any vertex u ∈ V (G), dG (u) ∼ Bin(n − 1;p). By the Chernoff bound,

for any D ∈ N and z ∈ [1,∞]

P [dG (u) ≥ D] ≤ z−DE
[
z−dG (u)

]
≤ z−D [1 + p(z − 1)]n−1 .

Applying 1 + x ≤ ex to both terms this becomes

log P [dG (u) ≥ D] ≤ D(z−1 − 1) + p(n − 1)(z − 1).

The right hand side is minimized for z∗ =
√

D
p(n−1) which gives us

log P [dG (u) ≥ D] ≤ −

(√
D −

√
p(n − 1)

)
2

.

Let D = (1 + ϵ)p(n − 1). By the union bound, the probability that the maximum degree is at least

D is at most

nP [dG (u) ≥ D] ≤ n exp

(
−p(n − 1)

(√
1 + ϵ − 1

)
2

)
≤ n exp (−ω(logn)) ≤ o(1).

□

B PROOFS OF LEMMAS ON BIPARTITE ALIGNMENT
Proof of Lemma 4.9. Define the random variable

γ =
��
sig

′
a (v) − sig

′
b (u)

�� − ��
sig

′
a (u) − sig

′
b (u)

�� .
We bound the probability of γ ≤ 0 using the Chernoff bound: P [γ ≤ 0] ≤ E [zγ ] for all 0 < z ≤ 1.

The generating function Fγ (z) ≜ E [zγ ] is given as

Fγ (z) =
[
1 + q0(z − 1) + q1(z

−1 − 1)
]h

where q0 = p00p1∗ + p11p0∗ and q1 = p10p0∗ + p01p1∗. (See Appendix C for derivation.)

Applying 1+x ≤ ex and evaluating the function at z∗ =
√

q1
q0
, we get log Fγ (z

∗) ≤ −h
(√
q0 −

√
q1
)
2

.

Hence for ρ =
√
q0 −

√
q1 we have P [γ ≤ 0] ≤ exp

(
−hρ2

)
.

Notice that for the analogous

γ ′ =
��
sig

′
a (u) − sig

′
b (v)

�� − ��
sig

′
a (v) − sig

′
b (v)

��
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the same bound holds. The event EM(Ba ,Bb ) is equivalent to
{γ ≤ 0 ∨ γ ′ ≤ 0}. Thus by the union bound P

[
EM(Ba ,Bb )

]
≤ 2 exp

(
−hρ2

)
. □

C DERIVATIONS OF PROBABILITY GENERATING FUNCTIONS
Probability generating function of the degree separation beta

Given the random graphs (Ga ,Gb ) ∼ ER(n; p) and for a given pair of vertices u,v , define dua =
|Na(u) \ {v}|, d

v
a = |Na(v) \ {u}| and d

u
b ,d

v
b analogous forGb . We seek to find Fβ (z) = E

[
zβ |dua ,d

v
a
]

where β = db (u) − db (v).
Let us denote the degree separation in Ga as α = da (u) − da (v). Note that d

u
a − dva = da (u) −

da (v) = α and dub − dvb = db (u) − db (v) = β . Let us denote the number edges of x in Ga \ {u} that
are non-edges in Gb (i.e. number of edges exclusive to Ga ) as e

u
a = |Na (u) \ Nb (u) \ {v}| and vice

versa as eub = |Nb (u) \ Na (u) \ {v}|. It can be shown that dub = dua − eua + e
u
b . Similarly define eva

and evb by ignoring the edge {u,v}. We then have

dub − dvb = d
u
a − dva − eua + e

v
a + e

u
b − evb

or simply β = α − eua + e
v
a + e

u
b − evb . Notice that given dua and dva , α is deterministic. Also notice

that the remaining terms eua , e
v
a , e

u
b , e

v
b are mutually independent binomially distributed random

variables with distribution:

eua ∼ B

(
dua ;

p10
p1∗

)
, eub ∼ B

(
dua ;

p01
p0∗

)
,

eva ∼ B

(
dva ;

p10
p1∗

)
, evb ∼ B

(
dva ;

p01
p0∗

)
where dua = n − 2 − dua and dva = n − 2 − dva . The probability generating function of a binomially

distributed random variable X ∼ Bin(n,p) is given by [1 + p(z − 1)]n . Thus we get the probability

generating function of β as

Fβ (z) =z
α
(
1 +

p10
p1∗

(
z−1 − 1

) )dua (
1 +

p10
p1∗

(z − 1)

)dva
×

(
1 +

p01
p0∗

(z − 1)

)dua (
1 +

p01
p0∗

(
z−1 − 1

) )dva
Probability generating function of the relative signature distance gamma

Consider the random bipartite graphs Ba = (V ,H ;Ea), Bb = (V ,H ;Eb ) distributed according

to (Ba ,Bb ) ∼ ER(h,n; p). For a given pair of vertices u,v ∈ V let us define the relative signature

distance ofu tov observed fromGb asγ (u,v) =
��
sig

′
a (v) − sig

′
b (u)

��− ��sig′a (u) − sig
′
b (u)

��
.γ (u,v) can

be expressed as the sum of the contributions of each high-degree vertexw ∈ H . The neighborhoods

Na (v) ,Na (u) and Nb (u) partition the set of high-degree vertices in 8 disjoint sets as given in Fig.

5. We then have γ (u,v) =
∑
w ∈H 1{w ∈ H3 ∪ H4} − 1{w ∈ H1 ∪ H6}.

Notice that for any w ∈ H , P [w ∈ H3 ∪ H4] = p00p1∗ + p11p0∗ and P [w ∈ H1 ∪ H6] = p10p0∗ +

p01p1∗. In fact the random variables

{
1{w ∈ H3 ∪ H4} − 1{w ∈ H1 ∪ H6}

}
w ∈H

are mutually

independent and identically distributed. Let us define q0 = p00p1∗ + p11p0∗ and q1 = p10p0∗ + p01p1∗
This gives us the following generating function

Fγ (z) = E
[
zγ (u,v)

]
=

[
1 + q0 (z − 1) + q1

(
z−1 − 1

) ]h
. (10)
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